[ library(ic_probing_for_scheduling) | Reference Manual | Alphabetic Index ]
probe_sched(+Starts, +Durations, +Resources, +MaxResource, ?CostFun)
Find a resource-feasible schedule that minimises the
cost function
- Starts
- a list of (n) task start times (integers or
finite domain variables)
- Durations
- a list of (n) task durations (integers or
finite domain variables)
- Resources
- a list of (n) task resource needs (integers or
finite domain variables)
- MaxResource
- The available resource, not to be exceeded (integer)
- CostFun
- An expression involving start times and durations
to be minimised
Description
This predicate finds start times for a set of tasks, which
minimise the value of a given cost function.
The cost function is the only information the search algorithm can use to
focus on the optimum. It cannot guide the search if the cost is a variable,
only linked to the tasks start times by constraints. For this reason the
cost function admits the special functions abs and maxlist.
The syntax for cost functions is:
CostFunction ::- PosExpr | PosExpr + PosExpr | Integer * PosExpr
PosExpr ::- abs(LinearExpr) | maxlist([LinearExpr]) | LinearExpr.
The algorithm is described in more detail in the documentation of
probe_cstr_sched/7.
Resatisfiable
no
Examples
probe_schedule(Starts,CostFun) :-
Starts=[X,Y,Z],
ic:(Starts::1..10),
Durations=[10,5,5],
Resources=[R1,R2,R3],
ic:(R1::1..2), R2=2, R3=1,
MaxResource=2,
[OldX,OldY,OldZ]=[1,5,5],
CostFun= abs(X-OldX)+abs(Y-OldY)+abs(Z-OldZ),
probe_sched(Starts,Durations,Resources,MaxResource,CostFun).
See Also
probe_cstr_sched / 7, fd : min_max / 2, probe : set_up_probe / 5, ic_probe : set_up_probe / 5, ic_make_overlap_bivs : make_overlap_bivs / 5, make_overlap_bivs : make_overlap_bivs / 5, ic_probe_search : probe_search / 5, probe_search : probe_search / 5, ic : maxlist / 2, fd_global : maxlist / 2, ic_global : maxlist / 2