[ library(ic) | Reference Manual | Alphabetic Index ]
# +ConX => +ConY

Constraint ConX being true implies ConY must both be true.
*ConX*
- Constraint
*ConY*
- Constraint

## Description

Equivalent to BX $= (ConX), BY $= (ConY), BX #=< BY

The two constraints are reified in such a way that ConX being true
implies that ConY must also be true. ConX and ConY must be constraints
that have a corresponding reified form.

## See Also

=> / 3, neg / 1, neg / 2, or / 2, or / 3, and / 2, and / 3, =:= / 3, =< / 3, =\= / 3, >= / 3, > / 3, < / 3