Baltzer Journals November 11, 1998

A New Approach to Integrating Mixed Integer
Programming and Constraint Logic Programming

ROBERT RODOSEK, MARK G. WALLACE AND MOZAFAR T. HAJIAN

IC-Parc, Imperial College
London SW7 2AZ, England
E-mail: {rr5, mgw, mh10}@doc.ic.ac.uk

This paper represents an integration of Mixed Integer Programming (MIP) and
Constraint Logic Programming (CLP) which, like MIP, tightens bounds rather
than adding constraints during search. The integrated system combines compo-
nents of the CLP system ECLiPSe [7] and the MIP system CPLEX [5], in which
constraints can be handled by either one or both components.

Our approach is introduced in three stages. Firstly we present an automatic
transformation which maps CLP programs onto such CLP programs that any
disjunction is eliminated in favour of auxiliary binary variables. Secondly we
present improvements of this mapping by using a committed choice operator and
translations of pre-defined non-linear constraints. Thirdly we introduce a new
hybrid algorithm which reduces the solution space of the problem progressively by
calling finite domain propagation of ECLiPSe as well as dual simplex of CPLEX.
The advantages of this integration are illustrated by solving efficiently difficult
optimisation problems like the Hoist Scheduling Problem [23] and the Progressive
Party Problem [27].

Keywords: Constraint Logic Programming, Mixed Integer Programming.

1 Introduction

Many applications can be naturally defined using a logical formalism, in a way similar to
functional or logic programming. In declarative programming, or any runnable specifica-
tion language, a default evaluation algorithm turns the logical formalism into a running
program [4]. There are many drawbacks of a default algorithm, e.g, poor performance on
many (indeed most) programs and frequent failure to terminate at all.

In constraint programming, by contrast, the behaviour of the constraints is equally
as important as their definition. Constraints have two features, definition and behaviour,
and these can be handled separately. The practical consequence is that the programmer
can concentrate on modelling of the problem and the problems with performance and
termination can be ironed out afterwards. Unfortunately, any disjunction in the logic
program, expressed by multi-clause predicates, leads to the enumeration of different al-
ternatives [10]. The evaluation algorithm, which is based on the implicit enumeration, is
complete but not always efficient.

The contribution of this paper is represented in two parts. In the first part we

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 2

present an efficient evaluation algorithm to turn the logical formalism with constraints
into a running program on a set of only linear equalities and inequalities. In the second
part we present an integration of the MIP solver and the CLP solver.

The proposed evaluation algorithm allows an integration of MIP with CLP using a
unique model for a problem. Disjunctions appearing in a CLP program are mapped to
0/1 auxiliary variables. The program is translated into a generic MIP model which can be
instantiated to a specific model as soon as the unknown data are supplied. The evaluation
algorithm has an important property that avoids any implicit enumeration.

The derived conjunction of linear equalities and inequalities can be hence treated
either by the MIP solver, the CLP solver or by both solvers. In CLP, many different
local consistency algorithms can be used. They reduce domains of variables or detect
an infeasibility if the domain of a variable becomes empty. The algorithms represent an
efficient local constraint propagation [9]. For instance, constraint propagation on finite
domains of variables is successful in solving problems arising in planning and scheduling,
resource allocation, and more recently even in solving more complex numerical problems
[22, 28]. In MIP, a simplex algorithm is used to solve the continuous relaxation of the
problem, giving either an infeasibility, or a lower bound on the objective function. Simplex
represents an efficient global constraint propagation [32]. MIP is a technique that has
been applied to a wide range of complex optimisation problems [31]. Although a lot of
combinatorial problems can be modelled in CLP as well as in MIP, the performances of
the techniques may be very different [27].

We present an integration of the MIP solver with the CLP solver giving more pow-
erful constraint reasoning: local and global constraint propagation. The integrated solver
combines our CLP solver, ECLiPSe, with a commercial MIP solver, CPLEX. However,
we confine our use of the commercial solver to the linear constraints, only using the dual
simplex solver of the CPLEX. In effect we return to a system quite similar to CLP, but
use an external solver for the linear rational constraints instead of an internal one. This
is possible within our framework because the translation has enabled us to post all the
linear constraints at the root of the search tree: the search is now reduced to the labelling
(or alternatively domain splitting) of integer variables. Therefore, unlike CLP(R) [17],
we do not require a linear constraint solver that can handle the incremental posting of
constraints. The empirical results show that this combination offers genuine practical ad-
vantages over both the MIP and CLP solver. For example, we use a single program both
to find and prove the optimality of the solution to the Progressive Party Problem [27].

The rest of this paper is organised as follows. Section 2 presents the handling of
conjunction and disjunction within a possibly recursive CLP program. Section 3 presents
a translation of a given CLP program to a generic model. Section 4 integrates the MIP
solver with the CLP solver. Experimental results are demonstrated in Section 5. Finally,
Section 6 concludes the paper.

2 Modelling in CLP

Many experimental systems concern logic and 0-1 inequalities [14, 31]. A systematic
procedure for transforming a set of logical statements or logical conditions into an equiv-
alent mathematical formulation has been presented by Williams [29, 30], and McKinnon

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 3

and Williams [16]. Recently, a computer support for this task within a Mathematical
Programming modelling system was given by Hadjiconstantinou et. al. [12]. The syntax
of a Mathematical Programming language is extended to incorporate propositional logic
terms with linear algebraic forms. A transformation of the operators like implies, or, and,
atmost k, exactly k into a conjunction of linear constraints over 0-1 variables is described
in [12]. The method is regarded as a bottom-up approach since the constraints have to
be expressed using predefined operators.

In CLP the constraints are not restricted on predefined operators. CLP is more pow-
erful as a representation language than Mathematical Programming, since it allows the
representation of constraints in a more natural and compact way [26]. The problem can
be represented by high level pre-defined and user-defined constraints. The modelling rep-
resents a top-down approach since the constraints are defined with further constraints.
This property of constraints allows an additional insight to the structure of the prob-
lem [6]. For instance, the modelling can be used to recognise that there are many equally
optimal solutions which can be cut off at an early stage of the CLP solution process.

In this section we present an efficient evaluation algorithm to turn the logical for-
malism with constraints into a running MIP program on a set of linear inequalities. The
evaluation algorithm is performed in two steps. The first step represents an automatic
translation of a given CLP program to a generic version of it. The syntax of CLP pro-
grams is defined in Subsection 2.1 while the translation directives are represented in
Subsection 2.2. The second step carries out the unfolding algorithm described in Subsec-
tion 2.3 to derive a MIP model.

2.1 Conjunction and Disjunction Within a Recursive CLP Program

An atom is denoted by p(t1,...,t,) where p is an n-ary predicate symbol and t1, ..., t,
are terms where each variable appears only once in any term. We distinguish between
two kinds of atoms: “user atoms” and “constraints”. The user atoms are defined by the
programmer while the constraints are linear or type constraints. A linear constraint X <
Y represents a linear inequality where X and Y are linear expressions '. The conjunction
of linear constraints X <Y and Y < X is denoted by X =Y to represent a linear equality.
The type of variables is defined by a type constraint using 1-ary predicate symbols binary,
integer and real to represent binary, integer and real variables, respectively.

A program P is defined by a set of clauses in which each clause has a head and a
body. The notation for a clause is

p(Args) : — qs(Argss), ..., au(Argsy).

where the head is a user atom p(Args) and the body is the conjunction of atoms g1 (Args:),
ey Qi (Argsy).

L An expression Ay * Vi 4 ... + Ay # Vi is called a linear expression iff A; is a constant and V;
is a variable (or a constant) for every 4, 1 < ¢ < k.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 4

Example 2.1
A program to check whether the difference between two numbers chosen from 1 to 10 is
greater than or equal to 2 can be defined in the CLP language as follows:

prog(X,Y) :— integer(X), 1 <X, X <10,
integer(Y), 1 <Y, Y < 10,
diff(X,Y).

diff(X,Y) :— Y+2<X

diff(X,Y) :— X+2<VY.

A program is executed by “unfolding” its clauses in response to a query. For instance,
query ?-prog(X, Y) causes the definition of prog(X,Y) to be unfolded into constraints
integer(X), 1 <X, X <10, integer(Y), 1 <Y, Y <10, and, in turn, the definition of
diff(X,Y) to be unfolded into constraint (Y+2 <X or X+ 2 <Y). The result of the
unfolding is a set of constraints. However, the unfolding of diff(X,Y) introduces a dis-
junction which cannot be directly handled by MIP. O

2.2 Translation to a generic model

The contribution of our translation is a redefinition of each atom p(Args) which is defined
by more than one clause (see atom diff(X,Y) in Example 2.1). Since any disjunction in
the program is represented by two or more clauses with the same head, we translate such
clauses into clauses with unique heads. The translation is based on the idea of adding
an auxiliary binary variable B as a new argument to atom p(Args). We say that the
translated atom p(Args, B) is equivalent to p(Args) if B = 1. If B = 0, then p(Args, B)
is always true.

A generic program, gen(P) is a program which is translated from P using translation
directives: (i) on the goal in the language of P; (ii) on the clauses of the program; (iii)
on the linear constraints; and (iv) on the type constraints in the body of those clauses:

Directive 1: If an atom p(Args) is a goal in the language of P, then the atom p(Args,1)
is introduced:

p(Args) : — p(Args, 1).

Directive 2: If an atom p(Args) is defined by r clauses

p(Argsy) : — qu1(Argsii), ..., Que(Argsiy).

p(Args,) : — qr1(ATgSr1), -y Qrk(ATESK)-

then we introduce r auziliary binary variables and for every n-ary predicate symbol of the
clause an (n + 1)-ary predicate symbol. The clauses are then translated to the following
clauses,

p(AI‘gS,B) F pl(ArgS,Bi)a HAS) Pr(ArgsaBr)a By +..+B, =B.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 5

p1(Argsi,B1) : — qu1(Argsi1,B1), ..., qux(Argsik,B1), binary(By).
pr(Args,,B;) : — qr1(Args,1,B;), ..., qrk(Args,k,B;), binary(B,).

If an atom in the body of a clause is a linear constraint, then it has to be translated
by adding auxiliary binary variable B into another linear constraint which is equivalent
to the original constraint if B is instantiated by 1, and it is true if B is instantiated by 0.

Directive 3: A linear constraint X <Y is translated into a linear constraint
X+MxB < Y+M

where B is an auxiliary binary variable and M is a large enough constant,

e.g. M = maz{(upper(X) — lower(Y)), (upper(Y') — lower(X))} where upper(X) repre-
sents the upper bound of X and lower(Y') represents the lower bound of Y.

Directive 4: Type constraints are translated into the same type constraints.

We show that the proposed directives preserve the set of all solutions of a given
program. A solution of a program with goal p(Args) is defined by an assignment of
values to the variables of Args returned by the usual evaluation of CLP programs [9].

Lemma 2.2
If p(Args) is a goal in the language of a program P, then it has the same set of solutions
when evaluated against P and against gen(P).

Proof

To satisfy program P, called by p(Args), one of the clauses with head p(Args) has to be
satisfied. Let r be the number of such clauses. Using Directive 1, atom p(Args, 1) has to
be satisfied. If r = 1, then Directive 2 implies that atoms g1 (Argsi1, 1), ..., qix(Argsig, 1)
have to be satisfied. If » > 1, then Directive 3 derives equality By +...+ B, = 1 which has
to be satisfied. Without loss of generality, let By = 1. It follows that atoms g1 (Argsi1,1),
o, 1k (Argsig, 1) of the clause with head pi (Args, 1) have to be satisfied. At the end of
the translation there are only atoms of the form ¢'(Args’, 1) to satisfy. Since every atom
q'(Args’, 1) has the same set of solutions as the original atom ¢(Args) of P, goal p(Args)
has the same set of solutions when evaluated against P and against gen(P).

Since each clause of a program is translated only once, the complexity of the trans-
lation is O(m) time where m is the number of clauses in the program.

2.8 Unfolding to an MIP model

When the input data of a given program are supplied, the generic program is automatically
unfolded into a conjunction of linear and type constraints. An important consequence for
the execution of practical applications is that the unfolding algorithm proceeds without
backtracking.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 6

Lemma 2.3
For a given input data of a program with goal p(Args) the generic program is unfolded
into a conjunction of constraints only:

p(Args) : — constrainty, ..., constraint,.

Proof

By using the directives, every user atom of the generic program occurs in the head of
one clause. Furthermore, every constraint is a conjunction of other user atoms and/or
constraints. When the input data has been supplied, the generic program is unfolded into
a conjunction of constraints only. O

The proposed translation to a generic CLP program and the unfolding to an MIP model
is illustrated using the problem in Example 2.1.

Example 2.4

A program to check whether the difference between two numbers is greater than or equal
to 2 has been defined in Example 2.1. The program is first translated to the generic
program:

prog(X,Y) :— prog(X,Y,1).
prog(X,Y,B) :— integer(X), B<X, X+B< 11,
integer(Y), B<Y, Y+B < 11,
diff(X,Y,B).
diff(X,Y,B) :— diffy(X,Y,B), diff,(X,Y,B,), By + By = B.
diffi(X,Y,By) :— Y+2+4+11%B; < X+ 11.

diffy(X,Y,B,) X+2+11%By < Y+ 11,

The generic program is now unfolded into the following conjunction of constraints:

prog(X,Y) :— integer(X),B <X, X+B< 11,
integer(Y), B<Y, Y+B < 11,

3 Improving the Model

The proposed automatic translation in Section 2 does not necessarily achieve the most
computationally efficient model. We present several improvements of our translation.
First, using data/control-flow properties of programs [21], the number of the introduced
auxiliary 0/1 variables can be reduced. Second, the proposed translation can also be
extended to pre-defined constraints. Third, it is not necessarily to translate the whole

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 7

program, since the user can decide which predicates should be considered by the CLP
solver and which predicates by the MIP solver.

3.1 Data/control-flow properties of programs

In many programs the arguments of predicates are lists of constants and variables. The
clauses usually satisfy data/control-flow properties [21] which lead to a simplification of
the proposed translation.

If a problem is specified in detail, so that each predicate definition consists of an
immediately determinable division into cases and each case breaks down the problem
represented by the predicate into slightly smaller sub-problems, then execution can pro-
ceed with little or no need for backtracking. With this programming style it is possible
to write programs which are both algorithmic and declarative.

Maher [21] presents a class of languages ALPS and some results which formalise these
observations. Instead of clauses, a program is a finite set of rules of the form

H < G|B,

where H is a user atom (the head), and G (the guard) and B (the body) are conjunctions
of atoms. The symbol | is called the commit operator. The operational semantics of the
commit operator is that a constraint H can commit to a given rule if the guard of just one
rule with head H can be satisfied. Thus, the program of rules prevents alternative choices
along the execution. If the head H can be satisfied with one rule, then it represents a
”don’t care” choice, otherwise it represents “don’t know” choices since atom H can be
satisfied by more than one clause.

Directive 5: A rule R is translated to R.

The consequence of this directive is such that the auxiliary binary variables are only
generated for the clauses but not for the rules.

Let us demonstrate the proposed directives on a simple program where the goal is to
guarantee a difference greater than or equal to 2 between a variable X and each element
of a list L:

test(X,L) & L=] | true.

test(X,L) < L =[Y[R] | diff(X,Y), test(X,R).
diff(X,Y) :— X+2<V.

diff(X,Y) :— Y+2<X

The program is translated using Directive 5 for test-atoms and Directive 2 for diff-
atoms. The number of auxiliary variables for a given problem becomes smaller since the
auxiliary variables are not introduced for the rules. If the length of the list L is &, then the
translation of the committed-choice program generates only k auxiliary variables instead
of 2k when using the program without rules.

Another example is a recursive program which defines a linear constraint between
every two variables of a list containing k variables. If the program has no guards, then
the translation introduces k(k + 1)/2 auxiliary variables. By adding appropriate guards

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 8

into the program, the number of auxiliary variables introduced by the translation can be
reduced to 0.

3.2 Replacement of pre-defined constraints

In the previous section the constraints were restricted to linear and type constraints. The
definition of programs is usually extended to allow other pre-defined constraints besides
the linear and type constraints. For such constraints the user defines a translation to
linear constraints. The restriction on integer variables to take only two values (0 or 1),
is a property of most MIP models [27, 31]. The practical consequence of such models is
usually better performance of the MIP solver [32].

We consider three pre-defined constraints:

1. V::Lo..Hi, which presents the finite domain {Lo, ..., Hi} for an integer variable
V.

2. link(B,Vi,V2), which presents the equivalence that variables V; and V5 are equal
if and only if binary variable B is equal to one.

3. alldistinct(Vars), which does not allow the same value for any two variables of
set Vars.

The language of programs is extended by a predicate symbol replace. This predicate
symbol denotes that a pre-defined constraint is replaced by type and linear constraints
as follows:

Replacement 1: A constraint replace(V::Lo..Hi) is replaced by the conjunction of
type and linear constraints

binary(Br,), binary(Bros1), -.-, binary(Bm;),
Bro+ ..+ Bg; =1

where every binary variable B; represents value i for variable V.

Replacement 2: A constraint replace(link(B, Vi, V5)) is replaced by type and linear
constraints

binary(B'), binary(B"), B+ B' + B" =1,
Vi+l+M*B <Vo+M,Vi+MxB<V,+ M,
Vot+1+M*xB"<Vi+M, Vo+ M+xB<V; +M,

where M is a sufficiently large number w.r.t. the bounds of variables Vi and V5.

Replacement 3: A constraint replace(alldistinct({V,...,V,,})) is replaced by the
conjunction of linear constraints

Bii+...+Byu <1,

By + ...+ Bp < 1,

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 9

where every binary variable B;; represents the assignment of value j to integer variable
Vi, and k is the size of the domain of the variables.

Consider the last replacement rule, alldistinct constraint in a CLP program is replaced
by the conjunction of linear constraints over binary variables. If the binary variables are
defined in the program, then it is enough to apply the last rule Replacement 3. Otherwise,
we have to apply all three replacement rules.

The replacement rules enable us to handle different constraints of a model by different
solver. For instance, alldistinct constraint is usually handled by the CLP solver while
the generated linear constraints are handled by the MIP solver. Two kinds of problems
appear by such replacements.

First, during the unfolding process we need a global access to each unique binary
variable B;; representing value j for variable V;. The maximum number of such binary
variables is the product of the number of integer variables by the size of the largest
integer domain. Note, the domain of variable V; is recognised by constraints d; < V; and
V; < dy where d; and ds are constants. Therefore, the size of the domain for variable V;
is determined by ds — d; .

Second, the replacement directives require us to define link constraints between integer
and new binary variables like 1ink(B;;, V;, j). Unfortunately, an automatic translation of
these constraints to linear constraints does not lead to an efficient mathematical model for
simplex. To overcome these difficulties we use two strategies. The first strategy replaces
the original constraints with linear constraints over binary variables and handles the 1ink
constraints, for example, by the CLP solver where they can “easily” be handled by the FD
propagation. The second strategy simply ignores the 1link constraints and uses the global
propagation just to check the infeasibility of the problem. For example, this strategy can
be used for symmetry constraints over integer variables. The symmetry constraints are
very helpful to prune the search tree when using the FD propagation, but they are not
necessary for simplex to recognise an infeasibility.

3.3 Constraints for the CLP and/or MIP solver

We modify the proposed translator to specify which constraints should be considered by
the MIP solver, the CLP solver or by both solvers. Such a translation can be useful for
solving the problems which represent a combination of different types of problems. An
example is the Video Broadcast Service (VBS) problem [25] which is a combination of
scheduling and broadcast network routing. The empirical results show that the problem
is tackled better if the MIP solver is only used on the routing and CLP on the scheduling
part of the problem [24].

We define two stores of constraints. The CLP-store represents the CLP part of the
model and the MIP-store represents the MIP part. The whole model of the problem is
then represented by both stores:

Model = (CLP-store, MIP-store).

To denote which constraints should be handled by a particular solver, new types of the
predicate symbols are introduced to the language. Every linear constraint with predicate
symbol # < is put into the CLP store and every linear constraint with the predicate

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 10

symbol $ < is put into the MIP store.

Replacement 4: A constraint X#$ <Y is replaced by

X# <Y, X$<V.

Replacement 4 allows the user to send a constraint to the both solvers. The proposed
extensions of the CLP language in this section leads to a new definition of a program.
A program P is redefined by a set of clauses and rules such that the heads of clauses do
not have common predicate symbols with the heads of rules. A generic program gen(P)
is a program with the rules and translated clauses of P using the defined directives and
replacements. We show that the translation of such redefined programs preserves the set
of all solutions.

Theorem 3.1

If p(Args) is a goal in the language of a program P with rules and clauses, then it has
the same set of solutions when evaluated against P and against gen(P).

Proof

Every predicate is defined by clauses or by rules or it is already a constraint. If it is
defined by clauses, then the result follows by Lemma 2.2. Otherwise, using the operational
semantics of the commit operator, the constraint commits exactly one rule and it does
not change the set of solutions of the translated program. O

Let us demonstrate the benefit of program rules by an example:

Example 3.2
A program to check if the difference between ANY two numbers of a given set is greater
than or equal to two can be defined as follows:

test.all(V) & V=[] | true.
test.all(V) < V=[X|R] | binary(X), 1 <X, X <10, test(X,R), test_all(R).
test(X,L) & L=] | true.
test(X,L) < L =[Y|R] | diff(X,Y), test(X,R).
diff(X,Y) :— Y+2<X
diff(X,Y) :— X+2<VY.

The program is translated to the generic program:

test.all(V) < V=] | true.

test.all(V) < V=[X|R] | binary(X), 1 <X, X <10, test(X,R), test_all(R).
test(X,L) & L=] | true.
test(X,L) < L =[Y[R] | diff(X,Y), test(X,R).

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 11

diff(X,Y) :— diff(X,Y,1).
diff(X,Y,B) :— diff;(X,Y,By), diff,(X,Y,B,), By + By = B.
diffy(X,Y,B;) :— Y+2+11%B; < X+11.
diffy(X,Y,By) :— X+2+11%By < Y+11.

For a set V with three variables X, Y and Z, the generic model is unfolded into type and
linear constraints:

integer(X), 1 <X, X < 10,

integer(Y), 1 <Y, Y < 10,

integer(Z), 1 <Z, Z < 10,

Y+11*B11 X+9, X+11*B12 Y+9, B11+B12=1,

< <
Z+11*B21 §X+9, X+11*B22§Z+9, B21+B22:1,
Z+11*B31 SY—FQ, Y+11*B32§Z+9, B31+B32=1.

4 Combining MIP and CLP Solvers

The second part of our paper represents an integration of the CLP solver and the MIP
solver by using the generated model as the result of the proposed translation in the
previous sections. The integration is based on combining efficient components of both
solvers: the finite domain handling as a local constraint propagation by CLP, and simplex
as a global constraint propagation by MIP. Using ECLiPSe to control the search and
applying both constraint propagations on decisions during the search, our approach is
based on the following constructive search strategies:

CONSTRUCTIVE SEARCH STRATEGIES

Step 0 Unfold the set of constraints from the generic model of a given problem.

Step 1 Control the search by ECLiPSe using the local constraint propagation on finite
domains and the global constraint propagation by simplex on the continuous
relaxed problem.

In this section we show that our approach is different to other solution techniques
and that the CLP solver and the MIP solver are only instances of the constructive search
strategies. Furthermore, we present a constructive search strategy combining both solvers
and show the solution results on an example.

4.1 Comparison to other solvers

The techniques on combining CLP and MIP solvers can be split into three groups.

The first group represents techniques which are based on the CLP solver strategy.
Backer and Beringer [1] have shown how to use a linear relaxation of disjunctive con-
straints to reduce the solution space of problems having a natural “geometric” formu-

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 12

lation. There are also some techniques on how to use linear algebraic forms on some
classes of constraints. For example, Barth and Bockmayer [2] investigated the class of
pseudo-Boolean constraints while Hooker [14] generalised resolution for linear inequalities
involving only 0-1 variables.

The second group consists of techniques which are based on the MIP solver strategy.
Little and Darby-Dowman [20] discussed the ability to improve the MIP solver by adding
local cuts as a form of intra-processing (not pre or post but carried out during the MIP
search). Hoffman and Padberg [15] demonstrated the Branch and Cut technique on large
airline crew-scheduling problems.

The third group represents techniques which use the CLP and MIP solver to solve
the problem. Hajian et. al. [11] demonstrated how to use a feasible solution from the CLP
solver to “warm-start” the MIP solver on the Fleet Assignment Problem.

We combine the CLP and MIP solvers using the local constraint propagation on
finite domains and the global constraint propagation using simplex on the continuous
relaxed problem. The basis of the CLP and MIP solvers is in fact quite close; choice of
variable and choice of value, but in CLP, the choice of value comes from an enumeration
process while MIP uses the value as a part of an imposed constraint. In particularly,
when dealing with binary variables in an MIP model, the branching in the search tree
corresponds precisely to the assignment of 0 or 1 to a chosen variable.

Furthermore, CLP can control the search not only by assigning values to variables
and adding new bounds, but also by identifying specific heuristics used for this problem.
It is also possible to use the experts experience in how they would go about solving the
problem or where to look for an optimal solution. Notice that the tree search in MIP is
based on the fixed strategies provided by the MIP solver.

Consider the set of auxiliary variables which are generated by the translation: the
same fine control over the execution of the original program can be produced as it is
given by the implicit enumeration of the default evaluation algorithm. The search tree
of the original program can be reproduced by labelling on the auxiliary variables of the
translated program. Since the translated linear constraints represent the whole problem
the problem can be solved by only the MIP solver, or by only the CLP solver, or by
hybrid algorithms which combine both solvers.

In the following we represent three instances of the constructive search strategies: the
CLP solver, the MIP solver and an hybrid algorithm. We show that the hybrid algorithm
has the good characteristics of both solvers.

4.2 Constructive search using local constraint propagation: the CLP solver

If we use only local constraint propagation (e.g., the propagation on finite domains), then
the constructive search strategy characterises the CLP solver: a solution is found through
enumeration, where values from the domains are assigned to the variables, while ensuring
that the constraints are continually satisfied, until all the variables have been given a
value [9]. Enumeration generates a search tree. Constraints can force a variable to have
an empty domain, indicating that no value is possible, given the current assignments,
satisfying all the constraints. Therefore, enumeration in such a branch of the tree is
stopped. Then backtracking takes place and during this process, variable bindings and
domain reductions will be undone automatically as they do not lead to a feasible solution.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 13

Within the same solution framework, it is possible to go beyond a first feasible solu-
tion to finding an optimal one. The process of finding an optimal solution fits into the
CLP solver method by adding a new cost constraint each time a better feasible solution
is found. Better solutions, if they exist, are repeatedly found and appropriate tighter
constraints added until the whole solution space has been effectively covered. This is a
CLP implementation of the Branch and Bound technique, applied to reduce the amount
of searching required by identifying as early as possible parts of the search tree which will
not lead to a better cost.

The algorithm below is an algorithm of the CLP solver which will be used on our test
problems in the following section.

CONSTRUCTIVE SEARCH USING ONLY LOCAL CONSTRAINT PROPAGATION [10]
(the CLP solver)

Step 0 Unfold the set of constraints from the generic model of a given problem.

Step 1 Choose an unlabelled most-constrained variable v in the underlying structure
of the problem.

Step 2 Choose a new value to v.

Step 3 Update the cost and the domains of other variables using the local constraint
propagation on finite domains. If an infeasibility is recognised, then backtrack
to Step 2. If all variables are instantiated and the solution has the minimal
cost, then the algorithm terminates, else go to Step 1.

The key to the performance of the CLP solver is determined by three factors. The
first is the number and the size of the finite domain variables introduced in the model.
The solution space is usually kept as small as possible. The second factor in determining
performance is the choice and number of constraints. Generally, the more constraints,
the greater the search reduction which can take place. The third factor is in the search
strategy. The routing of the search corresponds precisely to the choice of next variable
and the choice of value to assign. The strategies are often based on mathematical charac-
teristics of the domains at that time, e.g., to select the domain variable with the smallest
domain or the variable which has most constraints attached to it.

4.8 Constructive search using global constraint propagation: the MIP solver

Global constraint propagation is represented by solving the continuous relaxed problem
using, e.g., the simplex algorithm. The relaxed problem is simply defined by replacing
integer and binary type constraints in the MIP store by real type constraints. Instead of
the implementation of simplex in ECLiPSe, the linear constraints of the MIP store are put
to CPLEX. When the global propagation is called, ECLiPSe sends bounds of variables to
CPLEX and simplex returns an optimal solution of the relaxed problem. The solution of
the relaxed problem helps to solve the whole problem using, e.g., the Branch and Bound
technique for MIP. This technique was established as the dominant solution technique for
solving discrete optimisation problems [18].

The solution method for Branch and Bound involves checking whether the solution
becomes integer given successive splitting of the solution space. This segmentation of the
solution space is achieved by selecting one of the violating variables v from the relaxed

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 14

problem, e.g., a variable which has a fractional value but is required to be integer. Two
new subproblems are generated by adding inequalities v > [s(v)] and v < [s(v)] to the
original problem, respectively. In case that the chosen variable is a binary variable, then
the two new subproblems are generated by fixing the chosen variable to 1 in one and to 0
in the other subproblem. A search tree is built by selecting one of the violated variables
to branch on and chose a subproblem to relax and solve. The tree search continues to
seek optimality, but any node in the tree for which the relaxed problem gives a solution
worse than the current best integer solution, is discarded along with that branch.

The algorithm below is an algorithm of the MIP solver which will be used on our test
problems in the following section.

CONSTRUCTIVE SEARCH USING GLOBAL CONSTRAINT PROPAGATION ONLY [g§]
(the MIP solver)

Step 0 Unfold the set of constraints from the generic model of a given problem. If
there is no unique type constraint for each variable, then the algorithm reports
an error. Let s be the solution of the continuous relaxed problem using simplex.
If s satisfies all the integer restrictions, then it is the optimal solution of the
problem, and the algorithm terminates. If an infeasibility is recognised, then
the problem does not have a solution and the algorithm terminates in failure.

Step 1 Choose a variable v with a non-integer solution value s(v).

Step 2 Split the problem into two subproblems by adding the linear constraints v >
[s(v)] and v < |s(v)], respectively. Choose one of these subproblems.

Step 3 Compute the solution s of the continuous relaxed subproblem by using simplex.
If an infeasibility is recognised, then backtrack to Step 2 and choose the other
subproblem. If every variable v has an integer solution value s(v) and the
solution has a minimal cost, then the algorithm terminates. If there is a
variable with a non-integer value s(v), then go to Step 1 else go to Step 2 and
choose the other subproblem.

The search strategy in terms of variable choice and branch choice is important in
determining how the tree develops and consequently how quickly the first feasible solution
is found, how good it is and what is the time taken to find the optimal solution. It is
often the case that different search strategies are built into the MIP software. These are
based on the choice of variable and branch according to mathematical characteristics of
the solution tree at that point. The strategies can be, for example, to select the variable
with a value of the relaxed problem closest to an integer number and the highest cost
value. There can be a wide variation in performance of a strategy from one problem to
another [8]. Therfore, the most suitable strategy can be derived by trying all possible
strategies. However, [8] categorises the problem such that a suitable strategy can be
chosen with regard to a specific problem structure in advance.

4.4 Constructive search using local and global constraint propagation: a hybrid CLP &
MIP solver

The main idea of our integration of MIP with CLP is to make decisions as late as possible.
Using local and global constraint propagation the solution space of a problem can be

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 15

reduced more than by using one type of propagation only. In the hybrid algorithm, the
search is controlled by allowing a dynamic choice of variable and value ordering, and
applying simplex as well as the finite domain propagation at each node in the search tree.
If simplex recognises an infeasibility, then the CLP solver does not need to search for a
feasible solution, which is done by performing only the CLP solver.

CONSTRUCTIVE SEARCH USING LOCAL AND GLOBAL CONSTRAINT PROPAGATION

Step 0 Unfold the set of constraints from the generic model of a given problem. If
there is no unique type constraint for each variable, then the algorithm reports
an error. Let s be the solution of the continuous relaxed problem using simplex.
If s satisfies all the integer restrictions, then it is the optimal solution of the
problem, and the algorithm terminates. If an infeasibility is recognised, then
the problem does not have a solution and the algorithm terminates in failure.

Step 1 Choose an unlabelled most-constrained variable v in the underlying structure
of the problem.

Step 2 Choose the nearest integer value to s(v) for variable v.

Step 3 Update the cost and the domains of other variables using local constraint
propagation on finite domains. If an infeasibility is recognised, then go to
Step 4. If all variables are instantiated, then go to Step 3a, else go to Step 1.

Step 3a If the solution has the minimal cost, then the algorithm terminates, else go to
Step 4.

Step 4 Choose a new value for v, otherwise backtrack to Step 1.

Step 4a Compute the solution s of the continuous relaxed subproblem using simplex.
If an infeasibility is recognised, then go to Step 4, else go to Step 2.

In Step 2, the algorithm instantiates the most-constrained [9] variable v by using the
nearest integer number to the real value s(v), where s is the optimal solution of the relaxed
problem. If the instantiation causes an infeasibility by applying the local constraint
propagation, then variable v is instantiated in Step 4 by another value. In this situation
simplex is performed. In the worst case, the algorithm can require more computation
time than required by the MIP or CLP solver alone. A comparison between the MIP,
CLP and CLP&MIP solvers is given on four problems in the following section.

5 Computational results on different problems

In this section we present the empirical results of the proposed integration MIP with CLP
on different problems. For each problem we present the time to derive the first feasible
solution, the time to derive an optimal solution and the time to prove its optimality.
We show that the combination of both solvers derives the optimal solution and proves
optimality to each problem in reasonable time, while the CLP solver and the MIP solver
are not able to achieve the same performance. The problems are defined in the next
subsection and the result on modelling and solving them are represented in the following
two subsections. Finally, we compare the results of different solvers on different models.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 16

5.1 Problems
We consider four problems which are difficult for the CLP or MIP solver.

1. k-Hoist Scheduling Problem [23]: The problem, denoted by k-HSP, occurs when
a component must be allotted a sequence of tanks during its manufacture. The
component must remain in these tanks for periods of time lying within specific
bounds. k hoists are to be programmed to place components into tanks, remove
components from tanks, and transport components between tanks, so as to maximise
the throughput of the production line.

2. Progressive Party Problem [27]: The problem, denoted by PPP, arises in the context
of organising a “progressive party” at a yachting rally with 42 yachts. Some yachts
are to be designated hosts; the crews of the remaining yachts visit the hosts for six
successive half-hour periods. A guest crew cannot revisit the same host, and two
guest crews cannot meet more than once. Additional constraints are imposed by
the capacities of the host yachts and the crew sizes of the guests. The problem is
to minimise the number of host boats.

3. Cabinet Assignment Problem [20]: The problem, denoted by CAP, arises in the con-
text of producing specified numbers of different types of telecommunication cabinets
over a fixed time period. Each cabinet type requires a different set of elementary
sequential operations, each taking the same time to be carried out. The manufac-
turing process involves a number of identical unit cells linked together to form a
pipeline machine capable of carrying out the tasks. Each unit cell is capable of
executing all operations to build any particular type of cabinet. A machine with
a particular number of cells is allowed only for manufacturing cabinets when the
number of operations is a multiple of the number of cells. For example, a two-cell
machine is only suitable for building cabinet types with 2, 4, 6, ... separate op-
erations. The problem is to allocate each task to a machine such that the total
production is completed as early as possible.

4. Set Partitioning Problem [15]: The problem, denoted by SPP, is to collect a set of
M subsets of N, M C 2%, such that they are pairwise disjoint, their union is N,
and the sum of the weights of the subsets is minimal. (We consider the example
with 197 subsets over 17 elements [15].)

These benchmarks are chosen for a number of reasons:

Phillips and Unger [23] have demonstrated that the MIP solver derives the optimal
solution to the 1-Hoist Scheduling Problem very quickly. Unfortunately, the efficiency
quickly diminishes as the number of tanks and hoists in a given system increases. Schedul-
ing two or more hoists expands the solution space, and makes the task of searching for
the global optimal solution extremely difficult. For instance, Lei and Wang [19] have pro-
posed a heuristic algorithm for the 2-Hoist Scheduling Problem to derive feasible solutions
without proof of optimality.

Smith et al. [27] have shown that the difference in the performance of the CLP
solver versus the MIP solver on the Progressive Party Problem is particularly marked.
The MIP model is too large to be solved using linear programming techniques, whereas
constraint programming can succeed through careful choice of heuristics to direct its

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 17

search. Although a solution with 13 hosts is derived quickly, constraint programming
has difficulties in recognising the optimal solution. On the other hand, simplex easily
recognises the infeasibility for 12 hosts.

Little and Darby-Dowman [20] have shown that the CLP solver solves the Cabinet
Assignment Problem quicker than the MIP solver. The MIP solver reaches an integer
solution equal to the optimum, but is not able to prove its optimality.

Hoffman and Padberg [15] have demonstrated that the MIP solver solves the Set
Partitioning Problem very efficiently. The difference in the performance of the CLP
solver versus the MIP solver on this problem is particularly marked.

5.2 Modelling

Problems in CLP are modelled in terms of finite domain variables and the constraints
over them. Almost all of the mentioned problems are represented in a very natural way
using non-binary variables. By performing the proposed translation of CLP programs,
two sets of constraints are derived: a set of constraints representing the CLP store, and a
set of linear constraints representing the MIP store. We show three different models for
each problem:

1. the CLP store of constraints
2. the MIP store of translated constraints
3. the CLP store and the MIP store.

To perform a hybrid algorithm, both CLP and MIP stores are generated. Each of the
stores does not need to represent the whole problem. For instance, the CLP store can
define the whole problem while the MIP store can contain only some translated linear
constraints.

The number of constraints and variables of different models for the problems are
given in Tables 1-3. Table 1 gives the number of all variables, all constraints, only
disjunctive constraints and only binary variables of the CLP store for the CLP solver.
Tables 2 and 3 represent the number of rows, columns, non-zeros and binary variables
of the mathematical model in CPLEX after crossing the linear constraints from the MIP
store. In Table 2, the MIP store is the result of the automatic translation using auxiliary
variables.

Modelling of the k-Hoist Scheduling Problem: The problem can be represented by dis-
junctive constraints over non-binary variables. For every two tanks ¢ and j, the following
disjunctive constraints are defined:

disj(Hi,H;, T3, T5,T) :— Ti+f(i)+e(i+1,j)<Tj+kx*T.
disj(Hi,H;, T3, Tj,T) :— T3+kxT+£(j)+e(j+1,1) <T;.
disj(H;,H;,Ts,T;,T) :— H; +1<H;.
disj(H;,H;,Ts, T;,T) :— H;+1<H;.

Variables H; and H; represent the hoists which transport components from tank i and
tank j, respectively. Variables T; and T represent the removal time of the components

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 18

from tank i and tank j, respectively. Variable T represents the period of the the produc-
tion line. The goal of the problem is to minimise this variable. Constant f(i) denotes
the transport time of the components from tank ¢ to the next tank ¢ + 1. Constant e(i, 7)
denotes the time of hoists (when empty) to move from tank i to tank j. By unfolding the
CLP program, the constraints of the problem are stored into the the CLP store and the
MIP store (see Tables 1-3 for the 2-Hoist Scheduling Problem).

Modelling of the Progressive Party Problem: The problem can be represented by dis-
junctive constraints over non-binary variables (using alldistinct constraint), capacity
constraints over binary variables (i.e., linear equalities and inequalities) and link con-
straints to link binary variables and non-binary variables (using link constraint). Since
the problem has many equivalent solutions such symmetries in the problem can vastly
increase the size of the search space. Symmetry is avoided, or at least reduced, by adding
symmetry constraints to eliminate equivalent solutions.

By unfolding the CLP program for this problem, all mentioned constraints are derived
and stored into the CLP store (see Table 1). This model is appropriate for the CLP solver.
A model for the MIP solver is derived by using our translator (see Table 2). The main
reason for a large number of translated constraints and variables for the Progressive Party
Problem is the translation of link constraints between binary and non-binary variables.

The hybrid CLP&MIP solver is performed on a model which is derived by using
the replaced and translation directives on the disjunction, capacity and link constraints,
which are sufficient to define the problem. The symmetry constraints are helpful for the
CLP solver but they are usually not needed for the MIP solver. We do not translate them.
The disjunctive constraints are replaced by linear constraints on binary variables. Since
there are no other constraints over non-binary variables we did not need to translate
the constraints linking binary variables to non-binary variables. The set of translated
constraints becomes much smaller than the translation of the whole program (see Table 3).

Modelling of the Cabinet Assignment Problem: All three models are generated on the
same way as the models of the Progressive Party Problem (see Tables 1-3).

Modelling of the Set Partitioning Problem: The whole problem is represented by con-

straints over binary variables. All three models are equivalent since the constraints are
linear equalities over binary variables.

Table 1: The CLP store of the CLP models.

| CLP store | 2-HSP | PPP | CAP | SPP |
Vars. 507 4806 | 98 198
Constr. 974 5861 | 118 18
Disj. constr. | 641 5281 | 97 184
Bin. vars. 493 4632 | 84 198

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 19

Table 2: The MIP store of the MIP models.

| MIP store | 2-HSP | PPP | CAP | SPP |
Rows 1328 14592 294 198
Columns 2146 24593 511 18
Non-zeros | 7861 108134 | 1158 | 184
Bin. vars. | 1314 14418 280 198

Table 3: The MIP store of the CLP&MIP models.

| MIP store | 2-HSP | PPP | CAP | SPP |
Rows 1328 4632 | 84 198
Columns 2146 1035 | 109 18
Non-zeros | 7861 7980 | 530 184
Bin. vars. | 1314 4632 | 84 198

5.8 Solving

We have implemented the integration of CLP with MIP by using the ECLiPSe constraint
logic programming platform and the CPLEX mathematical programming package. This
allows CPLEX to be used to solve problems modelled in ECLiPSe. The control of the
search process and the local constraint propagation is handled by CLP, while the global
constraint propagation is handled by MIP. The local propagation is performed by a consis-
tency algorithm on finite domains and it represents a component of the ECLiPSe package.
On the other hand, the global propagation is performed by the simplex algorithm which
is a component of the CPLEX package. We apply the following tasks:

e the CLP solver on the original CLP constraints (see Table 1)
e the MIP solver on the translated CLP constraints (see Table 2)

e the hybrid CLP&MIP solver on the original CLP constraints (see Table 1) and on
the partially translated CLP constraints (see Table 3).

Let us discuss the empirical results of the hybrid solver relative to the results of the CLP
and MIP solvers on each problem. We say that a problem is solved by a solver if this
solver derives an optimal solution to the problem and proves its optimality. The results
show that the Cabinet Assignment Problem is easy for the CLP solver and hard for the
MIP solver. The Set Partitioning Problem is hard for the CLP solver and easy for the
MIP solver. The 2-Hoist Scheduling Problem and the Progressive Party Problem are hard
for the CLP solver and for the MIP solver. However, all test problems are easy for the
hybrid solver. The empirical results in Table 4 demonstrate that the hybrid algorithm
derives an optimal solution and proves its optimality to each problem, which cannot be
achieved by the CLP solver or the MIP solver. All times are in CPU seconds running on

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 20

a SUN-SPARC/20.

Solving the 2-Hoist Scheduling Problem: The CLP model contains 974 constraints over
507 variables and the CLP solver does not derive a solution within 5 minutes. The MIP
solver on the translated CLP model is also an inefficient approach to solve this problem.
By applying the CLP&MIP solver on the CLP store (see Table 1) and on the MIP store
(see Table 3), simplex and the constraint propagation on finite domains helped to derive
an optimal solution and to prove its optimality in 102.65 sec. It follows that the local and
global constraint propagation are very useful procedures, cutting the solution space and
deriving an optimal solution to the hoist problem in reasonable time.

Solving the Progressive Party Problem: The CLP model contains 5861 constraints over
4806 variables and the CLP solver derived a solution with 13 hosts in 171.03 sec. This
was an optimal solution of the problem, but the CLP solver did not recognise it within
two hours. By translating the program, the MIP store contains 24593 constraints over
14592 variables. The MIP solver did not succeed in deriving a solution with 13 hosts
within two hours. It needed 509 sec. to even recognise an infeasibility for 12 hosts.

By applying the CLP&MIP solver on the CLP store (see Table 1) and the MIP store
(see Table 3), the local propagation on finite domains helped to derive a solution with 13
hosts, while simplex helped to recognise infeasibility for 12 hosts. An optimal solution of
the problem was derived in 211.69 sec.

It follows that the CLP solver is good at deriving a solution with 13 hosts while the
MIP solver is good at recognising infeasibility for 12 hosts and, hence, at recognising
that the solution of the CLP solver is an optimal solution. Furthermore, the proposed
translation of the whole problem can lead to a very inefficient simplex algorithm. It
confirms the claim that putting effort on the modelling part is indeed a step towards an
efficient running program.

Solving the Cabinet Assignment Problem: The CLP solver derives an optimal solution
while the MIP solver finds a solution with the optimal cost but it has difficulties in
proving optimality. By applying the CLP&MIP solver, the number of backtrack steps
was reduced from 287 to 122 w.r.t. the CLP solver. This shows that simplex helps a lot
to reduce the number of decisions and, hence, the size of the search tree.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 21

Table 4: Characteristics of the solvers on different models.

The CLP Solver on the CLP store:
| [2-HSP | PPP___ | CAP | SPP |
Time (1st solution) > 5 min | 24.51 2.15 | 42.38
Time (optimal solution) > 5 min | 171.03 8.24 | 59.93
Time (proof of optimality) | > 5 min | > 5 min | 9.27 | 64.68
Best Solution - 13 55.8 | 11307
FD fails > 15000 | > 15000 | 287 | 1611

The MIP Solver on the MIP store:

| | 22HSP | PPP | CAP | SPP |
Time (1st solution) > 5min | > 5 min | 0.34 0.15
Time (optimal solution) >5min | > 5 min | 5.12 0.18
Time (proof of optimality) | > 5 min | > 5 min | > 5 min | 0.18
Best Solution - - 55.8 11307
Nodes processed > 15000 | > 15000 | 400 4

The CLP&MIP Solver:

2-HISP | PPP_ | CAP [SPP |
Time (1st solution) 20.40 | 3851 | 7.31 |0.71
Time (optimal solution) 41.23 | 211.69 | 10.52 | 0.71
Time (proof of optimality) | 102.65 | 303.23 | 13.21 | 0.71

Best Solution 251 13 55.8 11307
FD fails 2377 3283 122 0
LP fails 1598 5327 63 0

Solving the Set Partitioning Problem: This problem is solved faster using the MIP solver
which generated only 4 nodes to derive an optimal solution in 0.18 sec. For instance,
simplex derived a relaxed optimal solution with 172 integer values and only 4 non-integer
values. On the other hand, the CLP solver needed 64.68 sec to solve the problem. By
applying the CLP&MIP solver, an optimal solution was derived without backtracking.
Simplex was called only once, and by using the suggested integer values, the local prop-
agation on finite domains causes an instantiation of integer values for all other variables.

5.4 A comparison: the CLP solver on the translated CLP model versus the MIP solver
on the translated CLP model

The proposed automatic translation does not guarantee the “best” model either for the
MIP solver or for the CLP solver. An example of such a model for the MIP solver is
the MIP store of the translated CLP constraints for the Progressive Party Problem (see
Table 2). The main reason for such a large number of constraints and variables was the
automatic translation of the link constraints between binary and non-binary variables.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 22

By applying the CLP solver on the MIP store of the translated CLP constraints,
the local constraint propagation is significantly less efficient when reducing the domains
of variables. Let us demonstrate the inefficiency on disjunctive constraint (X + 2 <
Y or Y +2 < X), where X and Y are integer variables with the domain 0..10. If the CLP
solver chooses a value for variable X, e.g., X = 5, then the finite domain propagation on
the disjunctive constraint reduces the domain of ¥ to {0, ...,3,7, ..., 10}, while it does not
modify the domain of Y by considering the translated constraints.

5.5 A comparison: the CLP solver on the pure CLP model versus the hybrid CLPé&MIP
solver on the partially translated CLP model

The empirical results have shown that the hybrid CLP&MIP solver derives optimal solu-
tions faster if the CLP constraints are replaced and translated to linear constraints over
binary variables. The link constraints and symmetry constraints are not translated. This
generally improves performance, most significantly finding optimality within the limited
number of decisions. However, the optimal solution is not necessarily derived faster than
when using the CLP solver. For example, the results on the Progressive Party Problem
and the Cabinet Assignment Problem have shown that the times were still inferior to the
total CLP approach. On the other problems, the hybrid algorithm was faster than the
CLP solver since simplex effectively reduced the solution space by solving the relaxed
problem. It seems that if a problem has not been identified as being suitable for an CLP
solution, the decision of which hybrid algorithms is most adequate is still unclear.

5.6 The best and the worst performance in relation to the problem characteristics

We have presented problems which are relatively easy for the CLP solver and hard for the
MIP solver (e.g., the Cabinet Assignment Problem), as well as problems which are hard
for the CLP solver and easy for the MIP solver (e.g., the Set Partitioning Problem). The
empirical results show that the hybrid CLP&MIP solver successfully derives an optimal
solution and proves its optimality in all problems.

The structure of a given problem can help to determine when CLP should be chosen
in preference to MIP. All problems in this section, except the k-Hoist Scheduling Problem,
have the common characteristic that they contain alldistinct constraints and capacity
linear constraints (i.e., >, c;u; < C). The empirical results demonstrate that the CLP
solver is faster than the MIP solver if values ¢;, 1 < i < n, are different (e.g., the
Progressive Party Problem and the Cabinet Assignment Problem).

6 Conclusions

The CLP modelling ensures that the encoding of a correct model of the problem can indeed
be a step towards an efficient running program. CLP allows the definition of constraints
in a more natural and compact way. If CLP is also used to control the search by using
the local and global constraint propagation, the consequences can be revolutionary - with
programmers actually taking modelling seriously.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 23

We have presented an efficient translation to derive a generic model and further
specific MIP models for different input data. The translation is performed only on the
part of the program not satisfying data/control-flow properties. The translated program
enables us not only to use different solution techniques (the CLP solver or the MIP solver),
but also to combine them into more powerful mechanisms (hybrid CLP&MIP solvers).
The results of such an integration of two programming paradigms are represented by
the Progressive Party Problem and the 2-Hoist Scheduling Problem, which can be solved
efficiently, while the CLP solver or the MIP solver are not able to solve them in reasonable
time. The integration allows comparisons between the two approaches to give a clearer
idea of when CLP should be chosen in preference to MIP, and when an integrated solver
is faster than the CLP solver or the MIP solver.

References

[1] B. deBacker and H. Beringer, A CLP language handling disjunctions of linear constraints,
in: Proceedings of the ICLP, Budapest, 1993, pp. 550-563.

[2] P. Barth and A. Bockmayer, Modelling mixed-integer optimisation problems in constraint
logic programming, Technical Report, MPI-1-95-2-011, Max-Planck-Institut fiir Informatik,
Saarbriicken, 1995.

[3] N. L. Biggs, Discrete Mathematics, Oxford Science Publications, 1994.

[4] I Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley Publishing, 1990.

[6] CPLEX, Using the CPLEX callable library, Ver3, CPLEX Optimisation Inc., Suite 279,
Tahoe Blvd, Bldg. 802, Incline Village, NV 89451-9436, 1995.

[6] J.David and C. Tat-Leong, Constraint-based applications in production planning: examples
from the automative industry, in: Proceedings of the Practical Application of Constraint
Technology, Paris, 1995, pp. 37-51.

[7] ECL'PS® 3.5 user manual, ECRC, Munich, 1995.

[8] M. T. Hajian, Computational methods for discrete programming problems, PhD Thesis,
Department of Mathematics and Statistics, Brunel University, Uxbridge, UK, 1993.

[9] P.V.Hentenryck, Constraint Satisfaction in Logic Programming, Logic Programming Series,
MIT Press, Cambridge, 1989.

[10] P. V. Hentenryck, Constraint logic programming, The Knowledge Engineering Review 6(3)
(1991) 151-194.

[11] M. T. Hajian, H. El-Sakkout, M. G. Wallace, J. M. Lever and E. B. Richards, Towards
a closer integration of finite domain propagation and simplex-based algorithm, Technical
Report ICPARC-95/09-01, IC-Parc, Imperial College, London, 1995.

[12] E. Hadjiconstantinou, C. Lucas, G. Mitra and S. Moody, Tools for reformulating logical
forms into zero-one mixed integer programs, European Journal of Operational Research
72(2) (1994) 262-276.

[13] C. Holzbaur, A specialized, incremental solved form algorithm for systems of linear inequal-
ities, Technical Report, TR-94-07, Austrian Research Institute for Artificial Intelligence,
Vienna, 1994.

[14] J. N. Hooker, Generalized resolution for 0-1 linear inequalities, Annals of Mathematics and
Artificial Intelligence 6 (1992) 271-286.

[15] K.L.Hoffman and M. Padberg, Solving airline crew-scheduling problems by branch-and-cut,
Technical Report, George Mason University and New York University, USA, 1992.

[16] K. I. M. McKinnon and H. P. Williams, Constructing integer programming model by the
predicate calculus, Annals of Operations Research 21 (1989) 227-246.

R. Rodosek et. al. / A New Approach to Integrating MIP and CLP 24

[17]

[20]

[21]

[22]

[26]

[27]

[28]
[29]
[30]

31]
32]

A. D. Kelly, A. Macdonald, K. Mariott, H. Sondergaard, P. J. Stuckey and R. H. C. Yap,
An optimizing compiler for CLP(R), in: Proceedings of the First International Conference
on Principles and Practice of Constraint Programming, Cassis, 1995, pp. 222-239.

A. Land and A. Doig, An automatic method for solving discrete programming problems,
Econometrica 28(3) (1960) 497-520.

L. Lei and T. J. Wang, The minimum common cycle algorithm for cycle scheduling of two
material handling hoists with time window constraint, Management Science 37(12) (1991)
1629-1639.

J. Little and K. Darby-Dowman, The significance of constraint logic programming to op-
erational research, Technical Report, Brunel University, Department of Mathematics and
Statistics, Brunel University, Uxbridge, UK, 1995.

M. J. Maher, Logic semantics for a class of committed-choice programs, in: Proceedings of
the ICLP, Melbourne, 1987, pp. 858-876.

C. L. Pape, Implementation of resource constraints in ILOG scheduling: a library of the
development of constraint-based scheduling systems, Intelligent Systems Engineering 3(2)
(1994) 55-66.

L. W. Phillips and P. S. Unger, Mathematical programming solution of a hoist scheduling
program, AIIE Transactions 8(2) (1976) 219-225.

D. Pothos, Broadcast network routing using constraint logic programming, Technical Re-
port, IC-Parc, Imperial College, London, 1995.

B. Purohit, T. Clark and T. Richards, Techniques for routing and scheduling services on a
transmission network, BT Technology Journal 13(1) (1995) 64-72.

J. Puget, A comparison between constraint programming and integer programming, in:
Proceedings of the Applied Mathematical Programming and Modelling Conference, Brunel
University, Uxbridge, UK, 1995.

B. M. Smith, S. C. Brailsford, P. M. Hubbard and H. P. Williams, The progressive party
problem: integer linear programming and constraint programming compared, in: Proceed-
ings of the First International Conference on Principles and Practice of Constraint Pro-
gramming, Cassis, 1995.

M. Wallace, Applying constraints for scheduling, Constraint Programming, NATO ASI Se-
ries, eds. B. Mayoh, E. Tyugu and J. Penjam, Springer-Verlag, 1994, pp. 153-172.

H. P. Williams, Logic problems and integer programming, Bulletin of the Institute of Math-
ematics and its Applications 13 (1977) 18-20.

H. P. Williams, Linear and integer programming applied to the propositional calculus,
International Journal of Systems Research and Information Science 2 (1987) 81-100.

H. P. Williams, Model Building in Mathematical Programming, John Wiley and Sons, 1990.
H. P. Williams, Model Solving in Mathematical Programming, John Wiley and Sons, 1993.

