
On Benchmarking Constraint LogicProgramming PlatformsResponse to Fernandez and Hill's \A Comparative Study ofEight Constraint Programming Languages Over the Booleanand Finite Domains"Mark Wallace, Joachim Schimpf, Kish Shen and Warwick Harvey�November 8, 20011 Introduction1.1 BackgroundBenchmarking is a di�cult business. This is already true for benchmarkinghardware and C compilers, but is even more so for complex constraint pro-gramming systems. The challenge is to establish clear objective measures ofperformance, and to set up tests that compare like with like.The comparative study published in this journal by Fernandez and Hillbenchmarked some constraint programming systems on a set of well-knownpuzzles. In this paper we shall examine the positive and negative aspects ofthis kind of benchmarking.As members of the ECLiPSe [WNS97] development team, we were involvedin a rather di�erent benchmarking exercise, comparing constraint programmingplatforms in the context of the CHIC-2 ESPRIT project. We will discuss anumber of relevant aspects of this work, and in conclusion will review the lessonslearned from these two approaches to tackling the thorny issue of comparingCLP systems.1.2 What is being Benchmarked?Theoretically, the ideal way to choose the best CLP system for an applicationis to implement a solution for the application with each system and choose thebest. In practice, however, one can only benchmark the systems on a prede�nedset of problems, and hope that the results on the benchmark problem set canbe extrapolated to the required application.�The authors belong to the ECLiPSe team at IC-Parc.1



For a particular application one should choose the best CLP system accord-ing to expressiveness and e�ciency:1. Good expressiveness enables a system to encode a problem in terms of ashort, easy-to-understand program.2. E�ciency has two aspects:(a) the time needed to develop a program to solve a problem and(b) the computing resources needed to execute it.Naturally with more time spent on development, it is often possible towrite a program which executes faster. One drawback of benchmarkingCLP systems on applications is that most such systems can be tailored toa particular application by hard-wiring certain constraints, or by droppinginto a lower-level language. Consequently the performance of the \moste�cient" program may have little to do with the CLP system itself.Some de facto standards have emerged for some subsets of CLP. In particular�nite domain solvers typically support a standard set of constraints. Thesestandard constraints can be directly benchmarked against each other by runningthem in isolation, which is termed unit testing. Aspects of CLP systems thatcan be measured by unit testing are:� computation time,� memory consumption and� scalability.In cases where di�erent constraints interact, they can also be unit tested inspeci�c combinations.Unfortunately there will typically also be interactions with other functional-ities of the CLP system, which may not be standard. For example �nite domainconstraints may interact with:� intelligent backtracking and advanced search techniques;� extensibility and 
exibility, such as a facility for the programmer to dictatethe priorities of di�erent constraints;� continuous variables, interval and linear constraints; and� debugging, graceful error handling and explanation facilities.In summary, a benchmarking exercise should cover a broad set of representa-tive problems and a broad set of programming constructs. This can be achievedusing two kinds of benchmarking:1. Applications Benchmarking - by using the di�erent systems to solvea prede�ned set of problems. 2



2. Unit Testing - by timing and measuring individual features of the dif-ferent systems.However there are risks in both these ways of benchmarking CLP systems:1. for applications benchmarking, because the most e�cient solution may wellbe achieved by writing specialised low-level code; and2. for unit testing, because the facilities tested may interact with other facil-ities which are outside the scope of the benchmarking exercise.2 Some Pitfalls in Benchmarking2.1 RelevanceThe requirement for benchmarking has permeated computer science, and isparticularly important for vendors of software and hardware. Software bench-marking has reached its highest level of sophistication in the area of databases.Like programming languages, databases share some common functionalities, butnew generations have new features which may negatively impact performanceon some traditional functionalities (for example when moving from hierarchicalto relational to object databases). An important reference for benchmarking isThe Benchmark Handbook [Gra91] which, while it addresses the database area,has many lessons for benchmarking programming languages and constraint pro-gramming systems.The �rst key criterion for benchmarking listed in the handbook is relevance.Another key criterion is simplicity, but this carries its own risks. As a casein point, the handbook considers the classic mips (millions of instructions persecond) metric, concluding as follows:It is certainly a simple benchmark... The main criticism of the mipsmetric is irrelevance - it does not measure useful work.We are reminded of an anecdote, which we hope is relevant here:In the middle of a dark night Fred encounters a drunken manwho is frantically scouring the ground under a street lamp. \Whatare you looking for?" asks Fred. \I'm trying to �nd my keys!" -\And where did you lose them?" \Over there", says the man andpoints into the darkness. \But why are you looking here then?" asksFred, ba�ed. \Because I can see much better here in the light", saysthe man.While nobody has recommended mips or even lips (logical inferences persecond) as a useful benchmark for constraint logic programming systems, thetemptation to choose benchmarks that are easy to run, rather than relevant,has claimed some victims. 3



For CLP the classic benchmark has been the N-Queens problem. This prob-lem is a standard example for �nite domain constraints, and thus it is availableas a demonstration program in almost every CLP system. The N-Queens prob-lem is very uniform in that every pair of variables is constrained, and all theindividual constraints are disequalities. As such it is a candidate for the CLPequivalent of na�ive-reverse, used to measure lips for Prolog systems. However aneven simpler problem requiring only search, disequality constraints, and back-tracking, would be to �nd a list of n distinct elements.Demonstration programs solving a number of other puzzles (mostly ex-tracted from [Van89]) are circulated with many CLP systems, and it is thereforevery easy to use them to benchmark the di�erent systems. Several CLP devel-opers have used sets of such puzzles to to validate new implementation ideas[COC97, DC93, MW96, Zho98]. In each case the benchmarks were used tovalidate some newly implemented design decisions in CLP systems.A similar set of puzzles was also used by Fernandez and Hill in \A Com-parative Study of Eight Programming Languages over the Boolean and FiniteDomains" [FH00]. The aim of this paper was not, like the others, to present newimplementation ideas for CLP, but to \aid others in choosing an appropriateconstraint language for solving their speci�c constraint satisfaction problem".Although in [COC97], the benchmarked puzzles are claimed to be \cleanand fairly representative of real-world problems", there is no evidence for this.On the contrary, our experience of solving real-world problems at IC-Parc, someof which have been described in published papers [HEW+98, RW98a, EW00,EW01] has shown that CLP puzzles are not at all representative of real-worldproblems. A similar conclusion can be drawn from reports of projects involvingreal-world applications at SICS and elsewhere [OAI+98] and [BCD+00]. Threetypical features of programs solving real-world problems - incomplete search,linear constraint solving and global constraints - are completely absent from thebenchmarks in [COC97, DC93, MW96].The relevance of performance benchmarks on puzzles to the choice of CLPsystem for solving real problems was not discussed by Fernandez and Hill. Dothe keys lie under this particular street lamp?2.2 Comparing Equivalent ProgramsHaving decided to compare di�erent CLP languages by time-trialling, it is nec-essary to write a program in each language to solve the same problem. The �rstrequirement is that each program be correct.The comparison by Fernandez and Hill [FH00] highlighted an awkward as-pect of time trialling CLP systems. It is sometimes hard to write programs intwo di�erent CLP languages that have exactly the same speci�cation.This was exactly the error Fernandez and Hill made in programming theSRQ puzzle [Hen96]. The programs solving the SRQ puzzle in the di�erentCLP systems are published on the web [Fer97]. We found many di�erencesbetween the programs, and in particular programs we discovered:4



� some constraints missing,� some choice points incorrectly cut o�The results produced by the di�erent programs were all correct, but the omis-sions itemized here could have a signi�cant e�ect on program performance. (Inthe extreme case it would be easy to write a speci�c program for any singlecombinatorial problem that went straight to the answer without search.)2.3 Comparing Equivalent ImplementationsWhen time-trialling high-level programming languages, it is necessary to writehigh-level programs. As we pointed out above, it is possible when using mostCLP languages to drop into a low-level language to \hand-code" particularalgorithms or constraints. If the programs used for time-trialling exploit thisfacility then the benchmark is useless. The worst case is when the programin some of the languages being compared drop into low-level code, while theprograms in others do not.Fernandez and Hill also made this mistake in [FH00]. Some of the programsimplementing the SRQ puzzle dropped into low-level C code, and others didnot.2.4 Publishing Source CodeBenchmarketing [Gra91] is the exploitation of benchmarks for other objectives.To minimise benchmarketing full disclosure of the programs used for bench-marking is essential. The reason we were able to identify the de�ciencies inFernandez and Hill's SRQ benchmark, was because the programs were pub-lished. Unfortunately none of the other programs used in Fernandez and Hill'scomparison [FH00] were published. While it is possible to guess at di�erencesin the programs used in di�erent systems (for example the use of a global con-straint in some systems but not in others), the failure to publish the programsmakes it impossible to fairly assess the quality of the comparison.We managed to retrieve the version of ECLiPSe (3.5.2, released from ECRCin 1994) that was used in the benchmarking of Fernandez and Hill. For themagic sequences problem [FH00] we wrote a simple program that, even forthis version of ECLiPSe, was dramatically faster than the times reported inthe benchmark tests. This, and all the ECLiPSe programs used for producingbenchmark results reported in this paper, are available atwww.icparc.ic.ac.uk/eclipse/CONSTRAINTS_code/Since the programs written in the di�erent languages to solve this problemwere not published, it is impossible to tell if the comparative timings on thisbenchmark were a result of the di�erent system implementations, or merely aresult of the di�erent encodings, and consequently the di�erent algorithms, usedto solve the problem. 5



2.5 Extrapolating Benchmark Results to Di�erent Hard-wareIdeally, when one uses benchmark results to choose software to run on a givenhardware con�guration, the benchmarks would be run on that very hardwarecon�guration. In practice, however, benchmarks run on one hardware con�gu-ration are used to make decisions about software to run on a di�erent hardwarecon�guration.Sometimes benchmarks run on one con�guration are used to predict the ab-solute performance of the same benchmarks running on another con�guration.More often the comparative performance of two di�erent systems on one hard-ware con�guration is taken as a guide to their comparative performance on thetarget hardware.Both kinds of extrapolation are risky. The most commonpitfall in comparinglanguage implementations is that a system may be \more" compiled on onemachine than another (for example SICStus CLP is compiled to machine codeon Sparc, but not on Intel machines). Clearly if system A is compiled to machinecode on machine 1, and system B is compiled to machine code on machine 2, butnot vice versa, their relative performance is quite di�erent on the two machines.If the target hardware is machine 2, then running benchmarks for softwaresystems A and B on machine 1 is a mistake.A more subtle error is the attempt to compare two systems which do not runon the same hardware at all. Fernandez and Hill sought to compare the CLP sys-tems SICStus and IF/Prolog with another set of CLP systems (clp(FD), CHR,ILOG, Oz and B-Prolog) without running the systems on the same machine[FH00]. Their approach was to run the ECLiPSe system on both machines, andthen use the ECLiPSe performance on the di�erent machines to normalise theresults. Thus if system A ran half the speed of ECLiPSe on machine 1, andsystem B twice as fast as ECLiPSe on machine 2, Fernandez and Hill concludedthat system A ran one quarter of the speed of system B.This method of comparison is curious in that, by improving the performanceof ECLiPSe on machine 1, the ECLiPSe developers could at a stroke improvethe comparative performance of system B relative to system A without eithersystem changing in any way! Kernighan and Van Wyk's [KV98] caveat thatno benchmark result should ever be taken at face value, applies a fortiori inthis case. To conclude anything about the comparative performance of twosystems by running them on di�erent hardware, it is essential to explore indetail what operations contributed to the performance of the di�erent systemson the di�erent machines. Recording numbers without analysis, as in [FH00],is either useless or misleading.2.6 Parameter SettingsEven if two systems are benchmarked on the very same hardware, it is still pos-sible to dramatically in
uence their performance by setting system parameters.One example [Gra91, p.303] is the level of performance monitoring: one system6



might have a much more complete, time consuming, tool than another. ForCLP systems the level of debugging has a signi�cant in
uence on performance.For time-trialling, all systems should run the same level of debugging, unlessit is impossible to set the di�erent systems to the same level. Assuming thepurpose of the benchmark is to evaluate the speed of correct programs, ratherthan programs under development, debugging should be switched o�.Fernandez and Hill chose to run their benchmarks with the default parametersettings. ECLiPSe by default generates debuggable code while, for example,SICStus 3#5 which was benchmarked in [FH00] did not. The consequencewas that the comparison published in [FH00] compared systems with di�erentlevels of debugging. The only justi�cation for such an approach is that thebenchmarking exercise is aimed at CLP users who are incapable of switchingdebugging on and o� in the systems they are running. For such users, havingdebugging on as the default is arguably more important than performance, orany other aspect of the CLP language and its implementation!Other parameter settings that in
uence performance and scalability includestack size limit, and garbage collection. Again Fernandez and Hill used thedefault setting, and again this had a signi�cant e�ect on their benchmark results.For example they report that ECLiPSe 3.5.2 failed to solve magic sequencesproblems of size over 230. ECLiPSe, like many other CLP systems, has anumber of parameters which ensure an application does not unintentionallyconsume all available swap space on a machine. By setting the ECLiPSe stacklimit parameter higher, our program easily solved magic sequences problems ofsize 1000.2.7 Timing MechanismsKernighan and Van Wyk [KV98] reported that the timing services providedby programs and operating systems are woefully inadequate. Indeed correcttiming is very hard to achieve with modern operating systems, especially whenhigh-level languages are being executed. While elapsed time often includes anunpredictable overhead due to activities that are independent of the benchmark-ing, more precise measures of CPU time may exclude activities that are in theservice of the program being benchmarked.A typical example of an activity that is often excluded from timings isgarbage collection. Time spent in garbage collection was included by the pred-icates used for timing in the version of ECLiPSe tested by Fernandez and Hill.On the other hand the SICStus timing built-ins never have included garbagecollection. The published programs for the SRQ problem [Fer97] would, accord-ingly, time di�erent activities. While Fernandez and Hill reported the surprisingobservation that \removing the garbage collection in other systems such as SIC-Stus did not improve performance" they did not consider the possibility thattheir method might have been at fault.7



3 Comparing CLP Systems - Feature Compar-isons, and Benchmarks3.1 Using Sets of Programs as BenchmarksThe use of a set of programs for benchmarking language implementations isnot unusual. For Prolog a number of such program suites have been designedto test a broad range of language features. Examples are Pereira's AI Expertbenchmark suite [Per87] and the Aquarius suite [Hay89]. Since programs aretypically language-speci�c, di�erent languages cannot be benchmarked in thesame way - i.e. by time-trialling the same suite of programs in each language.Instead a standard set of problems can be benchmarked, by writing di�erentprograms to solve the problems in each language.In fact benchmarking is a minor tool to use for comparing di�erent lan-guages. The comparison of programming languages for scienti�c computingby McClain [McC99], for example, concentrates largely on features. A reporton benchmarking some standard computations is relegated to the end of thecomparison. There are other similar comparisons in [Wac97].Kernighan and Van Wyk's Timing Trials [KV98] of C, Java, Perl, VisualBasic, Awk, Tcl, Limbo, and Scheme, concluded that if there is a singleclear conclusion, it is that no benchmark result should ever be taken at facevalue. They identi�ed a few general principles:� Compiled code usually runs faster than interpreted code: the more a pro-gram has been \compiled" before it is executed, the faster it will run.� Memory-related issues and the e�ects of memory hierarchies are pervasive:how memory is managed, from hardware caches to garbage collection, canchange runtimes dramatically. Yet users have no direct control over mostaspects of memory management.� The timing services provided by programs and operating systems are woe-fully inadequate. It is di�cult to measure runtimes reliably and repeatablyeven for small, purely computational kernels, and it becomes signi�cantlyharder when a program does much I/O or graphics.� Although each language shines in some situations, there are visible andsometimes surprising de�ciencies even in what should be mainstream ap-plications.They encountered bugs, size limitations, maladroit features, and total mysteriesfor every language.3.2 Comparing Algorithms Instead of LanguagesIn comparing CLP systems, we face several issues that have not arisen whencomparing more traditional programming languages. The �rst issue is that theexecution time for two programs in di�erent CLP languages solving the same8



problem often depends less on the language implementation than on the precisealgorithm executed by the program. We touched on this issue in the discussionof publishing source code above. However even when the source code is available,it is not always possible to determine whether two CLP programs in di�erentlanguages will execute the same algorithm.The benchmarked programs used to solve the N-Queens and other remainingpuzzles in the di�erent systems in [FH00] were not in fact made public byFernandez and Hill. However they reported that the N-Queens programs in thestudy used depth-�rst search with a speci�c heuristic.The shape of the search tree is strongly in
uenced by the heuristic for choos-ing the next variable to label. For the N-Queens problem the �rst-fail heuristicwas used for many of the tests (reported in tables 1,2,3,4,5,6,7,9,11 in [FH00]).Unfortunately the authors did not report how the di�erent programs dealt withtie-breaking, which as J. Schimpf pointed out to them [FH00] can change theshape of the tree, and consequently the execution time, by an almost arbi-trary factor. As a result, the times reported in the tables were probably morein
uenced by their algorithm and its handling of tie-breaking, than by the im-plementation of the language itself.Unit testing the disequality constraint would appear to be more informativethan benchmarking the N-Queens.3.3 Benchmarking Features not Shared by the LanguagesUnder ComparisonAnother issue in comparing CLP languages is that there is no standard set offeatures on which to compare them. Selecting a common subset of features- for example features supported by all �nite domain constraint solvers - is asimple option. Unfortunately this kind of comparison would not only ignore,but actually count against an aspect of CLP that, we argue, is most importantto its practical usefulness: the combining of solvers to support hybrid algorithms[RWH99].An even worse mistake is to attempt to benchmark features that are notcommon to all the languages being measured. Fernandez and Hill set out tomeasure the cost of having omitted a feature from one language by benchmark-ing it against other languages with the feature. Their method was to choose aproblem whose solution required, to their belief, the use of a particular feature.The feature investigated by Fernandez and Hill was rei�ed constraints. Theproblem they chose to benchmark rei�ed constraint was self-referential quizzes(SRQs) [Hen96]. Two formulations of the problem were presented, and for eachCLP language the code for each formulation was presented. Fernandez and Hillargued that better support for rei�ed constraints rendered the encoding simplerand more natural. They also compared the performance of the all di�erentprograms, for each language and each formulation.They admitted that another formulation of the problem [Fer97] which didnot require rei�ed constraints had been pointed out to them earlier [FH00, Note1, p 281]. Although the programs executing this formulation proved to be more9



e�cient than programs running the other two formulations, they did not use itin the comparison.A benchmark can only serve to measure the importance of a programminglanguage feature if applications can be found for which this feature is needed,and consequently languages not supporting this feature incur a performancepenalty. The existence of a simple formulation which allows the problem to besolved more e�ciently without this feature completely undermines the validityof the benchmark.From a methodological point of view the right way to benchmark a particularfunctionality is by unit testing.3.4 Benchmarking AlgorithmsTo benchmark how e�ciently di�erent languages support the same features,it is necessary to write programs in the di�erent languages that run the samealgorithm. The operations research and arti�cial intelligence communities havea strong tradition of analysing and benchmarking algorithms, and in particularthe CSP community analyses the kinds of algorithms run by CLP programs.For our benchmarking the analysis of algorithmsmust be su�ciently concreteto ensure that our benchmarks compare like with like. Three measurementsoften used in analysing CSP algorithms are [Nad89]:� backtracks� constraint checks� space requirementsWhile these measurements are uncontroversial when measuring two di�erentalgorithms implemented in the same programming language, they can be verymisleading when used to compare algorithms written in di�erent programminglanguages.3.4.1 Measuring BacktracksWhen measuring backtracks two important details must be made explicit:� Are shallow backtracks counted? These are backtracks that result from apropagation failure after the system has attempted to instantiate a vari-able to a value. Some CLP systems (such as ECLiPSe) will not includesuch an attempted instantiation as a search step.� Are backtracks correlated with choice points? If a search tree has depthn, then after returning the last leaf of the tree a CLP system will typicallyhave no more remaining choice points. However there remain, arguably, nmore backtrack steps from the leaf to the root node, before the search treehas been fully explored. It is quite common when analysing algorithmsexpressed in CLP to count choice points instead of backtracks. Choice10



points may re
ect more accurately than backtracks the computationalrequirements of the algorithm. We note that the addition of CLP codeto monitor the number of choice points in a CLP program can easilyintroduce new choice points into the code, and thereby changing the thingbeing measured.3.4.2 Measuring Constraint ChecksIt is even more tricky to measure constraint checks. When analysing CSP al-gorithms constraint checks are often assumed to take a �xed time per check[MF85]. However the e�ciency of constraint checking is an important aspectof CLP implementation. Moreover most CSP analyses assume constraint de�-nitions are held in tables. However most CLP benchmarks (and applications)use constraints whose de�nitions are implicit: often they are numerical or arede�ned as logical combinations of other constraints.For the purposes of comparing languages two algorithms are the same if theymake the same number of checks on each kind of constraint. For benchmarking itis best if a problem only involves one kind of constraint, in which case the relativeperformance of two languages will re
ect their search performance on constraintchecking for that kind of constraint. If there are many kinds of constraint ina problem, the performance may depend upon the ratio of di�erent kinds ofconstraint checks. For example one language may be very e�cient at checkingnumerical ordering constraints, and another more e�cient at disequalities.A more serious di�culty is that few CLP implementation support a facilityto count constraint checks. Typically it is only possible to count a behaviour,such as waking events which more or less approximate constraint checks. Un-fortunately the approximation may deviate wildly for certain programs, whichhappen to execute propagation sequence without raising events. If code is addedto a CLP system to count explicitly constraint checks, this may seriously impairits performance.3.4.3 Measuring Space RequirementsThe space requirements of an algorithm may depend upon:� domain information� information about support for a domain value� information supporting intelligent backtracking� nogoodsTo compare like with like, we must ensure that the algorithms are recording thesame information. In particular, languages that support multiple solvers mayrecord information which supports the interaction between solvers, and whichmay not be necessary for single-solver problems.11



Certain choices, such as whether to record the upper and lower bounds of adomain explicitly, or only to record the set of values in the domain, are arguablyproperties of a CLP language implementation and not of any algorithm writtenin that language.It is di�cult to tease out what level of abstraction in the measurement oftime and space requirements would be appropriate in order to compare CLPlanguages. For example, what should be deduced from comparing a systemwhich implements AC3 with one that implements AC4? There is a risk ofconfusing a comparison of two language implementations with a comparison oftwo algorithms, but if neither implementation o�ers the other algorithm as analternative, then we cannot exactly compare like with like.Ultimately we must keep in mind Kernighan and Van Wyk's conclusion, thatno benchmark result should ever be taken at face value. To make it possible forusers of the benchmark to interpret the results it is necessary to record all theassumptions and \wrinkles" in the benchmarking process.3.5 SummaryFor software systems such as databases whose functionalities are well circum-scribed it is possible to specify benchmarks in the form of workloads that re
ectcertain usages of the system. As database technology advances, from relationalto object-oriented for example, the benchmarks are updated, perhaps a decadeafter the �rst research prototypes of the new technology have been introduced[Gra91].CLP is changing quickly. Finite domain constraints have indeed been sup-ported by CLP systems for a decade, but their implementation depends cruciallyon their interaction with other solvers, in particular linear constraint solvers.Benchmarking a �nite domain system in isolation is useful only to potentialCLP users who have no need for any other solvers than �nite domains. It isunclear which potential users might have such restricted needs.The interaction of �nite domain and linear solvers is currently a topic ofresearch so it is still early to establish benchmarks. To date any benchmarkingin this area (e.g. [RW98a, Ref99]) has been aimed at comparing algorithms andnot implementations.It can be useful to test certain common functionalities of languages or sys-tems in order to �nd out what price is being paid by each system for its addi-tional functions, generality or power. In this case the comparison may recordthe benchmark results on the common functionalities and include some analysisof the interaction between the benchmarked features and the other parts of thelanguage or system.However it would be foolish to use a benchmark on �nite domain constraintsto \aid others in choosing an appropriate constraint language for solving theirspeci�c constraint satisfaction problem" [FH00].12



4 CHIC-2 BenchmarkingIn this section we report on a benchmarking exercise which started within theEsprit project CHIC-2 [CHI99]. The project investigated the application of CLPto industrial Large Scale Combinatorial Optimisation (LSCO) problems.14.1 Purposes of Benchmarking for CHIC-2In CHIC-2 it was established that LSCO problems are hybrid, involving di�erentkinds of constraints (continuous and discrete, temporal and spatial, constraintson tasks and on resources, etc.). The need for hybrid algorithms for solvingLSCO problems was tested and proven in the course of the project. We con-cluded that it was more important to ensure the programming platform has theright amount of 
exibility and facilities to allow the programmer to program theright approach easily, rather than ensuring that a particular feature is optimisedfor performance, especially at the expense of 
exibility.The aim of the benchmarking was to quantify the facilities of ECLiPSe foraddressing LSCO problems. The objective was to provide some measurementsthat would truly re
ect the value and usefulness of the di�erent ECLiPSe facil-ities for modelling and solving such problems.This objective immediately raised the classic di�culties of benchmarking:what could be quanti�ed, and how would the measurements shed light on theperformance of the software being benchmarked?The CHIC-2 benchmarking sought to measure:1. the performance of LSCO applications running under ECLiPSe,2. the performance of various features of ECLiPSe, and3. the suitability of ECLiPSe as a platform for hybrid algorithms.For these purposes, we designed and ran several benchmarks. Two of them,in particular, not only revealed aspects of the ECLiPSe platform, but also holdsome lessons about the benchmarking process itself. We therefore discuss justthese two benchmarks in the current paper.Firstly we performed unit testing on some standard constraints, in orderto assess the cost and bene�ts of making ECLiPSe 
exible and rich enoughto support hybrid algorithms for LSCO. To assess the costs, we compared theperformance of some simple �nite domain constraints in ECLiPSe with thosesupported by other systems. To explore the bene�ts we made a comparison oftwo alternative solvers available in ECLiPSe. This kind of benchmark provides1The European ESPRIT project CHIC-2 had four elements: the solution of four demand-ing, real-world planning/scheduling problems, the development of hybrid algorithms to bettersupport the solution of large scale planning and scheduling problems, the development of amethodology to help reduce the cost of developing such applications, and the enhancementof the ECLiPSe platform to fully support the e�cient implementation and execution of theresults of the project. 13



some of the background knowledge the ECLiPSe user might need to decidewhich solvers to use for handling a particular problem most e�ciently.Secondly we ran an application benchmark, designed to measure develop-ment time and e�ort, and the maintainability of the resulting program. Wechose a sta� rostering problem, introduced by another CHIC-2 partner, and wecompared ECLiPSe with two other constraint programming platforms.The two benchmarks are discussed in the following sections.4.2 Simple Constraint PropagationsThe unit tests benchmarked in this section were used to compare� The same solver (fd) running under two di�erent CLP systems� Two di�erent solvers, running under the same system (ECLiPSe)In the �rst exercise the two systems whose fd solvers we compared were ECLiPSe(version 5.2) and SICStus (version 3.8.5). The ECLiPSe tests were compiledwith reduced debugging information, and for SICStus the tests were compiledinto compactcode. The SICStus timer excludes time spent on such activities asgarbage collection and stack expansion. By contrast ECLiPSe's timer includesthese activities. To partly compensate, garbage collection times were addedback to the SICStus timings.In the second exercise, the two solvers, running under ECLiPSe 5.2, were fd,and an external linear solver accessed via an ECLiPSe interface. The externalsolver was CPLEX, version 6.5.All tests were run on the same hardware and operating system - speci�callya 933MHz Pentium III with 512 Mb of memory, running Linux.4.2.1 The Unit TestsWe designed a set of unit tests, to evaluate the scalability and performance ofthe �nite domain and linear solvers on a class of very simple constraints.In the unit tests, the constraints had the form X � Y + B where X and Ywere integer variables, and B was instantiated either to 0 or to 1. The e�ectof setting B = 0 or B = 1 is discussed in the section 4.2.3 below. Each testgenerated M �1 constraints in M variables, each variable having domain 0::M ,and each constraint having the form X � Y +B.To aid our discussion of these constraints in the following sections, we willtalk aboutX2 � X1+B as the \�rst" constraint, X3 � X2+B as the \second"and so on.For the benchmark we ran a sequence of tests of increasing size M : from 200to 10,000. The constraints imposed an ordering on the variables, e.g. if M = 5,B = 1 the constraints were:0 � X1; X2; X3; X4; X5 � 5;X2 � X1 + 1; X3 � X2 + 1; X4 � X3 + 1; X5 � X4 + 1.14



4.2.2 Comparisons of ECLiPSe's and SICStus' fd solversIn the �rst unit test a program was written to generate, and post, the constraintsin order (written up in the graphs in this section). Thus constraint X2 � X1+1was added �rst, then X3 � X2 + 1, and then X4 � X3 + 1 and so on. Theprogram had to be slightly altered to run in SICStus, because of minor syntacticdi�erences between SICStus and ECLiPSe. It was not expected that thesedi�erences would lead to big performance di�erences.
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Figure 1: Comparing fd in ECLiPSe and SICStusThe graphs in this section use a logarithmic scale on both axes. A hori-zontal line would indicate that the execution time per constraint was constant.Steeper lines re
ect, linear, quadratic and increasingly higher order polynomialrelationships between the number of constraints and the time per constraint. Inthe graph in Figure 1 the time per constraint increases approximately linearlywith the number of constraints both for SICStus fd and for ECLiPSe fd. Ifthe lines were exactly parallel, this would represent a constant factor di�erencebetween the two solvers.Accordingly, the graph appears to show that the performance of the ECLiPSefd is around 50% faster than the SICStus fd solver. However the lines convergeslightly, indicating that the di�erence narrows as the number of constraintsgrows. 15



Adding Constraints in a Di�erent Order Adding constraints in increas-ing order is actually the worst case, because each time a constraint is added,new upper bounds are propagated back to every previous variable.We therefore explored the e�ect of adding constraints in random order, andin various specially constructed orders. One interesting case was the odd/evenorder: odd-numbered constraints were added �rst, and then the even-numberedones, thus: X2 � X1 + 1; X4 � X3 + 1; X6 � X5 + 1 : : : ; X3 � X2 + 1; X5 �X3 + 1; : : :Another case was the binary-chop ordering. This order maximised the `dis-tance' between each constraint posted. For a chain of 10 variables, X1 : : :X10,the constraint X6 � X5 + 1 was posted �rst, followed by X3 � X2 + 1 andthen X8 � X7 + 1 and so on.The results are shown in Figure 2.
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Figure 2: Result of changing the order of propagation - ECLiPSeThe execution times for both new orderings are much faster than for theoriginal ordering. The odd/even ordering is consistently about twice as fast.The binary chop ordering is also faster - sometimes much faster. Its highlyerratic behaviour is very evident: the performance improves dramatically whenthe number of variables is any power of two.Most important of all is that the di�erence in performance due to the orderof posting constraints is far greater than the di�erence between the two systemsSICStus and ECLiPSe. Indeed the di�erence in performance between the test16



with 2N � 1 variables and 2N variables in the binary-chop ordering far exceedsthe average di�erences between the orderings themselves.To check if this erratic behaviour was speci�c to the ECLiPSe fd solver, wetried the same orderings on SICStus fd solver. The results are shown in Figure3. The behaviours of the two systems are indeed very similar.
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Figure 3: Result of changing the order of propagation - SICStusPostponingConstraintPropagation ECLiPSe o�ers the programmer con-trol over the priority of di�erent activities. By raising the priority of the routinewhich posts constraints, for example, the programmer can ensure that all theconstraints are posted before any propagation takes place.2The consequence of changing the priority in this way is that the total num-ber of propagation steps executed by the system may be dramatically reduced,though the domains of the variables are reduced by the same amount. To ex-plore this e�ect we ran the same unit test as before, posting the constraintsin increasing order, and examined the e�ect of changing the priorities in theway just described. Thus we compared the incremental case, where constraintpropagation was performed after adding each constraint, with the batch case,2The ability to control the propagation behaviour has proven to be useful in realapplications[WS02, EW00], but is not available in other CLP platforms that do not haveexecution priorities. 17



where propagation was postponed until all the constraints had been added. Theresults are shown in Figure 4.
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Figure 4: Comparing incremental and batch propagation behaviourThe e�ect on performance is again dramatic. The time per constraint for thebatch case is almost constant.3. The di�erence between incremental and batchpropagation again exceeds that of any of the variations in the unit test exploredso far. However, the order of posting constraints is still a very important factoreven in the batch case. The next graph in Figure 5, shows the execution times ofthe batch case for the odd/even and binary chop constraint orderings. In fact theodd/even ordering has almost identical performance for both the incrementaland the batch cases. The binary chop has erratic performance, as before, butnow when the number of variables is a power of two, it is not the best case butthe worst case!Clearly di�erent scheduling of the propagation steps within a propagationsequence can yield very di�erent results, because the order of propagation stepscan have an important e�ect on the number of propagation steps needed tocomplete the sequence. For example, by changing the order of propagationsteps, the number of steps in the propagation sequence may increase from alinear multiple of the number of constraints to a quadratic function of it.3The kink at around 6000 constraints in this and subsequence graphs is due to garbagecollection 18
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Figure 5: Result of changing the order of propagation in batch modeFinally, when adding the constraints in a random order, we observed that thepropagation sequences were typically well-behaved, tending to increase linearlyin proportion with the number of constraints. This was also re
ected in thecomputation times.These results demonstrate how sensitive execution times can be to the orderof constraint posting, and the exact scheduling order of the propagation steps.ECLiPSe schedules the most recently woken goal �rst. Changing to anotherpolicy could dramatically improve performance on this worst case, but makeother cases much worse. For a simple case like this unit test, we could establishan optimal scheduling policy, but this policy might not be the best for otherbenchmarks, or for real applications.This benchmark highlights the di�culty of comparing CLP systems: smalldi�erences in the implementation of the scheduling could lead to big di�erencesin performance.4.2.3 Comparison of ECLiPSe fd and eplexStrict Inequations The same unit tests discussed in the previous sectionwere used for comparing two di�erent solvers available via ECLiPSe. Thesesolvers were fd and an external linear solver, supported via the ECLiPSe eplexlibrary. The eplex library o�ers interfaces to two alternative commercial linear19



and mixed integer programming packages, XPRESS from Dash [Das01] andCPLEX from ILOG [ILO01]. The solver used in the current comparison wasCPLEX. In using the CPLEX solver, an objective function must be speci�ed,and for the reported benchmarks this objective was minimisation of the �rstvariable.4An ECLiPSe programmer is often faced with a variety of algorithmic choicesfor solving an application. A typical example is the choice between propagatinglower and upper bounds on a set of variables using the fd solver, or �ndinglower bounds on a cost function using a linear solver. Another choice mightbe to apply both solvers, or apply di�erent solvers to di�erent subsets of theproblem constraints and variables.Unfortunately it is not currently possible for the software to automaticallyapply the best combination of solvers, nor do we believe this will be a realisticpossibility for the foreseeable future. Moreover the number of ways of extractingsubproblems and combining solvers is very large so it is not possible to blindlytry out every alternative and choose the best.The programmer therefore needs some understanding of the relative perfor-mance of di�erent solvers, to judge whether, for example, the computing timerequired to extract a cost lower bound from the linear solver for a particularsubproblem might be worth the bene�t in the context of the whole problemsolution. The objective of the following benchmarking exercise is to help withthis kind of understanding.5While �nite domain solvers and linear solvers handle di�erent classes ofconstraints, the constraints used in the benchmark are, of course, handled byboth kinds of solver. Moreover this class of constraints was chosen to minimisethe di�erences due to the di�erent kinds of consistency enforced by the di�erentsolvers. Speci�cally, the linear solver enforces global consistency for the linearrelaxation of a set of constraints. For this class of constraints fd also establishesglobal consistency. On the other hand an fd solver enforces integrality on itsinteger variables. For this class of constraints, the optimum returned from thelinear solver is also integer valued.6In section 4.2.2 above we distinguished two kinds of constraint solving: in-cremental and batch. Traditionally fd solving has been performed incrementally,propagating the results of each new constraint before adding the next one. Onthe other hand linear constraint solving has been executed in batch mode, addingall the constraints and then running the solver once on the complete set.While XPRESS and CPLEX now both o�er 
exible support for incrementaladdition of constraints, there is an extra overhead in the ECLiPSe eplex interfaceof passing the results from the external solver back to the ECLiPSe engine.The benchmarks presented in this section were designed to explore the costs of4Maximisation of the �rst variable was also tried, and the results were similar.5It is not aimed to measure the performance of the particular external solver, as a stand-alone package, nor is it intended to objectively compare �nite domain constraint solving withlinear constraint solving. Consequently there is no attempt to measure the overhead of eithersolver due to the ECLiPSe interface.6This is because the constraints added in the benchmark are unimodular [Wil93].20



invoking a linear solver both in batch mode and incrementally.Incremental processing in eplex was accomplished by passing the constraintsone at a time from ECLiPSe to the external solver, and running the solver eachtime. Each time the external (CPLEX) solver was run it was warm started usingthe previously solved matrix, with an added row for the new constraint, andstarting from the previous solution's basis. For batch processing, the externalsolver was only run once, after all the constraints had been added. The resultsare shown in Figure 6.
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Figure 6: Comparing Strict Inequations in ECLiPSe fd and eplexAs expected, the batch simplex performed much better than the incrementalsimplex, because the external solver was called once in the batch case, and asmany times as there were constraints in the incremental case. In fact the batchmode for both solvers outperformed the incremental mode for both solvers.However, the obvious conclusion - that the di�erence between batch andincremental mode is more signi�cant than the di�erence between the solvers -can be quickly contradicted by adding the constraints in a di�erent order, aswe saw in section 4.2.2 above. For completeness, we also tried the binary chopordering with CPLEX. However, although the changed order resulted in visibledi�erences in the execution times, the di�erences were less than 10%.Non-strict Inequations The performance of an fd solver is highly dependenton the amount of propagation which results from adding each new constraint.21



In the unit tests discussed so far, the inequations (X � Y + B with B = 1),are strict, and if X and Y start with the same upper and lower bounds, thenone bound of each variable must be tightened as a result of propagating thisconstraint.Setting X � Y +B with B = 0 generates non-strict inequations of the formX � Y . If X and Y start with the same bounds, then no tightening is achievedas a result of propagating this constraint.The di�erence in the constraints makes little di�erence to an external linearsolver which uses a variant of the Simplex algorithm. This is re
ected in theexperimental results.
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Figure 7: Comparing Non-strict Inequations in ECLiPSe fd and eplexFor a �nite domain solver, however, X � Y and X � Y + 1 require verydi�erent handling. Adding a new constraint of the form Xn+1 � Xn has noe�ect on the domains of any of the previously de�ned variables Xi : i = 1::n,and no propagation takes place. In contrast, the Xn+1 � Xn + 1 case is quitecostly, because each new constraint causes a propagation sequence which reducesthe domain of every previous variable Xi : i = 1::n.The tradeo� between fd and eplex is therefore in
uenced most of all by theamount of propagation that has to be performed at each step. In case a problemis \loosely" constrained, the fd solver is likely to dramatically outperform alinear solver. 22



Other Variations on these Unit Tests Even though the class of constraintswe have studied in the above unit tests are extremely simple, there are manyvariations that can in
uence benchmark results. Another factor that has not yetbeen considered is failure: what happens if the set of constraints is inconsistent.Clearly this is the main reason to support incremental constraint solving. Ifnew constraints are generated in the context of a larger algorithm, especiallyif the program performs a great deal of computation before adding each newconstraint, then detecting an inconsistency before all the constraints have beenadded can bring an arbitrarily large performance bene�t.In the case that the full set of constraints are inconsistent, the relative per-formance of the batch fd solver and the eplex solver running in batch mode maybe quite di�erent from the results shown above in Figure 6.We performed a number of tests to explore the e�ects of inconsistency. Forthe incremental ordering, the fd solver proved faster than eplex independently ofthe stage m at which an inconsistency, of the formX1 � Xm+1, was introduced.Relatively, however, the gap between the fd solver and eplex was reduced. Thebehaviour of fd, however, would be highly dependent on the original size of thevariable domains.There are many further variations of the above unit tests. In particularin the tests described above, the constraint graph has the form of a singlechain. By changing the variables involved in the di�erent inequations, a hugevariety of di�erent constraint graphs could be produced, yielding binary trees,consistent and inconsistent cycles, and so on. Moreover each new variation canbe combined with variations discussed above. Thus, even for a very simpleclass of constraints, a \representative" set of unit tests is extremely di�cult toconstruct.Some Remarks for ECLiPSe Users There is some overhead associatedwith sending the constraints to an external solver in the case where the con-straints are simple to handle. The benchmarks also show that incremental con-straint solving can be computationally expensive for both kinds of solver. Theneed to detect inconsistencies incrementally has been well established for �nitedomain constraint solvers. Incremental behaviour of the linear solver is alsoimportant, particularly when both the fd and linear solvers are used together,communicating information at every search step [RW98b, EW00].4.2.4 ConclusionsEven unit testing does not provide a very satisfactory basis of comparison be-tween di�erent constraint solvers and systems. While linear and �nite domainsolvers do share a common subclass of constraints for which they both supportcomplete decision procedures, comparing their performance on the common sub-class, as described in section 4.2.3, is unsatisfactory.The reason is that neither solver is designed for that particular subclass:the algorithms used in each solver are designed to handle much larger classes of23



constraints. Benchmarking the solvers on a speci�c subclass does not do justiceto either of them.Even where the solvers are more similar, as in the comparison of section 4.2.2above, the results may be highly in
uenced by a minor algorithmic detail, suchas a particular order in which propagation steps are performed in a propagationsequence. The same order might be ideal in one propagation sequence, and haveworst case behaviour in another.However even between the �nite domain solvers in ECLiPSe and SICStus,the algorithms will be di�erent as they are designed for di�erent purposes. Forexample the handling of priorities in ECLiPSe incurs extra overhead. This over-head has bene�ts which might not be revealed by unit testing on the commonsubset of the di�erent solvers.There is a third di�culty in using unit tests to compare solvers, and that isto decide how many unit tests provide a \reasonable cover" of the functionalityof the solvers. If the number of unit tests is very large, this presents a barrierin terms of the time and e�ort required for benchmarking, and it also makesthe results of the comparison impenetrable. Thus it happens very often thata few unit tests, such as those described in sections 4.2.2 and 4.2.3 above, areassumed to re
ect the functionality of the whole solver. Clearly this is far toosmall a number to give any realistic basis for comparing solvers.The tests suggested that the overhead of supporting priorities in ECLiPSewere not prohibitively costly in terms of the run-time performance of the system,at least in the case where all the constraints had the same priority. These resultswere of some use for the system developers, but clearly they could not have beenemployed by potential users of the systems to decide between them.4.3 Case Study: Rostering ProblemThe next benchmark sought speci�cally to provide some measure of programmertime: both for program development and program maintenance.There has been a previous comparison of CLP languages by setting di�er-ent programmers the task of solving the same problem in di�erent languages[BBV+97]. The di�culties they encountered in achieving a convincing compar-ison between the languages were similar to those reported in this section.The activity benchmarked was the development of a program to solve a givenproblem. The intention was to compare:� the time needed to develop the program,� the size of the resulting program and� the run-time performance of the resulting program.The size of the program was intended to give some objective measure of howdi�cult the program was to write, maintain and enhance.One problemwas used for this benchmark, and a solution for the problemwasdeveloped on three di�erent constraint programming platforms. The benchmark24



exercise was carried out by just one person on each platform. The platformscompared in this benchmark were ones used by di�erent partners in the CHIC-2project.When carrying out this benchmark the CHIC-2 project partners were acutelyaware of the limitations of the exercise. A thorough benchmarking exercisewould have required:� a large number of \comparable" program developers and� a wide variety of problems.It would also have been of interest to have tested a wider variety of platforms.Because the sample was so small (i.e. one problem and one developer), thepartners recognised that the results could not be used for drawing any seriousconclusions about the merits of the di�erent platforms for developing solutionsto LSCO problems.The partners recognised that this situation is not uncommon. In practice,the resources needed to carry out manpower intensive benchmarking exercisesof this kind are rarely available. The alternative is not to make any comparisonsat all.This benchmark is accordingly presented with full acknowledgement of itslimitations. The results should be taken more as a case history than as ascienti�c benchmark.4.3.1 Problem De�nitionThe objective of the problem is to cover a weekly work load with morning, dayand evening shifts. The shifts must be arranged in a grid which meets a varietyof constraints. For each day of a typical week, the number of shifts per type isgiven. Some supplementary shifts are added in order to manage absenteeism.Last but not least, the days o� must be planned. For each shift, the possiblelabels are:M Morning shiftJ Day shiftE Evening shiftK Supplementary shiftR Rest DayA solution, for N workers, is an N line grid of weeks specifying shifts anddays o� for one employee. The rosters for the other employees are obtained bystarting at the second, third, etc. lines of the grid, which describes a continuousrota.The constraints and objective are summarised as follows:25



� Hard constraints.The �rst constraint is the number of labels for every day of the week. Foreach day, all N labels must be set. Secondly there are constraints on thelabels which must be assigned for each day of the week. Thirdly there is aconstraint on the length of a working period: no more than 6 consecutivedays without a day o�. The fourth constraint is not to have more than 3days o� consecutively.� Flexible constraints.The soft constraints are not to have isolated days o� and not to havemorning shifts after evening shifts.� Objective.The program's purpose is to minimise the cost, which is de�ned as thenumber of violations of soft constraints.A sample solution with cost 1 for a 5-week problem is:Grid Mon Tue Wed Thur Fri Sat SunWeek1 R R M E R R RWeek2 M R R J M M RWeek3 R E J J E E RWeek4 R E J K J M RWeek5 E J K K J J RTable 1: A Five Week Roster4.3.2 The PlatformsSolutions were developed on three platforms:� ECLiPSe 4.1 with its �nite domain library,� Claire 2.3 with the Eclair �nite domain library (Bouygues in-house) and� ILOG OPL with ILOG Solver (commercial).All three platforms make similar claims and are thus comparable. They:� support elegant and declarative modelling,� interface to similar solvers and� allow programming of search heuristics.The purpose of this comparison was therefore not to prove that high-level toolsare useful (this was implicitly accepted), but to compare ECLiPSe with a com-mercially available tool (OPL) and a platform that has invested more develop-ment e�ort into e�cient compilation (Claire).26



The (di�erent) ECLiPSe solutions were developed by (di�erent) experiencedECLiPSe users with access to the ECLiPSe developers. The Claire solutionswere written by a senior developer with some experience of Claire and access toClaire developers. The OPL code was developed by a less experienced user notinvolved with the language development group.4.3.3 ComparisonDevelopment time One of the initial ideas was to compare developmenttimes. Due to lack of controlled conditions, the di�erence in experience withthe platforms, the di�erent programming experience of the developers and thesmall sample size, this comparison can only be very informal. Both the ECLiPSeand Claire developers got results within about one day. This includes modellingfrom the problem speci�cation and the development of an initial search strategythat solved one problem instance. More time was spent later on improved searchstrategies and the solution of more di�cult problem instances.Because the developer of the OPL solution was less experienced, and did nothave access to the language development group, it was deemed inappropriate toreport on the time taken to develop the OPL solution.Platform facilities All three platforms encouraged experimentation, and asigni�cant number of strategies and variants were developed by all participants.The best solutions on the di�erent platforms (within the development timesreported above7) are called in the following:� Sol-O (the best OPL solution)� Sol-C (the best Claire solution)� Sol-E (the best ECLiPSe solution)Sol-O and Sol-C were reproduced in ECLiPSe. This reproduction caused noproblems, as all the necessary facilities were supported by ECLiPSe. Sol-E wasthen reproduced on the other two platforms.Code size The table 2 compares source code sizes on the di�erent platforms.8The benchmarkers tried to follow the programming style of the original program,although there are di�erences in the modelling. The numbers given in the tableare program tokens. A token is de�ned as a lexical unit of the correspondingprogramming language (e.g. an identi�er, a number, an operator, a parenthesis,etc.). Comments in the code are ignored. This method of measuring has theadvantage of being less sensitive to di�erent coding styles. In particular, thelength of identi�ers, the amount of comments or the way lines are broken uphas no impact on the result.7Naturally the developers went on to build more sophisticated solutions. No attempt wasmade to translate these solutions into the other languages.8We were only able to record code sizes for programs subsequently available to us at IC-Parc. 27



Strategy ECLiPSe Claire OPLSol-O 897 - 716Sol-E 713 - 651Sol-C 1205 1290 -Table 2: Code Size ComparisonThe code sizes are quite similar, which suggests that all languages have asimilar level of abstraction. The ECLiPSe code is somewhat longer than theOPL code, which can be explained by the fact that OPL is a special-purposelanguage where programs have a �xed structure and therefore certain thingsare implicit. The comparison with Claire shows even less deviation. Both aregeneral high-level languages. Small di�erences are explained by coding styleissues (e.g. use of auxiliary predicates/functions or not).4.3.4 Results and RuntimesAlthough the roster benchmark was selected with the explicit objective of avoid-ing the problems that are inherent in the comparison of large real-life applica-tions, it proved di�cult to exactly reproduce results. We used the �nite-domainsolvers on all three platforms, as well as built-in default labelling strategies tocomplement the explicitly programmed heuristics. Even though we sought toreproduce the search heuristics exactly, we ended up with quite di�erent be-haviours.One reason is that the built-in labelling strategies of the platforms are subtlydi�erent. The other possible explanation is that heuristics which rely on eval-uating the result of constraint propagation (domain sizes, etc.) are a�ected bydi�erent strengths of constraint propagation; i.e. low-level details of the solverimplementation.Due to these circumstances, the �gures in the following tables must be inter-preted carefully. When the platforms do not �nd the same solution, direct runtime comparison is obviously meaningless. Even when a solution with the samecost is found, run times are not necessarily comparable: the solution might lookcompletely di�erent and may have been found along a di�erent search path.We look at three search strategies, Sol-E, Sol-O and Sol-C, as before. Eachof them has been implemented on at least two of the platforms. The tablesgive the solutions and run times on the di�erent platforms for a number ofproblem instances. The number in the name of the problem instance indicatesthe number of weeks for which a roster is calculated. If a program could �nd andprove an optimal solution within 60 seconds, the time needed is given, togetherwith the optimal value of the objective function. If the program was abortedafter 60 seconds because it had not been able to �nd and prove an optimalsolution, then the value of the best solution it had found (if any) is given, alongwith (in parentheses) the time taken to �nd this solution.28



ECLiPSe 300 MHz Claire 300 MHz OPL 200 MHzInstance Cost seconds Cost seconds Cost secondsi5 1 0.15 1 0.09 1 0.28i7 0 0.14 0 0.06 0 0.39i9 0 0.39 1 (30.2) 0 0.77i10 0 0.32 3 (0.10) 1 (0.38)i12 0 1.95 1 (1.51) 1 (0.94)i12a 1 (0.74) 6 (0.95) 0 38.1i12b 1 (48.7) - (>60.0) - (>60.0)i16 0 2.77 2 (0.34) 0 1.82i18 0 3.31 6 (0.32) 6 (1.16)i20 0 2.65 7 (1.13) 0 2.91i21 0 11.8 - (>60.0) 8 (0.71)i23 4 (0.62) 4 (0.42) 4 (0.60)i24 4 (3.45) 4 (1.39) 2 (6.64)i26 9 (39.36) - (>60.0) - (>60.0)i30 0 1.39 0 3.69 0 1.15Table 3: Results for Sol-E search strategyECLiPSe 300 MHz Claire 300 MHz OPL 200 MHzInstance Cost seconds Cost seconds Cost secondsi5 1 0.31 1 0.38i7 2 (5.64) 0 65.41i9 0 9.79 0 7.58i10 4 (2.62) 4 (2.47)i12 0 6.14 0 4.89i12a 0 1.57 0 1.54i12b 6 (32.92) 6 (26.09)i16 1 (58.39) 0 40.26i18 12 (6.59) 12 (4.01)i20 7 (30.93) 7 (20.01)i21 6 (22.40) 6 (18.13)i23 21 (4.08) 21 (2.2)i24 19 (5.86) 19 (1.82)i26 26 (39.63) 24 (58.55)i30 20 (51.19) 19 (58.1)Table 4: Results for Sol-O search strategyThe ECLiPSe and Claire times were measured on a 300 MHz Pentium IImachine. The OPL times were measured on a 200 MHz Pentium II machine.In a number of cases (see table 3) ECLiPSe is the only platform to �ndsolutions. In the cases where the solutions are the same, ECLiPSe is up to a29



ECLiPSe 300 MHz Claire 300 MHz OPL 200 MHzInstance Cost seconds Cost seconds Cost secondsi5 1 8.47 1 0.12i7 4 (2.78) 4 (0.91)i9 4 (3.14) 4 (1.32)i10 7 (1.86) 6 (57.9)i12 0 0.91 0 (8.20)i12a 5 (7.28) 5 (3.44)i12b 10 (1.63) 10 (1.12)i16 20 (56.06) 20 (28.3)i18 23 (24.41) 20 (42.2)i20 0 2.40 1 (2.61)i21 5 (1.99) - (>60.0)i23 32 (1.90) 32 (0.93)i24 23 (2.24) 23 (1.24)i26 30 (1.75) - (>60.0)i30 39 (1.91) 39 (0.72)Table 5: Results for Sol-C search strategyfactor of 2 slower than the other platforms. However, as can be seen from thetables, the di�erences between the strategies are much more important than thedi�erences between the platforms.The results support the view that the key to success is the richness and
exibility of the platform, rather than the performance of particular constraintsolvers, or search primitives.4.3.5 ReviewThe case study in this section represents a very unsatisfactory benchmarkingexercise, in that the sample size is just one. Moreover the size of this section,i.e. the amount of text needed to report on the benchmark, is quite substantial,because the issues about development e�ort and program quality are complex.Therefore the benchmark may implicitly appear to have a greater weight thanit should.Of all the lessons that can be extracted from the benchmarking e�orts re-ported in this paper, this may be the least \scienti�c" but it is very important.Benchmarking human e�ort is very costly, and therefore often uses small samplesizes - often reporting the experiences of just one user. On the other hand theissues involved are highly complex, and so the benchmark result may be accom-panied by some discussion. The consequence is that the least reliable bench-marking exercise can easily take on a disproportionate weight in the overallbenchmarking report. The lesson is that we must clearly recognise the relativesigni�cance of the di�erent exercises within a benchmarking process. We mustgive weight to the results in proportion to their statistical and scienti�c validity.30



5 ConclusionThe constraint logic programming benchmarks described in this paper fall intotwo main categories: application benchmarks and unit tests.5.1 Application BenchmarksThe advantage of application benchmarks is that they appear to give a usefulsummary of the system being benchmarked. The results for an applicationbenchmark are reported in a few �gures. If the benchmark is being used tochoose software for a planned application, it is hoped that the �gures will predictthe actual behaviour of the software on the application.These summary �gures are familiar to readers of consumer magazines whichprovide �gures comparing products such as washing machines and cameras.The reader seeks an uncomplicated summary of the features and bene�ts of thealternative products so that they can be matched with his or her speci�c needs.The risks of application benchmarks have been illustrated by some of theexamples in this paper. It is easy to draw the wrong conclusion from the resultsof an application benchmark that does not correctly predict the behaviour ofthe software on the intended application.9 This may be because the intendedapplication has aspects that are not re
ected in the benchmark application. Onthe other hand, the benchmark application may have aspects that are handledparticularly well by the software but do not appear in the intended application.The extra di�culty of comparing constraint programming platforms, asagainst washing machines for example, is that the platforms are general pur-pose. A washing machine has a relatively simple interface (a few buttons), andfor each test there is a \right" way to use the machine.By contrast a constraint programming platform can be used to solve a bench-mark application in a wide variety of ways, one of which is to drop into someunderlying programming or machine language. Thus the most e�cient programfor an application may not be a test of the platform at all. On the other hand,there may be an easy implementation on one platform, which has just the rightbuilt-in constraints, and a less easy implementation on another that is morerun-time e�cient, because it uses some application-speci�c code.Choosing a constraint programming platform based on some applicationbenchmarks is, therefore, deceptively simple. Drawing the right conclusion fromsuch benchmarks is either an exercise in detective work or, more likely, a lottery.5.2 Unit TestsThe advantage of unit tests is that it is clear what they measure. The drawbackis that a software platform such as a constraint programming system has a verylarge number of facilities, which would require a huge number of unit tests.9We recall a benchmark comparison in which a program using Constraint Handling Rules(CHRs) in ECLiPSe easily outperformed the other system. The reason eventually proved notto be the CHRs, but the good performance of large integer multiplication in ECLiPSe.31



Choosing the right system by examining the results of all the unit tests wouldbe an exhausting undertaking. It would also not necessarily be useful unless theintended application, and the programming features necessary to solve it, werefully known in advance.It would not be enough to report that solver X did better on 58 unit testsand solver Y on only 42, and therefore solver X is the better. Clearly theweight given to each unit tests will depend on the purpose of the benchmarking.However it would be extraordinary for the user of the benchmark to have aprecise and correct understanding of the appropriate weights.For testing general purpose software platforms, such as database systems, aspeci�ed mix of functionalities has often been used in the past. The results aresummarised in terms of the overall computational resources employed in gettingthrough the whole set of benchmarks. This has the advantage of reducing thenumber of �gures resulting from the benchmarking exercise, which is the mainbene�t of applications benchmarking.On the other hand, in unit testing, the facilities being measured are clearlyde�ned, and the importance given to each facility in the benchmarking is ex-plicitly re
ected in the number of uses of that facility included in the set ofbenchmarks. This clarity about what is being benchmarked is the main bene�tof unit testing.The assumption which makes this approach possible is that there is a �xedset of features and facilities to be tested, with �xed relative importance.Such a set of benchmarks for constraint programming systems would bevery useful. Unfortunately it is premature to ask for one at this time, becausethere is no �xed set of features and facilities, and certainly no understanding oftheir relative importance. It would, arguably, be possible to test �nite domainconstraint solvers in the di�erent systems, if the �nite domain technology hadreached the level of maturity where a consensus on such a �xed prioritised setof features and facilities had been reached. This was the assumption underlyingthe benchmarking exercise of Fernandez and Hill.However, their own benchmarking exercise explored features that were not,and are still not, standardised across the di�erent �nite domain solvers. Oneexample, explicitly acknowledged by Fernandez and Hill, was rei�ed constraints.Another example, which was not explicit, was an array multiplication constraint,variants of which were available in some of the systems at the time the bench-marking was carried out. This constraint would have strongly in
uenced theperformance of the di�erent systems on the magic sequences application bench-mark.5.3 The FutureBenchmarking constraint programming systems presupposes some standardisa-tion in this area. Luckily the �eld is still a fertile area of research. As a conse-quence of this fertility standardisation is impractical. Moreover the attempt toimpose standards at this point would be counter-productive.32



The possibility of de�ning a standard for �nite domain constraint program-ming appears to be more realistic. Such a standard would need to �nesse thenecessary run-time interfaces between �nite domain solvers and other solversthat are not yet standardised.However, even within the area of �nite domain constraint solving, there is amajor research initiative continuing. The emphasis now is on global constraints.As yet there is no claim for a �xed and �nal set of such global constraints.Rather, researchers are seeking an implementation infrastructure 
exible ande�cient enough to support the de�nition and implementation of future globalconstraints.In fact the focus of our work on ECLiPSe is on hybrid algorithms for LargeScale Combinatorial Optimisation problems. We recognise the need for bench-mark comparisons between systems. However because of the pace of researchin this exciting and fast-moving area, benchmarking can only have secondaryimportance. When comparing CLP languages and systems, functionality, 
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