
Constraint ProgrammingMark WallaceContact address: Mark Wallace, IC-Parc,William Penney Laboratory, Imperial College, LONDON SW7 2AZ.email: mgw@doc.ic.ac.ukSeptember 19951 IntroductionConstraint programming is a paradigm that is tailored to hard search prob-lems. To date the main application areas are those of planning, scheduling,timetabling, routing, placement, investment, con�guration, design and insur-ance. Constraint programming incorporates techniques from mathematics, ar-ti�cial intelligence and operations research, and it o�ers signi�cant advantagesin these areas since it supports fast program development, economic programmaintenance, and e�cient runtime performance. The direct representation ofthe problem, in terms of constraints, results in short, simple programs that canbe easily adapted to changing requirements. The integration of these techniquesinto a coherent high-level language enables the programmer to concentrate onchoosing the best combination for the problem at hand. Because programs arequick to develop and to modify, it is possible to experiment with ways of solvinga problem until the best and fastest program has been found. Moreover morecomplex problems can be tackled without the programming task becoming un-manageable. A tutorial introduction to constraint logic programming can befound in (Fr�uhwirth et.al, 1992).Constraint logic programming (CLP) combines logic, which is used to specifya set of possibilities explored via a very simple inbuilt search method, withconstraints, which are used to minimise the search by eliminating impossiblealternatives in advance. The programmer can state the factors which must betaken into account in any solution - the constraints -, state the possibilities -the logic program -, and use the system to combine reasoning and search. Theconstraints are used to restrict and guide search.The whole �eld of software research and development has one aim, viz. tooptimise the task of specifying and writing and maintaining correct, functioningprograms. Three important factors to be optimised are:� correctness of programs 1

� clarity and brevity of programs� e�ciency of programsConstraint programming is, perhaps, unique in making a direct contribution inall three areas. This is why it is such an exciting paradigm.2 HistoryIn 1963 Sutherland introduced the Sketchpad system, a constraint languagefor graphical interaction. Other early constraint programming languages wereFikes' Ref-Arf, Lauriere's Alice, Sussmann's CONSTRAINTS and Borning'sThingLab. These languages already o�ered the most important features of con-straint programming: declarative problem modelling and e�cient constraint en-forcement; propagation of the e�ects of decisions;
exible and intelligent searchfor feasible solutions. Each of these three features has been the study of exten-sive research over a long period.The current
owering of constraint programming owes itself to a generationof languages in which declarative modelling, constraint propagation and explicitsearch control are supported in a coherent architecture that makes them easyto understand, combine and apply.2.1 Declarative Modelling and E�cient Enforcement2.1.1 Algorithm = Logic + ControlDeclarative programming has a long history yielding languages such as LISP,Prolog and other purer functional and logic programming languages, and ofcourse it underpinned the introduction of relational databases and producedSQL which, for all its faults, is today's most commercially successful declarativeprogramming language.There has been a recognition that declarative programming has problemswith performance and scaleability. One consequence has been a swing back totraditional procedural programming. However, constraint programming, whilstrecognising that e�ciency is an important issue, retains the underlying declara-tive approach. The idea is not to abandon declarative programming (that wouldamount to throwing away the baby with the bathwater), but to augment it withexplicit facilities to control evaluation. Hence Kowalski's maxim that Algorithm= Logic + Control.When constraints are used in an application, both the issues of modelling andperformance are considered. An early use of constraints was in the modellingof electrical circuits. Such circuits involve a variety of constraints from simpleequations (the current at any two points in a sequential circuit is the same), tolinear equations (when a circuit divides, the current
owing in is the sum of the2

currents
owing out), to quadratic equations (voltage equals current multipliedby resistance) and so on. A constraint solver that can handle all the constraintson a circuit would be prohibitively ine�cient. Consequently Sussmann soughtto model circuits using only a simple class of constraints. He showed thatthe lack of expressive power of simple constraints can be compensated for byusing multiple orthogonal models of the circuit. The di�erent constraints of thedi�erent models interact to produce more information than could be extractedfrom the models independently.2.1.2 Constraints for Multi-Directional ProgrammingIn many early constraint systems, constraints were little more than functionswhich were evaluated in a data-driven way. The logic programming paradigm,however, suggested that programs should be runnable \in both directions". Inaddition to evaluating a function f(X) yielding the result Y , it must be possibleto solve the equation f(X) = Y for a given value Y but unknown arguments X .Naturally when a function is evaluated \backwards" - i.e. from its resultproducing its input - it is no longer a function! Attempts to integrate functionaland logic programming motivated much research on equation solving systems,and in the end spawned constraint logic programming.It was recognised that constraint solving lies at the heart of logic program-ming, in its built-in uni�cation. Researchers began to replace (syntactic) uni�-cation with other equation solvers. An important example of this was Booleanuni�cation: this is a solver for equations between Boolean expressions, whosepossible values are only true or false. This development has now found a com-mercially successful application for design and veri�cation of digital circuits.Moreover Boolean uni�cation is also being applied to the design and veri�ca-tion of real-time control software.2.1.3 Constraint Logic programmingSoon an even more radical step was taken when it was recognised that uni�-cation could be replaced by any constraint system and solver, provided certainconditions were satis�ed. There was no need for a uni�cation algorithm (whichreduces an equation between expressions to an equivalent set of variable assign-ments). Indeed the constraints need not be equations at all.The resulting scheme (Ja�ar and Lassez, 1987) called the Constraint LogicProgramming Scheme, and written CLP(X), was illustrated by choosing math-ematical equations and inequations as the constraint system, and the Simplexalgorithm as the solver. This instance of CLP(X) is called CLP(R), and isdescribed in a later section.It has inspired a whole research area, exploring the interface between logicand mathematical programming. One resulting constraint programming lan-guage is 2LP (Linear Programming and Logic Programming) which embeds3

mixed integer programming in a constraint programming system. Another isNewton, which uses interval constraints to do solve hard mathematical problemsinvolving polynomials.Whilst constraint logic programming o�ers a powerful modelling language,new constraint propagation algorithms and a clean execution model, mathe-matical programming o�ers some sophisticated algorithms, highly optimisedimplementations and a wealth of industrial application know-how.The next step beyond the standard constraint logic programming schemewas to include more than one constraint system and solver in a single system.Even CLP(R) was, in fact, such a combination including syntactic uni�cation,Gaussian elimination and the Simplex. CLP systems nowadays include a varietyof solvers which exchange information through shared variables. For numericvariables, in addition to the above solvers, there may also be a Groebner baserewriting system for handling polynomial equations, a very powerful CAD solverand a weaker but very useful constraint handler for reasoning on numeric in-tervals. The latter three system are typically useful for non-linear constraints,containing expressions in which variables are multiplied together.2.2 Propagation2.2.1 Early ApplicationsConstraint propagation was used in 1972 for scene labelling applications, andhas produced a long line of local consistency algorithms, recently surveyed in(Tsang, 1993).Constraint propagation o�ers a natural way for a system to spontaneouslyproduce the consequences of a decision. (Propagation is de�ned in the dictionaryas \dissemination, or di�usion of statements, beliefs, practices"). Propagationis the most important form of immediate feedback for a decision-maker.Propagation works very e�ectively in interactive decision support tools. Inmany applications constraint programming is used in conjunction with othersoftware tools, taking their results as input, performing propagation, and out-putting the consequences. Typically feedback from the propagation tool is givenin the form of a spreadsheet interface.Many early applications of constraint programmingwere related to graphics:geometric layout, user interface toolkits, graphical simulations, and graphicaleditors. Constraint propagation has played a key role in all these applications,with the result that control over the propagation has been thoroughly investi-gated: leading to a current generation of very high-performance constraint-basedgraphics application.2.2.2 Constraint Satisfaction ProblemsOn the other hand constraint propagation has been the core algorithm usedin solving a large class of problems termed constraint satisfaction problems4

(CSP's). Standard CSP's have a �xed �nite number of problem variables, andeach variable has a �nite set of possible values it can take (called its domain).The constraints between the variables can always be expressed as a set of ad-missible combinations of values. These constraints can be directly representedas relations in a relational database, in which case each admissible combinationis a tuple of the relation. CSP's have inspired a fascinating variety of researchbecause despite their simplicity they can be used to express - in a very naturalway - real, di�cult, problems1.One line of research has focussed on constraint propagation, showing how topropagate more and more information (forward checking, arc-consistency, path-consistency, k-consistency, relational consistency and so on). For example arc-consistency is achieved by reducing the domains of the problem variables untilthe remaining values are all supported; a value is supported if every constrainton the variable includes a tuple in which the variable takes this value and theother variables all take supported values.Even if none of the arc-consistent domains are empty, this does not implythe CSP has a solution! To �nd a solution it is still necessary to try out speci�cvalues for the problem variables. Only if all the variables can be assigned aspeci�c value, such that they all support each other, has a solution been found.One algorithm for solving CSP's, which has proved useful in practice, is to selecta value for each variable in turn, but, after making each selection, to re-establisharc-consistency. Thus search is interleaved with constraint propagation. In thisway the domains of the remaining values are reduced further and further untileither one becomes empty, in which case some previous choice must be changed,or else the remaining domains contain only one value, in which case the problemis solved.Another line of research has investigated the global shape of the problem.This shape can be viewed as a graph, where each variable is a node and eachconstraint an edge (or hyper-edge) in the graph. Tree-structured problems arerelatively easy to solve, but research has also revealed a variety of ways ofdealing with more awkward structures, by breaking down a problem into easiersubproblems, whose results can be combined into a solution of the originalproblem. Picturesque names have been invented for these techniques such as\perfect relaxation" and \hinge decomposition".More recently researchers have begun to explore the structure of the indi-vidual constraints. If the constraints belong to certain classes, propagation canbe much more e�cient - or it can even be used to �nd globally consistent so-lutions in polynomial time. Indeed there are quite nice su�cient conditions todistinguish between NP-complete problem classes and problem classes solvablewith known polynomial algorithms.1The class of CSP problems is NP complete.5

2.2.3 Constraint Propagation in Logic programmingThe practical bene�ts of constraint propagation really began to emerge whenit was embedded in a programming language (Van Hentenryck, 1989). Again itwas logic programming that was �rst used as a host language, producing impres-sive results �rst on some di�cult puzzles and then on industrial problems suchas scheduling, warehouse location cutting stock and so on (Dincbas et.al., 1988).The embedding suggested new kinds of propagation, new ways of interleavingpropagation and search and new ways of varying the propagation according tothe particular features of the problem at hand.These advantages were very clearly illustrated when, using lessons learnedfrom the Operations Research community, constraint logic programming be-gan to outperform specialised algorithms on a variety of benchmark problems.However the main advantage of constraint programming is not the good perfor-mance that can be obtained on benchmarks, but its
exibility in modelling ande�ciently solving complex problems.A constraint program for an application such as Vehicle Scheduling, or BinPacking, not only admits the standard constraints typically associated with thatclass of problems, but it also admits other side-constraints which cause severeheadaches for Operations Research approaches.Currently several companies are o�ering constraint programming tools andconstraint programming solutions for complex industrial applications. As hostprogramming language, not only logic programming but also LISP and C++are o�ered.2.3 SearchThe topic of search has been at the heart of AI since GPS. Some fundamentalsearch algorithms were generate and test, branch and bound, the A* algorithm,iterative deepening, and tree search guided by the global problem structure, orby information elicited during search, or by intelligent backtracking.The contribution of constraint programming is to allow the end user tocontrol the search, combining generic techniques and problem-speci�c heuristics.A nice illustration of this is the n-queens problems: how to place n queens on annXn chess board, so that no queens can take each other. For n = 8, depth-�rstgenerate-and-test with backtracking is quite su�cient, �nding a solution in afew seconds. However, when n = 16, it is necessary to interleave constraintpropagation with the search so as to obtain a solution quickly. However whenn = 32 it is necessary to add more intelligence to the search algorithm. A verygeneral technique is to choose as the next variable to label the one with thesmallest domain - i.e. the smallest number of possible values. This is called�rst-fail. It is particularly e�ective in conjunction with constraint propagation,which reduces the size of the domains of the unlabelled variables (as describedfor arc-consistency above), For n queens, the �rst-fail technique works very well,6

yielding a solution within a second. Unfortunately even �rst-fail doesn't scaleup beyond n = 70. However there is a problem-speci�c heuristic which startsby placing queens in the middle of the board, and then moving outwards. Withthe combination of depth-�rst search, interleaved with constraint propagation,using the �rst-fail ordering for choosing which queen to place next, and placingqueens in the centre of the board �rst, the 70-queens problem is solved withina second, and the algorithm scales up easily to 200 queens2.3 Programming with a Constraint Store3.1 Primitive ConstraintsThe traditional model of a computer store admits only two possible states for avariable: assigned or unassigned. Constraint programming uses a generalisationof this model. A so-called constraint store can hold partial information about avariable, expressed as constraints on the variable. In this model, an unassignedvariable is an unconstrained variable. An assigned variable is maximally con-strained: no further non-redundant constraints can be imposed on the variable,without introducing an inconsistency.Primitive constraints are the constraints that can be held in the constraintstore. The simplest constraint store is the ordinary single-assignment store usedin functional programming. In our terms it is a constraint store in which allconstraints have the form V ariable = V alue.The �rst generalisation is the introduction of the logical variable. This allowsinformation of the form V ariable = Term to be stored, where Term is any termin �rst-order logic. For example it is possible to store X = f(Y). The samerepresentation can be used to store partial information aboutX. Thus if nothingis known about the argument of f we can store X = f(). This is the modelused in logic programming, and in particular by Prolog.The storage model used by logic programming has a weakness, however.This is best illustrated by a simple example. The equation X � 3 = Y + 5 isrejected because logic programming does not associate any meaning with � or+ in such an equation.The extension of logic programming to store equations involving mathemat-ical functions was an important breakthrough. Equations involving mathemat-ical functions are passed to the constraint store, and checked by a specialisedsolver. In fact not only (linear) equations but also inequations can be checkedfor consistency by standard mathematical techniques. It is necessary, each timea new equation or inequation is encountered, to check it against the completeset of equations encoutered so far.2Solutions for n queens can be generated by a deterministic algorithm, however this prob-lem is useful for providing a simple and illuminating example of techniques which also pay o�where there are no such alternative algorithms!7

Linear equations and inequations are examples of primitive constraints. Thuswe have an example of a constraint store. Further constraint stores can bebuilt for di�erent classes of primitive constraints, by designing constraint solversspeci�cally for those classes of constraints.We use the term storage model, rather than data model, because the facilityto store constraints is independent of the choice of data model - object-oriented,temporal etc. On the other hand the term storage model as used here does notrefer to any physical representation of the stored information.De�nition A constraint store is a storage model which admits primitiveconstraints of a speci�c class. Each new primitive constraint that is added tothe store is automatically checked for consistency with the currently stored con-straints.This de�nition of a constraint store speci�es an equivalent operation to writ-ing to a traditional store. However no equivalent to the read statement is spec-i�ed. There are two important facilites useful for extracting information from aconstraint store.Firstly it is useful to retrieve all those constraints that involve a given vari-able, or set of variables. For example if the constraint store held three con-straints X � Z; Y � X;W � Z the constraints involving X would be Y � Xand X � Z. However retrieving only constraints explicitly involving a variablemay not give a full picture of the entailed constraints on the variable. For exam-ple the store X � Y; Y � Z entails X � Z. The mechanism necessary to returnall the constraints and entailed constraints on a given variable or set of variablesis termed projection. A very useful property of a class of primitive constraintsis the property that the projection of a set of primitive constraints on a givenvariable, or set of variables, is also expressible as a set of primitive constraints.If the primitive constraints have this property it is possible, for example, todrop a variable from the constraint store when it is no longer relevant. This isthe equivalent to reclaiming the store associated with a variable in a traditionalprogramming language when the variable passes out of scope.Secondly it is useful to retrieve particular kinds of entailed constraints froma constraint store. For example it is very useful to know when a constraint storeentails that a particular variable has a �xed value. For example the constraintstore X � Y; Y � 3; 3 � X, entails that both X and Y have the value 3.3.2 CLP(R)The constraint logic programming scheme, written CLP(X), is a generic exten-sion of logic programming to compute over any given constraint store. Logicprogramming over a constraint store has all the advantages of traditional logicprogramming, plus many further advantages for high-level modelling and ef-�cient evaluation. If the constraint store holds primitive constraints from theclassX, logic programming over this constraint store is termed CLP (X). In thissection we shall use a particular class of primitive constraints, linear equations8

and inequations, termed R, to illustrate the scheme. We shall use an examplefrom (Colmerauer, 90) to illustrate how it works.Given the de�nition of a meal as consisting of an appetiser, amain meal and a dessert, and given a database of foods and theircalori�c values, we wish to construct light meals i.e. meals whosetotal calori�c value does not exceed 10.A CLP (R) program for solving this problem is shown in �gure 3.2.
lightmeal(A,M,D) :-

 I>0, J>0, K>0,

 I+J+K <= 10,

 appetiser(A,I),

 main(M,J),

 dessert(D,K).

main(M,I) :-

 meat(M,I).

main(M,I) :-

 fish(M,I).

appetiser(radishes,1).

appetiser(pasta,6).

meat(beef,5).

meat(pork,7).

fish(sole,2).

fish(tuna,4).

dessert(fruit,2).

dessert(icecream,6).Figure 1: The Lightmeal Program in CLP (R)A CLP (R) program is syntactically a collection of clauses which are eitherrules or facts. Rules are as in logic programming, with the addition that theycan include constraints, such as I + J +K � 10, in their bodies.The intermediate results of the execution of this program will be descibed ascomputation states. Each such state comprises two components, the constraintstore, and the remaining goals to be solved. We shall represent such a state asStore @ Goals. CLP (R) programs are executed by reducing the goals usingthe program clauses. Consider the query lightmeal(X,Y,Z).which asks for anyway of putting together a light meal. The initial state has an empty constraintstore and one goal: @ lightmeal(X,Y,Z).This goal is reduced using the clause whose head matches the goal. Thegoal is then replaced by the body of the clause, adding any constraints to the9

constraint store3:X=A,Y=M,Z=D, I+J+K =< 10, I>=0, J>=0, K>=0 @appetiser(A,I), main(M,J), dessert(D,K)The execution continues, choosing a matching clause for each goal and usingit to reduce the goal. Variables which neither appear in the original goal, norany of the currently remaining goals are projected out, as described above.A successful derivation is a sequence of such steps that reduces all the goalswithout ever meeting an inconsistency on adding constraints to the store. Anexample is:X=radishes, Y=M, Z=D, 1+J+K=<10, J>=0, K>=0 @main(M,J), dessert(D,K)X=radishes, Y=M, Z=D, 1+J+K=<10, J>=0, K>=0 @meat(M,J), dessert(D,K)X=radishes, Y=beef, Z=D, 1+5+K=<10, K>=0 @dessert(D,K)X=radishes, Y=beef, Z=fruit @Note that at the last step the constraint 1 + 5 + 2 =< 10 is added to thestore, but it is immediately projected out.Next we give an example of a failed derivation. The initial goal is the sameas before, but this time pasta is chosen as an appetiser instead of radishes:X=A,Y=M,Z=D, I+J+K =< 10, I>=0, J>=0, K>=0 @appetiser(A,I), main(M,J), dessert(D,K)X=pasta, Y=M, Z=D, 6+J+K=<10, J>=0, K>=0 @main(M,J), dessert(D,K)X=pasta, Y=M, Z=D, 6+J+K=<10, J>=0, K>=0 @meat(M,J), dessert(D,K)At the next step whichever clause is used to reduce the goal meat(M,J), aninconsistent constraint is encountered. For example choosing beef requires theconstraint J = 5 to be added to the store, but this is inconsistent with the twoconstraints 6 + J +K � 10 and K � 0.When the attempt to add a constraint to the store fails, due to inconsis-tency, a CLP (X) program abandons the current branch of the search tree and3Strictly all variables in the clause are renamed, but we omit this detail for simplicity.10

tries another choice. In sequential implementations this is usually achieved bybacktracking to some previous choice of clause to match with a goal. Howeverthere are or-parallel implementations where several branches are explored at thesame time, and a failing branch is simply given up, allowing the newly availableprocessor to be assigned to another branch.4 Constraint Propagation4.1 Propagating ChangesA key innovation behind constraint programming is constraint propagation.Propagation is a generalisation of data-driven computation. Consider the con-straint x = y + 1, where x and y are variables. In a constraint program, anyassignment to the variable y (eg y = 5) causes an assignment to x (x = 6). More-over the very same constraint also works in the other direction: any assignmentto x (eg x = 3) causes an assignment to y (y = 2).In a graphical application, constraint propagation can be used to maintainconstraints between graphical objects when they are moved. For example if oneobject is constrained to appear on top of another object, and the end-user thenmoves one of the objects sideways, the other object will move with it as a resultof constraint propagation.In general each object may be involved in many constraints. Consequentlythe assignment of a new position to a given object as a result of propagation, maypropagate further new assignments to other objects, which may cause furtherpropagation in their turn. If each constraint between two object is represented asan edge in a graph, the propagation spreads through the connected componentsof the graph.When a particular object is assigned a new position, and the change is prop-agated from the object to other objects, there is a causal direction. In this casewe can assign a direction with each edge of the (connected component of) thegraph. As long as the graph is free of cycles, the propagation behaviour is guar-anteed to terminate, and produce the same �nal state irrespective of the orderin which constraints are propagated. E�cient algorithms, such as the DeltaBluealgorithm, have been developed for propagation of graphical constraints. Theywork by �rstly generating the directed graph whenever an object is moved, andthen compiling this directed graph into highly e�cient event-driven code.However if the graph contains cycles both these issues arise. Consider, asa simple example, the three constraints C1, C2 and C3 speci�ed thus - C1:x = y + 1, C2: y = z + 1 and C3: z = x+ 1.Assigning y = 3 may start a non-terminating sequence of propagations cy-cling through the constraints C1 (which yields x = 4), then C3 (which yieldsz = 5), then C2 (which yields y = 6) and then C1 again and so on. Alternativelythe same assignment y = 3 could propagate through C2 yielding z = 2, thence11

Y

ZX

X=Y+1

C1:

Y=Z+1

C2:

An Example Constraint Graph

C3: Z=X+1

x = 1 and y = 0 via C3 and C1. In this case the propagation also goes on forever, but this time the values of the variables decrease on each cycle! Thirdlythe same assignment y = 3 could yield z = 5 via C1 and C3, and z = 2 via C2!In this example the original constraints are, logically, inconsistent. Howeversimilar behaviour can occur when the constraints are consistent. In the followingexample there are constraints on three variables. C4: x+ y = z, C5: x� y = z.Suppose the initial (consistent) assignments are x = 2; y = 0; z = 2. Now anew assignment is made to z: z = 3. If constraint propagation on C4 yieldsy = 1, then propagation on C5 yields x = 4. Now propagation on C4 and C5can continue for ever, alternately updating y and x.Propagation algorithms have been developed which can deal with cycles, butif the class of admissible constraints is too general, it is not possible to guaranteethat propagation is con
uent and terminating.4.2 Active Constraints4.2.1 Propagating New InformationThe changes propagated by label propagation, as discussed in the previous sec-tion, are variable assignments as held in a traditional program store. Howeverin this section we explore the application of constraint propagation to con-straint stores, which maintain partial information about the program variablesexpressed as primitive constraints. Using a constraint store, it is possible todevelop a quite di�erent model of computation in which the store is never de-structively changed by propagation, but only augmented. One great advantageof this combination is that con
uence properties are easy to establish, and con-sequently there is little need for the programmer or applications designer toknow in what order the propagation steps take place.12

4.2.2 Constraint AgentsWe have encountered two very di�erent kinds of constraints. Primitive con-straints are held in a constraint store, and tested for consistency by a constraintsolver. On the other hand propagation constraints actively propagate new infor-mation, and they operate independently of each other. Propagation constraintsare more commonly called constraint agents. The behaviour of a constraintagent is to propagate information to the underlying store. In case the under-lying store is a constraint store, the information propagated is expressed asprimitive constraints.Constraint agents are processes that involve a �xed set of variables. Duringtheir lifetime they alternate between suspended and waking states. They arewoken from suspension when an extra primitive constraint on one or more oftheir variables is recorded. Sometimes, after checking certain conditions, thewoken agent simply suspends again. Otherwise the agent exhibits some activebehaviour which may result in new agents being spawned, new primitive con-straints being added to the store, or an inconsistency being detected (which isequivalent to an inconsistent constraint being added to the store). Subsequentlythe agent either suspends again, or exits, according to its speci�cation.4.2.3 Some Built-in Constraint AgentsThe simplest constraint agent is one which adds a primitive constraint to theconstraint store and then exits. The most fundamental example is assigning avalue to a variable, eg. X=3. This agent adds X = 3 to the constraint store andexits.The next two examples are disequality constraints, which will be illustratedin the next section. The �rst disequality constraint is invoked by the syntaxX~=Y. This agent does not do anything until both X and Y have a �xed value.Only when the primitive constraints in the store entail X = valx and Y =valy for some unique values valx and valy , does the agent wake up. Then itsbehaviour is to check that valx is di�erent from valy. In case they are the same,an inconsistency has been detected.If the constraint store holds �nite domain constraints, then the more pow-erful constraint agent invoked by the syntax X ## Y can be used. This agentwakes up as soon as either X or Y has a �xed value. It then removes this valuefrom the �nite domain of the other variable and exits.4.3 Map Colouring4.3.1 The Map Colouring ProgramAs a toy example let us write a program to colour a map so that no two neigh-bouring countries have the same colour. In constraint logic programs, variablesstart with a capital letter (eg A), and constants with a small letter (eg red).13

a bcdFigure 2: A Simple Map to ColourA generic logic program, in Prolog syntax, that tries �nd possible ways ofcolouring this map with only three colours (red, green and blue) is in �gure 3.coloured(A,B,C,D) :-ne(A,B), ne(A,C), ne(A,D), ne(B,C), ne(B,D), ne(C,D),chosen(A), chosen(B), chosen(C), chosen(D).chosen(red).chosen(green).chosen(blue).Figure 3: A Generic Logic Program for Map ColouringIn this program the (as yet unde�ned) predicate ne constrains its argumentsto take di�erent values. We will show how di�erent de�nitions of ne cause theprogram to behave in di�erent ways.The predicate chosen can be satis�ed in three ways. At runtime the systemtries each alternative in turn. If a failure occurs later in the computation, thenthe alternatives are tried in a last-in �rst-out basis.The �rst de�nition of ne uses the original disequality of Prolog:ne(X,Y) :- X\=Y.If invoked when either of its arguments are uninstantiated variables, X\=Y simplyfails. To avoid this incorrect behaviour it is possible to place the constraintsafter all the choices. In this case the program correctly detects that there is nopossible colouring after checking all 81 alternatives.A more e�cient Prolog program can be written by interleaving choices andconstraints, but this requires the programmer to think in terms of the opera-tional behaviour of the program on this particular map. The same e�ect can beachieved much more cleanly by using the above program with a new de�nition:ne(X,Y) :- X~=Y.This disequality predicate delays until both arguments have a �xed value. Itthen immediately wakes up and fails if both values are the same. If the valuesare di�erent it succeeds. This program detects that our map cannot be coloured14

with three colours after trying only 33 alternatives.Another disequality constraint is available in CLP, which assumes its argu-ments have a �nite set of possible values. We can use it by de�ningne(X,Y) :- X##Y.This disequality delays until one of its arguments has a �xed value. This valueis then removed from the set of possible values for the other. To obtain theadvantage of X##Y it is necessary to declare the set of possible values for eachvariable, by writing [A,B,C,D]::[red,green,blue].coloured(A,B,C,D) :-[A,B,C,D]::[red,green,blue],ne(A,B), ne(A,C), ne(A,D), ne(B,C), ne(B,D), ne(C,D),chosen(A), chosen(B), chosen(C), chosen(D).ne(X,Y) :- X##Y.chosen(red). chosen(green). chosen(blue).Figure 4: A Finite Domain CLP Program for Map ColouringThis program detects that the map cannot be coloured after trying only 6alternatives.Although this example is so trivial that it is quite simple to solve it inProlog, the CLP program scales up to complex maps and graphs in a way thatis impossible using a programming language without constraints.4.4 Building Constraint Agents4.4.1 GuardsConstraint agents can be built by directly de�ning their waking behaviour usingthe notion of a \guard". As an example we take a resource constraint on twotasks, t1 with duration d1 and t2 with duration d2 forcing them not to overlap.The variable ST1 denotes the start time of t1 and ST2 denotes the start timeof t2. Suppose we wish to de�ne the agent constraint agent(ST1 ; ST2) thus: ifthe domain constraints on the start time of t1 and t2 prevent t1 from startingafter t2 has �nished, constrain it to �nish before t2 has started.This behaviour can be expressed as follows:agent(ST_1,ST_2) <==> % agent name and parametersST_1 #< ST_2+d2 | % guardST_1+d1 #<= ST2 % body15

The guard will keep the agent suspended until the domains of ST1 and ST2are reduced to the point that the inequation ST1 � ST2 + d2 holds for everypossible value of ST1 and ST2. When this is true, it wakes up and executes thebody, invoking a new agent ST_1+d1 #<= ST2. Of course this guard may neverbecome true, in case task t2 runs before task t1. To cope with this alternativewe add another guard and body, yielding the �nal de�nition:agent(ST_1,ST_2) <==> % agent name and parametersST_1 #< ST_2+d2 | % guard1ST_1+d1 #<= ST2 ; % body1ST_2 #< ST_1+d2 | % guard2ST_2+d2 #<= ST1 % body2This agent wakes up as soon as either of the guards are satis�ed, and executesthe relevant body. As soon as one guard is satis�ed, the other guard and bodyare discarded.4.4.2 Agents De�ned by Speci�c CodesConstraint programming systems implement their built-in agents using speci�ccodes which wake up, for example, whenever the upper or lower bound of thedomain constraint on a given variable is altered.Using speci�c codes it is also possible to build complex constraints and con-straint behaviours to obtain good performance on large complex problems. In-deed this is the approach that has been very successfully applied on job-shopscheduling benchmarks and incorporated into commercial constraint program-ming tools such as CHIP and ILOG SCHEDULE.5 Implementation and Applications5.1 Constraints Embedded in A Host Programming Lan-guage5.1.1 ControlA constraint programming language is the result of embedding constraints intoa host programming language. The host program sends new constraints tothe constraint handler, under program control. The information that can bereturned to the host program depends on how tightly the constraints are em-bedded in the host language. Most basically the constraint handler can reportconsistency or inconsistency. Given a closer embedding it can also return vari-able bindings. Most closely it might allow the host programming language tobe extended with guards and other annotations, so as to allow host programstatements to be suspended and woken up like other constraint agents.We can diagram the behaviour of a constraint program as follows:16

Host Program

Constraints

Host ProgramFigure 5: Control in Constraint ProgrammingThe diagram shows three successive phases occurring during program exe-cution.In the �rst phase the host program is executing under explicit program con-trol. The host program performs such tasks as input/output, event handling,and search. It may execute for some time before �nally sending a constraint tothe handler. The diagram illustrates the host program performing search overthree branches. For the purposes of the diagram, it does not matter how thesebranches are explored (sequentially, or in parallel) and how they are expressed(by recursion over a set of alternatives, or by non-deterministic choice and back-tracking). The succeeding phases of the execution are only shown for the secondbranch.In the second phase the constraint handler is executing, and its control isconstraint-driven. The constraint handler only becomes active when it receives anew constraint from the host program. The behaviour of the constraint handler(represented in the diagram as a network of thick lines) is de�ned by a set ofatomic behaviours (each of which is represented by a single arc in the network).An atomic behaviour is the posting of a new constraint to the store, or a singlepropagation step performed by a constraint agent, or the invocation of the bodyin a guarded constraint. When no more constraint propagation is possible,the constraint handler returns to the host program with success, and the hostprogram resumes control, as illustrated in the third phase of the above diagram.5.1.2 ConcurrencyThe challenge for embedding constraint handling in a host programming lan-guage is to deal with constraint agents acting concurrently. Assuming the pro-17

grammer has little or no control over the waking and resuspending of constraintagents, the constraint programming framework must ensure that the �nal resultof constraint propagation, before the host program resumes control, is indepen-dent of the order in which the agents wake up and post new basic constraintsto the constraint store. The concurrent constraints framework (Saraswat, 1993)enables this condition to be met for large classes of practically useful constraintagents.5.1.3 Logic Programming as a Host LanguageConstraints �t hand in glove with declarative host programming languages.Three of the most in
uential constraint programming languages were embedthem in Prolog, CLP(R) and CHIP. Whilst all three system are still developingfurther, there are many new constraint programming systems emerging includ-ing ECLiPSe, Oz, 2LP, and Newton.From a theoretical point of view the extension of logic programming to Con-straint Logic Programming (CLP) has been very fruitful. A good survey is(Ja�ar and Maher, 1994). For example ALPS - a form of logic programmingwith guards - was an extremely in
uential language, becoming the forerunner ofthe Concurrent Constraints paradigm (Saraswat, 1993). Concurrent constraintprogramming has in turn provided a very clean model of concurrent and multi-agent computing. Constraints can also be modelled in terms of informationsystems, which allows us to reason about the behaviour of constraint programsat an abstract level.5.1.4 Libraries for Embedded Constraint ProgrammingThe constraint programming technology has matured to the point where it ispossible to isolate some essential features and o�er them as libraries or embeddedcleanly in general purpose host programming languages.For example isolating constraints as libraries has made possible the devel-opment of sophisticated constraint-based scheduling systems, see (Zweben andFox, 1994). More generally there are commercially available libraries supportingconstraint handling such as the CHIP and ILOG C++ constraint libraries.5.2 Applications of Constraint ProgrammingBased on a few constraint programming languages which support the storageof basic constraints and the waking and resuspension of constraint agents, thetechnology has achieved a number of remarkable successes on benchmarks and,more importantly, real industrial applications. A recent survey of practicalapplications of constraint programming (Wallace, 1996) estimated the annualrevenue from constraint technology at around 100 million dollars per annum.18

One early application, developed in 1990, was to container port planning inHong Kong. The application was built by ICL, using �nite domain constraints.Another early user was Siemens, who have applied Boolean constraints to prob-lems of circuit design and integration. Both Siemens and Xerox are now applyingconstraints to real time control problems.Constraints are used for graphical interface design and implementation atObject Technology International. Constraint-based scheduling has made a bigimpact in the USA, with applications in heavy industry, NASA and the Army.The application developers are typically small companies such as Recom, RedPepper and the Kestrel Institute.One company, ILOG, has sold constraint technology both in the USA andEurope. ILOG also have applications in south east Asia. Its French rival,Cosytec, is perhaps the only company to make all its business from constrainttechnology and applications. (Cras, 1993) gives a survey of industrial constraintsolving tools.Areas where constraint programming has proven very successful includescheduling, rostering and transportation. Constraints are used for productionscheduling in the chemical industry, oil re�nery scheduling, factory schedulingin the aviation industry, mine planning and scheduling, steel plant scheduling,log cutting and transportation, vehicle packaging and loading, food transporta-tion scheduling, nuclear fuel transportation planning and scheduling, platformscheduling, airport gate allocation and stand planning, aircraft rescheduling,crew rostering and scheduling, nurse scheduling, personnel rostering, shift plan-ning, maintenance planning, timetabling, and even �nancial planning and in-vestment management.There is a regular conference on the Practical Applications of ConstraintTechnology, presented on http://www.demon.co.uk/ar/PACT97/index.html6 Current Developments6.1 Constraints in the Computing EnvironmentNaturally there is a great deal of useful research exploring ways of using con-straints in an object oriented programming environment, in databases, and onthe internet. The �eld of constraint databases, in particular, has thrown up agrowing community of researchers who are exploring the theoretical and prac-tical possibilities of storing constraints in databases, imposing constraints ondatabases, and retrieving constraints from databases. This work is starting tobe noticed in the �eld of geographical information systems. There is a growingneed for databases to handle space, in two and three dimensions, and time.Examples are environmental monitoring and protection, air tra�c control, andreasoning about motion in three dimensions. The constraint database technol-ogy appears to address these requirements.19

6.2 Mixed Initiative ProgrammingOne of the great bugbears of constraint programming is how to deal with over-constrained problems. As Jean-Francois Puget put it \What solution do youreturn when there are no solutions?". The traditional approach in mathematicalprogramming is to associate a penalty with each violated constraint, and seekthe solution which minimises the total penalties.A related approach is to decide between the di�erent constraints which onesare more important than which others. The constraint program then only en-forces a constraint if this does not cause a more important constraint to beviolated.The drawback is that it is not easy for the user to estimate the importance ofa constraint, and the solution produced by the software may well not be the bestsolution in the opinion of the end users of the system. Moreover this approachis a black box, and the end users receive no feedback about \nearby" solutions,which might prove better on the ground.Accordingly one current area of research is how to help the end user solveoverconstrained problems, and multi-criteria optimisation problems which havedi�erent, and possibly con
icting, optimisation criteria. The challenge is toallow the end-user to explore the solution space interactively, eliciting informa-tion about solutions, and potential solutions, which enables the user to choosethe very best solution for his or her purposes. This is called mixed initiativeprogramming.6.3 Interval ReasoningIntelligent software systems have often been highly specialised for symbolic com-putation, but weaker on numeric computation. This is one reason why thecombination of symbolic constraint solving and mathematical programming areproving to be so interesting both in theory and practice.One recalcitrant problem for numeric computation is the problem of numericinstability. Under certain, unlikely, circumstances, tiny rounding errors in thebasic mathematical routines can unexpectedly cause serious errors in the �nalresult. The di�culty is that these errors are hard to predict, and no practicalway has been found to predict them.A way to contain this instability is to reason on numeric intervals, insteadof numbers, ensuring that at each calculation the interval is rounded out so asto ensure the actual solution lies inside it. Unfortunately these intervals tendto grow too wide to be useful. Recently, however, using intervals as primitiveconstraints in a constraint programming framework some excellent results havebeen obtained for well-knownmathematical benchmarks. These results competewith the best mathematical programming approaches, in particular when theinput intervals are quite wide. 20

Intervals appear in a multitude of di�erent contexts as a way of approxi-mating values. In particular they are used in database indexing, in constraintpropagation, and for specifying uncertainty.The author predicts that interval constraints will play a crucial role in spatialand temporal databases and in the handling of uncertainty.6.4 Stochastic TechniquesOrganisations are increasingly able to capture an up-to-date picture of theirglobal resources, and they are seeking to optimise their use of these resources.However for large organisations this optimisation problem is unmanageable: noalgorithm could ever �nd the guaranteed best solution for the whole organisa-tion.Stochastic techniques are a way of exploring very large solution spaces and�nding good solutions even when it is only possible to visit a (vanishingly!) smallproportion of the solutions. Well-known techniques include simulated annealing,genetic algorithms and tabu search. A drawback is that for structured problems,where constraints impose complex dependencies between di�erent parts of thesolution, stochastic techniques are not able to enforce these constraints.Recently researchers have begun to explore ways of embedding constraintpropagation in stochastic algorithms, thus ensuring that the solutions visited bythe algorithm satisfy the problem constraints. To date such hybrid algorithmshave been rather loosely coupled. For example the stochastic technique onlyworks on a small subset of the problem variables, producing skeleton solutions.These are then
eshed out using constraint handling techniques, and the cost ofthe resulting full solution is calculated, and fed back to the stochastic algorithmwhich generates another skeleton solution.Tightly integrated algorithms combining techniques frommathematical pro-gramming, constraint programming and stochastic algorithms are now the visionof a growing research community. These algorithmsmay still not be the \goldenbullet" that cuts through all forms of complexity, but they would certainly rep-resent an important step in the right direction!ReferencesA. Colmerauer. An introduction to Prolog III. Communications of the ACM,33(7):69{90, July 1990.J.-Y. Cras. A Review of Industrial Constraint Solving Tools ISBN 1-898804-001, AI Intelligence, 1993.M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving large schedulingproblems in logic programming. In EURO-TIMS Joint International Con-ference on Operations Research and Management Science, Paris, July1988. 21

T. Fr�uhwirth, A. Herold, V. K�uchenho�, T. Le Provost, P. Lim, E. Monfroy,and M.Wallace. Constraint logic programming: An informal introduction.Technical Report ECRC-93-5, ECRC, 1993.J. Ja�ar and J.-L. Lassez. Constraint logic programming. In POPL'87: Pro-ceedings 14th ACM Symposium on Principles of Programming Languages,pages 111{119, Munich, January 1987. ACM.J. Ja�ar and M. Maher. Constraint Logic Programming: A Survey. Journalof Logic Programming, 19/20:503{581, 1994.V. A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-gramming Series. MIT Press, Cambridge, MA, 1989.M. G.Wallace. Practical applications of constraint programming.Constraints,1(1), 1996.M. Zweben and M.S. Fox, editors. Intelligent Scheduling. Morgan Kaufmann,1994.

22

