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Abstract

This paper describes how the university timetabling problem is ad-
dressed in the Laurea course Ingegneria dell’Informazione (Information
Engineering) for the University of Ferrara, Italy.

The university timetabling problem is modelled as a Constraint Opti-
misation Problem and addressed with ECLiPSe, one of the leading Con-
straint Logic Programming languages.

1 Introduction

A timetabling problem consists in defining a schedule for the meeting of students
and lecturers, such that a set of constraints is satisfied. The kernel of the
problem is fixed: in all universities constraints impose that a professor will not
teach two different lessons at the same time, that a room can only contain a
lesson at a time, that a group of students cannot attend two different lessons
at the same time. This problem has been addressed in many works in the
literature, with different techniques, including constraint programming [4, 18,
8, 16], local search [24, 14], or integer programming [26]. Nonetheless, due
to peculiar organization issues in each university, in every faculty a different
software tends to be developed [4].

Even though the mathematical formulation of the problem is clear and well
assessed, it addresses typically only one of the issues of the problem, namely the
generation of a timetable. Actually, the problem consists of a much wider prob-
lem, which is not well formalised, and includes interaction with the professors,
the head of the department, the other developers of timetabling for the other
faculties that might share courses, students, classrooms, and/or professors with
the current one.

In this paper, we report how the timetabling problem has been solved in
the course Ingegneria dell’Informazione (Information Engineering) in Ferrara
University. We define how the problem was defined in the Constraint Logic
Programming (CLP) [20] language ECLiPSe. The program was first used in
2004, and every year it was improved in order to address more issues. We do
not only provide the CLP model that solves the problem, but we also report
the practical problems that arise in the construction of the timetable, and how
they are addressed (sometimes satisfactorily, sometimes not) with CLP(FD).
We show strength and weakness of the present approach. We show how the
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data was represented in ECLiPSe, what are the phases to build a timetable,
starting from scratch and arriving to a final timetable, after interaction with
the various actors that will, in the end, use the timetable.

The rest of the paper is organised as follows. We first introduce some prelim-
inaries, then state the requirements of the timetable in our Laurea course. We
show how the data was organised in ECLiPSe in Section 4, and the constraint
model in Section 5. We give some evaluation of the work in Section 6, review
some of the related work in Section 7, and finally, we conclude.

2 Preliminaries

Definition 1 A Constraint Satisfaction Problem (CSP) is formally a tuple
(V,D,C) where V is a finite set of variables X1, . . . ,Xn ranging on domains
of objects of arbitrary type D1, . . . ,Dn. We call Di the domain of Xi. C is
a finite set of constraints on variables in V . A constraint c on variables Xi

and Xj, i.e., c(Xi,Xj), defines the subset of the Cartesian product of variable
domains Di × Dj of the consistent assignments of values to variables. A so-
lution to a CSP is an assignment of values to variables which satisfies all the
constraints. A constraint c on variables Xi, Xj is satisfied by a pair of values
vi, vj if (vi, vj) ∈ c(Xi,Xj).

In many real-life problems, solutions are not all equally good, but some are
preferable to others. One way to state which solutions are better is by means
of an objective function.

Definition 2 A Constraint Optimization Problem (COP) is a quadruple
(P, f, T,≤) such that P is a CSP, (T,≤) is a totally ordered set and f :
D1 × . . . × Dn 7→ T is a function that maps each assignment to a value. An
Optimal Solution is a feasible solution of P that maximizes the function f .

Constraint Logic Programming (CLP) [20] is a class of languages that em-
beds in Logic Programming the ability to solve constraints; in particular, CLP
on Finite Domains (CLP(FD)), is particularly well-suited for solving combinato-
rial problems. Many logic programming systems include libraries for CLP(FD),
e.g., CHIP [11], ECLiPSe [2], SICStus [1, 10], Oz [30].

3 User’s Requirements

Besides the usual requirements in timetabling (two lessons cannot share a room,
a professor cannot teach two lessons in parallel, students cannot attend two
different lessons at the same time), and the professor’s and student’s preferences,
that should be taken into account, we have some requirements given by how
the lessons are organised in Italy, plus more specific requirements given by the
coordinator of the Laurea Course.

University courses in Italy are of two types: a first degree (Laurea degree)
is obtained after three years, a second degree after two more years (Laurea
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Monday Tuesday Wednesday Thursday Friday
8.30 - 9.30 A B A A D
9.30 - 10.30 A B A A D
10.30 - 11.30 A B C B G
11.30 - 12.30 B C C B G
12.30 - 13.30 B C C D F

14 - 15 C F G D F
15 - 16 C F G G E
16 - 17 D F G G E
17 - 18 D E E F E
18 - 19 D E E F

Table 1: Pre-defined patterns for the timetabling

Magistrale or Laurea Specialistica). In Ferrara, the Laurea Course Ingegneria
dell’Informazione has four curricula: Automation, Electronics, Informatics, and
Telecommunications. Students have many obligatory courses in the first three
years, and some choices. After the first degree, they can continue with the second
degree. The second degree has some obligatory courses, plus many choices.
Students can continue with the Laurea Magistrale in a curriculum different from
the one they took in the first level. In such a case, they will have less choices:
they will have to choose the basic courses they did not take in the Laurea.
For example, if a student moves from Electronics to Informatics, he/she will
probably have not given some exams that are basic in computer science (like
Databases, or Operative Systems), but not in Electronics; so in the Laurea
Magistrale he/she will have to choose those exams.

Further requirements are given by the responsible of the Laurea Course. All
the lessons should be scheduled in a pre-fixed pattern, shown in Table 1. The
reason for having such patterns is that the students may choose the optional
courses among a plethora; the possible choices are more than the maximum
number of courses we can have in parallel. Since lessons are scheduled in 5
days, with 10 hours per day, and each course has typically 7 hours per week,
the maximum number of non-overlapping courses in parallel is

⌊

5×10

7

⌋

= 7.
The set of courses that students can choose from (in each period) is wider, so
overlapping is unavoidable.

The solution to such issue is to provide the timetable to the students before
they choose the optional courses, so they can choose non overlapping courses.
With such an organization, the fact that two courses either do not overlap or
overlap completely can indeed help students in formulating their choice. Also,
the pattern constraint reduces drastically the size of the search space, and pro-
vides a very convenient explanation in (the likely) case of complaints by the
professors.

Moreover, since first and second year students have only basic (thus, com-
pulsory) courses, lessons of the first year should be scheduled in patterns A, B,
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and C, which makes the timetable for first year students very compact (almost
always in the morning, with Friday as a free-day); lessons of the second year are
to be scheduled in patterns E, F and G, again very compact. This division of
patterns makes the timetables of the first two years non-overlapping, which lets
the students of the second year able to attend again the lessons of the first year
(in Italian university, a student can enrol in second year even if he/she has not
passed all the exams of the first year, and the number of students that fail to
keep the pace with the exams is considerable). Also, in this way the students
of both years use the same room, typically the biggest available.

On the other hand, such a constraint (besides being deprecated by the pro-
fessors whose preferences are unsatisfied) is often infeasible (i.e., contradicted
by hard constraints). For example, it is often violated by courses in common
with other faculties. Some of the courses are held in a nearby town (Cento di
Ferrara), and it is necessary to avoid students moving from one town to the
other in a same day. Some of the professors have lessons in other faculties, or
even other universities, and some have a professional job outside the university.
Finally, in some periods students of the first two years have more than three
courses in parallel.

Although stated as a hard constraint by the user, the patterns constraint
cannot be implemented as a hard constraint for all courses. This is a common
problem in software engineering: the user’s requirements are often impossible to
implement as they are stated, but must often be relaxed and defined formally.

The adopted solution consists in declaring some of the courses as exceptional:
for exceptional courses the patterns constraint does not necessarily hold.

4 Data Representation

The timetabling program is divided into modules, that implement the search
strategies, user defined constraints, etc. In particular, one of the modules rep-
resents the instance of the problem. We have an instance for each period. The
instance is represented as a Prolog database, typically as a set of Prolog facts.
The instance consists of the following predicates:

• course

• room

• professor

plus some further, ancillary predicates for defining other characteristics.
The predicate course contains, for each university course, the following

information:

• course id

• professor

• number of students
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• classes of students

• number of hours per week

• number of lessons per week

• minimal and maximal duration of a lesson (in hours)

• special requirements (laboratories, projectors, etc.)

• full name, URL of the web page of the course.

Some of the information is used to find a solution (i.e., to provide the COP
model), while other (like, full name of the course, URL) is used for the visuali-
sation of the final timetable on the web.

The room predicate provides information about the rooms that are available
for the lessons in the university course. It includes information about the capac-
ity, special resources available in the room (computers, laboratories, projector,
etc.).

Of course, information is not static, and new items might be added from one
year to the following. For this reason, a simple encoding as the previous might
prove insufficient: a concept of record or structure is necessary for practical
applications also in Logic Programming, not only in imperative and object-
oriented programming. A first step stands in accessing the elements by means
of the arg/3 predicate: the n-th element of the term T can be accessed with
arg(n, T,X). But one wants also to add a name to fields. The solution proposed
in ECLiPSe is based on preprocessing and macro expansion. The user can define
a so-called structure with its fields:

struct(course(id, professor, n students, classes, hours, lessons,

min dur,max dur, req, full name, url)).

After such declaration, one can create a term with the right number of arguments
with the macro with; e.g., the macro

course with [professor : P, hours : 7]

is expanded to
course( , P, , , , 7, , , , , ).

In this way, adding new fields is much easier, as it amounts to minor changes.

The professor predicate is defined by a set of rules, each containing the
constraints of the professor. The professor predicate is invoked to impose the
constraints. Moreover, the information it contains can also be accessed and
reasoned about; this ability of Logic Programming of reasoning about programs
will be useful in Section 5.2.
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Monday Tuesday Wednesday Thursday Friday
8.30 - 9.30 1 13 25 37 49
9.30 - 10.30 2 14 26 38 50
10.30 - 11.30 3 15 27 39 51
11.30 - 12.30 4 16 28 40 52
12.30 - 13.30 5 17 29 41 53

13.30-14 6 18 30 42 54
14 - 15 7 19 31 43 55
15 - 16 8 20 32 44 56
16 - 17 9 21 33 45 57
17 - 18 10 22 34 46 58
18 - 19 11 23 35 47 59

Table 2: Possible values of domains

5 Constraint Model

The problem can be modelled as follows. Variables represent the start times
of all the lessons and the room assignment. The basic constraints are no-
overlapping amongst all the lessons that are taught by the same professor, that
are attended by a same group of students, or that share the same room. Values
in the domains of the start times are integer, as represented in Table 2. Notice
that there are values reserved for the lunch break (values {6+12 ·X|X ∈ 0...4}),
and for the break between each day and the following (values {12·X|X ∈ 0...4}).
This simplifies stating constraints such that no lesson should start one day and
finish the following: it is enough to define a virtual lesson that is taken every
day in the gap between days and impose that no lesson can overlap with such
virtual lesson.

Beside these basic constraint, and the preferences and constraints of the pro-
fessors, redundant constraints can be used to improve the pruning. A simple
constraint, widely used in scheduling applications, is the cumulative constraint.
Such constraint involves a set of activities, described with their start times, du-
ration and resource needs; the total set of resources R is given as input, and the
cumulative constraint imposes that the activities that overlap in any instant
of time do not consume more than R resources. A simple model considers the
available rooms as resources: in this way the number of rooms required in any
time point is never exceeded. This constraint, however, does not ensure that the
rooms will be appropriate for the lessons: the rooms could lack some of the fea-
tures required by some of the lessons, or they could be too small for the students
to fit in. The first problem can be simply solved by imposing a cumulative con-
straint for each of the features required for the lessons. For example, all the
lessons requiring a computer lab are collected in a list Llab; let Slab be the list
of the corresponding start times and Dlab that of the durations. Suppose the
faculty owns Nlab computer laboratories, we can impose the constraint

cumulative(Slab,Dlab, 1, Nlab).
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Concerning the capacity of the rooms, one can impose, for each of the avail-
able room’s capacity, the cumulative constraint for all the lessons that can fit in
the room. Let R≤C the set of available rooms with capacity up to C; let L≤C

the set of lessons that can fit in a room of capacity C, we can impose, for each
available C the constraint

cumulative(S≤C ,D≤C , 1, |R≤C |). (1)

The number of such constraints is equal to the number of available rooms,
at most.

The pattern constraint shown in Table 1 was implemented with the Propia
library of ECLiPSe [32]. Propia is a very high level way of implementing con-
straints: any predicate (even recursive ones) can be transformed into a con-
straint. So, in our case, we only needed to implement pattern as a predicate:

pattern(a,25,37,1).

pattern(b,4,39,13).

pattern(c,7,16,27).

pattern(d,41,49,9).

pattern(e,22,34,56).

pattern(f,46,53,19).

pattern(g,44,51,31).

Invoking the goal pattern(P,T1,T2,T3) infers fd inserts a corresponding
constraint in the constraint store; the domains of the variables are taken as the
Least General Generalisation of the allowed values. For instance, if P has {c, d}
as domain, then the domain of T1 is restricted to {7, 41} (in this case, the LGG
is simply the union of the values selected by the clauses).

5.1 Objective function

Since many professors have hard constraints (like the need to teach courses
in other faculties), the objective function tries to improve the timetable with
respect to students’ needs. Another possible viewpoint would be to create an ob-
jective function that tries to improve the professor’s acceptance of the timetable,
e.g., by maximising the preferences of the professors. The two objective func-
tions could then be combined with one of the aggregation functions proposed
in the literature of multi-criteria optimisation (like weighted sum [31], minimi-
sation of the maximum, lexicographic orderings, Choquet/Vitali integral [19],
etc.). These solutions have currently been avoided due to the need to arbitrarily
state coefficients, and normalisation factors, that are prone to criticisms from
the professors whose preferences are not satisfied. They will be nevertheless
considered in future extensions of the framework.

The current implementation tries to make the timetable as compact as pos-
sible for the various groups of students. It is a weighted sum: not all groups
have the same priority, as students of the first years are many and only a few
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reach the fifth year. Moreover, optimising hard the compactness for a group
of students that have many choices could be meaningless, as non-chosen exams
would inevitably introduce holes in the timetable.

For a given group of students, the objective function is computed as follows.
For each day k, the quantity Hijk = min(|Si − (Sj + Dj)|, |Sj − (Si + Di)|)
represents the displacement between lessons i and j: it is roughly the distance
between the end of the first lesson and the beginning of the second. H is a
candidate for being a ‘hole’, i.e., a time slot between two lessons that is not
a lesson as well. Holes should be minimised, as students typically prefer to
come to faculty as late as possible, and go back home as early as possible.
Summing the contributes Hijk does not give exactly the number of ‘holes’,
but is experimentally a good compromise. In fact, if we simply minimised the
number of holes, the optimal solution would often contain very full days: a day
in which every possible slot is occupied by a lesson does not have holes, so it
is optimal; however it is very tiring for students, so it would be a bad choice.
Since

∑

ij Hijk is not null for a full day, it avoids days with too many lessons,
and provides a compact timetable.

Moreover, a prize is given for each free day: a day without lessons is highly
appreciated, in particular by students living far from the campus. We empiri-
cally found that value −5 for free-day prise provides a good trade-off between
very high prises (that tend to distribute the lessons in few very intensive days)
and low prises (in which lessons tend to be distributed in the whole week).

Finally, since most of the lessons should respect the pattern constraint, it
is easy to pre-compute bounds of the quantity

∑

ij Hijk, that will be useful in
the Branch-and-Bound search. For instance, if in a given period some group of
students can attend 3 different courses, and none of these courses is exceptional,
then we can pre-compute the best possible values of

∑

ij Hijk and use it as a
bound.

5.2 Symmetries

It is well-known in constraint logic programming that symmetries introduce in-
efficiencies in the search; symmetries enlarge (often, exponentially) the search
space and can make simple problems incredibly hard. Many techniques have
been proposed to improve symmetry handling in constraint programming; typi-
cally those techniques can be divided in two main branches: symmetry breaking
during search [15, 12, 13, 25], and symmetry breaking constraints [23].

The basic timetabling problem is highly symmetric: it is based on the
cumulative constraint that is intrinsically symmetric. For example, given a
feasible solution of cumulative, the solution obtained by exchanging two activ-
ities is still feasible.

Although the basic problem is symmetric, many symmetries are removed by
the so-called side constraints: e.g., professors have often different preferences,
rooms are not equivalent (different size, different resources), etc.

Nevertheless, some of the symmetries still remain, and breaking them can
make the program faster. Even if only one symmetry is broken the computation
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time can be halved; this does not significantly change the size of the problems
that can be addressed (so it is not a striking result in research: does not allow
you to find solutions for open problems), but it is a remarkable improvement in
practical problem solving (waiting one minute or two is practically different).

The idea is then to find the symmetries that are hidden in the definition
of the problem instance. There are works [7] proposing to find symmetries in
the problem model (disregarding the instance), by using a theorem prover. In
this work, instead, we consider as given the fact that the problem contains
symmetries, and try to discover if some of the symmetries are not broken by
the side constraints in the particular instance.

Obviously, two lessons of the same duration in the same course are inter-
changeable: exchanging, during search, the two start times of the lessons would
be a waste of computation time. So, we can impose that one should precede
the other. But, we cannot do it if the two lessons are not indistinguishable: for
example, if they have different room requirements (many professors do some of
the lessons in the lab and some in a normal room). In the end, if the specifica-
tions are identical for two lessons of the same course, they are symmetrical and
can be ordered.

In the same way, if two courses have identical specifications they are sym-
metrical. Identical specifications means that they are attended by the same
students, have identical requirements, are taught by the same professor. Of
course, this does not happen very frequently (actually, it never happened in the
instances studied in this work). But, specifications need not to be exactly iden-
tical: for example, two courses might have different professors (all rest being
identical). If the the professors have identical preferences and do not teach in
other courses in the same period, we can identify the two courses as symmet-
rical. Although this seems quite an uncommon situation, it happened in all
three periods, and allowed for not negligible time save. Moreover, the symme-
tries found in this way were not spotted in analysing by hand the specifications:
they were actually discovered by the program.

In this case, the Logic Programming implementation is very helpful: in LP
data and programs are of the same nature, so it is very easy to analyse the
specifications of two professors (which are given as clauses, i.e., programs) and
find out they are identical.

Of course, this symmetry discovery technique is very basic, but, as stated
earlier, it was practically useful. In future extensions, we plan to improve this
discovery to find other types of symmetries. For example, there are courses
that have a same purpose in different groups of students. The English course
is taught in first year to all students, but in groups depending on the Laurea
course. The same professor gives (separately) lessons to the first year students
of Informatics and Automation and Electronics and Telecommunications. These
two groups of students have all the other courses in common. So, the two English
courses are indeed symmetrical, but this symmetry was not discovered.
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5.3 Search strategies

Different search strategies are necessary for different steps in the creation of the
timetable.

A first step is the creation of the first timetable, from scratch. The timetable
is published on the web and submitted to the professors for approval.

The professors suggest modifications, and the second step stands in creat-
ing an improved versions after the previous. Each modification must be re-
submitted for approval, and many professors do not pay attention to the new
releases after the third-fourth (and tend to complain after the deadline for pub-
lishing the final timetable has passed). So, a minimization of this interaction is
necessary.

When the system reaches quiescence, and the deadline for publishing the
timetable is reached, the timetable becomes official. In this third phase, some
small modifications may still be necessary, due to wrong estimation of the num-
ber of students (that may not fit in the assigned room), professors that got
bored of looking at the web page after the first two versions and complain for
their timetable after the final deadline, and other unforeseen events. So, in the
final version there might be small modifications, but they must be kept as small
as possible: optimising the objective function given in Section 5.1 is no longer
a requirement.

For these reasons, in the first phase, we optimise the proposed objective
function (Section 5.1). In the second we still try to optimise the same function,
but possibly introducing as small modifications as possible: in this case, reaching
the global optimum is no longer necessary. In the third phase, the function to
be optimised is the distance from previous solution: we try to minimise the
modifications.

In all phases, the search is decomposed in two parts: labelling of the start
times, and labelling of the rooms. The first is the only one that involves the
objective function (currently, the objective function does not involve room as-
signment). This means that in the Branch-and-Bound procedure, there is no
point in finding alternative room assignments: after the first room assignment
is found, we can backtrack directly to the time assignment. Moreover, given
the constraints 1, the room assignment is backtrack-free. Thus, we use a sim-
ple heuristics for the room assignment: for each time slot, we select all lessons
scheduled in that time, we sort them according to the number of students that
will attend that lesson, and assign the biggest room to the biggest course, and
the others following. In this way, the best resources are always employed, while
small rooms are typically empty and can be used by students as studying rooms.

Phase 1: Finding a solution for the first time In order to find a suitable
search strategy, it is useful to picture the constraint graph. The full constraint
graph is obviously fully connected: this can be easily seen by considering that all
the lessons can be given in the biggest room, so any pair of variables in the room
assignment is connected by an edge. However, if we relax the room constraint
we get a loosely connected graph; one of the instances is given in Figure 1, where
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arrows represent constraints of non-overlapping between lessons.
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Figure 1: Time assignment graph

Although this structure might seem peculiar to a particular instance, a sim-
ilar structure is replicated in the other periods. From the graph we notice that
some of the lessons are isolated: some of these lessons are virtual, and were
introduced to model room unavailability, some are indeed lessons that have no
constraints with respect to other lessons. There is a clique on the left: these
courses are first-year obligatory courses. Since they are obligatory, all of them
must be taken, so they form a clique; since they must be taken in first year there
is no need to avoid overlaps with courses of the following years. Finally, there is
a big connected group that contains all the remaining courses; amongst these,
we can see cliques that correspond to courses of similar subjects (students in
Informatics should be allowed to attend all possible courses in computer science,
and so on). These cliques are connected among them by some constraints.

Since the problem is structured, exploiting its structure may provide signifi-
cant improvement. A simple idea would be to solve to optimality one connected
subgraph, take the optimal assignment for this subset of the variables, then
move to another connected sub-graph, taking as input the optimal assignment
of the first, and so on. Of course, there is no insurance that the found solution
is indeed optimal, but this solution is indeed very simple and fast, so it may be
useful in practice, when optimality is not important.

This strategy could be transformed into a complete strategy imposing prece-
dence constraints between lessons scheduled in parallel, as in probe backtracking
[28, 22] or in scheduling [27].

Phase 2: Repairing a solution and optimising As explained earlier, after
receiving feedbacks from the professors, new solutions should be proposed. The
new solution should be nearly optimal, but should also introduce few modifica-
tions from the previous version.

We adopted an algorithm based on Limited Discrepancy Search [17]: we
first search for solutions with discrepancy d = 1 from the previous solution. If
a new solution S∗ is found, this is the new candidate solution; we continue the
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search for better solutions with discrepancy 1 from S∗. Otherwise, if no solution
is found with discrepancy d, we try with discrepancy d + 1 from the reference
solution.

This simple algorithm is complete, and very fast in finding good solutions.
It also straightforward to implement in CLP.

The room assignment is again performed with the previous heuristics: each
course is assigned the best possible room.

Phase 3: Repairing with minimal deviation Finally, in third phase we do
not try any longer to optimize the objective function: we simply try to repair the
last solution with minimal modifications; as soon a feasible solution is found,
the search stops, even if there exist better solutions. The room assignment
tries to follow as closely as possible the previous one, in order to minimise the
probability of professor’s complaints.

5.4 Explanations

One difficulty in using constraint programming stands in the fact that if there is
no solution, the only answer the user gets is no. There is no explanation about
why the search failed. This is a serious problem when dealing with people:
the answer no is not enough for explaining a professor that he cannot get his
favourite time schedule.

An explanation for a failure is a set of constraints that cannot be satisfied
together; of course such set should be as small as possible, in order to be easily
understandable. We adopted a simple implementation, that does not require to
rewrite previous code, or rearrange the order in which constraints are imposed,
although it does not always provide a good (minimal) explanation.

The explanations we are looking for typically involve some given set of vari-
ables (e.g., the lessons of a given professor, that is asking why he cannot teach
on Monday mornings).

We simply implemented a predicate signal_removal/1 that is awaken by
the same scheduling engine of constraints and is considered by ECLiPSe as a
constraint (although it does not perform propagation). Such a “fake constraint”
has a very high priority, so it is activated as soon as the domain of the variable
it contains is changed. Whenever activated, prints on screen the domain of the
variable is involves, together with the cause that lead to such domain reduction.
The cause is the current set of branching constraints, i.e., the set of constraints
that identify the current branch of the search tree. So, in case of failure the user
gets a sequence of domain reductions, together with their causes: the union of
all causes can give a hint about the cause of the failure, and communicate to
the professor.

Of course, this is a very simple explanation mechanism, but it was practi-
cally useful in the timetable generation and was easy to implement. In future
releases, we plan to adopt a more complete explanation algorithm, such as
QUICKXPLAIN [21].
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6 Results

This work was driven by the practical need to provide a university timetable;
its scope was not to provide the fastest possible algorithm, but to provide an
algorithm that suited the needs of the Laurea course. Our implementation has
timing results between few seconds and some minutes (on a Pentium M 715
running at 1.5 GHz), which is a reasonable time to wait. To give an idea of the
size of the problem, we have between 30 and 40 courses for each period, and a
room availability of 6 general purpose rooms (with different capacities), three
computer science laboratories and an electronics laboratory.

We compared the results of the algorithm with those of the previous year,
in which the timetable was produced by hand. We were able to collect the
information only for two periods (of three) of year 2003.

In the version produced by hand there are no overlaps between obligatory
courses but there are 9 overlaps between an obligatory and an optional course.
This means that students were not able to attend all the lessons of the op-
tional course. There are 20 overlaps between an obligatory course in Laurea
Specialistica (second level) and fundamental courses in Laurea Triennale (first
level). This means that students moving from one Laurea Course to a different
specialisation were unable to attend all the obligatory courses.

The improvement for students is striking: the number of overlaps since 2004
has fallen to zero. Notice that the comparison is unfair, as the data for 2003
does not cover the whole year (but only two of the three periods), so, for year
2003, the number of overlaps is a lower bound estimate (while it is the precise
number for the following years).

Finally, the timetable used to be provided a couple of weeks before the
lessons started (in each of the three periods). In the new version, the timetable
is produced at the beginning of the year, so the students are able to choose the
(optional) courses they want to attend knowing the timetable, thus they are
able to avoid overlapping courses.

7 Related work

University timetabling has been the subject of many works in Constraint Pro-
gramming, and Operations Research. Most of the works focus on the efficiency
of the algorithm. In this work, instead, we reported the practical problems be-
sides the responsible for the timetable has to address besides the computational
complexity.

Schaerf [29] classifies timetabling problems into School Timetabling, in which
there cannot be overlaps between courses having common students, Course
Timetabling, in which the aim is to minimize the overlaps of courses with com-
mon students, and Examination Timetabling, in which there cannot be overlaps
and the exams should be spread as much as possible. Our work falls in the
category of School Timetabling, according to Shaerf. Paper [29] also surveys
various solution approaches to the three types of problems.
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One of the first works that uses CLP for university timetable is that by
Azevedo and Barahona [4]. In this early work, they suggest that an integer
programming formulation is not suitable for this type of problem, and model the
problem in CLP(FD), with non-overlapping constraints stated as a disjunction
of the type Start1 + Dur1 ≤ Start2 ∨ Start2 + Dur2 ≤ Start1. Henz and
Würtz [18] propose the use of constructive disjunction and reified constraints
for college timetabling in Oz. Others define the constraints in CHR [3]. More
recent works [8] exploit global constraints, line alldifferent or gcc (Global
Cardinality Constraints). In our work, we used the cumulative constraint, as
in [16], that is typical to scheduling applications, and can be implemented in
various ways; our choice was to use the edge finder propagation [9, 5], that gives
high pruning power, at the cost of time spent for constraint propagation.

Many works propose Local Search techniques to address university timetabling
problems [24, 14]; local search is typically very fast, and able to solve problems
of very big size, but it gives up the proof of optimality, so the user cannot know
if the proposed solution is really the optimum.

A recent work by Qualizza and Serafini [26] proposes a Branch-and-Price
(Column Generation) approach to the university timetabling problem. The in-
teger programming model contains a column for each possible pattern of lessons
a course can have; the columns are exponentially many, but only a few of them
are actually generated during search. This approach could be useful also in our
instance, in case in the future the patterns (shown in Table 1) will be computed,
instead of being fixed and assigned by the head of department.

8 Conclusions

This work reports the use of Constraint Logic Programming in building
the university timetable of the Laurea Course of Information Engineering
of Ferrara University. CLP has been used for such task since 2003, and
the software is currently in a mature stadium. The software provides the
timetable in an easy to read, web friendly html format, that can be seen at
www.ing.unife.it/informazione/orario/. The use of CLP has been ex-
tremely valuable for solving this type of problem, that was very tedious to
perform by hand, and took several time (typically weeks) of the researcher or
professor to whom the work was assigned.

Currently, the most time consuming operation is coordinating with the
timetable of the other courses of the faculty and of the University: their timeta-
bles are still developed by hand. In the next years, we plan to extend the use of
CLP also to the other courses. In this year (2006) the rector gave two deadlines
for publishing the timetable: one for a temporary timetable and one for the
final version. The course of Ingegneria dell’Informazione was the only one able
to meet the first deadline. Since then, no modifications have been necessary.
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