
SEPIAMiha Meier, Abderrahmane Aggoun, David Chan,Pierre Dufresne Reinhard Enders, Dominique Henry de VilleneuveAlexander Herold, Phillip Kay, Bruno Perez,Emmanuel van Rossum and Joahim ShimpfEuropean Computer-IndustryResearh Centre GmbHArabellastr. 17D-8000 Muenhen 81West Germany9 May 1988AbstratSEPIA - Standard ECRC Prolog Integrating Advaned Ap-pliations is a Prolog system whih o�ers the apability to integratevarious extensions at a relatively low level that guarantees an eÆient im-plementation. Apart from a general exibility, SEPIA has several uniquefeatures that support the integration of new extensions whih makes itboth suitable for the development of industrial appliations and a tool forfurther researh. In this artile we desribe the system itself as well as itsonnetions to the extensions.1 IntrodutionThe goal of the SEPIA projet is to develop a Prolog system whih will bethe 'glass box' desribed in [13℄: on one hand it is a ompat Prolog systemomparable in performane to the urrent Prolog systems, on the other handit outperforms them in funtionality and at the same time it is open to theworld of extensions, allowing them to be integrated at a low and thus eÆientlevel. Among the possible extensions are CHIP, Constraints Handling in Prolog[7℄, sound negation [3℄, a sophistiated Prolog debugger [10℄, an objet-orientedsystem [6℄ and others.Compared to usual Prolog systems, SEPIA inludes several features whihin fat onstitute 'sokets' for plugging in the extensions: among them are e.g.1



the ability to modify the uni�ation, to hange the default Prolog ontrol rule,to handle asynhronous events, and others, desribed later in this artile. Thesefeatures allow the extensions to be integrated into the system.The onnetions to the extensions have partly been tailored to those whihare being developed in various researh groups at ECRC, but apart from thatwe have tried to design the system to be as exible as possible and to inludefurther types of onnetions so that even future, not yet spei�ed extensionshave a relatively good hane of being able to use SEPIA as an implementationbase.Apart from integrating the extensions, SEPIA allows as well to separate themby means of a module onept so that problems are avoided whih ould stemfrom inompatible features of some of the extensions.2 General DesriptionSEPIA is a WAM-based [35℄ system ontaining an inremental ompiler, an em-ulator of the abstrat ode and a native ode generator. The ore system itselfis not just another WAM implementation, it ontains many optimizations om-pared to the original WAM; the onnetions to the extensions give it yet anotheravor - although many of the 'sokets' for the extensions do not onstitute ma-jor di�erenies ompared to other Prolog systems, they nevertheless inuenealmost every detail of the implementation. This, apart from others, was themain reason to develop a ompletely new Prolog system rather than to adaptan existing one. In the SEPIA design we have merely used our experiene fromthe ECRC-Prolog system [12℄ where we had the possibility to experiment withdelaying mehanisms by ompiling the wait delarations [21℄, but the systemitself was not exible enough to be used as a basis for extensions.Even without the extensions, the system o�ers wider funtionality than stan-dard Prolog systems. One of the extra features is the oroutining, i.e. the possi-bility to delay the exeution of a goal until some spei�ed onditions are ful�lled.Waking of a suspended goal is triggered by the binding of a variable. The ontrolonstruts are delay lauses in whih the user an speify the expliit onditionsunder whih the goal should delay, e.g.delay and(X, Y, Z) if var(X), var(Y), X \== Y, Z \== 1.spei�es the delaying ondition for logial onjuntion. Unlike a all-based[5℄ or shorthand [25, 26, 17, 30℄ notation in similar systems this gives the userthe possibility to express a more elaborate ontrol while keeping the eÆienysine the delay lauses are fully ompiled.Another additional feature of SEPIA is the ability to handle events, bothsynhronous (errors, exeptions) and asynhronous (interrupts). If an event israised, the orresponding event handler prediate is alled and this all atuallyreplaes the original goal if the event was an error, or it is transparent to it if itwas an interrupt. All the event handlers are user-de�nable from Prolog whihgives the user additional power to ontrol the system.2



2.1 Run-time SystemThe SEPIA ompiler is proedure based, eah proedure is ompiled only afterall its lauses are known, so that the global ontext information an be used forlause ompilation. This approah makes it possible to generate more ompatode and to use this information for indexing, determinay detetion or shallowbaktraking.The abstrat ode generated by the ompiler is exeuted by an emulator.To ease the introdution of new extensions and porting to other mahines oneemulator, whih ontains only the basi abstrat instrutions (e.g. no hardwareregisters are used for Prolog arguments), has been written in C, another, op-timized emulator is written in 68020 assembler. The �nal system will inludeas well a native ode generator, the generated ode being a mixture of abstratinstrutions and exeutable ode.SEPIA has no interpreter, even the dynami (asserted) lauses are ompiled(in a lause-oriented manner), where an interpreter would be needed, e.g. fordebugging, the ompiler generates ode that ontains enough information fora separated debugger. The reason to ompile dynami ode is eÆieny andsimpliity - some extensions are heavily based on the exeution of dynami pro-edures whih therefore has to be fast. Apart from that, inluding an interpreterwould mean that with new extensions, the interpreter has to be modi�ed, whihould turn out to be more diÆult than to de�ne new abstrat instrutions forthe emulator.Two main issues for SEPIA design were eÆieny and exibility. Despitethe onnetions to the extensions, the system is still very eÆient, sine whendesigning it we have been painstakingly areful not to slow down the exeutionof normal Prolog ode, so that the speed of SEPIA is omparable to urrentommerial systems. For the speed reasons, the ompiler has been written in C,whih has proven to be a good hoie, it ompiles more than 500 lines/se. ona SUN-3/250 whih is at least 10 times faster than any Prolog ompiler writtenin Prolog. Apart from being user-friendly, a fast ompiler has yet anotheradvantage - it an be used for advaned database extensions to store in thedatabase the ompiled form of the rules and fats [14℄. We have also taken areto keep the system exible, adopting always the more general hoie wheneverpossible, thus leaving enough spae to the users to ustomize it.SEPIA has been developed on a SUN-3 and ported to VAXes, Apollo, BullSPS mahines and Siemens MX-300 and MX-500. Apart from the softwareimplementation, the Computer Arhiteture Group at ECRC is developing ahardware implementation in the Knowledge Crunhing Mahine (KCM) whihis a sequential Prolog mahine with target speed about 650kLips [15, 2℄ andwhih will be ompatible with the software SEPIA running on general-purposemahines. 3



2.2 StandardsECRC being a joint researh entre of ICL, Bull and Siemens, ompatibilitywith the existing and future Prolog standards is for SEPIA a neessary ondi-tion. SEPIA supports the BSI Prolog standard [1, 24℄, whih is urrently theonly result of standardization ativities being pursued in Europe and Ameria.Unfortunately, the BSI standard is not ompatible with the de fato standardof C-Prolog and Quintus Prolog. Moreover, the ativities aiming for a Prologstandard (BSI, Afnor, DIN, ISO) still have no �nal and omplete results, andit is likely that some parts of the existing drafts will hange.These onsiderations have led us to adopting a exible approah when de-signing the aepted syntax and the semantis of the built-in prediates. Itis possible to de�ne the lass of a harater (e.g. symbol, lowerase, solo), tohange the syntax of quoted identi�ers et. so that the aepted syntax anbe ustomized to various Prolog dialets. Similarly, it is possible to rede�nebuilt-in prediates and to de�ne event handlers for exeptional onditions inthe built-ins, e.g. uninstantiated variable, whih in BSI auses an instantiationerror, whereas in Quintus Prolog it simply fails. So far we have provided twoompatibility Prolog modules whih are (un)loaded by the prediates bsi/0 andprolog/0 hoosing the orresponding dialet syntax and semantis.3 Connetion to ExtensionsSEPIA provides the onnetion to the extensions via several features, some ofthem are for general usage, others are useful only for the extensions.3.1 Prolog WordsThe WAM is a tagged mahine, eah objet is represented by a value and atag. In most of the WAM implementations these �elds are both paked into onemahine word, the tag oupies 2 or 3 bits. From the point of view of possibleextensions, there are two main problems with suh an arhiteture:� the number of types is limited, new types an be reated only as instanesof one of the basi types, usually struture or box� by reserving some bits in eah word the ompatibility with external soft-ware is lost, e.g. an integer value passed by an external proedure maynot be representable as an integer in the Prolog mahineTo support various extensions, the abstrat mahine must have the possibilityto de�ne new types and to handle them eÆiently. With the original WAM thiswould be possible only by de�ning them as subtypes of the struture type, i.e.a new type would be represented by a struture tag and a pointer to anotherstruture whih would ontain further tag bits. This would onstitute an obvious4



bottlenek when exeuting extended programs1, sine several additional testsand memory aesses would be neessary for every manipulation of the newtypes.SEPIA uses the full longword (4 bytes) to store the value of eah Prolog wordand a onseutive longword for its tag. This of ourse inreases the spae re-quirements for the environment, global and ontrol stak, however the inreasedfuntionality promises to outweigh this overhead. 2The tag is divided into several areas, some of whih are reognized by thesystem and others are de�nable in the extensions. Thus e.g. one bit marksthe tag of any referene, one byte is used by the system to reognize the basinon-referene types as atom, integer, list et. New types an be either de�nedas extensions of the old ones, i.e. they are treated by the ore system as theoriginal type, or as new types whih then have to be treated in a speial way,espeially in the uni�ation and they require new abstrat instrutions to bede�ned for them.3.2 The Uni�ationMany of the developed or planned extensions, mainly those of the problem-solving type or objet oriented type rely on modi�ations of the Prolog uni�-ation. A onstraint propagation system, for instane, is data driven and eahtime a onstrained variable is bound in the uni�ation, the propagation meh-anism should be started. Another example are typed variables - unifying twovariables of di�erent type but with a ommon subtype may issue reation ofthat subtype and updating the variables orrespondingly.The former modi�ation requires that some ation is taken after the uni-�ation sueeds (there is no point in starting the onstraint propagation ifthe uni�ation ould fail), in the latter the uni�ation proess itself must bemodi�ed in order to ope with extended types.The abstrat instrutions that perform the uni�ation are modi�ed so thatwhen an objet of a speial type is enountered and the uni�ation has to hangeit, a orresponding routine is exeuted that does all the neessary work. Whena variable responsible for suspending some alls, for example, is going to bebound, its previous tag is trailed if neessary and a referene to this variable issaved on a stak, so that when the uni�ation sueeds, the system an aessthe variable and through it the alls that have to be woken.The objets that require speial treatment in the uni�ation must have adistint tag, whih is reognized by the system. If an objet belongs to severalextensions (e.g. a typed variable with some onstraints) the tag is marked sothat all the extensions an reognize it. For new objets whih an appear in1for instane in a onstraint propagation system, nearly all of the objets are onstrainedvariables2It would be possible to reserve only 2 bytes for the tag, but then it would not be possibleto store an address in it whih may well be needed for some extensions.5



the soure using the transformation mehanism from the paragraph 3.3 (or inan asserted lause) it is neessary to de�ne new abstrat instrutions that aregenerated for its ourrenes.3.3 Soure TransformationSome extensions require a speial internal representation of its objets. Witha normal Prolog syntax this might be diÆult beause the only available datastruture is a ompound term of the type f(a, b, ...), whereas extended objetsmay need a more strutured representation or more information than a soureompound term an provide. For this purpose SEPIA provides the possibilityto hange the struture whih is built up by the parser or other built-ins [11℄.The user an de�ne a funtor to be a 'maro' with an assoiated transformationprediate. Suh funtors are marked and whenever the system onstruts a termwhose main funtor is a marked one, it alls the orresponding transformationprediate (often it will be an external funtion that will reate a new datastruture with a new tag) and replaes the soure term by the transformed one.This feature is di�erent from the term_expansion/2 prediate in Quintus Prologin that it is applied not only when onsulting or ompiling a �le, but on everyoasion inluding the built-ins read/1, funtor/3, et. Another di�erene isthat the transformation is applied to subterms as well as the main term andthat their e�et may be umulative.This approah guarantees that the extensions have enough exibility for theirsoure form, for instane a typed variable an be written as Var:Type althoughits internal representation uses a struture with a speial tag. It would be aswell possible to reserve some funtors for the extensions and e.g. when readingthe Prolog soure suh funtors would be parsed di�erently. SEPIA solution ismore exible, though, the transformation proedure an be easily rede�ned andit may be loal only to some modules.3.4 Event HandlingTo open the system even for very nonstandard appliations whih rely on pro-essing in real time3 as well as for appliations in the graphis or databasedomain we have deided to inlude into SEPIA the possibility of handling asyn-hronous events. Events of synhronous type, like errors in built-in prediatesor errors when aessing the operating system are now ommon in up to dateProlog systems and if they are exible enough to be rede�nable by the user theyinrease the ergonomy of the system. Even interrupts issued e.g. by pressingthe interrupt key an be handled by the WAM-based systems provided thatthey are proessed in a synhronous way, most often the interrupts are polledso that a ag is set and at well de�ned hek points, e.g. at the beginning ofeah proedure, it is tested and the event is proessed.3for instane writing an operating system, devie driver or a booking system6



In SEPIA, due to some extensions of the uni�ation, we an no longer guar-antee that the system arrives soon enough at the point where the interrupt isheked, so that serious real-time appliations ould not be guaranteed to workproperly.4 The issue was therefore to modify the Prolog mahine so that it isable to respond to asynhronous events, whih means that at any time it mustbe possible to interrupt the exeution of the urrent goal and to start the ex-eution of the event handler whih itself an be any Prolog proedure. At anytime the mahine must be able to save enough information (and not too muhof it) so that it is able to ontinue the exeution after the interrupt has beenproessed. Moreover, the state of the staks and registers must be suh that noimportant data is lost. Note for instane that this requirement makes the trim-ming in the WAM [35℄ impossible sine it relies on the variable size of the topstak frame and on the fat that the environment stak top an be omputeddynamially via some information stored in the ode area.There are of ourse ruial elementary operations during whih the exeutionmust not be interrupted, e.g. when inserting a new atom into the ditionary(symbol table). Sine they are very short, only several mahine instrutions, itis possible to disable the interrupts using a semaphore and to proess it laterwhen the ruial part of the ode has been exeuted. For pushing items onthe stak this is normally not neessary sine this an be done in one mahineinstrution whih is not interruptable.From the logial point of view, the synhronous events replae the goal thathas initiated them, whereas the asynhronous events are ompletely transparentto the normal exeution, exept if they perform some side e�ets. The systemuses the same vetored style (similar to [31℄) for both event types. It is possibleto de�ne any proedure to be the event handler for a given event type (e.g. forany of the signals).The possibility to de�ne event handlers makes the system more user friendly,sine it an be ustomized to speial needs. For instane, alling an unknownproedure auses an error in the BSI proposal, whereas from the theorem provingpoint of view the orret ation is to fail (atually it means that the system hasnot made the pure literal elimination); both of these possibilities an be easilyahieved by de�ning the appropriate event handler.3.5 ModulesSEPIA supports program modules [9℄. A module is generally a olletion ofsome objets and their interfae to other modules. Our basi requirements forthe module system were:� Modules should be a struturation tool allowing to develop large applia-tions.4apart from that, ontinuous testing for interrupts slows the system down7



� Modules should avoid name lashes by having one name spae for eahmodule.� Modules should support privay. Implementation details and internalstrutures of a module are hidden to outside.� Module should be transparent to non-modular appliations. A Prolog pro-gram written for a at prolog system should run without hanges, whenput in an unique module.Usually a module onsists of proedures, but it may as well ontain operators,reorded terms, arrays et. Proedures an be loal in a module, exported to andimported from another module, or global, i.e. visible in all modules. Visibilityhanges are possible as well as loal rede�nition of global proedures.Struturation of soure and objet programs into modules might not seemdiretly relevant to the extensions, however espeially in the ase of several o-existing extensions it is highly desirable as it helps to separate program partswith di�erent syntax and semantis. For example, the transformation prediatefrom 3.3 may be visible only in ertain modules, the others may use the funtorin its soure form. Another possibility is to de�ne pure modules whih do notontain any extra-logial prediates and whose exeution, espeially when nega-tion or oroutining is used, an be more sophistiated than in the usual ase. Ifsome extensions show up to be inompatible with eah other, it is still possibleto integrate them into one modular system so that they do not inuene eahother.3.6 External ProeduresSEPIA an interfae to any external funtion written in C and load it dynam-ially if needed, the C funtion an manipulate Prolog data, or it might beompletely independent of Prolog strutures. In order to allow fast data ex-hange between the Prolog system and the external funtions, there are arraysof various types available in SEPIA. An external C funtion behaves like abuilt-in prediate, it an sueed, fail, baktrak, delay and as well all Prologproedures. While one an argue about the neessity of suh features [27℄, forsome extensions they are unavoidable, e.g. onverting the set representation ofa relation to a Prolog tuple representation (a proess similar to the lause/2prediate).3.7 Memory ManagementFor the extensions and appliations of the database type it is neessary to havean eÆient memory management system whih is able to store and release largeamount of fats and rules and it has to make an eÆient use of the availablememory. In SEPIA, the memory areas ditionary, proedure table and heaps are8



extendible and they are, together with the global stak and the trail, garbageolletable. The size of the staks an be set when SEPIA is invoked. Thegarbage olletor is going to be written later this year.4 Delayed Goal ExeutionSEPIA has a built-in mehanism that supports data driven hange of ontrolbased on goal suspension. The user an speify that a all to a proedure shouldbe delayed if a ondition is ful�lled, waking of these goals is triggered by variablebinding. Suh a mehanism an be used to delay the exeution of a goal untilits arguments are suÆiently instantiated, but it an also be used to implementoroutines, this is why we often refer to it as oroutining. Eah time a variablethat was present in a suspended goal is bound, the orresponding suspendedgoal is woken and the delaying ondition is tested again. Built-in prediatesand external funtion an also delay, but the onditions neessary for this areoded diretly in the body of the C funtion.The mehanism used in SEPIA is similar to geler [5℄, wait delarations [25,21℄, IC-Prolog [17℄, bind-hook [4℄, when delarations [26℄ or ommitted-hoielanguages [30, 18℄. but its semantis is leaner and more powerful. While theother Prolog systems use some sort of shorthand notation to de�ne the onditionunder whih a all to a proedure should, or should not delay, SEPIA allows theuser to speify the ondition diretly, using the normal Prolog notation, whihapart from being more readable, inreases the funtionality. SEPIA providesdelay lauses whih in fat are metalauses that speify when a all has to delay.To speify that a all should delay when its argument is a variable or when itis a list whose �rst element is a variable it suÆes to writedelay p(X) if var(X).delay p([X|_℄) if var(X).The semantis of the delay lauses is as follows: when a all to a proedurewith some delay lauses is made, �rst the all is mathed with the head of the�rst delay lause. This mathing is not the usual Prolog uni�ation but only aunidiretional pattern mathing - the variables in the all annot be bound byit. This is neessary in order not to mix the metalevel ontrol with the objetlevel, similar to [8℄. If the mathing sueeds, the body of the delay lause isexeuted. If all the body subgoals sueed, the all is suspended. Otherwise,or if the head mathing fails, the next delay lause is tried and if there is none,the all ontinues normally without suspending.The goals in the body of the delay lauses an in general be any Prolog goals,however in the urrent implementation only the prediates var/1, nonground/1and \==/2 as well as external simple prediates are supported, but even so theSEPIA oroutining system is more powerful than the others mentioned above 5.For example, the MU-Prolog's sound negation prediate ~/2 an be in SEPIAsimply implemented as5the ation of wait delarations an be simulated only inompletely, delay lauses arenot dependent on the order of uni�ation; anyway, this 'feature', even in wait delarationsrepresents rather an unwanted side e�et 9



delay ~ X if nonground(X).~ X :- not(X).the freeze/2 prediate an be expressed asdelay freeze(X, _) if var(X).freeze(_, Goal) :- Goal.The semantis of the delay lauses is also learer than is the ase for otheromparable onstruts - by de�ning when the all has to delay the user naturallyexpresses the neessary ondition. If the user spei�es when the all should notbe delayed, this ondition is no longer quite straightforward - if there is noondition or if the ondition does not math the all it would mean that the allshould wait forever, whih is ertainly not the intended semantis.The delay lauses are ompiled similarly to normal lauses, exept that forthe head uni�ation, the mathing instrutions are generated instead of thenormal ones. A delay lausedelay p(X) if var(X).is ompiled simply as if it werep(X) :- var(X), delay(p(X)).where delay/1 is a system prediate that delays its argument.It is very important to mention here the inuene of suh a ontrol onstruton non logial prediates, espeially on the ut. The ut relies on a �xed orderof goal exeution in that it disards some hoie points if all goals preeding itin the lause body have sueeded. If some of these goals are delayed, or if thehead uni�ation of the lause with the ut wakes some nondeterminist delayedgoals, the ompleteness of the resulting program is lost and there is no leanway to save it as long as the ut is used.One might be tempted to try to save the ompleteness by delaying the utor even all the subgoals to the right of the ut until all goals preeding it havesueeded. Unfortunately, this still leaves problems on failure - if a further goalfails before the ut was woken, to whih hoie it should baktrak?p(X) :- a(X, Y), Y = 1.a(X, 0) :- b(X), !.a(1, 1).delay b(X) if var(X).b(1).When alling ?- p(1), b/1 does not delay, it sueeds, the ut isexeuted, Y = 1 fails and the whole query fails. When, on the otherhand, ?- p(X) is alled, b/1 delays, therefore the ut delays, Y = 1fails, a(1, 1) sueeds and we get a solution X = 1.As soon as the ut is delayed, it is no longer known whether the hoie point ofits parent lause and its left-hand brothers exist or not, hene we should suspendthem all and the possibility of subsequent failures propagates it further. SEPIAhandles this ase in that in raises an event in the ase that some of the goals tothe left of a ut were delayed; apart from that, the users are disouraged to usethe ut in onnetion with oroutining.10



Goals that may be woken by the uni�ation of a lause that ontains a utonstitute another problem - if the woken goal is nondeterministi, the ut isgoing to ut its hoie point whih is ertainly an unwanted side e�et. Fora nekut, i.e. a ut diretly following the lause nek one ould try to �rstexeute the ut and only then to wake the suspended goals, however generallythis strategy is not orret:b(1) :- !.b(2).?- X > 1, ..., b(X).The built-in all X > 1 delays and it should be viewed as a onstraintimposed on X; if the ut in b/1 is exeuted before waking this delayedall, the all to b/1 and the whole query fail, although the orretation would be to fail in the �rst lause without utting the seondone.In the above onsiderations we attempted to present the problems of the utoperator from another point of view than usual and we strongly believe that theproblems oming from the use of a ut in a oroutining system signal that afterall the ut is really not the orret ontrol struture and that in the long termwe have to give it up, or to give up these Prolog extensions. A language withoutimpure onstruts does not neessary have to be less eÆient and ertainly notless expressive, as the example of [34℄ shows.5 Abstrat MahineThe main design priniples for the abstrat mahine were:� SEPIA will run on traditional hardware6. This means that it has to takeinto aount its limitations, e.g. the number of hardware registers.� Conventional proessors have a number of dediated instrutions that areused for the exeution of traditional languages. By making the Prologabstrat mahine lose to the exeution model of traditional languages itis possible to bene�t from the hardware.� Sine the system has to handle asynhronous events, espeially interrupts,the state of the mahine must be onsistent at any time, e.g. no infor-mation above the staks top or in global variables an be onsidered assafe.The Prolog mahine must be able to perform eÆient shallow baktrak-ing, i.e. baktraking to another lause for the failed all (as opposed to deepbaktraking whih requires to selet an alternative for a parent lause). Sineshallow baktraking is the only way to eÆiently express simple if-then-else6of ourse, this does not apply to the KCM hardware.11



statements in Prolog, it is an extremely important feature. Experimental re-sults show [16, 36℄ that shallow baktraking ours far more frequently thandeep whih on�rms its importane.Aording to other measurements [20, 28, 29℄, built-in prediates onstitutea large fration of the alled goals. Most of the built-in prediates are written inthe implementation language (e.g. C), and they do not hange any importantProlog data, exept for the argument registers. SEPIA therefore introdues theonept of simple and regular goals and proedures: a simple proedure is onethat does not hange the state of the mahine nor of important registers, doesnot reate hoie points nor overwrite temporary variables Xi or argument reg-isters Ai; usually it means that they are written in C and that they annotbaktrak or all other, non-simple goals. Other proedures are regular, usu-ally this inludes all proedures written in Prolog. SEPIA treats simple goalsdi�erently, they are invoked like C funtions and their arguments are pushedon the stak. The onsequene of this fat is that most of the built-in allsan be treated as subroutines and so they are, apart from the ability to fail,transparent. Therefore fewer proedures need an invoation environment frame(namely those that that ontain at least one regular goal followed by anothergoal) and more proedures an perform shallow baktraking (failure of simplegoals that follow the lause nek usually auses only shallow baktraking).5.1 DataThe staks in SEPIA are similar to the WAM, however the loal stak has beensplit into an environment stak and a ontrol stak. The ontrol stak ontainshoie points, event and interrupt frames and other ontrol frames. There areseveral advantages of this splitting:� better loality of referenes on both staks� the ontrol stak an be quite naturally used for the event handling� shallow baktraking an be easily implemented [22℄� immediate memory relamation after a utThere is no trimming of the environments, partially due to event handlingand partially beause it slows down the exeution and moves garbage fromthe environment to the global stak where it an be less easily relaimed. Theenvironment stak is merged with the C exeution stak. This has some positiveonsequenes:� overow on the environment stak need not be tested, the system sends asignal when it overows 12



� the Prolog environments have the same struture as C proedures andtherefore the generated native ode an bene�t from the instrutions forsubroutine all, return and frame alloation� simple proedures are invoked from Prolog in the same way as from C -their arguments are pushed on the environment (and thus system) stakand they are alled using a subroutine all. There is no overhead at allwhen alling a C funtion.We have already mentioned the inuene of the event handling on the ab-strat mahine. In order to maintain onsisteny, the system must be able todeide whih information is important and whih not. For the WAM, the mainproblem onerns the temporary variables Xi and argument registers Ai (whihare the same). When an interrupt ours, the system annot deide how manytemporary variables store important information and whih of them are theimportant ones. Therefore, SEPIA alloates all the temporaries on the environ-ment stak, pushing them when neessary and popping before next regular all.There is no exeution overhead, sine the Xi are normally alloated in memoryas well, but on the stak they an be aessed via a register. This means thatall temporaries are safe w.r.t. interrupts.A similar problem ours with Prolog arguments, but at least they are on-seutive, at any time only the �rst N arguments have some signi�ant value.At some de�ned points, where this N is known, the system puts a marker intothe N + 1st argument so that when an interrupt ours, the interrupt handlerknows how many arguments to save in the interrupt frame.5.2 InstrutionsThe SEPIA abstrat instrution set is based on the WAM with several di�er-enes:� The head uni�ation is ompiled di�erently: the sequenes for the readand write mode are separated, when the mode has to be hanged a jumpto the other sequene is performed. On a proessor with an instrutionahe like the MC68020 the instrution ow is not broken as often and sothe exeution is faster.� There are uni�ation instrutions that perform only unidiretional patternmathing, i.e. the variables in the all annot be bound, otherwise themathing fails. These are used for the ompilation of delay lauses andfor some extensions.� The indexing instrutions, based on [23℄ reet more the nature of usualProlog programs - most of the proedures ontain only one type of argu-ments (and variables) and so instead of the instrutions swith_on_termand e.g. swith_on_atom only one is neessary. Moreover, due to the13



proedure-oriented ompiler, part of the uni�ation is made in the index-ing instrution so that part of the head ode an be omitted, for ompoundarguments the system an diretly jump to the read mode sequene.� The ontrol instrutions like all, alloate, proeed et. use the fatthat the environment stak is idential with the mahine stak and henethey an be mapped diretly onto mahine instrutions.� Sine the arguments of the simple goals are pushed on the environmentstak, di�erent puts instrutions for fething their arguments are used.The instrution puts_value dereferenes its arguments and this simplehange guarantees that the arguments of the simple alls will always bedereferened, and hene the often repeated ode to dereferene the argu-ments at the beginning of eah simple proedure an be omitted and theexeution is faster.6 ExtensionsThe urrently developed extensions for SEPIA are:� CHIP - Constraints Handling in Prolog [7℄. This is a onstraint propaga-tion system with main appliation areas operations researh and iruitdesign. It uses �nite domain terms, linear rational terms and booleanterms. First it was implemented in the MU-Prolog [25℄ interpreter and ithas proven to be appliable even to ompliated real-life problems.� PHOCUS [6℄ is an expert system kernel whih inludes objets, typedvariables, forward haining mehanism and multiple worlds. It has beenprototyped in LISP and urrently a part of it onsisting of objets andtyped variables is being implemented in SEPIA.� Construtive negation [3℄ whih is a sound negation based on the omple-tion of the database.� QoSaQ - A database system whih is able to handle reursive queries[32, 33℄.� ODE - a sophistiated Prolog debugger [10, 19℄Parallel to the SEPIA projet, the Knowledge Crunhing Mahine is beingdeveloped at ECRC. It is a Prolog and Lisp hardware mahine whih an be usedas a Prolog oproessor. Apart from the restritions due to the ommuniationwith the host mahine, KCM fully supports SEPIA and its extensions.14



7 ConlusionThe results ahieved so far in the SEPIA projet are promising - the ore systemhas been working sine the beginning of the year, urrently the assembler emu-lator is being tested, later this year the native ode generator and the garbageolletor are going to be implemented. The extension with typed variables is ina testing stage as well as the oroutining primitives. The CHIP system is goingto be available later this year.SEPIA is not only a new Prolog system, it is a step in a new diretion,towards integrating several programming paradigms in one system, all of thembeing understood as an extension of the logi programming paradigm. Sinethe integration is ahieved at a low implementation level, no eÆieny is lost inone or more interpretation level. While up to now Prolog has been used mainlyfor prototyping, SEPIA opens the door to real life appliations and we expetit to ontribute to the suess of logi programming in the industrial area.AknowledgementsThanks are due to many people at ECRC for fruitful disussions and valuableomments onerning the SEPIA design and implementation. Espeially wethank to Reinhard Enders for the ontinuous valuable omments and for theimplementation of the uni�ation extensions although he was only supposed touse them, to Abderrahmane Aggoun for the implementation of the oroutiningand to Abder, Reinhard and David Chan for their work on extensions and theironnetions and for their help with debugging the system. Jaques Noye hasbeen used as a soure of informations about the KCM and about the abstratmahine, he and further members of the KCM team, Bruno Poterie and MihelDorohevsky have ontributed to the design of features that are ommon to bothof the systems. Mehmet Dinbas, Mark Wallae and Herve Gallaire have helpedto larify problems that onerned the oroutining. Further we thank to JorgeBoa for initiating the projet and bringing in ideas for database extensions, toHerve Gallaire and Alexander Herold for reading and ommenting earlier draftsof this paper and to Edward Marks for orreting the english. Finally, all themembers of ECRC have helped us by providing a stimulating environment andof ourse bug reports.Referenes[1℄ R. S. Sowen A. Dodd, A. J. Mans�eld. Prolog. built-in prediates: Draft4.1. Tehnial Report PS/230, British Standards Institution, November1987. 15



[2℄ H. Benker, T. Je�re, A. Poehlmann, J. C. Syre, O. Thibault, and G. Wat-zlawik. Km - funtional desription. Tehnial Report CA-28, ECRC,August 1987.[3℄ David Chan. Construtive negation based on the ompleted database. InProeedings of the 5th Conferene and Symposium on Logi Programming,Seattle, 1988.[4℄ Takashi Chikayama. Esp referene manual. Tehnial Report TR-044,ICOT, February 1984.[5℄ Alain Colmerauer. Prolog II manuel de referene et modele theorique.Tehnial Report ERA CNRS 363, Groupe Intelligene Arti�ielle, Faultedes Sienes de Luminy, Marh 1982.[6℄ P. Dufresne D. Chan and R. Enders. Phous: Prodution rules, hornlauses, objets and ontexts in a uni�ation-based system. In Program-mation en Logique, ates du Seminaire, pages 77{108, Tregastel, Frane,May 1987.[7℄ Mehmet Dinbas, Pasal Van Hentenryk, Helmut Simonis, AbderrahmaneAggoun, and Thomas Graf. Appliations of hip to industrial and engineer-ing problems. In The First International Conferene on Industrial & Engi-neering Appliations of Arti�ial Intelligene and Expert Systems IEA/AIE- 88, Tulahoma, Tennessee, June 1988.[8℄ Mehmet Dinbas and Jean-Pierre Le Pape. Metaontrol of logi programsin metalog. In Proeedings of the International Conferene on Fifth Gen-eration Computer Systems 1984, pages 361{370, 1984.[9℄ M. Dorohevsky and D. de Villeneuve. Modularity into sepia. TehnialReport IR-LP-13-07, ECRC, May 1988.[10℄ M. Duass�e. Opium+, a meta-debugger for Prolog. In Proeedings of theEuropean Conferene on Arti�ial Intelligene, Munih, August 1988.[11℄ Reinhard Enders. Modi�ations of the warren mahine for types. unpub-lished, 1987.[12℄ Klaus Estenfeld and Miha Meier. Er-Prolog user's manual version 1.2.Tehnial Report LP-13, ECRC, September 1986.[13℄ H. Gallaire. Boosting logi programming. In Proeedings of the 4th ICLP,pages 962{988, Melbourne, May 1987.[14℄ P. Pearson J. Boa. On Prolog dbms onnetion: A step forward. In Pro-log and Databases: Implementation and Appliations, Aberdeen, Deember1987. 16



[15℄ Jean Claude Syre et al. Jaques Noye. Im3: Design and evaluation of aninferene runhing mahine. In Database Mahines and Knowledge BaseMahines, pages 3{16. Kluwer Aademi Publishers, 1987.[16℄ M. Meier K. Estenfeld. Benhmarking of Prolog programs for the MU-Prolog interpreter. Tehnial Report LP-1, ECRC, February 1985.[17℄ S. Gregory K. L. Clark, F. G.MCabe. I-Prolog language features. In LogiProgramming, ed. Clark and Tarnlund, pages 253{266. Aademi Press,London, Departmemt of Computing, Imperial College, London, 1982.[18℄ Yasunori Kimura and Takashi Chikayama. An abstrat kl1 mahine andits instrution set. In Proeedings 1987 Symposium on Logi Programming,pages 468{477, San Franiso, September 1987.[19℄ A-M. Emde M. Duasse. An introdution to the ode projet. InternalReport IR-LP-31-18, ECRC, Marh 1988.[20℄ H. Matsumoto. A stati analysis of Prolog programs. Programming SystemGroup Note 24 AIAI/PSG24/85, University of Edinburgh, January 1985.[21℄ Miha Meier. Compilation of wait delarations. Internal Report IR-LP-1102, ECRC, June 1985.[22℄ Miha Meier. Shallow baktraking in Prolog programs. Internal ReportIR-LP-1113, ECRC, November 1986.[23℄ Miha Meier. Analysis of Prolog proedures for indexing purposes. InICOT, editor, Proeedings of the International Conferene on Fifth Gener-ation Computer Systems, pages 800{807, Tokyo, November 1988.[24℄ C. Moss. Prolog. syntax: draft 4. Tehnial Report PS/234, British Stan-dards Institution, February 1988.[25℄ Lee Naish. An introdution to MU-PROLOG. Tehnial Report 82/2,University of Melbourne, 1982.[26℄ Lee Naish. Negation and quanti�ers in NU-Prolog. In Third InternationalConferene on Logi Programming, pages 624{634, London, July 1986.[27℄ Rihard A. O'Keefe. Pratial Prolog for real programmers. In Proeedings1987 Symposium on Logi Programming, San Franiso, September 1987.Tutorial Notes 4.[28℄ Mihael Ratli�e and Philippe Robert. The stati analysis of Prolog pro-grams. Tehnial Report CA-11, ECRC, Otober 1985.[29℄ Kanae Masuda Rikio Onai, Hajime Shimizu and Moritoshi Aso. Analysisof sequential Prolog programs. J. Logi Programming, 3(2):119{141, 1986.17



[30℄ Ehud Shapiro. A subset of onurrent Prolog and its interpreter. TehnialReport TR-003, ICOT, Tokyo, Japan, January 1983.[31℄ Kazuo Taki, Minoru Yokota, Akira Yamamoto, Hiroshi Nishikawa, Shu-nihi Uhida, Hiroshi Nakashima, and Akitoshi Mitsuishi. Hardware designand implementation of the personal sequential inferene mahine (psi). InICOT, editor, Pro. Int. Conf. Fifth Generation Computer Systems 1984,pages 398{409, 1984.[32℄ Laurent Vieille. Reursive axioms in dedutive database: thequery/subquery approah. In Proeedings of the First International Confer-ene on Expert Database Systems, pages 179{193, Charleston, April 1986.[33℄ Laurent Vieille. From qsq towards qosaq: Global optimizations of reursivequeries. In Proeedings of the Seond International Conferene on ExpertDatabase Systems, pages 421{436, Tysons Conrner, Virginia, April 1988.[34℄ P. Voda and B. Yu. Rf-maple: A logi programming language with fun-tions, types and onurreny. In Proeedings of the International Confer-ene on Fifth Generation Computer Systems, Tokyo, November 1984.[35℄ David H. D. Warren. An abstrat Prolog instrution set. Tehnial Note309, SRI, Otober 1983.[36℄ Akira Yamamoto, Masaki Mitsui, Hiroyuki Toshida, Minoru Yokota, andKatsuto Nakajima. The program harateristis in logi programming lan-guage esp. Tehnial report, Systems Laboratory, Oki Eletri Co., Ltd,Tokyo, Japan, 1986.
18


