Using a Subsumption-Based Taxonomy to Construct
Networks of Cooperating Decision Procedures

Pierre Lim, Mark Wallace
European Computer-Industry Research Centre
Arabellastrafie 17
8000 Munich 81
Germany
{lim,mark } @ecrc.de

August 1992

Abstract

Costly general decision procedures can be sped up by incorporating efficient decision pro-
cedures for restricted classes of constraints. We show how to make use of these specialized
decision procedures by constructing a network of cooperating decision procedures. Of course,
in order to gain efficiency the expensive general decision procedures should not be called as
far as possible. But they should always agree with the answers produced by the specialized
decision procedures. Another problem is that each specialized decision procedure can han-
dle only a certain class of constraints and hence the decision made by any one specialized
decision procedure is based on a subset of all the constraints actually there. Nevertheless
this local decision making can be used in short cutting the decision making process. This is
accomplished by defining (i) a network topology, and (ii) a constraint distribution scheme,
such that there is guaranteed to be consensus amongst the decision procedures. In this way
when a specialized decision procedure decides local consistency (or inconsistency) then indeed
we have global consistency (or inconsistency).

Topics: algorithms, reasoning architectures, constraint solving, classification

1 Introduction

In this paper we study the problem of how to efficiently decide the consistency of a set of
constraints. Our objective is to speed up general decision procedures by using specialized decision
procedures to decide restricted classes of constraints efficiently. This is achieved by arranging
the decision procedures into a network such that consensus is always achieved. Note however
that this is not an exercise in distributed problem solving but rather what our network specifies
is a means for reducing cost by not involving expensive decision procedures as far as possible.

Our work is carried out in the context of Constraint Logic Programming (CLP) [14]. CLP
is a natural implementation vehicle for hybrid knowledge representation languages. Terminolog-
ical concepts are often expressed as constraints [7]. The implementation of Krypton extended
the basic inference rule of the assertional reasoning mechanism by “altering the meaning of uni-
fication” [1]. With logic programming supporting the assertional component of a hybrid system,
and the constraints the terminological component (as in [19]), CLP offers precisely the right
architecture since it provides logic programming with unification replaced by constraint solving.
Given an underlying computation domain D, we assume a CLP(D) implementation involving a
set of (specialized) decision procedures. It is not the purpose of this paper to show how to build
the general procedure by combining the specialized ones (this topic is discussed by [18, 17]),
rather we assume the existence of the general procedure. The problem we consider is how to
use the existing decision procedures as efficiently as possible.

CLP programs comprise (i) programmer-defined predicates which are evaluated using SLD-
resolution, and (ii) constraints (atoms where the principal functor has a fixed interpretation)
which are decided by some builtin decision procedures. Consider the following program for
performing complex arithmetic [15].

zmul(c(R1,I1), c(R2,I2), c(R3,I3)) :-
R3 = R1 *x R2 - I1 *x I2,
I3 = R1 x I2 + R2 * I1.

The goal zmul(c(1,1),c(2,2),c(X,Y)) produces the answer X = 0, Y = 4. With a certain
combination of variables instantiated, e.g. R1 and I1, the two arithmetic equalities are linear
whereas with certain other instantiation patterns, e.g. R3 and I3 the constraints are nonlinear.
If the constraints are linear then it is definitely much more efficient to use a linear programming
method. In terms of theoretical complexity Khachiyan [16] has shown the linear programmming
problem to be polynomial whereas the problem of deciding arbitrary real arithmetic constraints
has been shown to be doubly exponential [5]. But if the set of constraints contains both linear
and nonlinear constraints then during computation if a new linear constraint is to be checked
for consistency with the collected constraint set then it would be advantageous to be able to
determine if this check can be done only with the linear solver. That is, the consistency check
is done by only checking the linear constraints. Of course, we have to be careful since in general
there will be interactions between the linear and nonlinear constraints and such local consistency
checks will not imply global consistency.

Our aim is to develop a framework for building networks of decision procedures such that a
check of a local constraint store is sufficient to decide global consistency. The problem we address
in this paper is to arrange the partial information we have (represented by constraints) in such
a way that interactions between decision procedures and constraints are made explicit. Once
this information is explicitly available it is then possible to perform a number of optimizations.
We give several examples of these. Additionally, we use our framework to analyze a complex
decision mechanism (the multi-layered decision procedure of CLP(R)).

2 Formalization

The CLP Scheme of Jaffar and Lassez generalizes logic programming by replacing the notion
of unification with that of constraint solving over a specified domain [14]. A key idea here is
that certain relation and function symbols have a fized interpretation given by a structure of
computation. This means that specialized domain-specific decision procedures can be used, e.g.
Gaussian elimination for deciding real linear equations and the Simplex method for deciding real
linear inequalities. However, there are many other methods such as forward checking [8] which
can decide more restricted systems of constraints more efficiently. It is desirable to incorporate
these algorithms into more general ones to take advantage of special-case solving to obtain
speedups.

The fixed interpretation in CLP languages gives rise to an algebraic semantics which is
equivalent to the model-theoretic, proof-theoretic, fixpoint and operational semantics. We shall
use the proof-theoretic characterization to explain our scheme since this greatly simplifies the
exposition.

2.1 Specialized Decision Procedures

As required within the CLP Scheme, a decision procedure for a class of constraints takes as
input a set of constraints of that class and decides if they are consistent.

In this paper we shall be concerned with networks of specialized decision procedures. Each
specialized decision procedure D; has an associated local store 5; which is a set of constraints
of the appropriate class, C(D;). Some specialized decision procedures can also decide if a new
constraint is implied by a given set of constraints. A decision made by D; is either that a new
constraint C' € C(D;) is inconsistent with S; or that it is implied by S;. For each computa-
tion domain D, the implementation of a C'LP(D) system requires a network of (one or) more
specialised decision procedures which are used in such a way that they support an (abstract)
decision procedure for D.

This paper addresses the problem of efficiency. We seek to obtain a “globally correct”
decision, by using the cheapest specialized decision procedures possible. We seek to place new
constraints in the local stores in the best way so as to ensure that local decisions are, as often
as possible, globally significant. We seek to establish communication between the specialized
decision procedures which minimises the cost of current and future decisions.

To this purpose we introduce the notion of an “answer” returned from a specialized decision
procedure. Our fundamental requirement is that the answers returned from all the decision
procedures in a network should agree. This property we term “consensus”.

2.2 Definitions

In this section we introduce some definitions and terminology which are in general use throughout
the paper. More specific definitions will be presented in the context where they arise.

Terms are built in the usual recursive manner respecting signatures. A term in which the
principal functor has a fixed interpretation is called an atomic constraint, e.g. in the domain of

uninterpreted functors over real arithmetic terms the constraint relation symbols are {= gerprand
s =realy <, <, >, >}. The programmer may define relations using uninterpreted relation symbols
such as gcd or append. Well-formed formulae are formed from terms using connectives and
quantifiers in the usual manner. We call a conjunction of atomic constraints a constraint. The
constraint programming languages we shall consider use just the Horn clause subset of predicate
logic and conform to the well-known syntactic conventions of PROLOG.

2.3 Logical Semantics

Although the constraints we are interested in are often described in terms of algebraic structures
we are more interested in their behaviour. For us then, a better characterization is in terms of
theories. The link between the structure and the theory is given by Jaffar and Lassez [14] for
the logical semantics of CLP(D). They introduce a theory Tp (a set of formulae closed under
logical consequence) which plays the same role as the computation domain (structure) D. Tp
is required to satisfy two conditions:

e DETp
o for all finite constraint stores S C C(D), D |= 5 implies Tp = 5.

To extend their results to general logic programs, with negation, Jaffar and Lassez imposed an
extra condition on Tp called satisfaction completeness [14]. This condition holds for a theory
T with respect to a class C of constraints, if for any constraint ¢' € C, whenever (' is not
inconsistent with the theory, 3C' is a logical consequence of it. In other words, whenever it is
not the case that 7' |= V-C, then T | 3C.

Let us take as an example the basic theory 7., for an equivalence relation eq:
VX.eq(X,X)
VX, Y.(eq(X,Y) — eq(Y, X))
VXY, Z(eq(X,Y)Neq(Y,Z) — eq(X, 7))
This theory is satisfaction complete, for a rather trivial class of constraints which admits unquan-
tified formulae with predicate eq and no constant or function symbols. However if we extend the
class of constraints to admit function symbols, it is no longer satisfaction complete, because there
are constraints on eq, such as eq(g(X), f(X)), for which neither T, = VX.=eq(g(X), f(X)) nor
Tey | 3X.eq(g(X), f(X))!

2.4 Formalising Decision Procedures

Under the logical semantics for C LP(D), a decision procedure should decide whether for a finite
set of constraints S C C(D):
Tp EV.=S

(where =5 denotes the negation of the conjunction of the constraints in .5'), or if

!However it can be extended in turn to a satisfaction complete theory Tce, for unquantified eq constraints with
function symbols by adding Clark’s equality axioms [3]. The extended theory yields T, = VX.meq(g(X), f(X)).

Tp E 3.9

Operationally in a CLP(D) system, the constraints are added incrementally. In a given
computation state the current constraint store ' is always consistent, and the decision procedure
is required to decide if for a new constraint C, Tp |= V.(5 — —=C'). Whenever this is not the
case, it follows by satisfaction completeness that Tp = 3.(5 A C)

We give a similar logical semantics for each specialized decision procedure D; by associating
with it a logical theory Tp,. If \S; is the local constraint store associated with D;, and C' € C(D;)
is a new constraint, then local inconsistency is formalised as
Tp, EV.(5§ =)

The new constraint C' is locally consistent if it is not locally inconsistent. Notice, however, that
the specialized theory Tp, is not necessarily satisfaction complete, so it does not follow that
Tp, |: H(S A C)

The network of specialized decision procedures implementing a C'LP(D) system must
combine to yield a global (abstract) decision procedure for D. In this paper we assume the
specialized decision procedures are both correct and complete with respect to the global decision
procedure. Formally correctness follows just if Tp, C T'p for each specialized decision procedure
D;. Completeness follows if for any atomic C'LP(D) constraint C', and constraint store 5,

o ('is globally inconsistent (Ip = V.(5 — =C'))only if C' € C(D;) is locally inconsistent with
the theory Tp, and local store 5; = S NC(D;) associated with some specialized decision
procedure D; (Ip, = V.(5; — =C)).

o ('is a global consequence of S (Ip |= 3.(5 A C)) only if C' € C(D;) is a local consequence
of the theory T, and local store S; = SNC(D;) associated with some specialized decision
procedure D; (I, = 3.(5; A C))

Whilst correctness of a network of specialized decision procedures is at least theoretically
rather unproblematic, completeness is not an easy property to establish. We finesse this problem
by simply assuming completeness.

2.5 Answers Returned from Specialized Decision Procedures

The formalization of a decision procedure reflects the underlying theory which defines the con-
straints. In practice the theory is usually built into the constraint solver as a fixed set of
inference rules. Accordingly we view a decision procedure D; as a theorem prover tuned to
proving formulae of a certain class (C(D;)) from a specific theory Tp,.

An answer returned by a specialized decision procedure must be globally correct. Ideally
we would obtain the answer yes from a specialized decision procedure if the new constraint was
globally consistent, and no if it was globally inconsistent. Unfortunately there is, in general,
insufficient information available in the local store to support such global decisions, even in case
the new constraint is in the class of constraints the specialized decision procedure can decide.
Consequently there are three possible answers returned from specialized decision procedure, yes,
no or unknown.

Note that we do not require satisfaction completeness for the theories underlying specialised
decision procedures. The reason is that if local inconsistency cannot be established, the system
does not need to conclude that the new constraint is consistent. This can be decided instead by
another more general decision procedure.

Because the specialized theory Tp; is a subset of the domain theory 7p, and assuming
the local store 5; is a subset of the current constraint store 5, local inconsistency always entails
global inconsistency. For example suppose an implementation of C'LP(R) uses a specialized
decision procedure to deal with equations. The local store associated with this procedure also
holds only equations, and no inequalities. Suppose the equation X = 1 appeared in this local
store. The new constraint X = 2 can be proved locally inconsistent by the specialized procedure
using its local store. No matter what further constraints appear in the current constraint store,
the new constraint X = 2 is clearly globally inconsistent as well. This is a direct result of our
using standard predicate calculus as our formalisation. Since it is monotonic, we can extend the
theory and the constraint store freely without invalidating the local proof of inconsistency.

In short, a specialized decision procedure can answer no whenever local inconsistency is
proved.

However failure to establish local inconsistency does not imply the new constraint is glob-
ally consistent. For example a decision procedure for equality might successfully establish the
local consistency of a constraint X = 2, whilst the global store contains X > 3. In this case
X = 2 is locally consistent but globally inconsistent.

To obtain an answer yes, it suflices to prove the new constraint €' is already a consequence
of the local store. In this case, using the monotonicity of the predicate calculus again, it follows
that the new constraint is a consequence of the current constraint store under the domain theory.
(If I'p, = (S; — C) then Tp = 5 — C'). Since the operational semantics of C'LP(X) entails the
consistency of the current constraint store in every computation state, and ' is a consequence
of the current constraint store, C' must be consistent with it.

For example if the local store contains X = 2 and Y = X then the new constraint ¥ = 2
is a local consequence, therefore globally entailed, and therefore also globally consistent. Clearly
this is a very stringent condition for a yes answer which does not arise very often in practical
programs. One of the main results of this paper is to significantly loosen the conditions for a
yes answer from a specialized decision procedure, see section 3 below.

Finally the answer unknown is returned from a decision procedure just in case it can
answer neither yes or no.

2.6 Consensus

Specialized decision procedures consist of two components (i) a theory specialized for a class of
constraints, and (ii) a local store of constraints. Recall that our aim is to achieve consensus (and
thus have local decisions agree with the global decision) but at the same time avoid involving
costly decision procedures in the network (as far as possible). Therefore the consensus has to be
inherent in the network. We analyze this interaction by making the relationships (relevant to
achieving consensus) between decision procedures explicit. We now consider what information

we would like to make explicit.

Consensus requires that two decision procedures, with their own different local stores,
can’t contradict each other, one answering yes whilst the other answers no. In this case we have
two underlying theories T} and T3 and two local stores 57 and 55, and we need to preclude the
case that T4, 51 = —C and T5, 53 | 3C. Whenever this arises, Ty U Ty U 57 U S5 is inconsistent.

Even if T7 and T5 have the same constraint store .59, it is possible for S to be consistent with
T1 and T3 individually but have 77 U T; U S be inconsistent. The following example illustrates
the point. If 77 is {VX.f(X) < g(X)}, and T3 is {VX.g(X) < f(X)}, and S is {f(Y) # g(Y)},
we have a case where T7U S is consistent, ToU S is consistent, Ty UT5 is consistent, but Ty UT,U S
is inconsistent.

Consensus is imposed in our framework by the following conditions:

Correctness All the decision procedures associated with a given CLP(D) system, have an underlying
theory which is a subset of the domain theory Tp

Completenes New constraints are only accepted by the network of specialized decision procedures if
some procedure answers yes. By correctness this means that accepted constraints are
consistent with the current (global) constraint store. New constraints are only added to
local constraint stores if they have been accepted. Consequently the local constraint stores
are subsets of the current (global) constraint store, which is consistent (T |= 35p).

Given these conditions, consensus is a direct consequence of our formalisation in monotonic
logic.

3 Optimizing the Design of Composite Decision Procedures

3.1 Loosening the Conditions for a Local yes Answer

In this subsection We present three loosened conditions under which a local decision procedure
can answer yes.

Firstly we can take advantage of existential quantification. Many new constraints include
one or more new variables, that do not appear anywhere in the current global constraint store.
We shall write C[V] for a constraint involving new variables V = Vi,...V,. A local decision
procedure D; can answer yes if, after existentially quantifying over the new variables, it can be
proved that the resulting constraint is a consequence of the local constraint store 5;, formally
Tp, = ¥(5; — 3IV.C[V]). By monotonicity it follows that T |= V(S5 — IV.C[V]). By the
satisfaction completeness of Tp we conclude that 7' = 3(S A IV.C[V]), and since none of
the new variables occur in S we can pull the existential quantification outside the conjunction
yielding T' |= 3.5 A C, thus establishing the global consistency of the new constraint.

As an example we take Gaussian elimination as the specialised decision procedure, whose
underlying theory is the theory of equality and whose class of constraints admits linear numeric
equations.

Suppose the new constraint is 5 = X + 2 Y + 3, where X is a new variable, but Y is not.
Then the answer yes can be returned since 3X.(5 = X + 2% Y + 3) can be proved by making X
the subject of the equation X =2 — 2% Y, and using the axioms: VA, B.3X.(X = A - B), and
VA,Y.3Z.(Z = A+Y), which states that — and * are functions defined everywhere.

However if neither X nor Y were new variables the unification procedure could not in
general answer yes, since there could be contradictory constraints in the global constraint store
such as {Y > X,Y > 0}.

Secondly, we introduce a notion of independence. Two constraint stores 57 and 55, are
independent if the set of variables of 57 is disjoint from the set of variables of 55. Under this
condition, the local consistency of 57 and S5 implies that 57 U S5 is also consistent. Researchers
in the area of parallelism also use this property to ensure that when a problem is decomposed
that solving the subproblems do not interfere with each other, e.g. restricted AND-parallelism
[6]. Independence will be used in section 3.3 below, to keep local constraint stores small.

Independence enables a specialized decision procedure D; to answer yes if the new con-
straint is provably consistent with its local store §; even though the proof might “instantiate”
variables in ;. The condition is that 9; is independent of the remaining constraints in 5\ .5;.
Formally, the procedure can answer yes for a new constraint C' if Tp, |= 3(5; — C'). The global
consistency of C follows since, by assumption Tp |= 3(Sp \ 5;), and therefore (by monotonicity)
Tp = 395:A3(Sp\ S;), and finally, by independence we can pull the existential quantifier outside
the conjunction yielding Tp = 35p.

A simple, but important, extension of this result is to allow .5; to share variables with
other local stores if they are associated with more specific decision procedures in a sense defined
in section 3.2 below.

Thirdly, using independence, we can take advantage of satisfaction completeness. If the
theory Tp, associated with decision procedure D;, is satisfaction complete and the constraint
store 9; is independent of the remaining constraints S\ 9, then D; can answer yes immediately if
the new constraint is not locally inconsistent. In this case, therefore, the local decision procedure
gives either a yes or a no answer to every new constraint.

The reason is that if €' is not inconsistent with 5; then, by satisfaction completeness,
Tp, = 35; AC. Now it follows that S; A C'is globally consistent by the same argument as before.

A first example of this is the use of Herbrand unification for equations which do not
involve mathematical functions. For this class of constraints (i.e. equations with uninterpreted
functions only), unification is satisfaction complete. Thus any new constraint which is not
proved inconsistent by the unification procedure is accepted as globally consistent. In C'LP(R)
accordingly, equations involving only “non-solver” variables, are handled by the unification in
the logic programming engine and are never passed to the specialised arithmetic solvers.

As another example, the theory underlying Gaussian elimination is satisfaction complete
for the class of mathematical equations. As long as the set of variables in the local constraint
store associated with Gaussian elimination is disjoint from the variables in the current Simplex
tableau, for a new equation which also shares no variables with the Simplex tableau, inde-
pendence can thus be used to enable Gaussian elimination to decide new constraints without
resorting to the Simplex algorithm.

Returning to an earlier example 5 = X + 2% Y + 3, even if X is not a new variable, as
long as the local store shares no variables with the Simplex tableau, it can be treated using
Gaussian elimination alone. If the equation is not inconsistent with the local store associated
with Gaussian elimination, the procedure simplifies it to X = 2 — 2+ Y (see section 3.4 below)
but but, since the local store is independent, and the theory underlying Gaussian elimination is
satisfaction complete for equations, instead of unknown it returns the answer yes.

3.2 Using Specialized Procedures to Decide Constraints

First we present an abstract algorithm for determining satisfiability given a network of coop-
erating decision procedures. Its formulation here as a distributed algorithm is merely done to
simplify the discussion. Short cuts are achieved by broadcasting the result returned by one deci-
sion procedure and thereby interrupting other decision procedures and saving them any further
work.

The behaviour of each decision procedure can be described in terms of a single “check”
operation which invokes the decision procedure on the new constraint with the local store. Four
things can happen:

e The procedure returns the answer yes. In this case the check succeeds and broadcasts its
result to all the other checking processes.

e The procedure returns the answer no. In this case the check fails and broadcasts its result
to all the other checking processes.

e The answer is unknown. In this case the check suspends.

e The checking process is interrupted by a broadcast. In this case it terminates with the
same result as that broadcasted.

e A suspended process that recieves a broadcast decision terminates with that decision.

The final result is either that all the checks succeed, or they all fail. Since we assume the network
to be complete with respect to the (satisfaction complete) domain theory (see section 2.4 above),
they cannot all suspend. The consistent behaviour of all the check operations is guaranteed by
the consensus of the decision procedures and their local stores.

If the checks fail is the new constraint globally inconsistent, and it is not admitted. Oper-
ationally, such a result causes the system to start backtracking. If the checks succeed, then the
new constraint is globally consistent. It is then admitted and added to certain local stores, as
described below.

Of course one does not wish to run all the decision procedures in parallel. Instead what is
desired is that calls to the expensive decision be avoided. To this end we use a taxonomy based
on subsumption. A decision procedure D is said to be more specific than a decision procedure

Dy if

1. the theory Tp, of D, is a subset of the theory Tp, of Do,

2. The class C(Dy) is a subset of C(D3)

3. 51 C 55. In this case we say that the constraint stores are admissible.

For a new constraint apply the decision procedures earliest in the ordering first, and only if
the answer is unknown move up the ordering. This sequential use of decision procedures also
supports constraint simplification (see section 3.4 below).

3.3 Distributing Constraints to Local Stores

If every accepted constraint C' is added to every local store for which C' is in its class of con-
straints, then by assumption the completeness of the network of decision procedures is preserved.
However it is possible to retain completeness without adding every constraint to every appro-
priate store.

Firstly let us consider new constraints that share no variables with the global constraint
store. If S and C' share no variables, then by indepedndence as we argued above, they are
globally consistent Tp |= 35 A C, if and only if they are independently consistent Tp = 35, and
Tp E 3C.

Thus there is no need to use any (local) constraint store in establishing the consistency of
C'. Similarly if a new constraint C is added, which shares no variables with ', then the presence
of C'in any (local) constraint store during the checking of C3 is unnecessary. Consequently, until
two constraints are added which share variables, there is no need to add any constraints to any
constraint store.

This independence result can be used to partition the local stores associated with each
specialized decision procedure into disjoint local stores which share no variables. When a new
constraint is checked which only shares variables with one local store in the partition, then it
need only be checked against that local store and no other.

Furthermore the partitioning significantly increases the potential for global independence
of a local store. For example although the local constraint stores associated with Gaussian
elimination may indeed share variables with the Simplex tableau, individual components of the
partition may be quite independent of it. In this case consistency with a single component
suflices to establish the global consistency of any new constraint whose variables are shared only
with that component.

Even more interestingly, we can use satisfaction completeness to extend the partitioning
beyond a single specialized decision procedure. Consider a partitioning of the global constraint
store Sp. Suppose all the constraints in some component S belong to the class C(D;), and
that D; has a satisfaction complete underlying theory Tp,, for the class C(D;) of constraints.
Then only the decision procedure D; needed be used for checking a new constraint C' € C(D;)
which only shares variables with Sk. Fither it is locally consistent, which by independence and
satisfaction completeness entails global consistency, or it is locally inconsistent. In each case the
local decision is sufficient to produce a yes or no answer. If a new constraint shares no variables
with 5;, , then it can be checked by all other specialized decision procedures against their local
stores, independently of the constraints in .5, .

10

The advantage of partioning for increasing the number of local decisions has been estab-
lished. To ensure the local stores are partitioned it is necessary when adding a new accepted
constraint to add it to the component with which it shares variables and no other component of
the partition. As long as the new constraints fall into the current components, the arguments
above based on indepence and satisfaction completeness prove that the behaviour of the network
of decision procedures remains correct and complete. Therefore in this case there is no need to
add the new constraint to every local store which admits constraints of that class.

This result is used in C'LP(R) to add new Herbrand equations only to the unification
environment of the logic programming engine and not to any of the solvers, in case there are no
“solver” variables in the equation (see above, section 3). Of course it is vital for preserving the
independence of the unification environment from the other local constraint stores.

However sooner or later a constraint will be added that does not fall into one of the current
components. Either it will share a variable with more than one component, or else it may belong
to a single component but fail to belong to the appropriate restricted class of constraints.

In the first case the check is performed against a local store comprising the union of the
affected partitions. Subsequently this union, together with the new constraint, forms a single
partition.

Sometimes the new constraint shares variables with a previously independent component
and with the local store associated with other decision procedures. This also happens if the
new constraint “belongs” to a single component, but not to its restricted class of constraints.
In both cases the new constraint must be checked by further decision procedures. However each
decision procedure must check the new constraint against the union of its local store and the
(previously independent) component. Subsequently the whole partition must be added, with the
new constraint, as if all the constraints were new. In C'LP(R) this occurs, for example, when a
new equation causes “solver” and “non-solver” variables to be unified.

We conclude this subsection by describing the distribution of constraints between local
stores according to the subsumption taxonomy of decision procedures.

The completeness of the network of specialized decision procedures is not jeopardized if a
new constraint is omitted from the store associated with a more specific decision procedure. The
reason is that although the more specific procedure will reach fewer decisions, in case no decision
is reached a more general procedure will be used, whose constraint store is complete. This result
is used in the implementation of C'LP(R) to ensure a new constraint is only (ever) added to one
local constraint store. However the duplication of constraints between more specific and more
general decision procedures has benefits for future constraint checking. The more constraints
held in the local store associated with a more specific procedure, the more decisions it can reach.
An example illustrating the advantage of duplicating constraints is given in section 4.2 below.

3.4 Simplifying Constraints

The decision procedures could be implemented using simplification [12]. Instead of just trying
to prove 7,5 |= =C or T, S £ V.C[V], the procedure derives a simpler formulae C'Simp[V]

equivalent to C[V] in the sense that T, 5 | C[V] = CSimp[V].

11

If the constraint is inconsistent, 7,5 | —C[V], then this is made explicit during sim-
plification: CSimp[f/] is just false. In this case the procedure returns the answer no. If the
constraint is a logical consequence, T, 5 |= EIV.C[V], then the procedure must explicitly check
whether EI‘N/.CSimp[‘N/] is a consequence of the underlying theory T'. In this case it answers yes.
If EIV.CSimp[V] is neither false, nor a consequence of T, then the procedure answers unknown.

Decision procedures which perform simplification can produce useful information even
though their answer is unknown. Most commonly this is when a specialized decision procedure
yields a specific value for a variable. When a constraint checked by a specialized decision
procedure becomes simplified, then if the answer is unknown, instead of checking the original
constraint with the other procedures, the simplified constraint is now checked.

Suppose for example the global constraint store included X = Y + 1 and X > 2. The
inconsistency of the new constraint 2 * X = Y, could be detected by the Simplex procedure.
Alternatively however Gaussian elimination can simplify the new constraint to X = —1 and
Y = —2, and the inconsistency can now be detected by the built-in inequality predicate of the
underlying logic programming system.

The use of specialized decision procedures for constraint simplification can be used to re-
duce the number of distinct variables in local stores associated with the more general decision
procedures. This simplifies constraint solving and increases independence. The technique re-
quires certain equations of the form Var = Term to be omitted from the local constraint stores
associated with more general procedures, such as the Simplex. Completeness is retained by
always simplifying constraints involving Var, to constraints involving Term. Though intuitive,
this technique depends upon simplification being always carried out before constraint solving,
and therefore somewhat restricts the framework presented in this paper. In most CLP systems
the unification decision procedure is used for simplification of constraints in the way we just
described. Gaussian elimination could also be utilised in the same way.

3.5 Detection of Redundant Constraints

The decision procedures naturally support a facility to recognise and prevent the addition of
redundant constraints. If a new constraint C' has no new variables, and some decision procedure
returns the answer yes, then C'is redundant. Since it is globally consistent (i.e. Tp = 3Sp A C'),
and C has no variables, therefore it is independently consistent (i.e. Tp = C').

On the other hand, our framework makes full use of the capacity of any specialized decision
procedure D; to detect redundancy. If Tp, |= V.(5; — C') for some new (redundant) constraint
(', then the decision procedure immediately answers yes.

3.6 An Example

We now give an example in the domain of real linear arithmetic. Consider a two-vertex network
consisting of a decision procedure for equalities, call it CEq and a decision procedure for equalities
and inequalities, call it CInEq. The theories underlying CEq and CInEq are Tog, and Tor,k,
respectively. Thus we have that Tog, C Torame. Suppose the global constraint store is {X =

12

4,V = 2,X > 3,7 > 4}. The local store for CEq is {X = 4,Y = 2}. The constraint store
for CInEq contains all the constraints: {Y = 2, X =4, X > 3,7 > 4}. We now present three
cases. These are the use of local consistency (resp. inconsistency) in quickly determining global
consistency (resp. inconsistency) and the case when the specialized decision procedure returns
unknown.

1. Let the constraint to be incrementally conjoined be X =Y then CEq detects X = 4AY =
2 — =(X =Y) and thus global inconsistency.

2. Let the constraint to be incrementally conjoined be X = W. Then CEq detects that
X =4ANX =W — W = 4. Notice that W is a new variable. Since IW.(W = 4) is a
simple consequence of the equality theory, CEq answers yes, proving global consistency.

3. Let the constraint to be incrementally conjoined be Z = 2. CEq can infer neither Z = 2
nor =(Z = 2) so it waits (as the answer locally is unknown). But CInEq infers =(Z = 2)
and global inconsistency is detected.

4 Relationship to Existing Work

4.1 The CLP(R) System

CLP(R) is an instance of the CLP scheme in the domain of uninterpreted functors over real
arithmetic terms. Its decision procedure for arithmetic constraints is implemented as a multi-
layered combination of

1. the Herbrand unifier,
2. a Gaussian elimination procedure,

3. a Simplex algorithm,

The handling of arithmetic constraints is summerized as follows. Linear inequalities are decided
using a modified Simplex algorithm. Linear equalities are sent to a Gaussian elimination pro-
cedure. However, if a linear equality affects any linear inequalities it is immediately sent to the
Simplex solver. The Herbrand unifier deals with simple arithmetic constraints of the following
form.

e an equation between two non-arithmetic variables,

e an equation between a non-arithmetic variable and an arithmetic variable,
e an equation involving an uninterpreted functor,

e an equation or inequality between two numbers, and

e an equation between a non-arithmetic variable and a number [15].

13

4.2 The Cooperating Decision Procedures of CLP(R)

We now analyze the decision procedures of CLP(R) to see how they achieve consensus.

In terms of our framework we view the Herbrand decision procedure has having two
different local stores, whose constraints involve disjoint sets of variables. This idea was discussed
in section 2.5 above. Equalities involving arithmetic variables, which also appear in local stores
associated with the Gaussian or Simplex procedures, are kept in one store. Equalities involving
non-arithmetic variables are held in the other.

For non-arithmetic variables the equality theory is satisfaction complete, so if unification
fails the inconsistency of the constraint can be deduced (see section 2.5). Unification is a
simplication procedure, and in CLP(R) it is the simplified constraint that is passed on to the
other solvers, see section 3.4 above.

If constraints cannot be solved by the Herbrand unifier, they are passed to the less efficient
numerical decision procedures. Numeric equations are next checked by the Gaussian elimination
procedure. The theory underlying Gaussian elimination is satisfaction complete for equalities.
For equations sharing no variables with other constraints held in the Simplex store, this en-
ables Gaussian elimination to return success if it doesn’t explicitly fail. However for equations
involving variables appearing in the Simplex store local consistency no longer implies global
consistency. Therefore in CLP(R) very sophisticated analysis of the variables is carried out,
including simplification using equations in the Gaussian store, to decide if the new equation
should be passed up to the Simplex solver or not. This analysis reduces, in our framework, to
an attempt to get the answer no or yes from the Gaussian decision procedure.

Finally, if neither unification nor Gaussian elimination can be used to decide a new equality
constraint, it is passed to the Simplex solver. Inequalities, which fall outside the syntactic class
of constraints handled by unification and Gaussian elimination are also passed direct to the
Simplex solver. Again the underlying theory for the Simplex solver is satisfaction complete, so
if inconsistency cannot be proved, the system has soundly established global consistency.

The operational behaviour of CLP(R) fits into our framework, and the rationale for the
global decision procedure corresponds closely to that described in section 2.1 above. The com-
pleteness and soundness of CLP(R) is thus justified in our framework.

4.3 Some Suggested Modifications to CLP(R)

There are more shortcuts which CLP(R) fails to exploit. In CLP(R) there is no attempt to use
unification for solving equations involving numeric terms. However this is a possible check since
if the terms are identical, up to the occurrence of new variables, then the Herbrand unifier could
immediately answer yes.

In the framework of this paper it is clear that the more constraints locally available to a
weak, but efficient, decision procedure, the more chance it has of producing a yes or no answer
and short cutting further checking. Thus we would expect the efficiency of CLP(R) to be
enhanced by copying equalities from the Gaussian store to the unification store. For example
equalities like ¥ = X 4 1 could be used by the unification procedure to simplify incoming

14

constraints. If all occurrences of Y could thereby be eliminated from the Gaussian store, the
total number of arithmetic variables could be reduced.

The elimination of redundant constraints is an important issue for efficiency. The recog-
nition that new constraints are redundant, so that they are never added to any constraint store,
is achieved naturally within our framework (see section 3.5 above). Although some techniques
using independence and subsumption criteria to identify and propagate useful information are
employed in CLP(R) they do not seem to have been systematically analyzed and used.

4.4 Other Methods

The technique of using specialization has also been tackled by Bruynooghe et al. [2]. Their
approach relies on analyzing instantiation patterns and using a symbolic trace to derive con-
trol information. Qur method is more general in that we can incorporate specialized decision
procedures whereas their method concentrates essentially on taking advantage of evaluation.

5 Conclusion

Since general constraint solvers are usually quite expensive and real world problems quite often
involve just certain classes of constraints [10, 11, 13] one way to increase efficiency is to use
specialised decision procedures for handling specialised classes of constraints.

In this paper we have explored the problem of how to use the network as efficiently as
possible. A given problem should be decided by the simplest procedures which can do the job.
Moreover the number of constraints checked for consistency with each new constraint should be
kept to a minimum.

By formalising decision procedures as theorem provers, we have set up a framework in
which the problem and requirements can be clearly specified. A number of domain-independent
properties of decision procedures, relevant to efficient constraint solving have been identified.
A fundamental property is consensus, which must hold between all decision procedures and
local constraint stores in a network. The class of constraints for which a decision procedure is
satisfaction complete [14] is also important. These properties enable certain short cuts to be
taken which save using unnecessary decision procedures.

The architecture of the CLP(R) decision procedure has been shown to fit the framework
we introduce and make use of many of the optimisations though, interestingly, not all.

The ideas presented here are being used in the development of a new CLP platform at

ECRC.
Acknowledgements

The ideas in this paper were discussed with Alex Herold, Thom Frihwirth, Eric Monfroy
and Volker Kuechenhoff. We thank them for their many valuable comments.

15

References

(1]

[2]

(8]

[9]

[10]

R. Brachman, V. Gilbert and H. Levesque, “An Essential Hybrid Reasoning System: Knowledge
and Symbol Level Accounts of Krypton”, Proceedings of the 9" IJCAIL, 1985.

M. Bruynooghe et al., “Improving the Efficiency of Constraint Logic Programming Languages by De-
riving Specialized Versions”, International Workshop on Processing Declarative Knowledge, Kaiser-

slauten, Germany, July 1-3, 1991. Published as Springer-Verlag LNCS 567.

K.Clark, “Negation as Failure”, in “Logic and Databases”, ed. H. Gallaire and J. Minker, Plenum
Press, 1977.

G. Collins, “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition”,
LNCS, No. 33, Springer-Verlag, New York, (1975).

J. Davenport and J. Heintz, “Real Quantifier Elimination is Doubly Exponential”, Journal of Sym-

bolic Computation, (1988)5, 29-35.

D. DeGroot, “Restricted AND-Parallelism”, Proceedings of the International Conference on Fifth
Generation Computer Systems 1984, North Holland, 1984, pp. 471-478.

F. Donini, M. Lenzerini, D. Nardi and W. Nutt, “Tractable Concept Languages”, Proceedings of
the 13" [JCAI, Sydney, Australia, August, 1991.

Y. Deville and P. Van Hentenryck, “An Efficient Arc Consistency Algorithm for a Class of CSP
Problems”, Proceedings of the 13*" IJCAI, Sydney, Australia, August, 1991.

M. Dincbhas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier, “The Constraint
Logic Programming Language CHIP”, Proceedings of the 2"¢ International Conference on Fifth
Generation Systems, Tokyo, November 1988, pp. 249-264.

M. Dincbas, H. Simonis and P. Van Hentenryck, “Solving the Car-Sequencing Problem in Constraint
Logic Programming”, Proceedings of the 1988 European Conference on Artificial Intelligence, Mu-
nich, West Germany, August 1988.

M. Dincbas, H. Simonis and P. Van Hentenryck, “Solving a Cutting-Stock Problem in Constraint
Logic Programming”, Fifth International Conference on Logic Programming, Seattle, August 1988.

T. Fruhwirth, “Constraint Simplification Rules”, ECRC, Draft, March, 1992.

N. Heintze, S. Michaylov and P. Stuckey, “CLP(R) and Some Electrical Engineering Problems”,
Proceedings of the 4'" International Conference on Logic Programming, Melbourne, 1987, pp. 675
703.

J. Jaffar and J-L. Lassez, “Constraint Logic Programming”, Proceedings of the 1987 ACM Sympo-
sium on Principles of Programming Languages, Munich, January 1987, pp. 111-119.

J. Jaffar, S. Michaylov, P. Stuckey and R. Yap, “The CLP(R) Language and System”, IBM Research
Report RC 16292, November, 1990.

L. G. Khachiyan, “A Polynomial Algorithm in Linear Programming”, Soviet Mathematics Doklady,
Vol. 20, 1979, pp. 191-194.

16

[17] H. Kirchner and C. Ringeissen, “Combining Unification Problems with Constraint Solving in Finite
Algebras”, Presentation at WCLP’92, Marseille-Luminy, February 12-14, 1992.

[18] G. Nelson and D. Oppen, “Simplification by Cooperating Decision Procedures”, ACM TOPLAS,
Vol 1, No. 2, October 1979, pp. 245-257.

[19] G. Smolka, “Records for Logic Programming — Constraints on Feature Trees”, Presentation at
WCLP’92, Marseille-Luminy, February 12-14, 1992.

17

