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Our work is carried out in the context of Constraint Logic Programming (CLP) [14]. CLPis a natural implementation vehicle for hybrid knowledge representation languages. Terminolog-ical concepts are often expressed as constraints [7]. The implementation of Krypton extendedthe basic inference rule of the assertional reasoning mechanism by \altering the meaning of uni-�cation" [1]. With logic programming supporting the assertional component of a hybrid system,and the constraints the terminological component (as in [19]), CLP o�ers precisely the rightarchitecture since it provides logic programming with uni�cation replaced by constraint solving.Given an underlying computation domain D, we assume a CLP(D) implementation involving aset of (specialized) decision procedures. It is not the purpose of this paper to show how to buildthe general procedure by combining the specialized ones (this topic is discussed by [18, 17]),rather we assume the existence of the general procedure. The problem we consider is how touse the existing decision procedures as e�ciently as possible.CLP programs comprise (i) programmer-de�ned predicates which are evaluated using SLD-resolution, and (ii) constraints (atoms where the principal functor has a �xed interpretation)which are decided by some builtin decision procedures. Consider the following program forperforming complex arithmetic [15].zmul(c(R1,I1), c(R2,I2), c(R3,I3)) :-R3 = R1 * R2 - I1 * I2,I3 = R1 * I2 + R2 * I1.The goal zmul(c(1,1),c(2,2),c(X,Y)) produces the answer X = 0, Y = 4. With a certaincombination of variables instantiated, e.g. R1 and I1, the two arithmetic equalities are linearwhereas with certain other instantiation patterns, e.g. R3 and I3 the constraints are nonlinear.If the constraints are linear then it is de�nitely much more e�cient to use a linear programmingmethod. In terms of theoretical complexity Khachiyan [16] has shown the linear programmmingproblem to be polynomial whereas the problem of deciding arbitrary real arithmetic constraintshas been shown to be doubly exponential [5]. But if the set of constraints contains both linearand nonlinear constraints then during computation if a new linear constraint is to be checkedfor consistency with the collected constraint set then it would be advantageous to be able todetermine if this check can be done only with the linear solver. That is, the consistency checkis done by only checking the linear constraints. Of course, we have to be careful since in generalthere will be interactions between the linear and nonlinear constraints and such local consistencychecks will not imply global consistency.Our aim is to develop a framework for building networks of decision procedures such that acheck of a local constraint store is su�cient to decide global consistency. The problem we addressin this paper is to arrange the partial information we have (represented by constraints) in sucha way that interactions between decision procedures and constraints are made explicit. Oncethis information is explicitly available it is then possible to perform a number of optimizations.We give several examples of these. Additionally, we use our framework to analyze a complexdecision mechanism (the multi-layered decision procedure of CLP(R)).2



2 FormalizationThe CLP Scheme of Ja�ar and Lassez generalizes logic programming by replacing the notionof uni�cation with that of constraint solving over a speci�ed domain [14]. A key idea here isthat certain relation and function symbols have a �xed interpretation given by a structure ofcomputation. This means that specialized domain-speci�c decision procedures can be used, e.g.Gaussian elimination for deciding real linear equations and the Simplex method for deciding reallinear inequalities. However, there are many other methods such as forward checking [8] whichcan decide more restricted systems of constraints more e�ciently. It is desirable to incorporatethese algorithms into more general ones to take advantage of special-case solving to obtainspeedups.The �xed interpretation in CLP languages gives rise to an algebraic semantics which isequivalent to the model-theoretic, proof-theoretic, �xpoint and operational semantics. We shalluse the proof-theoretic characterization to explain our scheme since this greatly simpli�es theexposition.2.1 Specialized Decision ProceduresAs required within the CLP Scheme, a decision procedure for a class of constraints takes asinput a set of constraints of that class and decides if they are consistent.In this paper we shall be concerned with networks of specialized decision procedures. Eachspecialized decision procedure Di has an associated local store Si which is a set of constraintsof the appropriate class, C(Di). Some specialized decision procedures can also decide if a newconstraint is implied by a given set of constraints. A decision made by Di is either that a newconstraint C 2 C(Di) is inconsistent with Si or that it is implied by Si. For each computa-tion domain D, the implementation of a CLP (D) system requires a network of (one or) morespecialised decision procedures which are used in such a way that they support an (abstract)decision procedure for D.This paper addresses the problem of e�ciency. We seek to obtain a \globally correct"decision, by using the cheapest specialized decision procedures possible. We seek to place newconstraints in the local stores in the best way so as to ensure that local decisions are, as oftenas possible, globally signi�cant. We seek to establish communication between the specializeddecision procedures which minimises the cost of current and future decisions.To this purpose we introduce the notion of an \answer" returned from a specialized decisionprocedure. Our fundamental requirement is that the answers returned from all the decisionprocedures in a network should agree. This property we term \consensus".2.2 De�nitionsIn this section we introduce some de�nitions and terminology which are in general use throughoutthe paper. More speci�c de�nitions will be presented in the context where they arise.Terms are built in the usual recursive manner respecting signatures. A term in which theprincipal functor has a �xed interpretation is called an atomic constraint, e.g. in the domain of3



uninterpreted functors over real arithmetic terms the constraint relation symbols are f=Herbrand;=real ;�; <;>;�g. The programmer may de�ne relations using uninterpreted relation symbolssuch as gcd or append. Well-formed formulae are formed from terms using connectives andquanti�ers in the usual manner. We call a conjunction of atomic constraints a constraint. Theconstraint programming languages we shall consider use just the Horn clause subset of predicatelogic and conform to the well-known syntactic conventions of PROLOG.2.3 Logical SemanticsAlthough the constraints we are interested in are often described in terms of algebraic structureswe are more interested in their behaviour. For us then, a better characterization is in terms oftheories. The link between the structure and the theory is given by Ja�ar and Lassez [14] forthe logical semantics of CLP(D). They introduce a theory TD (a set of formulae closed underlogical consequence) which plays the same role as the computation domain (structure) D. TDis required to satisfy two conditions:� D j= TD� for all �nite constraint stores S � C(D), D j= S implies TD j= S.To extend their results to general logic programs, with negation, Ja�ar and Lassez imposed anextra condition on TD called satisfaction completeness [14]. This condition holds for a theoryT with respect to a class C of constraints, if for any constraint C 2 C, whenever C is notinconsistent with the theory, 9C is a logical consequence of it. In other words, whenever it isnot the case that T j= 8:C, then T j= 9C.Let us take as an example the basic theory Teq for an equivalence relation eq:8X:eq(X;X)8X; Y:(eq(X; Y )! eq(Y;X))8X; Y; Z:(eq(X;Y ) ^ eq(Y; Z)! eq(X;Z))This theory is satisfaction complete, for a rather trivial class of constraints which admits unquan-ti�ed formulae with predicate eq and no constant or function symbols. However if we extend theclass of constraints to admit function symbols, it is no longer satisfaction complete, because thereare constraints on eq, such as eq(g(X); f(X)), for which neither Teq j= 8X::eq(g(X); f(X)) norTeq j= 9X:eq(g(X); f(X)).12.4 Formalising Decision ProceduresUnder the logical semantics for CLP (D), a decision procedure should decide whether for a �niteset of constraints S � C(D):TD j= 8::S(where :S denotes the negation of the conjunction of the constraints in S), or if1However it can be extended in turn to a satisfaction complete theory TCeq for unquanti�ed eq constraints withfunction symbols by adding Clark's equality axioms [3]. The extended theory yields TCeq j= 8X::eq(g(X); f(X)).4



TD j= 9:SOperationally in a CLP (D) system, the constraints are added incrementally. In a givencomputation state the current constraint store S is always consistent, and the decision procedureis required to decide if for a new constraint C, TD j= 8:(S ! :C). Whenever this is not thecase, it follows by satisfaction completeness that TD j= 9:(S ^ C)We give a similar logical semantics for each specialized decision procedureDi by associatingwith it a logical theory TDi. If Si is the local constraint store associated with Di, and C 2 C(Di)is a new constraint, then local inconsistency is formalised asTDi j= 8:(S ! :C)The new constraint C is locally consistent if it is not locally inconsistent. Notice, however, thatthe specialized theory TDi is not necessarily satisfaction complete, so it does not follow thatTDi j= 9:(S ^ C).The network of specialized decision procedures implementing a CLP (D) system mustcombine to yield a global (abstract) decision procedure for D. In this paper we assume thespecialized decision procedures are both correct and complete with respect to the global decisionprocedure. Formally correctness follows just if TDi � TD for each specialized decision procedureDi. Completeness follows if for any atomic CLP (D) constraint C, and constraint store S,� C is globally inconsistent (TD j= 8:(S ! :C)) only if C 2 C(Di) is locally inconsistent withthe theory TDi and local store Si = S \ C(Di) associated with some specialized decisionprocedure Di (TDi j= 8:(Si ! :C)).� C is a global consequence of S (TD j= 9:(S ^ C)) only if C 2 C(Di) is a local consequenceof the theory TDi and local store Si = S \C(Di) associated with some specialized decisionprocedure Di (TDi j= 9:(Si ^ C))Whilst correctness of a network of specialized decision procedures is at least theoreticallyrather unproblematic, completeness is not an easy property to establish. We �nesse this problemby simply assuming completeness.2.5 Answers Returned from Specialized Decision ProceduresThe formalization of a decision procedure re
ects the underlying theory which de�nes the con-straints. In practice the theory is usually built into the constraint solver as a �xed set ofinference rules. Accordingly we view a decision procedure Di as a theorem prover tuned toproving formulae of a certain class (C(Di)) from a speci�c theory TDi .An answer returned by a specialized decision procedure must be globally correct. Ideallywe would obtain the answer yes from a specialized decision procedure if the new constraint wasglobally consistent, and no if it was globally inconsistent. Unfortunately there is, in general,insu�cient information available in the local store to support such global decisions, even in casethe new constraint is in the class of constraints the specialized decision procedure can decide.Consequently there are three possible answers returned from specialized decision procedure, yes,no or unknown. 5



Note that we do not require satisfaction completeness for the theories underlying specialiseddecision procedures. The reason is that if local inconsistency cannot be established, the systemdoes not need to conclude that the new constraint is consistent. This can be decided instead byanother more general decision procedure.Because the specialized theory TDi is a subset of the domain theory TD, and assumingthe local store Si is a subset of the current constraint store S, local inconsistency always entailsglobal inconsistency. For example suppose an implementation of CLP (R) uses a specializeddecision procedure to deal with equations. The local store associated with this procedure alsoholds only equations, and no inequalities. Suppose the equation X = 1 appeared in this localstore. The new constraint X = 2 can be proved locally inconsistent by the specialized procedureusing its local store. No matter what further constraints appear in the current constraint store,the new constraint X = 2 is clearly globally inconsistent as well. This is a direct result of ourusing standard predicate calculus as our formalisation. Since it is monotonic, we can extend thetheory and the constraint store freely without invalidating the local proof of inconsistency.In short, a specialized decision procedure can answer no whenever local inconsistency isproved.However failure to establish local inconsistency does not imply the new constraint is glob-ally consistent. For example a decision procedure for equality might successfully establish thelocal consistency of a constraint X = 2, whilst the global store contains X > 3. In this caseX = 2 is locally consistent but globally inconsistent.To obtain an answer yes, it su�ces to prove the new constraint C is already a consequenceof the local store. In this case, using the monotonicity of the predicate calculus again, it followsthat the new constraint is a consequence of the current constraint store under the domain theory.(If TDi j= (Si ! C) then TD j= S ! C). Since the operational semantics of CLP (X) entails theconsistency of the current constraint store in every computation state, and C is a consequenceof the current constraint store, C must be consistent with it.For example if the local store contains X = 2 and Y = X then the new constraint Y = 2is a local consequence, therefore globally entailed, and therefore also globally consistent. Clearlythis is a very stringent condition for a yes answer which does not arise very often in practicalprograms. One of the main results of this paper is to signi�cantly loosen the conditions for ayes answer from a specialized decision procedure, see section 3 below.Finally the answer unknown is returned from a decision procedure just in case it cananswer neither yes or no.2.6 ConsensusSpecialized decision procedures consist of two components (i) a theory specialized for a class ofconstraints, and (ii) a local store of constraints. Recall that our aim is to achieve consensus (andthus have local decisions agree with the global decision) but at the same time avoid involvingcostly decision procedures in the network (as far as possible). Therefore the consensus has to beinherent in the network. We analyze this interaction by making the relationships (relevant toachieving consensus) between decision procedures explicit. We now consider what information6



we would like to make explicit.Consensus requires that two decision procedures, with their own di�erent local stores,can't contradict each other, one answering yes whilst the other answers no. In this case we havetwo underlying theories T1 and T2 and two local stores S1 and S2, and we need to preclude thecase that T1; S1 j= :C and T2; S2 j= 9C. Whenever this arises, T1 [ T2 [ S1 [ S2 is inconsistent.Even if T1 and T2 have the same constraint store S, it is possible for S to be consistent withT1 and T2 individually but have T1 [ T2 [ S be inconsistent. The following example illustratesthe point. If T1 is f8X:f(X) � g(X)g, and T2 is f8X:g(X) � f(X)g, and S is ff(Y ) 6= g(Y )g,we have a case where T1[S is consistent, T2[S is consistent, T1[T2 is consistent, but T1[T2[Sis inconsistent.Consensus is imposed in our framework by the following conditions:Correctness All the decision procedures associated with a given CLP(D) system, have an underlyingtheory which is a subset of the domain theory TDCompletenes New constraints are only accepted by the network of specialized decision procedures ifsome procedure answers yes. By correctness this means that accepted constraints areconsistent with the current (global) constraint store. New constraints are only added tolocal constraint stores if they have been accepted. Consequently the local constraint storesare subsets of the current (global) constraint store, which is consistent (TD j= 9SD).Given these conditions, consensus is a direct consequence of our formalisation in monotoniclogic.3 Optimizing the Design of Composite Decision Procedures3.1 Loosening the Conditions for a Local yes AnswerIn this subsection We present three loosened conditions under which a local decision procedurecan answer yes.Firstly we can take advantage of existential quanti�cation. Many new constraints includeone or more new variables, that do not appear anywhere in the current global constraint store.We shall write C[ ~V ] for a constraint involving new variables ~V = V1; : : :Vn. A local decisionprocedure Di can answer yes if, after existentially quantifying over the new variables, it can beproved that the resulting constraint is a consequence of the local constraint store Si, formallyTDi j= 8(Si ! 9 ~V :C[ ~V ]). By monotonicity it follows that T j= 8(S ! 9 ~V :C[ ~V ]). By thesatisfaction completeness of TD we conclude that T j= 9(S ^ 9 ~V :C[ ~V ]), and since none ofthe new variables occur in S we can pull the existential quanti�cation outside the conjunctionyielding T j= 9:S ^ C, thus establishing the global consistency of the new constraint.As an example we take Gaussian elimination as the specialised decision procedure, whoseunderlying theory is the theory of equality and whose class of constraints admits linear numericequations. 7



Suppose the new constraint is 5 = X +2 �Y +3, where X is a new variable, but Y is not.Then the answer yes can be returned since 9X:(5 = X + 2 � Y + 3) can be proved by making Xthe subject of the equation X = 2� 2 � Y , and using the axioms: 8A;B:9X:(X = A�B), and8A; Y:9Z:(Z = A � Y ), which states that � and � are functions de�ned everywhere.However if neither X nor Y were new variables the uni�cation procedure could not ingeneral answer yes, since there could be contradictory constraints in the global constraint storesuch as fY > X; Y > 0g.Secondly, we introduce a notion of independence. Two constraint stores S1 and S2, areindependent if the set of variables of S1 is disjoint from the set of variables of S2. Under thiscondition, the local consistency of S1 and S2 implies that S1[S2 is also consistent. Researchersin the area of parallelism also use this property to ensure that when a problem is decomposedthat solving the subproblems do not interfere with each other, e.g. restricted AND-parallelism[6]. Independence will be used in section 3.3 below, to keep local constraint stores small.Independence enables a specialized decision procedure Di to answer yes if the new con-straint is provably consistent with its local store Si even though the proof might \instantiate"variables in Si. The condition is that Si is independent of the remaining constraints in S n Si.Formally, the procedure can answer yes for a new constraint C if TDi j= 9(Si ! C). The globalconsistency of C follows since, by assumption TD j= 9(SD nSi), and therefore (by monotonicity)TD j= 9Si^9(SD nSi), and �nally, by independence we can pull the existential quanti�er outsidethe conjunction yielding TD j= 9SD.A simple, but important, extension of this result is to allow Si to share variables withother local stores if they are associated with more speci�c decision procedures in a sense de�nedin section 3.2 below.Thirdly, using independence, we can take advantage of satisfaction completeness. If thetheory TDi associated with decision procedure Di, is satisfaction complete and the constraintstore Si is independent of the remaining constraints SnSi, then Di can answer yes immediately ifthe new constraint is not locally inconsistent. In this case, therefore, the local decision proceduregives either a yes or a no answer to every new constraint.The reason is that if C is not inconsistent with Si then, by satisfaction completeness,TDi j= 9Si^C. Now it follows that Si^C is globally consistent by the same argument as before.A �rst example of this is the use of Herbrand uni�cation for equations which do notinvolve mathematical functions. For this class of constraints (i.e. equations with uninterpretedfunctions only), uni�cation is satisfaction complete. Thus any new constraint which is notproved inconsistent by the uni�cation procedure is accepted as globally consistent. In CLP (R)accordingly, equations involving only \non-solver" variables, are handled by the uni�cation inthe logic programming engine and are never passed to the specialised arithmetic solvers.As another example, the theory underlying Gaussian elimination is satisfaction completefor the class of mathematical equations. As long as the set of variables in the local constraintstore associated with Gaussian elimination is disjoint from the variables in the current Simplextableau, for a new equation which also shares no variables with the Simplex tableau, inde-pendence can thus be used to enable Gaussian elimination to decide new constraints withoutresorting to the Simplex algorithm. 8



Returning to an earlier example 5 = X + 2 � Y + 3, even if X is not a new variable, aslong as the local store shares no variables with the Simplex tableau, it can be treated usingGaussian elimination alone. If the equation is not inconsistent with the local store associatedwith Gaussian elimination, the procedure simpli�es it to X = 2� 2 � Y (see section 3.4 below)but but, since the local store is independent, and the theory underlying Gaussian elimination issatisfaction complete for equations, instead of unknown it returns the answer yes.3.2 Using Specialized Procedures to Decide ConstraintsFirst we present an abstract algorithm for determining satis�ability given a network of coop-erating decision procedures. Its formulation here as a distributed algorithm is merely done tosimplify the discussion. Short cuts are achieved by broadcasting the result returned by one deci-sion procedure and thereby interrupting other decision procedures and saving them any furtherwork. The behaviour of each decision procedure can be described in terms of a single \check"operation which invokes the decision procedure on the new constraint with the local store. Fourthings can happen:� The procedure returns the answer yes. In this case the check succeeds and broadcasts itsresult to all the other checking processes.� The procedure returns the answer no. In this case the check fails and broadcasts its resultto all the other checking processes.� The answer is unknown. In this case the check suspends.� The checking process is interrupted by a broadcast. In this case it terminates with thesame result as that broadcasted.� A suspended process that recieves a broadcast decision terminates with that decision.The �nal result is either that all the checks succeed, or they all fail. Since we assume the networkto be complete with respect to the (satisfaction complete) domain theory (see section 2.4 above),they cannot all suspend. The consistent behaviour of all the check operations is guaranteed bythe consensus of the decision procedures and their local stores.If the checks fail is the new constraint globally inconsistent, and it is not admitted. Oper-ationally, such a result causes the system to start backtracking. If the checks succeed, then thenew constraint is globally consistent. It is then admitted and added to certain local stores, asdescribed below.Of course one does not wish to run all the decision procedures in parallel. Instead what isdesired is that calls to the expensive decision be avoided. To this end we use a taxonomy basedon subsumption. A decision procedure D1 is said to be more speci�c than a decision procedureD2 if1. the theory TD1 of D1 is a subset of the theory TD2 of D2,9



2. The class C(D1) is a subset of C(D2)3. S1 � S2. In this case we say that the constraint stores are admissible.For a new constraint apply the decision procedures earliest in the ordering �rst, and only ifthe answer is unknown move up the ordering. This sequential use of decision procedures alsosupports constraint simpli�cation (see section 3.4 below).3.3 Distributing Constraints to Local StoresIf every accepted constraint C is added to every local store for which C is in its class of con-straints, then by assumption the completeness of the network of decision procedures is preserved.However it is possible to retain completeness without adding every constraint to every appro-priate store.Firstly let us consider new constraints that share no variables with the global constraintstore. If S and C share no variables, then by indepedndence as we argued above, they areglobally consistent TD j= 9S ^C, if and only if they are independently consistent TD j= 9S, andTD j= 9C.Thus there is no need to use any (local) constraint store in establishing the consistency ofC. Similarly if a new constraint C2 is added, which shares no variables with C, then the presenceof C in any (local) constraint store during the checking of C2 is unnecessary. Consequently, untiltwo constraints are added which share variables, there is no need to add any constraints to anyconstraint store.This independence result can be used to partition the local stores associated with eachspecialized decision procedure into disjoint local stores which share no variables. When a newconstraint is checked which only shares variables with one local store in the partition, then itneed only be checked against that local store and no other.Furthermore the partitioning signi�cantly increases the potential for global independenceof a local store. For example although the local constraint stores associated with Gaussianelimination may indeed share variables with the Simplex tableau, individual components of thepartition may be quite independent of it. In this case consistency with a single componentsu�ces to establish the global consistency of any new constraint whose variables are shared onlywith that component.Even more interestingly, we can use satisfaction completeness to extend the partitioningbeyond a single specialized decision procedure. Consider a partitioning of the global constraintstore SD. Suppose all the constraints in some component Sk belong to the class C(Di), andthat Di has a satisfaction complete underlying theory TDi , for the class C(Di) of constraints.Then only the decision procedure Di needed be used for checking a new constraint C 2 C(Di)which only shares variables with Sk. Either it is locally consistent, which by independence andsatisfaction completeness entails global consistency, or it is locally inconsistent. In each case thelocal decision is su�cient to produce a yes or no answer. If a new constraint shares no variableswith Sik , then it can be checked by all other specialized decision procedures against their localstores, independently of the constraints in Sik .10



The advantage of partioning for increasing the number of local decisions has been estab-lished. To ensure the local stores are partitioned it is necessary when adding a new acceptedconstraint to add it to the component with which it shares variables and no other component ofthe partition. As long as the new constraints fall into the current components, the argumentsabove based on indepence and satisfaction completeness prove that the behaviour of the networkof decision procedures remains correct and complete. Therefore in this case there is no need toadd the new constraint to every local store which admits constraints of that class.This result is used in CLP (R) to add new Herbrand equations only to the uni�cationenvironment of the logic programming engine and not to any of the solvers, in case there are no\solver" variables in the equation (see above, section 3). Of course it is vital for preserving theindependence of the uni�cation environment from the other local constraint stores.However sooner or later a constraint will be added that does not fall into one of the currentcomponents. Either it will share a variable with more than one component, or else it may belongto a single component but fail to belong to the appropriate restricted class of constraints.In the �rst case the check is performed against a local store comprising the union of thea�ected partitions. Subsequently this union, together with the new constraint, forms a singlepartition.Sometimes the new constraint shares variables with a previously independent componentand with the local store associated with other decision procedures. This also happens if thenew constraint \belongs" to a single component, but not to its restricted class of constraints.In both cases the new constraint must be checked by further decision procedures. However eachdecision procedure must check the new constraint against the union of its local store and the(previously independent) component. Subsequently the whole partition must be added, with thenew constraint, as if all the constraints were new. In CLP (R) this occurs, for example, when anew equation causes \solver" and \non-solver" variables to be uni�ed.We conclude this subsection by describing the distribution of constraints between localstores according to the subsumption taxonomy of decision procedures.The completeness of the network of specialized decision procedures is not jeopardized if anew constraint is omitted from the store associated with a more speci�c decision procedure. Thereason is that although the more speci�c procedure will reach fewer decisions, in case no decisionis reached a more general procedure will be used, whose constraint store is complete. This resultis used in the implementation of CLP (R) to ensure a new constraint is only (ever) added to onelocal constraint store. However the duplication of constraints between more speci�c and moregeneral decision procedures has bene�ts for future constraint checking. The more constraintsheld in the local store associated with a more speci�c procedure, the more decisions it can reach.An example illustrating the advantage of duplicating constraints is given in section 4.2 below.3.4 Simplifying ConstraintsThe decision procedures could be implemented using simpli�cation [12]. Instead of just tryingto prove T; S j= :C or T; S j= 9 ~V :C[ ~V ], the procedure derives a simpler formulae CSimp[ ~V ]equivalent to C[ ~V ] in the sense that T; S j= C[ ~V ] � CSimp[ ~V ].11



If the constraint is inconsistent, T; S j= :C[ ~V ], then this is made explicit during sim-pli�cation: CSimp[ ~V ] is just false. In this case the procedure returns the answer no. If theconstraint is a logical consequence, T; S j= 9 ~V :C[ ~V ], then the procedure must explicitly checkwhether 9 ~V :CSimp[ ~V ] is a consequence of the underlying theory T . In this case it answers yes.If 9 ~V :CSimp[ ~V ] is neither false, nor a consequence of T , then the procedure answers unknown.Decision procedures which perform simpli�cation can produce useful information eventhough their answer is unknown. Most commonly this is when a specialized decision procedureyields a speci�c value for a variable. When a constraint checked by a specialized decisionprocedure becomes simpli�ed, then if the answer is unknown, instead of checking the originalconstraint with the other procedures, the simpli�ed constraint is now checked.Suppose for example the global constraint store included X = Y + 1 and X > 2. Theinconsistency of the new constraint 2 � X = Y , could be detected by the Simplex procedure.Alternatively however Gaussian elimination can simplify the new constraint to X = �1 andY = �2, and the inconsistency can now be detected by the built-in inequality predicate of theunderlying logic programming system.The use of specialized decision procedures for constraint simpli�cation can be used to re-duce the number of distinct variables in local stores associated with the more general decisionprocedures. This simpli�es constraint solving and increases independence. The technique re-quires certain equations of the form V ar = Term to be omitted from the local constraint storesassociated with more general procedures, such as the Simplex. Completeness is retained byalways simplifying constraints involving V ar, to constraints involving Term. Though intuitive,this technique depends upon simpli�cation being always carried out before constraint solving,and therefore somewhat restricts the framework presented in this paper. In most CLP systemsthe uni�cation decision procedure is used for simpli�cation of constraints in the way we justdescribed. Gaussian elimination could also be utilised in the same way.3.5 Detection of Redundant ConstraintsThe decision procedures naturally support a facility to recognise and prevent the addition ofredundant constraints. If a new constraint C has no new variables, and some decision procedurereturns the answer yes, then C is redundant. Since it is globally consistent (i.e. TD j= 9SD^C),and C has no variables, therefore it is independently consistent (i.e. TD j= C).On the other hand, our framework makes full use of the capacity of any specialized decisionprocedure Di to detect redundancy. If TDi j= 8:(Si ! C) for some new (redundant) constraintC, then the decision procedure immediately answers yes.3.6 An ExampleWe now give an example in the domain of real linear arithmetic. Consider a two-vertex networkconsisting of a decision procedure for equalities, call it CEq and a decision procedure for equalitiesand inequalities, call it CInEq. The theories underlying CEq and CInEq are TCEq and TCInEqrespectively. Thus we have that TCEq � TCInEq. Suppose the global constraint store is fX =12



4; Y = 2; X > 3; Z > 4g. The local store for CEq is fX = 4; Y = 2g. The constraint storefor CInEq contains all the constraints: fY = 2; X = 4; X > 3; Z > 4g. We now present threecases. These are the use of local consistency (resp. inconsistency) in quickly determining globalconsistency (resp. inconsistency) and the case when the specialized decision procedure returnsunknown.1. Let the constraint to be incrementally conjoined be X = Y then CEq detects X = 4^Y =2! :(X = Y ) and thus global inconsistency.2. Let the constraint to be incrementally conjoined be X = W . Then CEq detects thatX = 4 ^ X = W ! W = 4. Notice that W is a new variable. Since 9W:(W = 4) is asimple consequence of the equality theory, CEq answers yes, proving global consistency.3. Let the constraint to be incrementally conjoined be Z = 2. CEq can infer neither Z = 2nor :(Z = 2) so it waits (as the answer locally is unknown). But CInEq infers :(Z = 2)and global inconsistency is detected.4 Relationship to Existing Work4.1 The CLP(R) SystemCLP(R) is an instance of the CLP scheme in the domain of uninterpreted functors over realarithmetic terms. Its decision procedure for arithmetic constraints is implemented as a multi-layered combination of1. the Herbrand uni�er,2. a Gaussian elimination procedure,3. a Simplex algorithm,The handling of arithmetic constraints is summerized as follows. Linear inequalities are decidedusing a modi�ed Simplex algorithm. Linear equalities are sent to a Gaussian elimination pro-cedure. However, if a linear equality a�ects any linear inequalities it is immediately sent to theSimplex solver. The Herbrand uni�er deals with simple arithmetic constraints of the followingform.� an equation between two non-arithmetic variables,� an equation between a non-arithmetic variable and an arithmetic variable,� an equation involving an uninterpreted functor,� an equation or inequality between two numbers, and� an equation between a non-arithmetic variable and a number [15].13



4.2 The Cooperating Decision Procedures of CLP(R)We now analyze the decision procedures of CLP(R) to see how they achieve consensus.In terms of our framework we view the Herbrand decision procedure has having twodi�erent local stores, whose constraints involve disjoint sets of variables. This idea was discussedin section 2.5 above. Equalities involving arithmetic variables, which also appear in local storesassociated with the Gaussian or Simplex procedures, are kept in one store. Equalities involvingnon-arithmetic variables are held in the other.For non-arithmetic variables the equality theory is satisfaction complete, so if uni�cationfails the inconsistency of the constraint can be deduced (see section 2.5). Uni�cation is asimplication procedure, and in CLP(R) it is the simpli�ed constraint that is passed on to theother solvers, see section 3.4 above.If constraints cannot be solved by the Herbrand uni�er, they are passed to the less e�cientnumerical decision procedures. Numeric equations are next checked by the Gaussian eliminationprocedure. The theory underlying Gaussian elimination is satisfaction complete for equalities.For equations sharing no variables with other constraints held in the Simplex store, this en-ables Gaussian elimination to return success if it doesn't explicitly fail. However for equationsinvolving variables appearing in the Simplex store local consistency no longer implies globalconsistency. Therefore in CLP(R) very sophisticated analysis of the variables is carried out,including simpli�cation using equations in the Gaussian store, to decide if the new equationshould be passed up to the Simplex solver or not. This analysis reduces, in our framework, toan attempt to get the answer no or yes from the Gaussian decision procedure.Finally, if neither uni�cation nor Gaussian elimination can be used to decide a new equalityconstraint, it is passed to the Simplex solver. Inequalities, which fall outside the syntactic classof constraints handled by uni�cation and Gaussian elimination are also passed direct to theSimplex solver. Again the underlying theory for the Simplex solver is satisfaction complete, soif inconsistency cannot be proved, the system has soundly established global consistency.The operational behaviour of CLP(R) �ts into our framework, and the rationale for theglobal decision procedure corresponds closely to that described in section 2.1 above. The com-pleteness and soundness of CLP(R) is thus justi�ed in our framework.4.3 Some Suggested Modi�cations to CLP(R)There are more shortcuts which CLP(R) fails to exploit. In CLP(R) there is no attempt to useuni�cation for solving equations involving numeric terms. However this is a possible check sinceif the terms are identical, up to the occurrence of new variables, then the Herbrand uni�er couldimmediately answer yes.In the framework of this paper it is clear that the more constraints locally available to aweak, but e�cient, decision procedure, the more chance it has of producing a yes or no answerand short cutting further checking. Thus we would expect the e�ciency of CLP(R) to beenhanced by copying equalities from the Gaussian store to the uni�cation store. For exampleequalities like Y = X + 1 could be used by the uni�cation procedure to simplify incoming14



constraints. If all occurrences of Y could thereby be eliminated from the Gaussian store, thetotal number of arithmetic variables could be reduced.The elimination of redundant constraints is an important issue for e�ciency. The recog-nition that new constraints are redundant, so that they are never added to any constraint store,is achieved naturally within our framework (see section 3.5 above). Although some techniquesusing independence and subsumption criteria to identify and propagate useful information areemployed in CLP(R) they do not seem to have been systematically analyzed and used.4.4 Other MethodsThe technique of using specialization has also been tackled by Bruynooghe et al. [2]. Theirapproach relies on analyzing instantiation patterns and using a symbolic trace to derive con-trol information. Our method is more general in that we can incorporate specialized decisionprocedures whereas their method concentrates essentially on taking advantage of evaluation.5 ConclusionSince general constraint solvers are usually quite expensive and real world problems quite ofteninvolve just certain classes of constraints [10, 11, 13] one way to increase e�ciency is to usespecialised decision procedures for handling specialised classes of constraints.In this paper we have explored the problem of how to use the network as e�ciently aspossible. A given problem should be decided by the simplest procedures which can do the job.Moreover the number of constraints checked for consistency with each new constraint should bekept to a minimum.By formalising decision procedures as theorem provers, we have set up a framework inwhich the problem and requirements can be clearly speci�ed. A number of domain-independentproperties of decision procedures, relevant to e�cient constraint solving have been identi�ed.A fundamental property is consensus, which must hold between all decision procedures andlocal constraint stores in a network. The class of constraints for which a decision procedure issatisfaction complete [14] is also important. These properties enable certain short cuts to betaken which save using unnecessary decision procedures.The architecture of the CLP(R) decision procedure has been shown to �t the frameworkwe introduce and make use of many of the optimisations though, interestingly, not all.The ideas presented here are being used in the development of a new CLP platform atECRC.AcknowledgementsThe ideas in this paper were discussed with Alex Herold, Thom Fr�uhwirth, Eric Monfroyand Volker Kuechenho�. We thank them for their many valuable comments.15
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