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Abstract. This paper proposes a method of generating valid integer
Benders cuts for a general class of integer programming problems. A
generic valid Benders cut in disjunctive form is presented first, as a basis
for the subsequent derivations of simple valid cuts. Under a qualification
condition, a simple valid Benders cut in linear form can be identified.
A cut generation problem is formulated to elicit it. The simple vahd
Benders cut is further generalized to a minimally relazed Benders cut,
based on which a complete Benders decomposition algorithm is given,
and its finite convergency to optimality is proved. The proposed algo-
rithm provides a way of applying the Benders decomposition strategy to
solve integer programs. The computational results show that using the
Benders algorithm for integer programs to exploit the problem structures
can reduce the solving time more and more as the problem size increases.

1 Introduction

Benders decomposition is a strategy for solving large-scale optimization prob-
lems [1]. The variables of the problem are partitioned into two sets: master
problem variables and subproblem wvariables. The Benders algorithm iteratively
solves a master problem, which assigns tentative values for the master problem
variables, and a subproblem, obtained by fixing the master problem variables to
the tentative values. In every iteration, the subproblem solution provides certain
information on the assignment of master problem variables. Such information is
expressed as a Benders cut, cutting off some assignments that are not accept-
able. The Benders cut is then added to the master problem, narrowing down the
search space of master problem variables and eventually leading to optimality.
On one hand, Benders method is employed to exploit the problem structure:
the problem is decomposed into a series of independent smaller subproblems,
reducing the complexity of solving it [2]. On the other hand, Benders method
opens a dimension for ‘hybrid algorithms’ [3,4] where the master problem and
the subproblems can be solved with different methods.

The generation of Benders cuts is the core of Benders decomposition algo-
rithm. Indeed, valid Benders cuts guarantee the convergence of the iterations to
the optimal solution of the original problem, and also the cuts determine how
fast the algorithm converges.



The classic Benders decomposition algorithm [5] was proposed for linear pro-
gramming problems, the cut generation of which is based on the strong duality
property of linear programming [2]. Geoffrion has extended it to a larger class
of mathematical programming problems [6].

For integer programming, however, it is difficult to generate valid integer
Benders cut, due to the duality gap of integer programming in subproblems.
One possible way is to use the no-good cut to exclude only the current tentative
assignment of master problem variables that is unacceptable. Such no-good Ben-
ders cuts will result in an enumerative search and thus a slow convergence. For
some specific problems, better Benders cuts can be obtained [7]. For example, in
the machine scheduling application, the cut that limits the incompatible jobs in
the same machine is generally stronger. For more general integer programming,
logic-based Benders decomposition [8] was proposed to generate valid integer
Benders cuts, but these cuts contain a large number of disjunctions [9], the
linearization of which leads to huge cuts with many auxiliary variables, compli-
cating the master problem significantly.

This paper proposes a new method of generating valid Benders cuts for a class
of integer programs, in which the objective function only contains the master
problem variables.

As a foundation of our derivation, a generic valid integer Benders cut is
firstly presented. However it is difficult to use due to its exponential size and
nonlinearity. Instead, we can pick only one linear inequality from the disjunction
of the generic cut, while preserving the validity. A qualification condition is then
given, with which such a simple valid cut can be identified. A cut generation
problem is formulated to determine the simple linear valid cut.

However, such an integer Benders cut is not always available. The minimally
relazed cut is then proposed as a generalization of it, obtainable in all cases. The
simple integer Benders cut is just a special case of the minimally relaxed cut with
‘zero’ relaxation. Based on this, a complete Benders decomposition algorithm is
presented, and its finite convergency to optimality 1s proved.

The paper is organized as follows. Section 2 introduces the integer programs
under consideration and the principle of the Benders decomposition algorithm.
Section 3 derives the integer Benders cut. Section 4 generalizes to the minimally
relaxed integer Benders cut. Section 5 presents the complete Benders decompo-
sition algorithm that could be used in practice. Section 6 gives computational
results. Section 7 concludes the paper. The appendix gives the proofs of all the
lemmas.

2 Preliminaries

2.1 Integer Programs

The programs we consider in the paper are written as the following form (Such
programs arise from our study on a path generation application in network traffic
engineering [10]):



P max ¢y
Yz
Dy <d,
s.t. Ay + Bz < b,

y €1{0,1}" 2 € {0,1}" .

The problem variables are partitioned into two vectors y (master problem vari-
ables) and @ (subproblem variables), and the objective function only contains
the master problem variables.

By the use of Benders decomposition, the problem P is decomposed into
the master problem (M P) that solves only the y variables and the subproblem
(SP'(y)) that solves only the @ variables, by fixing the ¢ variables to the master
problem solution, denoted by 3.

MP: max y SP'(g): max 0
Dy <d, ot {Bang—Ay,
s.t. < Benders cuts, T lxe {0,117,
y € {0,1}",

where the Benders cuts in M P are gradually added during the iterations. Note
that the subproblem is a feasibility problem with a dummy objective.

2.2 Principle of Benders Decomposition Algorithm

The Benders decomposition algorithm iteratively solves the master problem and
the subproblem. In each iteration k, the master problem (MP(k)) sets a tenta-
tive value for the master problem variables (g<k>), with which the subproblem
(SP'(g*))) is formed and solved. Using the subproblem solution, a valid Ben-
ders cut over the y variables is constructed and added to the master problem in
the next iteration (MP(’“‘H)). The Benders cut added in every iteration cuts off
some infeasible assignments, thus the search space for the y variables is gradually
narrowed down as the algorithm proceeds, leading to optimality.

Algorithm 1. Benders Decomposition Algorithm

1. Initialization. Construct the initial master problem M P) without any Ben-
ders cut. Set k = 0.

2. IReration.
(a) Solve MPW®). If it is feasible, obtain the optimal solution §*) and the

optimal objective qbg\%; Otherwise, the original problem is infeasible; set
QSS\IZD = —o0 and go to exit.

(b) Construct the subproblem SP'(g*)). If the subproblem is feasible, then
optimality is found; obtain the optimal solution %), and go to exil.

(¢) Cut Generation Procedure. Generate a valid integer Benders cut and add
it to the master problem to construct MPYD Set k= k+1 and go
back to step 2.



3. Bazit. Return the current qbg\%; as the optimal objective. If qbg\%; = —oo then
the problem P 1s infeastble. If not, return the current (17(’”,;%(’“)) as the
optimal solution of problem P.

The Cut Generation Procedure 2(c) is not specified. This is the key step for
the algorithm, which must be selected carefully so that the algorithm eventually
converges to the optimality of the original problem in finite iterations.

2.3 Always Feasible Subproblem

The subproblem SP’(y) can be reformulated to an equivalent one that is always
feasible:
SP(g): min 17¢
. [Bax —r <b— Aj,
T lwe{o 1 >0,

which simply introduces slack variables » to the constraints of SP’(g). Obvi-
ously, SP/(y) is feasible iff SP(y) has 0 optimal value. In the Algorithm 1, once
the objective of SP(¥) equals 0 during iteration, the algorithm terminates (at
step 2(b)), and the optimal solution is found.

Dual values are very useful in the cut generation for linear programming. For
integer programming, however, we need to introduce the fized subproblems and
their duals. A fixed subproblem is constructed from any feasible assignment &
of subproblem SP(%). It just constrains the @ variables to be equal to a given
feasible .

SP;(y,&): min 17y
x,r
Br —r<b-— Ay, (1)
s.t. xr = &,
x:free,r > 0 .

The dual of fixed subproblem SP¢ (g, &) is:
DSP¢(g,&): max (Ay— b)Tu+ilv
—B'u+v=0, (2)

s.t. u <1,
v:free,u > 0 .

The optimal solution of DSP; (g, @) depends on the value of & (while the feasible
region of it does not). Let (@, ®) denote the corresponding optimal solution of
DSP;(gy,@). Since any value & € {0,1}" is feasible for SP(g) (2" possible
combinations), there are N = 2" possible fixed subproblems, each with its dual.

Given Z, the fixed subproblem SP; (g, &) is itself a linear program. Therefore,
strong duality holds for SP; (7, ) and DSP;(y, ). Furthermore, if &* is an
optimal solution of SP(§), then SP(g), SP¢(g,&*) and DSP; (g, &*) have the
same optimal value.



Relations between the optimal primal and dual solutions of SP;(g, %) and
DSP; (g, @) can be established via the complementary condition, that is, the
Karush-KKuhn-Tucker (KKT) [2] constraints:

u;(—Bx+r—Ag+b); =0 Vi, (3)
ri(u — 1)2' = 0 Vi,

together with the primal and dual constraints, (1) and (2).

Consider the complementary condition constraints. First, with the equation
® = & of (1) and the equation —BTwu + v = 0 of (2), variables # and v can be
replaced by # and BT u. Secondly, the equation 7;(u—1); = 0 of (3) means that
r; = r;u;. Putting this into the equation w;(—Ba + r — Ay + b); = 0 of (3),
we get u;(—B&); +7; = u;(AY — b);. The complementary condition constraints
can then be simplified to:

Bx —r<b- Ay,
uz(—Bfi)Z +r; = ’U,Z(A’g — b)z Vi,
ri(u - 1)2' =0 Vi,
r>0,0<u<1.

Finally, we can show the redundancy of v;(u — 1); = 0 in the following lemma
(Note that the proofs of all the lemmas are given in the appendix):

Lemma 1. The constraint v;(u — 1); = 0 is redundant in the presence of the
constraints:

Bx —r<b- Ay,

ul(—B:i)Z +7r; = UZ(A’g — b)z Via (4)
r>0,0<u<1.

Thus, the complementary condition constraints are finally simplified to (4).

3 Integer Benders Cut Generation

3.1 Generic Valid Integer Benders Cut

In general, the Benders cut is a logic expression over the y variables, generated
using the information from the subproblem solution. The valid Benders cut must
guarantee that Algorithm 1 finitely converges to the optimal solution. We define
the valid Benders cut for integer programming.

Definition 1. In a certain iteration of the Benders algorithm, a valid Benders
cut is a logic expression over the master problem variables y that satisfies:

Condition 1. if the current master problem solution g is infeasible, then the cut
must exclude at least Y,
Condition 2. any feasible assignment of y variables must satisfy the cut.



Condition I guarantees finite convergence since y has a finite domain. Condition
2 guarantees optimality since the cut never cuts off feasible solutions.

Lemma 2. If a valid Benders cut is generated in every iteration (at step 2(c)),
then Algorithm 1 finitely converges to the optimality of the original program P.

Using the solutions of all N fixed subproblems (denoted by SP; (g, %), Vi =
1,--+,N), a generic integer Benders cut can be obtained as the disjunction of N
linear inequalities:

()

vV (Ay - b)TaN + @V)TEN <o,

where {#1,--. N} are the list of all the possible # values (i.e. an enumeration
of {0,1}"). For each &, (@*,#%) are the corresponding optimal dual solutions
from DSP; (g, %*).

Similar to the Benders cut for linear programming, each linear inequality in
the disjunction follows the expression of the objective function of DSP; (¥, Z).
However, for integer programming, where a duality gap exists, we use a large
number of dual fixed subproblem solutions, instead of a single dual subproblem
solution for linear programming where no duality gap exists.

Lemma 3. The generic integer Benders cut (5) is a valid cut.

The generic cut (5) is valid, but it has a nonlinear (disjunctive) form and
intrinsically contains all possible @ combinations. Although it has theoretical
value, it is difficult to use it directly in practical algorithms.

3.2 Integer Benders Cut

Under certain conditions, one of the linear inequalities from the disjunction (5)
can still be a valid cut. In such cases the valid integer Benders cut becomes
a simple linear inequality and the nonlinear disjunction disappears. We give
the following sufficient condition under which such a simple valid cut can be

1dentified:

Theorem 1. If there exists a solution & € {@',--- &N} such that & and the
corresponding dual v satisfy

elo<xls Vaxelz' - zV} (6)
then the linear inequality
(Ay—b)Ta+# 5<0 (7)

1s a valid integer Benders cut.



Proof. (for the valid cut condition 1) If § is infeasible for the subproblem,
then SP(y) has positive objective value. Thus, any possible SP¢(g, %) (x €
{&1,..-,&N}) has a positive objective value, and so do all DSP; (g, ). There-
fore, all linear inequalities in (5) are violated by g. In particular, (Ay — b)Ta +
#7% < 0 is violated by @, that is, the cut (7) excludes the infeasible .

(for the valid cut condition 2) Let § be any feasible solution. There must exist
a corresponding (&, &, ®) such that SPy(g, &) and DSPs (g, &) has 0 objective
value as (Ag — b)T@ + &7 % = 0. Since the feasible region of all DSP;(y,®) are
identical and independent of the values of y and @, the values of (@, ©) which are
the optimal solution for DSP; (g, &) are also a feasible solution for DSP; (9, ).
Therefore,

(Ag-bla+a"s <(Ag-bTa+2"6=0 .
T

From the condition (6), we have 7% < #7 . Therefore,

(Ag-bdTa+ &7 <(Ag-bTa+&"s <0,
which means that the feasible § is not cut off by (7). O

If one can find an & such that the condition (6) holds, then the single lin-
ear inequality from the disjunction (5) that corresponds to & is a valid integer
Benders cut by itself. However, the condition (6) involves not only the selected
&, but also all other possible assignments of @, making it difficult to express (6)
as a simple constraint. But the sufficient condition (6) can be converted to an
equivalent sign condition.

Lemma 4. Inequalities (6) are satisfied iff the following holds:

z,=1=—= v; <0, .
1‘152:0:>’5220, Vl_l”n (8)

The above sign condition can be enforced as the constraints:

G5 < 0 vi,
{(1 — &) >0 Vi )

Unlike the condition (6), the sign condition (9) only involves the selected & itself
and the corresponding ».

3.3 Integer Benders Cut Generation

The integer Benders cut generation problem is to find a & such that the sign
condition (9) is satisfied. We formulate a Cut Generation Program (CGP) to
elicit it.

The sign condition relates &, an assignment that determines SP¢(g, &), and
©, the optimal dual solution from DSP;(y, ). The constraints between them



are established by (4). Therefore, the program C'GP is composed of constraints
(4), the sign condition (9) and a dummy objective function.

CGP(y) : min 0

Bi—r < b— Aj,

’U,Z(—Bfﬁ)l +r; = ’U,Z(A’g - b)i Vi, (10)
s.t. :ﬁZ(BT’U,)Z S 0 Vi,

(1 - :ﬁ)Z(BT’U,)Z Z 0 Vi,

ze€{0,1}",r>0,0<u<1.

Note that in CGP & (together with r, u) is a variable. The C'GP solves for a
value for @, which, together with the dual values, satisfies the sign condition. If
such a solution is found, a corresponding Benders cut is immediately obtained
as (7).

Because @; € {0, 1}, all the bilinear terms #;u; in the CG'P can be linearized
by introducing the variables w;; = ®;u; as:
w;; <&, wij < uj, -
{wijziirl-u;—l,]wijz(), vig

Thus, CGP can be in practice solved with MIP solvers such as XPRESS [12].
Note that the C'G P is not necessarily feasible due to the enforcement of the
additional sign condition constraints (9), and hence the integer Benders cut (7)

is not always available in each iteration. Therefore, we need to generalize the cut
in order to give a complete Benders decomposition Algorithm 1.

4 Relaxed Integer Benders Cut

4.1 Relaxation

When the sign condition (8) does not hold, one cannot directly use an inequality
from (5) as the valid cut. However, we can still select one inequality but relax it
to some extent so that the sign condition is satisfied. This provides a generalized
way of constructing a valid Benders cut.

In fact, any inequality from the disjunction (5):

(Ay—b)Ta+# 5<0 (11)

can be relaxed by inverting the & values for those elements that violate the sign
condition (8) as follows:

- Z; if (6) is satisfied for the ith element,
€T ; = ~ .
1 —&; otherwise.

In such way &' and # satisfy the sign condition, and the relaxed cut is given by:

(Ay —b)Ta + ()6 <0 . (12)



Lemma 5. The relaved cut (12) satisfies the valid cut condition 2, and the
relazation gap from (11) to (12) s 5 (& — &');0; > 0.

Note that (12) does not necessarily satisfy the valid cut condition 1, that is,
it may not cut off the infeasible g in the current iteration due to the relaxation.
In this case, however, it can be easily remedied by adding a no-good cut that
excludes only one point (the infeasible g):

m m
S gil—y)+> (1-gy; >1 . (13)
ji=1 i

j=1

4.2 Relaxed Cut Generation

Since any inequality from the disjunction (5) can produce a relaxed cut, one can
even avoid solving the CGP during iterations. Only the subproblem SP(g) is
solved to find a solution &, and DSP; (g, &) is solved to find the duals @ and .
Then a relaxed cut (12), derived from this &, can be generated. To ensure that
the valid cut condition 1 is met, the value of g is checked against the relaxed cut
(12). If it does violate (12), then (12) itself is a valid Benders cut that satisfies
valid cut condition 1 and 2. If not, the conjunction of (12) and (13) constitutes
a valid Benders cut.

The advantage of such a way of cut generation is its simplicity, since no CGP
is involved. The disadvantage 1s that the selection of the inequality to be relaxed
is rather arbitrary, and the generated cut can be loose. In particular, cut (7),
which is a tight cut that needs no relaxation, may exist but not be found.

Therefore it is desirable to find a minimally relazed cut, that is, its corre-
sponding relaxation gap (as is given in Lemma 5) is made as small as possible,
and thus the cut is as tight as possible. This is indeed a generalization of the
valid Benders cut (7), which is just the special case when the minimum relaxation
needed is zero.

The minimally relaxed cut can be generated by solving a Relaxed Cut Gen-
eration Program C'G P,, constructed by introducing slack variables (p, q) to the
sign condition constraints of CGP.

CGP(g) : ignil;q 17p+17¢q

Br—r<b- Ay,
uz(—Bfi)Z +7r; = ’U,Z(A’g — b)z Vi,

s :ﬁZ(BT’U,)Z — Pi S 0 Vi, (14)
o (1 — :ﬁ)Z(BT’U,)Z +q; >0 Vi,
zc€{0,1}",r>0,0<u<1,
P,g=>0.

As the program C'GP, after simple linearization this program is solvable in
practice with MIP solvers.



Lemma 6. If the optimal solution of CGP, is (&,u,v), and the optimal objec-
tive value is ¢cgp,, then:

n

ocap, = Z(fi —&)0; .

i=1

Since the right hand side of the above equation is just the relaxation gap and
it is minimized, the derived cut (12) is a minimally relaxed cut. In particular, if
the optimal objective value of CG P, is 0, then all the sign condition constraints
are satisfied, and no relaxation is necessary. In this case the minimally relaxed
cut is reduced to the basic valid Benders cut (7).

In practice, the CG P.(§) is solved in every iteration (provided the algorithm
does not terminate from step 2(a) or 2(b) before the cut generation). Its optimal
solution gives a minimally relaxed cut as (12). According to Lemma 5, cut (12)
satisfies the valid cut condition 2. If the optimal value is greater than 0, then the
current (infeasible) assignment of master problem variables g is checked against
the cut. If the cut is violated, then (12) by itself satisfies both the valid cut
conditions. If not, the conjunction of (12) and the no-good cut (13) constitutes
a valid Benders cut.

5 Complete Algorithm

Based on the proposed integer Benders cut, the unspecified cut generation step
2(c) in Algorithm 1 can now be given as:

Procedure 1. Cut Generation Procedure (step 2(c) of Algorithm 1)
Construct the cut generation program CGPT(Q(k)). Solve it to obtain the optimal
solution (:i(k),ﬂ(k),f)(k)) and its optimal objective value f/’(c%pr~ Generate the

minimally relazed cut:
(Ay —b)Ta®) 4 (&)F Tk <0
There are three cases:

A. if(/)(cképr =0, then &) = &*) the above cut is reduced to (7), which is the
valid Benders cut.

B. if(/)(cképr > 0 and the current §*) violates the above cut, then this cut is the
valid Benders cut by itself.

C. of (b(cképr > 0 and the current §*) satisfies the above cut, then this cut, in
conjunction with the no-good cut (13), is the valid Benders cut.

Add the generated Benders cut to the master problem to construct M PF+1D . Set
k=4%k+1 and go back to step 2 of Algorithm 1.

Replacing step 2(¢) of Algorithm 1 with the above procedure, we have a complete
Benders decomposition algorithm.



Theorem 2. The Benders Decomposition Algorithm 1, with its step 2(c) in-
stantiated by the Cut Generation Procedure 1, terminates in finite steps and
returns the optimal solution of the original program P.

The proof is trivial according to Lemma 2, since in all the three cases the cut
being generated satisfies the valid cut condition 1 and 2.

6 Computational Experiments

This section presents computational results of using Benders decomposition with
the proposed integer cuts in integer programming problems. The algorithm is
implemented using the ECLiPSe [11] platform. The test problems have bordered
block structure in their coefficient matrices, so that the Benders algorithm can
decompose the subproblem. The coefficients are generated randomly, and 20
cases are computed for each problem size configuration. The minimally relaxed
cut derived from the CG P, (14) of Sect. 4.2 is used in the tests.

Table 1. Computational Results using Minimally Relaxed Cut

#lter | #NG Sol. Time MP% | SP% | CGP% || MIP. Time AWIN
avr [max | (avr) avr max (avr) |(avr) | (avr) (avr)
300 | 100 ||10.40| 14 0|| 84.50| 132.06 5.1 3.6] 91.3 785.07| 7/20
300 | 150 ||11.55| 16 104.04| 187.39| 16.2| 3.4| 80.4 109.84| 6/20
300 | 200 ||12.40] 20 136.11| 260.56 | 27.1| 2.9] 70.0 176.20| 13/20
300 | 250 ||13.30] 25 195.67| 562.64| 46.9| 2.1 51.0 318.35| 12/20
400 | 100 |[12.10| 18 152.03| 245.67 3.4 3.9 92.7 1343.05| 13/20
400 | 150 ||15.20| 28| 0.05|/229.08| 566.93| 12.2| 3.7| 84.1 1697.62| 17/20
400 | 200 |[14.50| 21 0|| 215.85| 434.22| 19.4| 3.5| 77.1 889.04| 19/20
400 | 250 |[18.05| 30 0][371.47| 851.96| 35.1| 2.8| 62.1 3655.31| 20/20
500 | 100 |[15.05| 23| 0.05|[302.98| 546.46 2.6/ 4.0 93.4 6482.65 20/20
500 | 150 |[18.20| 36| 0.10]/409.43| 873.56 7.9| 3.8 88.3 8673.01| 20/20
500 | 200 |[19.15| 39| 0.05|/483.66|1441.65| 15.3| 3.4| 81.3 8595.30( 20/20
500 | 250 ||21.40| 43| 0.10{643.67|1929.80| 30.7| 3.0 66.3 10059.28| 20/20

SPVIMPV

Table 1 summarizes the computational results for different problem sizes.
The number of constraints is fixed to 300 and the number of blocks in the
subproblem matrix is fixed to 10. Thus, the subproblem is decomposed into 10
smaller independent problems, each of which can generate a Benders cut in every
iteration. We vary the number of master problem variables (MPV) and that of
subproblem variables (SPV). For each problem size configuration, the average
and maximum number of iterations (FIter: avr, max) of the 20 test instances,
and the average number of no-good cuts that have to be added (#NG) are
recorded. Also the average and maximum solving time (Sol.Time: avr, max) of
the 20 test instances, and the average percentages of solving time spent in the
solution of master problem, subproblem and relaxed cut generation program



(MP%, SP%, CGP%), are recorded. All the solving times are in seconds. For
comparison purpose, every problem is also directly solved with MIP solver. The
last two columns summarize the average MIP solving time (MIP.Time), and in
how many cases (out of the total 20 cases) the Benders algorithm outperforms
the directly solving (##WIN). The external solver used in both the decomposition
algorithm and the direct solving is XPRESS 14.21 [12].

Table 1 shows that as the problem size increases, the number of iterations
and the solving time both increase. But throughout the test instances, no-good
cuts being added are rare, which means that the generated cuts are usually
tight enough to exclude the infeasible assignment in each iteration. It is also
notable that a significant portion of the total solving time is spent in solving the
relaxed cut generation program. However, in spite of the time spent in the cut
generation, the Benders algorithm still wins over directly solving the problem
in more cases when the problem size becomes larger. This shows the benefits
of using Benders decomposition for integer programs to exploit the problem
structures, that is, a problem is decomposed into a master problem and a series
of smaller independent subproblems, reducing the complexity of solving it.

We observed that the decomposition algorithm is especially better for the
hard instances. For those problems that take long time by direct solving, the
Benders decomposition with integer cuts usually achieves high speedup in terms
of solving time. Table 2 shows the comparison. Five hardest instances (in terms
of direct MIP solving time) for each fixed subproblem size are recorded.

Table 2. Solving Time Comparison for Hard Instances

SPV | MPV || #lter Sol.Time | MIP.Time

300 100 12 94.62 14181.90
300 250 17 270.74 1403.68
300 250 25 562.64 901.83
300 250 14 201.25 833.31
300 200 15 171.69 624.48
400 250 28 697.45| >20000.00
400 150 17 299.12 14577.89
400 100 17 235.38 11086.83
400 250 12 195.52 10335.30
400 250 30 851.96 7061.50
500 250 24 803.22| >20000.00
500 100 18 372.73] >20000.00
500 150 14 297.14| >20000.00
500 200 30 834.20| >20000.00
500 250 28 924.56| >20000.00

We also observed that, for all the test instances that take more than 200
seconds by directly solving, the decomposition algorithm invariably consumes
less solving time than the direct solving.



7 Conclusions

This paper studied the generation of valid Benders cuts for a general class of
integer programming problems. The valid Benders cuts in the form of linear
inequalities were derived, based on which a complete Benders algorithm was
presented. The (relaxed) cut generation program was proposed to determine the
valid cuts in practice. In theoretical aspect, the paper extended the application
scope of Benders decomposition method to integer programming problems. In
computational experiments, the results showed the benefits of using Benders
algorithm with the proposed cut for integer programs.

The master problem discussed in the paper need not be restricted to linear
integer programs. In fact, it can be any formulation and can be solved with
any proper algorithm (such as Constraint Programming). More specifically, the
linear objective function in problem P (i.e. ¢T'y) can be replaced with a general
function f(y). The first constraint in P (i.e. Dy < d) can be replaced with
a general constraint C(y) (even need not be arithmetic). Since the generalized
objective and constraint are only handled in the master problem, they do not
affect the theory and method proposed in the paper. Furthermore, the second
constraint of P can be generalized to h(y) + Bx < b, that is, the part that
relates to the master problem variables can be any function on y (i.e. h(y)),
in place of the linear one, Ay. Accordingly, all the occurrences of Ay in the
derivations are changed to h(y), and the derivations remain valid. As the master
problem is generalized as above, different modelling and solution methods could
be combined via the method of Benders decomposition to cooperatively solve a
given optimization problem.
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Appendix: Proofs of Lemmas

Lemma 1:

Proof. Tt suffices to show that any feasible solution of (4) automatically satisfies
ri(u — 1); = 0. Suppose &, #, 4 constitute a feasible solution of (4).
The first constraint of (4) implies

The second constraint of (4) implies

Consider two cases on the non-negative value of #;.
Case 1: #; = 0. Then the constraint »;(w — 1); = 0 is trivially satisfied.
Case 2: #; > 0. Then we have @; = 1 (otherwise, 0 < 4i; < 1. Then from (16)
0<% =4,(Ag+ B& — b); < (Ay + B& — b);, which contradicts (15)). Since
#; = 1, the constraint 7;(w — 1); = 0 is again satisfied. O

Lemma 2:

Proof. In every iteration, if #(*) is feasible then the algorithm terminates from
step 2(b). Otherwise a valid cut is added. Due to the valid cut condition 1, the
feasible space of M P+ must be smaller than that of M P*) at least reduced
by one point. Since the feasible space of master problem is finite domain, the
algorithm terminates finitely. Due to the valid cut condition 2, the feasible space
of M P is always a relaxation of that of the original program P. If the algorithm
terminates from 2(a), then M P%) is infeasible, and so is the original program
P. If the algorithm terminates from step 2(b), the current optimal solution of
M PX%) is proved to be feasible for the subproblem and thus feasible for P. Since
MP™) is a relaxation of P, this solution is optimal for P. a

Lemma 3:

Proof. For the valid cut condition 1, if 4 is infeasible for the subproblem, then
SP(y) has positive objective value. Thus any possible SP; (%, ) has positive
objective value, and so do all DSP; (g, ®). Therefore all inequalities in cut (5)
are violated, that is, cut (5) excludes g. For the valid cut condition 2, consider
any feasible §. There must exist one value & such that SP; (g, &) has 0 objective
value, and so do its dual DSP;(§, &), that is, (A§—b)T @+ 276 = 0 is satisfied,
which means the disjunctive cut (5) does not cut off the feasible . O



Lemma 4:

Proof. For necessity, we show that if (8) is violated, then (6) must be violated.
Suppose the ith element &; = 1 and ©; > 0 (The case where the second condition
of (8) is violated can be proved similarly). Then &;v; > 0. Consider another
assignment @, with the ¢th element x; = 0 and with all other elements the same
as &. It is easy to see that &9 > v, which means that (6) is violated.

For sufficiency, we suppose (8) is satisfied for every element. Then the in-
equality &;v; < bv; holds no matter b is 0 or 1. Therefore, for every element of
any @ € {0,1}", we have #;%; < @®;9;, which implies that (6) holds. O
Lemma 5:

Proof. We first prove that the relaxed cut satisfies the valid cut condition 2.
Following the same reasoning as the proof of Theorem 1, we have:

(Ag-bla+a"s <(Ag-bTa+2"6=0 .

According to the construction of relaxed cut, we have &';%; < bo; for any binary
value b € {0,1}. In particular, &';0; < &;9;,Vi. Therefore,

Ag-bdTa+&"s <(Ag-b)Ta+i"5 <0,

which means that the feasible § is not cut off by (12).

The relaxation gap is directly obtained by subtracting the left hand side
of (12) from that of (11). Because &';9; < #;9;, the relaxation gap 2?21({'5 —
z');0; > 0. o
Lemma 6:

Proof. Consider the program C'GP,. Since v = BT u, the constraint #;(BTu); —
pi < 0 in (14) becomes #;v; < p;, and (1 — &);(BTu); + q; > 0 becomes
—(1—@)v; <qs.

For each element &; and its corresponding v;, there are three cases.
Case 1: &; and v; satisfy the sign condition. Then the optimal slack variable pj
and g are 0, and &; = &';. Therefore, pf + qf = (# — &');9;, = 0.
Case 2: ®; and v; violates the sign condition as &;v; > 0, which implies that
Z; = 1 and ©; > 0. The optimal slack variable p; = ©; > 0, and g} equals 0.
Since the sign condition is violated, the value of &; will be changed from 1 to 0
(&'; = 0) to construct the relaxed cut, and thus (& —&');0; equals ©;. Therefore,
prtq=(®—&")0; > 0.
Case 3: &; and o; violates the sign condition as (1 — &;)v; < 0, which implies
that @; = 0 and ©; < 0. The optimal slack variable ¢f = —v; > 0, and p] equals
0. Since the sign condition is violated, the value of &; will be changed from 0
to 1 (#'; = 1) to construct the relaxed cut, and thus (& — &');9; equals —v,.
Therefore, pf + qf = (& — &');0; > 0.

In all cases the equation p! + ¢f = (& — &');9; > 0 holds. Therefore,

n n
¢CGPT = Z(pf + q:‘) = Z(Zﬁ — j')lﬁl >0 .
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