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Position in the lifecycle�

The main part of this activity takes place at the Industrialisation stage of application development.

However, some programming also takes place, from the beginning of the project on, in conjunction with the design activity. �����

Description�

The programming activity implements the solution as modelled in the Design Activity. It uses a programming platform or language to express the algebraic model and algorithm described in the PSD.



The programming activity is composed of three main tasks (Figure 5.1): 

Coding is the action of representing the algebraic model and algorithm design in a programming language.

Testing is about validating the computed solution. 

Debugging involves the correction of all identified errors in the algorithm or model.  These may be due to misinterpretation of the PSD or coding errors. 
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Figure 5.1 Programming activity 

�����

Participants�

Problem Owner Side: 

Domain Expert (key participant in the Exploration of the LSCO Opportunity stage)

End Users (mostly involved in the Industrialisation stage)

IT Department (mostly involved in the Industrialisation stage)



LSCO Technology Provider Side:

LSCO Project Manager 

LSCO Expert (responsible for the execution of the Exploration of the LSCO Opportunity stage)

LSCO team (responsible for the execution of the Industrialisation stage. The involvement of the LSCO team is essential during the validation of the problem definition)

�����

Input�

Problem Solution

�����

Output�

Software solution or (updated) prototype. A set of enriched scenarios (data instances, solutions, algorithm traces) for debugging.

�����

The design and programming activities are strongly inter-related and may therefore involve repeated iswitching from one to the other (see the section on fractal design), as shown in the various stages of the lifecycle. The designer tries to understand the meaning and issues of the problem in a symbolic setting. The programmer uses a programming platform to convert this understanding into a computed solution. Each designer and developer brings complementary information to the understanding and solving of the LSCO problem. It is therefore essential that each party be aware of this information exchange and the need for revisions and extensions. 

A prototype is progressively refined by process of fractal design in order to give experimental support to the design decisions. This process gives a better understanding the project (particularly during exploration of a LSCO opportunity) and is useful whenever one wants to demonstrate a solution to the customer.



Integration with Legacy Systems



The PSD must contain a description of the future software architecture of the LSCO module including its integration into an existing information system. The integration requirements for an LSCO solution include

data feeds

user interfaces

external solvers

The integration problem can be relatively simple, for stand-alone LSCO solutions that use static off-line data. However, an on-line LSCO solution involves dynamically changing data and immediate integration of the LSCO output into the host information system. For LSCO solutions of this kind, the integration issues are much more complex, and must be taken into account at an early stage in the development of the LSCO solution.

Data Feeds



The data input requirements for a stand-alone LSCO can be handled by a program that extracts all the required data into a local database, or set of files.  This database can be tailored to the hardware and performance requirements of the LSCO.  Often the LSCO system will maintain its own copy of the data held in memory (as a set of clauses in CLP, or a set of C++ objects). In this case, there are no significant performance requirements on the local database: its role is merely to provide a clean interface to the LSCO system, and to maintain persistence between runs of the LSCO system.

For an on-line LSCO, however, the data feed requirements become more stringent. One critical issue is performance – the rate at which data can be passed to the LSCO system and extracted from it. Ideally, all the data needed for an LSCO run should be extracted in a single query. After the run, the results are then written back to the database. However, if the data is changing dynamically there is a risk that the results may become inconsistent.

The second critical issue is concurrency. If consistency is maintained by locking all data used by the LSCO until the run is finished and the results written back to the database, then other systems which update the data may be blocked for long intervals.  Improved concurrency can be achieved by extracting only the data necessary for the LSCO run, as and when it is needed.  This may mean extracting data while the LSCO algorithm is running. In this case, the performance of the algorithm may be limited by the data feed.

Typically, querying a database using for example an SQL interface, does not give sufficient performance for this kind of integration. To achieve the adequate performance in one LSCO, ICL uses an in memory copy of the database, which is continually updated to stay consistent with the database on disk.

Clearly, concurrency is better if the LSCO can be made to work on less data – but this may compromise the quality of solutions obtained in return for faster problem solving and better concurrency.

User Interfaces



Applications exist for which a “black box” LSCO solution is appropriate. In in those cases where the results are not fed into other computing systems, the user interface can either  display the results of the LSCO run directly, or the output can be written to a database, or a set of files, for subsequent interrogation by the interface.

Usually, most LSCO solutions involve some form of end user interaction, in which the user sets up the LSCO problem but then changes the problem constraints dynamically to steer the system towards solutions that suit the application requirements. Typically, the user's interactions are governed by the solutions, or partial solutions, output by the LSCO at runtime.



In principle, the communication between the user interface and the LSCO system can still be via a database or a set of files. In practice the requirement is to communicate only changes (data and/or constraints added and/or deleted), and for the LSCO system to retain its state rather than have it restart after each user interaction.  The user interface must also support facilities to control the LSCO solver – invoking, aborting or suspending it—as well as passing data and constraints.

To support such an interaction style, the LSCO system must be designed as a component of a larger system, where the LSCO may be called as a subroutine or even as an independent process with interfaces allowing it to be called, to return and to be resumed under the control of an external system.

External Solvers



An LSCO system may be required to work with external legacy solvers peculiar to an application. Examples from current applications include an external liquid flow model used in an LSCO for controlling pollution in the Venice lagoon, an external electricity flow model used in reasoning about power networks, and an external profitability model used in reasoning about transport schedules.

Clearly, the performance of such external components is a contributory factor to the design of the LSCO algorithm. The link between the external and internal solvers raises some key issues: can the same data structures be shared between the internal and external solvers; can the same control mechanisms be used for both types of solver; and can the solvers interrupt each other to exchange information and resume at will?



Coding Task





Description�

Coding is the action of programming an algorithm on a computer system. This algorithm implements the algebraic model and is structured according to the decisions taken during the problem solution design

�� � ��

Issues�

Although the coding of the problem is closely related to the language, there will remain generic issues on how to build a “good program”. These issues are mainly concerned with the quality of the program, the data structures, the coding of hybrid algorithms. 

�� � ��

Milestones�

The outcome of the coding task is a software solution or a prototype for the LSCO problem or part of it. 

�� � ��

Guidelines�

Guidelines are provided about:

Choice of a programming language,

Coding the algebraic model,

Coding solution techniques and hybrid algorithm,

Iterative prototyping.

��

Guideline: Choice of a programming language



�When developing a prototype or a final application, the options are whether to use an in-house programming platform, build on from scratch, or buy one on the market. This section gives some guidelines no how to make this choice.



Choosing a programming platform



If a platform does not already exist, the following points may help in choosing one:

compliance with the company information system in which the LSCO module is to be used;

appropriate high level modelling capabilities;

availability of business software packages (components dedicated to the optimisation issues of a given business);

support for programming the requisite optimisation algorithms;

apropriate level of abstraction;

efficiency;

availability of ebugging tools;

usability, power and robustness of the IDE (integrated development environment).



There will never be a perfect environment and of those available each will have its strengths and weaknesses. The project manager should also be aware that the choice of the programming platform is inseparable from the choice of the optimisation algorithms that will be used. The use the right software optimisation platform can considerably ease the coding task and avoid the re-invention of existing algorithms such as the Simplex.

There are a number platforms available, depending on the optimisation technique that is offered and depending of the programming language (either dedicated modelling languages for stand stand-alone optimisation systems or fully-fledged object-oriented or logic formalisms); they are reviewed below:

CP (Constraint Programming). These range from those based on a logic programming scheme (Prolog syntax), that benefit from the underlying advantages of this language (declarative semantics, built-in tree search), and the object oriented CP libraries that benefit from the recognised advantages of OO programming (polymorphism, code encapsulation for reuse). 

CLP Constraint Logic Programming systems such as CHIP�, CLP(R), ECLiPSe�, PROLOG III, PROLOG�IV�, Oz� (which uses a generalisation of the CLP ) support a declarative programming style: the user specifies the problem as a goal and the system searches for solutions. They can be used as modelling languages to develop a first intuitive representation of the algebraic model. To achieve a more precise resolution algorithm, the user can tailor the search procedure by specifying sub-goals, re-arranging their priorities and suspending their execution (waiting for some event to occur before searching for solutions to a given sub-problem). CLP makes it easy to build checking tools—procedures that verify that the solution generated by the algorithm actually satisfies all the constraints in the algebraic model and that the computed solution is correctm in cost terms. 

Stand alone modelling systems such as Ilog� Numerica or Ilog OPL proprietary languages (unrelated to logic programming) for modelling optimisation problems.

Object-oriented (C++) class libraries facilitate integration with existing industrial systems like databases. These components offer classes and methods for creating variables, stating constraints and solving constraints. A number of solvers are available:

–  Finite domain solvers (integers): Ilog Solver, Eclair�, … 

–  Interval based solvers (real numbers): Ilog Solver, ...

–  Domain specific solvers: scheduling (Ilog scheduler, Claire schedule), 

   routing (Ilog dispatcher, …) 

LP Linear Programming packages. These can be grouped into modelling languages and class libraries

Modelling languages, such as AMPL�, GAMS� and XPRESS-MP� offer primitives for rapid prototyping (indexed variables, quick iterations, symbolic primitives for common linear combinations).

Class libraries, such as LP-TOOLKIT�, XPRESS-MP, CPLEX and EZMOD� offer C (C++) functions for creating variables, specifying linear constraints and driving various optimisation algorithms (Simplex, interior point methods, …).

Other algorithms (such as heuristics, local optimisation loops). These are usually best programmed in a general purpose imperative programming language. Complex hybrid algorithms may invoke standard Operations Research library procedures for solving problems such as computing a shortest path, a maximum flow, a maximal cut, etc. In such cases, a general imperative programming language can be used to access such a component. Languages supporting the notion of parametric types can be particularly useful when using common data structures in algorithm design (such as heaps, trees, queues, hash tables and so on). For example, this is the case in C++ with STL (the Standard Template Library).



In summary, the project manager must ensure that the prototyping platform allows for the source code toto be ported to the final product, without manual translation. 

Annex C describes an example of the Transportation Problem coded in LP-TOOLKIT, in Visual Basic within an EXCEL SHEET, an example of CLAIRE code for an equivalent problem, and an example of ECLiPSe code for a ship loading problem and warehouse location problem.



Guideline: Coding the algebraic model



�This section gives guidelines for coding the algebraic model.

It is important to start with programs (derived from the model) that are simple and concise. These programs will undergo a succession of refinements, within the fractal design cycle: each time the design is refined, the code will be enriched, some functions being replaced by other, more specific or better tuned ones. To ensure a successful improvement cycle, the LSCO team should be cautious and try to keep the code as simple, as readable and as short as possible. Such a policy will ensure that further improvements are possible.

The model formulates the problem in in an algebraic form and should be the ready-to-code representation for the constraints and decision criteria. However, a further step of coding is needed in which the programmer has to make specific decisions about the data model, variable format, search strategies, etc. 

Data model. The data model is the initial input to the computerised solution. This model is critical for the algorithm: it needs to be rich enough to express the problem in the general case. It must also be simple enough that all the information remains easily accessible. Finally, a data model should strike a good balance between richness and so that the programmer can state the constraints in as simple and readable manner as possible.

It is good practice to structure data as an entity-relation framework. This provides a clean hierarchical view of the main data structures and their properties. This is easily implemented by means of object, classes and slots in an Object-Oriented language. Such a mechanism can also be emulated in a Prolog-like logic language by means of (untyped) terms for objects and predicates encapsulating access to data attributes (sub-terms).

Constraints. The constraints of the problem should be expressed according to the algebraic model (knowing what formulas should be stated as constraints) and according to the design document (stating how these constraints shall be used: whether they will be fed into a CP solver, a LP solver, used as validity checks for local moves, etc.

The program should be structured so that the primary constraints (essential to define the problem) are separated from the secondary constraints (fractal design).

Tailoring the general purpose solver. Some further programming is usually necessary after the solver has been fed the constraints. 

In linear programming, the solution returned by the simplex algorithm is usually infeasible (variables have non integer values), and a heuristic procedure may be designed in order to round off the variables in order to obtain a feasible solution. 

In constraint programming, the standard search procedure can be translated into a more specific one. For example, one may first instantiate (assign values to) the variables involved in the primary constraints and afterwards those involved in soft constraints (preferences), add cuts to the search tree, etc…

In local optimisation, a particular control scheme needs to be adopted once the neighbourhood structure has been selected.





Guideline: How to improve an LSCO algorithm



�This describes how to create LSCO practical algorithms.

The first step is always to build an initial model and search for a solution using default search procedures. The result can be disappointing and a second phase will normally follow to improve the algorithm. This process is governed by a search for “best improvements first”: from a poor solution, the programmer tries to find the easiest changes to the program (easiest to understand and to code) that will give the best improvements in solution quality. This eager process can be stopped as soon as the algorithm has reached a satisfactory level of performance. It ensures that the resulting algorithm is as simple and readable as possible and that all components of the algorithm contribute to the overall performance.

Features that require substantial coding for little resulting gain should be discarded (at least to start with) in order to keep the code simple. Simple is demonstarbly easier to maintain, and more amenable to further improvements.

An algorithm can be improved in three ways: by strengthening propagation, by tailoring the global search procedure and by combining the algorithm with other techniques. The two first techniques apply to the branch and infer process (used by CP and ILP), the last technique is specific to hybrid algorithms. 

To strengthen propagation (or linear relaxation, in ILP), the programmer can use a number techniques :

Redundant constraints (see section � REF _Ref439751348 \r \h �Error! Reference source not found.�);

Dominance rules. This adds new constraints in order to avoid generating solutions of the problem that are very similar to each other from an application point of view. For example, in a scheduling problem featuring two similar tasks t1 and t2, one may arbitrarily decide to schedule t1 before t2, to avoid generating the similar solutions obtained by exchanging t1 and t2. 

Hard-code heuristics as constraints (fixing what the solution should look like). The technique should be used with great care, as it may preclude some optimisations.

These techniques should enable the solver to make fresh inferences (deduce more information). Constraints should be added one by one in order to assess their relative benefits. Some of these constraints may slow down the algorithm, but should not be discarded for that reason alone. Instead, the programmer should see whether the slowdown in propagation (for CP) or linear relaxation (for ILPdue to the number of new variables and of the number / arity of new constraints) can be traded off against improvements in the propagation / relaxation process. 

The user thus has to assess the tradeoff between the cost of computation performed at each node of the search tree and the number of nodes of the search tree. For example, in scheduling, quadratic edge-finder algorithms are very useful, but cubic propagation algorithms based on energetic reasoning, although more “informative”, have too high a complexity to pay off. These experiments should be made with a profiler in order to measure the time taken in each procedure. The user should be aware that this balance may be size-dependent (strong propagation often pays off only for larger problems). It is good practice to retain “highly informative” methods; a strong propagation (or relaxation scheme) tends to yield more robust algorithms—algorithms that maintain their efficiently with a variety of types of data.

2.   The second technique consists of improving the tree search algorithm. This issue should be investigated only after the propagation scheme has been strengthened as much as possible, when the procedure is still too long.

The first step should be to estimate the distance from the optimum (which gives an upper bound on the possible improvements that may be found). It is good practice not to waste too much time on the bounds at the infeasible side (lower bound in a minimisation problem).

Where an effective constructive heuristic is known (a heuristic which can be described as a path without backtracks in some search tree), it is a useful to experiment with the so-called “limited discrepancy search” (a search procedure which almost always follows the heuristic). This search scheme will produce a set of solutions spread out over the search space, and all obtained through variations of the heuristic. It often improves on the value of the initial heuristic without taking much longer.

Where the problem can be decomposed into sub-problems and solved hierarchically (solving first one sub-problem, then another),  it is useful to try out various hierarchies (giving different variable orderings). It should be noted that the results of such tests may depend on the problem instance and should therefore be performed on more than one benchmark.

The selected search procedure should be compared with randomised ones (such as iterative stochastic sampling).

A limited breadth first search can also be made, by generating all nodes up to a given depth. Such an search can be used either as an inference mechanism for the root problem (the information that is common to all leaves can be lifted to the root problem), or it can be used as an measure of the search space density (counting the number of open nodes at an intermediate depth).

3.  The third technique should be applied only when a good search procedure has been found (an improved model with a dedicated search procedure). The idea is to combine the search procedure with other algorithmic techniques, such as local optimisation or graph algorithms.

In some cases, one can combine the search procedure with a dedicated algorithm. This is the case with shortest path methods (which are used in column generation), or when there exists a relaxation of the problem (obtained by removing some of the constraints from the model) that can be solved in polynomial time. Such polynomial relaxations may be used either to improve the bounds on the objective or to trim the domain of other variables (in this case, the objective function is replaced by the variable whose domain is to be shrunk).

A general case consists in combining global search with local optimisation. This combination may be achieved in a number of ways:

Where the feasibility problem is easy, a greedy heuristic can be used to find a first solution, local moves are then used rapidly to improve on this initial solution, and finally, a global search is performed. In such a setting, local search is used to speed up the branch and bound exploration in the beginning (far from the optimum).

Where the feasibility problem is hard (tight constraints), it is a good policy to use a global search to find a first solution, and then to look for improvements using a local search (it may be worthwhile to consider a local search framework with moves on infeasible configurations when the problem is too tight).

Global search can be applied within a local optimisation algorithm, to search a neighbourhood for one local move. For instance, the “shuffling” mechanism in scheduling problems, or the “stringing-unstringing” procedures in vehicle routing starts from a solution, erases part it (by discarding the assignment of values to variables for a subset of the variables) and extends this partial assignment into a full-fledged solution by global search (branch and bound). In this way, one local move of an iterative improvement procedure is found through global search.

Local search may be applied at each internal node of the search tree in order to improve the current partial solution. Such hybrid algorithms involving global construction and incremental local optimisation may be designed for problems fitting in the “generalised assignment problem” framework.



Guideline: Coding the hybrid algorithm 



�After the coding search strategies comes in the coding of the hybrid algorithms. At this stage, it is important to use a programming language or platform that allows solvers to be combined while retaining a single program for the problem formulation. The solvers can come from different disciplines such as mathematical programming, constraint propagation, or stochastic methods. 

The key to coding hybrid algorithms is “how” to combine solvers so that the pruning and search are the most efficient given the problem features. The problem characteristics will have been identified during the design process along with the algorithm. It is at this stage that the tightness of co-operation between hybrid algorithms need to be addressed. The main points to note during coding are:

the order in which the solvers are used, 

which constraint set is to be sent to which solver (possibly intersecting),

which solver drives the search. 

Answers to these questions are very problem dependent. However, some guidelines are suggested by means of the following examples.



Example of hybrid encoding in ECLiPSe



�This is a simple case in which a simplex solver automatically co-operates with a CLP program. In the ECLiPSe code this is done by setting up a solver demon which will repeatedly check whether the continuous relaxation of a set of constraints is still feasible.  The code could look as follows: 



simplex(Constraints) :-

	normalise_cstrs(Constraints, NormCstrs),

	lp_setup(NormCstrs, min(0), [solution(no)], Handle),

	lp_solve_demon(Handle, _Cost, bounds, _sups).



The constraints are first normalised and checked for linearity. Then, a solver with a dummy objective function (here min(0)) is set up. The option solution(no) indicates that solution values are not needed. A solver demon starts which will re-examine the problem whenever a change of domain variable bounds occurs. A small interactive session is illustrated below in which the interpreter is sent two queries. This first requests uses the simplex predicate as a compound constraint implementing the conjunction of the individual constraints. It can detect some infeasibilities that would been passed by the finite domain solver. E.g.



[eclipse 1]: simplex([X + Y + Z >= 2, X + Y + Z =< 1]).



No more solution.



[eclipse 2]: simplex([X + Y + Z >= K, X + Y + Z =< 1]), K = 2.



No more solution.



In the first query, the initial simplex invocation fails. In the second query, the initial simplex succeeds, but instantiating variable K wakes the demon again, and the simplex fails on the second time round. 



Code for Warehouse location problem



This example (given in pseudo-code) illustrates the integrated use of different solvers in order to tackle a warehouse location problem.

The data of the problem can be defined with two classes (warehouses and customers), in a cost matrix for serving a customer from a given warehouse. 

% Data model

Warehouse <: object()

Customer <: object(served_by:Warehouse)

Cost[c:Customer, w:Warehouse] : integer := … 



The served_by slot indicates which warehouse serves the customer. It should be noted that this slot is an a priori unknown in the data and will be searched for in the algorithm. Reasoning with such variables requires to use a finite domain constraint solver



Use(finite domain constraint library)



The objective function can now be defined as the sum of all service cost from warehouses to customers plus a penalty proportional to the number of warehouses actually used. It should be noted that this requires the use of a constraint library on sets (defining a special operator # that can be used in constraint expressions).



TotalCost :: integer variable

TotalCost = Sum(Cost[c,w], c in Customer) 

            + #({served_by(c) | c in Customer})

Use(set constraint library)



A standard resolution procedure involving both solvers can now be called



Minimize(TotalCost) 





Code for Vehicle scheduling problem



This application shows the role of tuning and improving the hybrid algorithm by learning more about the problem during the iterative prototyping phase. Different hybrid algorithms are presented that incrementally improve the solution quality.

The LSCO problem is a vehicle scheduling problem. A company produces and distributes milk-products. The objective is to allocate delivery jobs to a fleet of vehicles so as to satisfy customer orders, meet constraints on delivery times at customer sites and on vehicle capacities, satisfy personnel regulations for drivers and minimise delivery costs. This is a standard VSP (vehicle scheduling problem) that was modelled as a Travelling Salesman Problem with a CSP model. 



First algorithm: Pure CLP

The pure CLP approach comprises the basic structure of the problem solver that will be subsequently enriched with local search techniques. A program with a basic branch and bound search is defined as follows (pseudo-code):



SolveVSP():

   AllVars := DefineVariables()

   Objective := DefineObjective()

   SetAllConstraints()

   Minimise(AllVars, Objective)



Where minimise is a procedure performing a tree search, instantiating all variables and looking for solutions with minimal values of Objective. Such a procedure can be described as a recursive process



Minimise(AllVars, Objective):

	  Select a variable v from AllVars still uninstantiated

        For all values x in the domain of v

            Assign the value x to v

            Let the solver react to assignment 

            If the solver detects an inconsistency, 

undo the assignment

           else call Minimise(AllVars, Objective)

           undo the assignment

  if no such v could be found, 

     store the value of Objective in the solver history



The constraint propagation algorithm is transparent and applied in a data driven way throughout the search. The Minimise predicate applies a branch and bound search that computes a solution minimising the value of Objective. It computes a first solution, then backtracks and searches for a solution with a better cost. It performs a complete search. This approach became inefficient if more than 25 distribution points had to be tackled.



Second algorithm: CLP + Hill Climbing

This prototype is based on hybridising constraint propagation with a hill climbing local search strategy. The branch and bound search (the call to minimise) can be replaced by call to a local optimisation process Improve.



Improve():

  Find a first solution S

  Current := copy(S)

  Until (cost(S) = cost(current))

     Current := find best neighbour(S)



The procedure which finds an initial solution satisfying all constraints can be done by CLP (searching for any solution instead of searching for the minimal one). The basic idea of hill climbing heuristics is to make local moves from one solution to the next one by swapping nodes or paths of the route. This local search strategy is often used with unconstrained problems where the main goal is the optimisation function. In the case of the vehicle scheduling problem, there is a set of constraints to satisfy, so that the local moves will still be governed by the constraint propagation process to ensure that the computed solutions are consistent. 



Hill climbing search based methods are ideal for problems where the transition operators from one solution to another have the requisite commutativity and decomposability properties [Nilsson 1980]. This is true in the case of TSP–like problems. The heuristic starts from a feasible solution and tries to improve it by applying a set of operators that make local modifications the given solution. Various operators have been used for this application:



Node insertion

Node Swap

2-optimal path Swap

3-optimal path Swap

Partial 3-optimal path Swap



The last two operators have yielded very good solutions for small problems (30-50 nodes) while the third has proved adequate for large problems (up to 200 nodes). In general, the quality of the results will depend on the number of nodes. Node insertion generally gives poorer results than that produced by Swap methods.



Third algorithm: CLP + Genetic Algorithms (GA)

Unlike complete search techniques that “carefully” move from a point in the search space to a neighbouring one, GA algorithms consider a number of initial solutions and move towards different directions, bypassing the possibility of getting trapped in a local optimum. When combined with constraint propagation techniques, the initial population of solutions must satisfy the constraints of the problem. First, the generation of the populations is described followed by how local moves are performed.



The population generation procedure is based on the same solveVSP procedure described before, where the minimise procedure has been modified in order to produce a set of good solutions: 



Minimise(AllVars, Objective):

  ... ... ... 

  if no such v could be found, 

     add the current assignment to the first generation



The next step is to use a knowledge based operator that:

Can be implemented with CLP principles

Combines members of the current population (parents)

Produces a number of good offspring (one child is obtained by combining 2 parents ).



The algorithm starts by generating the required number of initial feasible solutions given the population size required. Then a standard GA algorithm is applied that generates new solutions from the initial ones (chooses the genotypes to be combined, produces children from 2 parents). This procedure is repeated and new generations are produced up to a given time limit or until specified solution quality bounds are reached. The best solution is than selected and returned. Completeness and optimality can be reached but not proved.



Fourth algorithm: CLP + GA + Hill Climbing

The above algorithm can be slightly improved by applying the hill-climbing heuristic to a subset of the solutions in each generation a new generation of solution is considered. From a population of P solutions, the first n of them (in terms of solution quality) are selected for improvement and then are re-inserted in the population before moving to the next generation. The size of the new population is thus P + n since no solutions are replaced. This hybrid model (GA + Hill Climbing) can produce good quality solutions faster than the two previous ones.

There are various ways of implementing this hybrid technique. In general the GA algorithm produces a number of solutions for each generation and the hill climbing optimisation takes 5-10% (value of n) of the best solutions produced in order to improve them and add them into the population. Despite the fact that the n solutions to be locally improved varies within 5-10%, experience has shown that the best value for n is 1. This means: take the best solution of each population, produce a new one and the add it to the population. The quality of the results also benefits from an improved computation time.  



Guideline: Prototyping



�It is a truism that the first program will not be the last one. The programmer must prepare for an iterative prototyping and refinement process. An intrinsically good can be globally poor quality if the coding does not recognise that changes and extensions likely to be necessary. Iterative prototyping bears on all aspects of how the problem is solved by adding in the process not only increased understanding and solution quality, but also covers programming issues like reuse of code and program relevance. The following guidelines focus on the important role played by a first solution to the problem, the merits of producing reusable code, the documentation (monitoring) of prototypes, and finally the relevance of the code for the user. 



Towards a first solution



Because of the certainty of change and the complexity LSCO it is usually necessary  to subdivide the solving process into incremental steps. A four step sequence is described each of which exploits an increasing level of understandin of the problem solution. The steps are:

Find a feasible solution to the core problem

Find an optimal solution to the core problem

Find a good solution to the complete problem

Improve the solution

Finding a first solution is essential. It helps the user to feel confident about the technology, and it helps the developer evaluate the feasibility of the problem and achieve rapid, improvable  results. The search strategy adopted for a first solution need not be sophisticated—often based on a lazy algorithm. Laziness implies that the objective is not to search for powerful or sophisticated heuristics or hybridisation of methods. The first solution will confirm that:

The problem is solvable. This corresponds to an “assume and correct” philosophy. Developers assume that the PSD matches the real life problem unless proven wrong by the program. In the case of inconsistency, a step back to the problem definition process takes place and the specifications revised or re-discussed resulting in tuning or adjusting in the design activity.  

The program is fully automatic. In this first phase of coding, the user has no control at all on deriving the solution. Later on, the level of control may be partitioned so that the user can make specific decisions by means of, say, graphical visualisation tools.

The program is general and simple

The first solution may well be based on:

A subset of the available constraints. The mode of the problem when searching for a first solution should be general but simple enough to analyse the search and inherent problem complexity. It usually uses a small data set and considers only the most important constraints (primary ones). And ...

Return more than a single answer. Many consistent outputs to the problem can be initially generated to increase the chances of having one satisfactory solution for the customer, but also to bring concrete results for the customer to analyse. 

Once a first solution has been successfully validated, a new prototype (additional constraints) for the problem is implemented. Search for an optimal solution can then be applied if the model is stable.



Reuse



Key to LSCO iterative prototyping is the reuse of previous algorithm code. Although initially tedious, it can be timesaving in the long term. With increasing experience, it will be rare for a programmer to have to design a new algorithm from scratch, other than in the case of propagation algorithms where new global constraints are introduced. Usually, a heuristic, a local move or a truncated search algorithm based on a previous successful version can be used. Constraint propagation algorithms may be re-used where the same type of constraint  still applies. The development of a resolution algorithm may be viewed as a combination of craft and reuse. 

Algorithm reuse is key as widespread reuse from previous projects and the availability of a rich library of resolution algorithms is a prerequisite to keeping development costs low enough to make the development of LSCO software a viable proposition. It follows that each new development must be planned with further reuse in mind. The of reuse and easy maintenance are similar and by developing simple and well-documented algorithms, both may be attained simultaneously. Achieving simplicity is difficult because it may conflict with performance. It usually takes a number designs and projects bebore the right balance is struck between them. Experience shows that an initial development aimed at performance and the simplicity of the algorithm comes from multiple reuse, by identifying the core of the algorithm and making it as readable as possible. To guarantee efficiency of operation when moving from one program to the next one, the coding of the model should be as general and simple as possible.

Generality and simplicity in prototyping should govern the format of the data structures, the architecture of the prototype (modules, decomposition), and finally the algorithm itself. 



Monitoring



Monitoring the prototypes not only covers prototype version control as in conventional projects, but also the recording of test results so that differentl variants of the resolution algorithm (e.g., between different heuristics, bounding functions, etc.) can be compared. 

If the quality of the computed solution is poor or the computing time excessive, the record will help the designer pinpoint the weak points of the problem-solving procedure in use. To analyse the algorithm as implemented, other more precise performance indicators can be specified such as the backtrack count or the number of local optimisation steps taken. If an algorithm is too slow, it is important to establish whether this is because it explores a large space of possible solutions, or because it takes too long to examine each possible solution. In the first case, the algorithm can be modified to reduce the search space (i.e., prune the search tree, in the case of branch-and-bound). In the second case, the time per solution can be reduced. The introduction of metrics for the search tree (i.e. depth of the search tree, branching factor, time spent in sub-trees, etc.) can also help in the diagnosis of algorithm behaviour. Detailed analysis of such behaviour can determine whether to focus  on designing better heuristics, better constraint propagation methods, better lower bounds or better neighbourhoods. 

Sometimes test results challenge the choice of problem solving strategy and force a return to the design phase.

Ultimately, the user must be the arbiter of what solutions to accept from the system. Solutions that satisfy all the constraints can be very unusual. If the user does not accept any of the solutions, new constraints may have to be introduced and a return to the design phase may be inevitable.

In some cases, the system can fail to find any solution for various reasons : either the efficiency of the algorithm is not good enough to find a solution in a reasonable time or there is no solution to the problem. In the first case, it will certainly be necessary return to the design phase to improve the algorithm or make different choice. In the second case, the user has to be informed on the causes of failure. The inclusion of some kind of explanation mechanism would be useful both to the user and the designer. It makes for better understanding of the problem and help improve the problem solver.

It may also be useful to determine which parameters of the problem are most critical in determining the solution by performing a sensitivity analysis [Hillier & Lieberman, 1990].



Significance 



Prototyping is a useful way both to test methods and generate feedback from the customer. An essential issue is the significance or relevance of the program—its ability to convince the customer that the problem may actually be solved by the final product. There is always a  risk that the prototype is seen as interesting or elegant but ultimately irrelevant, either because the problem that is dealt with is over-simplified, or because the size of the data sample is too small. To ensure that the program is of relevance and use to the client, two practical approaches are suggested:

Always use realistic data sets when prototyping, even though smaller sets may be used for debugging. It should be a universal rule never to demonstrate a prototype with a small subset of data, unless one convincing proof of scalability can be given. 

A simplified algebraic model that is used for the prototype should only exclude side-constraints that are not crucial from a business point of view and that do not contribute to making the problem hard. The coding of a simplified model is best left to the developer’s good judgement. 

Both approaches, enable the client to gauge the relevance of the problem as solved. Both can also benefit from client’s views.



Final version: the application



The final issue in prototyping is the extent to which the prototyping effort can be reused in the final product. It is obvious that the understanding gained during the prototyping phase will exploited in the software that is delivered to the customer, but re-use of designs and ideas alone is not enough to justify prototyping from a cost-effectiveness point of view. 

The actual source code of the prototype ought to be transferable to the final application, ideally without manual translation. This sets requirements on the use of prototyping platforms even though this can be seen as contradictory with the requirement of simplicity and expressiveness found in the cost-reduction. Today, mathematical programming tools and constraint programming languages such as Eclipse or high-level source code generators such as CLAIRE are instances of such prototyping platforms.





Testing / Validation Task





Description�

The aim of the testing task is to ensure that the program developed actually performs what it was designed to do in terms of correctness and efficiency of the solution. 

Validation aims at certifying that the resulting software fulfils all the user requirements

�����

Issues�

The main issue is “how” to test the correctness, robustness and efficiency of an LSCO program.

�����

Milestones�

This task is achieved when the testing procedures are successfully completed. 

�����

Guidelines�

The following points specific to LSCO application are addressed: 

test for correctness

test for robustness

test for efficiency

��

Guideline: Testing correctness



�Although the nature of the optimisation algorithm, especially the use of constraint programming, should ensure that the resolution algorithm is logically correct with regard to its constraints and optimisation function, it has has become clear for some time that both aspects need to be checked independently of the LSCO program. 

Independence between the program and its testing procedure means that the checking of the constraints and the valuation of the objective function may not use any code  shared with the resolution algorithm. This redundant development is often seen as tedious by the developer and it may be prudent to use another developer for this task. 

The most sensible way to improve the quality of LSCO products is to generate these checking procedures automatically from the algebraic model. They should be developed early on, because they can be used both during and after the development of the resolution algorithm. There may be generic ways to develop test procedures when using constraint satisfaction technologies. This can be done by going through the different sub-tasks (in priority order) and checking the solutions. 

Tests can be designed to evaluate the global correctness of the solution. If done on-line from the current algorithm, at least the two test cases below should be applied to the resolution algorithm: 

The initial test or parallel test which consists of using historical input and output data from the client and checks if the program produces equivalent results. These tests illustrate the significance(relevance) of the program for the client. 

The live test which uses current input data from the client. The results are an a priori unknown to the client. These input data are given to the program and solutions are returned. The test is successful if the solution is sound, satisfactory and meaningful to the client. 

In cases where the problem is new for the client, the testing is more empirical and would consist mainly of a live test.

Guideline: Testing robustness and efficiency



�The resolution algorithm, after having been proved correct,  has to be tested for two different attributes: robustness and efficiency. “Robustness” means that the algorithm produces correct and good quality results independently of the data sets used. “Efficiency” means that “good” solutions are obtained in a reasonable time. These attributes should not only be validated in the final version of the application, but also in all the intermediate versions (and variants) of the resolution algorithm. Other related activities will also take place during validation, such as collecting statistics on performance, memory consumption, and exception handling.  These help to ensure that the software follows appropriate requirements and coverage analysis to evaluate the quality of the testing, but they are not specific to LSCO applications. 



Robustness



It is important that the problem solver is seen to respond in a correct and consistent manner to a representative set of problem instances The property of robustness of the problem solver is its capacity to behave in a relatively invariant manner in spite of changes in the characteristics of the input data, and it is important to be able to evaluate this property. An algorithm is robust if its average performance remains nearly constant on problems having different characteristics. In particular, the algorithm must also scale well. The resolution algorithm must be tested on problems ranging over all sizes likely to be encountered (see test problems).

To ensure that a complex component of the software such as the problem solver continues to meet its requirements at all stages of its coding, as subcomponents are completed, the corresponding test systems must be written in parallel to test output against expected results for given input data. The test system has to be separated from the main application and preferably written by a team not connected with the implementation of the problem solver. It complements the test cases derived during the programming phase. The robustness of the solution can be evaluated using three types of test problems [Jackson et al. 1991], all of which are important and have a role in software validation:

Representative real problem instances. They can be used to test those parts of the software which will be used most frequently.

Specific “constructed” problems. They make it possible to test specific aspects of the problem solver which are infrequently used in real problems.

Randomly generated problems. In most cases randomly generated test problems are too regular and cannot be representative of real problems unless they are built from serious statistical analysis. However, they can be useful for the analysis of the problem solver.

In the case of reactive problems, where not only the generation of a solution, but also its revision may be determined by unexpected events or user feedback, the interactions of the problem solver with the external system(s) have to be simulated automatically. The efficiency of the problem solver cannot be measured solely by the quality of the initial solution but over the course of a series of interactions between the problem solver and its environment. Ideally, a simulation system can be developed and integrated with the problem solver for testing as a suite of simulation scenarios (ranging from stable or unstable environments, and expert to naive user). In some cases, however, this may not be possible, and the PS has to be tested in the real environment.

Typically in LSCO, these test programs verify that input data meet the specifications and that solutions provided by the problem solver satisfy all the constraints defined in the analysis phase. Ideally, some means of verification of the consistency of the input will be part of the final system to guard the system from improper input and to increase the robustness of the software.

Efficiency



The efficiency of the software is intimately linked to that of the problem solver. In LSCO problems, the computed solutions are often sub-optimal due to the intrinsic complexity of the problem (NP-hard problems) and force compromises between the time efficiency of the “best possible” algorithm and the quality of the solution. The time needed to design such algorithms is also an important consideration. Because of this sub-optimality, the designer has to introduce measures to quantify the quality of the computed solutions. In some cases, a unique optimality criterion can be defined. The quality of a solution is then the measured value of this criterion in the solution. In most cases, however, several further issues have to be considered: there may be several optimisation criteria among which compromises may be necessary, including solution sensitivity, i.e., the capacity of the computed solution to remain valid in spite of slight changes of the input data; there may also exist soft constraints (or preferences), in which case the degree of the satisfaction of these constraints is a measure to consider.

The efficiency of the resolution algorithm can be measured as the average quality of the computed solutions in a “reasonable” CPU time and use of memory or, inversely, as the average CPU time and use of memory for computing results of “good” quality. 







Debugging Task





Description�

The debugging task aims at fixing code errors pointed out during the testing task.

�����

Issues�

The main issue is the need to debug a code “efficiently”. Although not usually measured, the amount of time spent on debugging a program can be considerable. 

�����

Milestone�

The task is complete by returning an apparently correct solution once bugs  identified have been fixed. A new test task can follow on.

�����

Guidelines�

There are several different ways to debug the program efficiently and successfully:

Two approaches for one problem

Using the testing procedure

A graphical visualisation

Using scaled down examples

Keep previous solutions

��

Guideline: Tools and tricks



�Debugging a LSCO application is difficult, both because debugging is intrinsically difficult and because optimisation algorithms are complex. Debugging is also strongly dependent on the programming tools available in the development environment. Although self-evident, the most frequently used techniques are worth restating. They can be applied to global and local search algorithms, including hybrid—as shown below. The search may be exhaustive or partial, and may use other techniques for cuts or bounding, such as linear programming or graph algorithms. This list includes:

Two approaches for one LSCO. The debugging process is driven by a known solution with aim of finding out why an expected solution has been missed by the algorithm. Although time-consuming this is not a difficult task and can be performed in a systematic manner with a good tracing tool. A dual development can help where it is possible (and affordable) as much can be gained by examining the solutions developed from two different approaches to a single LSCO. 

Graphical visualisation. Graphicalrepresentation of the output makes it easier to understand of what is going wrong. It can also be used as a communication language between the developer and the client to identify the bugs.  

Using scaled down examples. It is useful to build examples small enough to be solved and analysed by hand. They may be the only way to solve the hard bugs that occur in the middle of the search.

Instrument the program to trace the most meaningful function points. The trace statements should cover all the branching decisions and the local moves. It is important to use a unambiguous labelling (to be able to stop at a precise point), to details about why a choice was made (e.g., print the value of the heuristic functions). Hierarchical tracing (with a verbosity level), should enable traces to be produced that can be viewed on the screen or written to file for later analysis.

Use of testing / validation procedures to perform safety checks. Local moves should be verified using validation procedures (this is so easy). Safety checks on partial solutions are harder. Instead of developing complete testing procedures, it may be simpler to superimpose testing functions that can be re-defined dynamically and applied at each decision point. These functions can be used during development to focus on problem constraints. The same test can check that the local moves in a search strategy are correct—for example after each successful move (i.e., a move that is selected). The systematic use of testing by detecting bug early can significantly raise productivity. A more powerful procedure that tests partial solutions can be used to check the validity of constraint propagation. The procedures for testing and debugging are different debugging it requires the procedure to be embedded in the code; for testing an external service, using, for instance, flat files to exchange data, will suffice. It may be more difficult to derive a testing procedure for debugging from the algebraic model, unless one uses the same software platform for the whole process. A further requirement of a testing procedure for debugging is a reasonable level of explanation when the checking fails. This is another burden on the developer, and should be automated.

Use of a profiler to measure the contribution of each technique. It is important to know how to exploit modern profilers. The algorithm must be profiled with each of its propagation/ neighbourhood options turned on or off separately. The aim is to know precisely what benefit each technique brings and its cost. While obviously useful for performance tuning, the first goal must be to know how the algorithm spends its time (which is often not the case).

Keep previous solutions. Non-regression testing is the most elementary and powerful idea in debugging.

Guideline: Finding the bug



�Various kinds of problem can occur while developing an application, such as performance problems (cf. the tuning section), memory allocation or run-time errors, and can be dealt with using the appropriate tools (debuggers, purifier, etc.). Two situations that are specific to LSCO applications: 

The algorithm finds a solution that violates some of the constraints (the “too good to be true” solution).

The algorithm misses a known good solution that exists.

The first case means that a constraint has not been propagated correctly. The usual approach is to write a naive “value-based” propagator that achieves the desired level of consistency (ignoring efficiency, such an algorithm is usually easy to write) and use a dynamic safety check (see above) that raises an error when the naive checker finds an inconsistent value that was missed by the optimised version.

The second case differentiates between local and global search. Global search is debugged using a trace to find out why the correct decision path was missed. Once the wrong decision node is identified, a halting statement is inserted and the programming environment used to understand the problem. This laborious but straightforward for an exhaustive search but is more tricky for a partial search such as Least Discrepancy Search (LDS). In this case, the analysis of a full trace is unavoidable. The really difficult case is where the local search algorithm fails to find a known good solution.  This means that a bug is preventing the complete exploration of the neighbourhood. To find this bug, it is usually necessary to use a succession of scaled-down examples from which the augmentation path may be built by hand. For instance, with Vehicle Routing Problems (VRP) algorithms it is required to build a solution analysis environment, combining a powerful GUI to visualise the solution and a querying tools to formulate move selection hypotheses. The development and debugging of the “right” neighbourhood becomes an incremental process: show the current solution – identify a better move characterisation – implement & validate – test on other problems. Since debugging local moves is hard, the systematic use of validation procedures is a must.

Hybrid algorithms that use global and local search are debugged using a mix of these two approaches. When complex algorithms (LP, graph algorithms) are used, debugging is either easy if the external algorithm cuts too much and very hard if it does not cut enough. The only way to ensure that the external algorithm is doing its job is to work a scaled-down example step by step.



Guideline: Language tools for bug-tracking 



�The process of debugging a program is often quite time-consuming and running bugged programs may lead to erroneous conclusions about the relative efficiency of algorithms. Therefore, debugging is an important issue while programming optimisation algorithms, and one should be as cautious as possible in order to remove the bugs before settling algorithmic issues. 

The computer science community has put forward several proposals in order to increase the efficiency of the debugging task: 

The first kind of tools performs static checks on the program and is applied off-line. Related to this approach are the development of rich type systems for static type checks and type inference (in particular, for functional programming), mode declarations specifying the flow of control (for logic programming) and a wealth of static analysis methods (dead code elimination, etc.).

The second kind of tools perform dynamic checks within the program, at run time. Related to this approach are the use of assertions and the notion of declarative debugging for logic programming.

The possibility of performing static checks can only be offered by the programming environment, and not be re-implemented by the user. There is nothing LSCO-specific with static tools for debugging: static analysis capabilities should be considered an asset of the programming environment and used if available

The situation is different for dynamic checks, which may be instigated by the programmer: in the process of developing hybrid algorithms, the programmer has to link several algorithmic components and have them communicate solutions, partial solutions, solutions to relaxed problems, etc. Handling these solutions is a specific difficulty of programming LSCO hybrid algorithms, and this task may be eased by the use of dynamic debugging tools. Indeed, when passing solutions from one component of the algorithm to another, the programmer may decide to check some properties on the solution that is being communicated. Such checks can be performed through assertions.

The idea of assertions, which was introduced in the 60’s by Hoare [Hoare, Jones 1989], is to decorate the code by attaching statements about the variables’ values to program points (states that are reached during the flow of execution). Such statements may be used in a variety of ways: 

either for static analysis : one can try to prove them, or one can assume their correctness in order to prove some properties about programs, 

or for run-time debugging : one can check that these assertions are indeed true.

This second use is particularly interesting if the user may turn the run-time checks on and off. Thus, assertions, much like tracing statements, can be considered as “extended comments”, since they are evaluated only in debug mode, and otherwise, provide a meaningful documentation in the source code.

Note that, unlike static analysis tools, run-time checks do not require the user to have a particular “intelligent” programming environment. Assertions can be programmed in any language (see for example the <assert.h> headers in ANSI C, which supports statements on the variables’ values, such as assert(x > 0) ).



Following are a few tips on the use of assertions for LSCO hybrid algorithms.

Where should assertions be used? The standard use of assertions consists in stating them at the entry and exit point of a function call (in this case, they describe pre- and post-conditions for the execution of the function). Assertions are particularly useful as post-conditions of functions performing local moves, as pre- and post-conditions of functions performing constraint propagation or computing linear relaxation, and as pre-condition of functions performing global search.	�Moreover, following some proposals of extension of the assertion formalism to object-oriented programming (class assertions), it is useful to place assertions in the methods responsible for creating data. Assertions provide a nice way to check data consistency.

What should be stated by assertions? As was explained before, hybrid algorithms connect components implementing various optimisation techniques (for example, one component might implement local moves and another might implement a global constrained search). These components communicate by means of “solutions” which are not always feasible solutions to the full problem, but which may be solutions to sub-problems, for which part of the constraints have been relaxed, etc. It may therefore become a challenge to ensure that such solutions are in the proper format, respect a given set of constraints, etc. Consistency checks may be implemented by means of assertions in order to check such integrity constraints (such consistency checks also apply to the case of internal structures used by global constraint propagation mechanisms). 	�Assertions may also be used to monitor the improvements on the objective function throughout the optimisation process (checking that the quality of a solution does improve in a hill-climbing process, checking that the information of a relaxation improves during global search, checking that variable-fixing decisions are indeed taken into account by a linear programming solver, etc.). Last, it may be useful to state “reachability properties” with assertions: stating that a given state may still be reached from the current one, through a set of moves (for example, stating that there always exists a feasible solution to a scheduling sub-problem, etc.). This may be done by expressing Boolean conditions which encapsulate search algorithms. 	

How should assertions be programmed? One needs to have a language for logical conditions in order to express assertions. The expressions should not be restricted to (Boolean combinations of) arithmetic comparisons, but should include calls to user-defined functions. Such functions may be complex; however, beware that they should not have side-effects (one wishes the program to have the same behaviour whether the assertion checks are turned on or off).	�Finally, the programmer should be careful about two things while programming these assertions: she should be careful to include messages in her assertions in order to get a message when an assertion is violated (instead of brutal failure). Moreover, she should structure her assertions (like tracing statements) in such a manner that only part of the run-time checks may be activated. 	�Below is an example of a routine for vehicle routing problems, which inserts a customer in a route. Two level 1 assertions are used to check that there is enough space in the route to accept another customer (pre-condition) and that in the end, the customer has indeed been inserted (post-condition). Two other (level 2) assertions are used to check that this insertion is a good decision: the first of these assertions checks that the customer is not too far away from the route, and the second checks that there exists no other route with a cheaper insertion cost.



Insert(c:customer, r:Route) 

 -> (assert(1, not(full?(r)),           

     assert(2,distance(c,r) < 1000),

     .... ,                          // the actual code

     assert(2,forall r’ in (Route but r) 

              insertionCost(c,r’) > insertionCost(c,r)),

     assert(1, serviced_by(c) = r)  )



When should assertions be stated? A safe policy is to write assertions at the same time as code is being written. It is indeed much easier to capture the requirements that the programmer has in mind about some function call while she is coding this very function rather than some time later at debugging time. Writing assertions should not be considered a useless methodological burden, but an asset for future debug.







� http://www.cosytec.com

� http://www.icparc.ic.ac.uk/eclipse

� http://prologianet.univ-mrs.fr

� http://ps-www.dfki.uni-sb.de/oz

� http://www.ilog.com

� http://www.ens.fr/~laburthe/eclaire.html

� http://www.ampl.com/ampl

� http://www.gams.com

� http://www.dash.co.uk

� http://www.eurodecision.fr

� http://www.modellium.com
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