Document References:

ESPRIT Project�Chic-2 (P-22165)��Work Package: �Methodology (WP3)��Task: �User Guide (T3.4)��Contributors:�Bouygues (Task Leader)�

Yves Caseau

Claude Le Pape

Arnaud Linz

Tibor Kφkιny

Franηois Laburthe

Benoξt Rottembourg���Euro-decision�Eric Jacquet-Lagrθze

Denis Montaut���IC-Parc�Alan Ainsworth

Carmen Gervet

Mark Wallace

Judith Richards���ICL �Jane Chang

David Marsh

Owen Evans���NTUA �Nikos Kosmatopoulos

Georgios Kostaras���Renault (Work Package Leader)�Jean-Marc David

Philippe Wolff��Version:�3.0��Date:�12 May 1999 ��

Copyright © 1998-1999 The Chic-2 Consortium

BOUYGUES, EURO-DECISION, ICL, IC-PARC, NTUA, RENAULT

�

Preface

�

Due to progress in the last ten years, optimisation technologies are becoming increasingly integrated into industrial and commercial IT applications. Cost reduction or time saving are major goals in most organisations. Optimisation technologies make the achievement of these goals possible by proposing high quality solutions for complex industrial problems such as planning or scheduling.

The integration of optimisation techniques into IT projects is a complex activity requiring extensive skills in modelling and programming. Hence, optimisation often appears as risky and sometimes costly. In order to reduce risks and to achieve good results, application development must lean on a rigorous methodological basis.

The objective of this document is to provide important methodological guidelines for all participants of an industrial project that includes optimisation. It can be used by managers to organise and control the project and by technical people to improve the efficiency of their work.

This is a collective work, one of the results of the Chic-2 European Esprit Project 22165.

�

Table of Contents

0. INTRODUCTION	i

0.1 The Chic-2 Methodology	iv

0.2 Using this Guide	vii

1. PROJECT LIFECYCLE	1.1

1.1 Introduction: LSCO lifecycle stages and activities	1.2

1.1.1 The Chic-2 LSCO Stages: Combining development iterations and project control	1.2

1.1.2 The Chic-2 LSCO Generic Activities: A transverse view on LSCO development	1.4

1.1.3 The Chic-2 LSCO deliverables: tools for efficient work, communication and capitalisation	1.5

1.1.4 The Chic-2 lifecycle: One development process for different kinds of optimisation project	1.6

1.2 The Chic-2 stages for developing industrial LSCO applications	1.8

1.2.1 Identification of IT / IS Opportunity	1.10

1.2.2 Identification of an LSCO Opportunity	1.11

1.2.3 Exploration of the LSCO Opportunity	1.13

1.2.4 Full Requirements’ Study	1.16

1.2.5 Industrialisation	1.18

1.2.6 Delivery / Integration	1.21

1.2.7 Operations, Maintenance	1.22

1.3 The Chic-2 roles in LSCO projects	1.23

1.3.1 Problem Owner side: Business Manager	1.24

1.3.2 Problem Owner side: Project Manager	1.26

1.3.3 Problem Owner side: Domain Expert	1.28

1.3.4 Problem Owner side: End-Users	1.30

1.3.5 Problem Owner side: IS Department	1.32

1.3.6 LSCO Technology Provider side: LSCO Team Manager	1.34

1.3.7 LSCO Technology Provider side: LSCO Expert	1.36

1.3.8 LSCO Technology Provider side: LSCO Team	1.38

1.3.9 Summary: level of involvement of roles per stages	1.40

1.3.10 Summary: level of involvement of roles per activity	1.40

2. PROJECT MANAGEMENT	2.1

2.1 Risk Assessment and Management	2.2

2.1.1 Outline of risk assessment and management methodology	2.2

2.1.1.1 Risk Assessment	2.2

2.1.1.2 Risk Management	2.3

2.1.2 Risks related to LSCO projects	2.3

2.1.2.1 Risks when buying commercial LSCO application	2.4

2.1.2.2 Risks when developing a specific LSCO application	2.4

2.1.2.2.1 Risks mainly in stage: Identification of an LSCO opportunity	2.6

2.1.2.2.2 Risks mainly in stage: Exploration of the LSCO Opportunity	2.9

2.1.2.2.3 Risks mainly in stage: Full Requirements Study	2.12

2.1.2.2.4 Risks mainly in stage: Industrialisation	2.15

2.1.2.2.5 Risks mainly in stage: Delivery/Integration	2.17

2.1.2.2.6 Risks mainly in stage: Operations, Maintenance	2.18

2.1.2.3 Risks related to organisational changes	2.20

2.2 Planning and Resourcing	2.22

2.2.1 Preparing a Project Plan – Scheduling	2.22

2.2.2 Preparing a Resource Plan	2.23

2.3 Progress and Change Control	2.24

2.3.1 Monitoring progress	2.24

2.3.2 Change control	2.24

2.4 Quality Control	2.26

2.4.1 Project Quality Plan	2.26

2.4.2 Relationship between Quality, Cost and Time	2.27

2.4.3 Quality Review	2.27

3. PROBLEM DEFINITION ACTIVITY	3.1

3.1 Problem Definition Deliverable (PDD)	3.3

3.2 Conceptual Modelling	3.6

3.2.1 Guideline: Conceptual model	3.6

3.3 Requirements Capture / Refinement Task	3.10

3.3.1 WHAT to be captured & refined	3.11

3.3.2 WHO is involved in the requirements capture / refinement procedure	3.12

3.3.3 HOW to capture & refine requirements	3.12

3.3.3.1 Reports on essential system aspects	3.13

3.3.3.2 Observe and Interview key members of the customers’ team	3.14

3.3.3.3 Analysis of existing Decision Support System	3.14

3.3.3.4 Analysis of existing input data sets and solutions	3.14

3.3.4 Issues on Requirements Capture and Refinement	3.15

3.3.4.1 User interaction and LSCO team performance	3.15

3.3.4.2 Experience	3.15

3.3.4.3 Knowledge	3.15

3.3.4.4 Commitment / persistence	3.16

3.3.4.5 Conflicts	3.16

3.3.4.6 Communications	3.16

3.4 Problem Definition Validation Task	3.18

3.4.1 Guideline: Quick prototyping	3.19

3.5 Ending the Problem Definition activity – Planning Issues	3.20

4. SOLUTION DESIGN ACTIVITY	4.1

4.1 Problem Solution Deliverable (PSD)	4.3

4.2 Algorithm Characterisation Task	4.4

4.2.1 Guideline: Initial problem analysis	4.5

4.2.1.1 Extracting problem features from the PDD	4.5

4.2.1.2 Classification of algebraic properties	4.6

4.2.2 Guideline: Find the flavours of the algorithm based on problem categories	4.7

4.2.3 Guideline: Problem decomposition	4.9

4.2.3.1 Focusing on problem categories	4.10

4.2.3.2 Focusing on constraint semantics	4.12

4.3 Problem Modelling task	4.15

4.3.1 Definition of an algebraic model	4.15

4.3.1.1 Sets and indices	4.16

4.3.1.2 Input data	4.16

4.3.1.3 Variables	4.16

4.3.1.4 Constraints	4.16

4.3.1.5 Objective (or cost) function	4.16

4.3.2 Guideline: How to build the algebraic model	4.17

4.3.2.1 Variable selection	4.17

4.3.2.2 Constraint and decision criteria formulation	4.17

4.3.2.3 Dealing with problem decomposition	4.18

4.3.3 Example of algebraic models	4.19

4.4 Refinement Task	4.21

4.4.1 Guideline: Improving the algorithm efficiency	4.21

4.4.1.1 Tightening integration of solvers: Hybrid algorithm	4.21

4.4.1.2 A note on scalability	4.25

4.4.2 Guideline: Revising the problem design	4.27

4.4.3 Minor changes	4.27

4.4.3.1 Changing constraint formulation	4.27

4.4.3.2 Adding redundant constraints	4.28

4.4.4 Major changes	4.28

4.4.4.1 Simplification	4.29

4.4.4.2 Duality form	4.29

4.4.5 Guideline : On fractal design	4.29

5. IMPLEMENTATION ACTIVITY	5.1

5.1 Integration with Legacy Systems	5.4

5.1.1 Data Feeds	5.4

5.1.2 User Interfaces	5.4

5.1.3 External Solvers	5.5

5.2 Coding Task	5.6

5.2.1 Guideline: Choice of a programming language	5.6

5.2.1.1 Choose a programming platform	5.6

5.2.2 Guideline: Coding the algebraic model	5.8

5.2.3 Guideline: How to improve an LSCO algorithm	5.9

5.2.4 Guideline: Coding the hybrid algorithm	5.11

5.2.4.1 Example of hybrid encoding in ECLiPSe	5.11

5.2.4.2 Code for Warehouse location problem	5.12

5.2.4.3 Code for Vehicle scheduling problem	5.12

5.2.5 Guideline: Prototyping	5.15

5.2.5.1 Towards a first solution	5.15

5.2.5.2 Reuse	5.16

5.2.5.3 Monitoring	5.16

5.2.5.4 Significance	5.17

5.2.5.5 Final version: the application	5.17

5.3 Testing / Validation Task	5.18

5.3.1 Guideline: Testing correctness	5.18

5.3.2 Guideline: Testing robustness and efficiency	5.19

5.3.2.1 Robustness	5.19

5.3.2.2 Efficiency	5.20

5.4 Debugging Task	5.21

5.4.1 Guideline: Tools and tricks	5.21

5.4.2 Guideline: Finding the bug	5.22

5.4.3 Guideline: Language tools for bug-tracking	5.23

6. ANNEX A: REFERENCES	Α.1

6.1 References	Α.2

6.2 Structured Bibliography	Α.4

6.2.1 Introduction to combinatorial optimisation	Α.4

6.2.2 Constraint programming	Α.4

6.2.3 Operations research and graphs	Α.6

6.2.4 Linear and Integer programming	Α.6

6.2.5 Stochastic search	Α.7

6.2.6 Problem classes and surveys	Α.8

6.2.7 Methodology references	Α.8

7. ANNEX B: EXISTING CLASSES OF METHODS	Α.10

7.1 Properties of standard solvers	Α.10

7.2 Properties of decision strategy methods	Α.13

8. ANNEX C: EXAMPLES OF PROGRAMS	Α.14

8.1 The transportation problem with LP-TOOLKIT in Visual Basic	Α.15

8.2 Example of CLAIRE code	Α.17

8.3 Example of ECLiPSe code	Α.19

9. ANNEX D: PROBLEM CATEGORY DEFINITION	Α.21

10. ANNEX E: DIDACTIC EXAMPLE: INVENTORY MANAGEMENT APPLICATION	Α.23

10.1 Problem definition	Α.25

10.1.1 Problem overview and structure	Α.25

10.1.1.1 Objectives	Α.25

10.1.1.2 Input data	Α.25

10.1.1.3 Output data	Α.25

10.1.2 Conceptual model	Α.26

10.1.2.1 Input data	Α.26

10.1.2.2 Ouput	Α.26

10.1.2.3 Constraints	Α.27

10.1.2.4 Decision criteria	Α.27

10.1.3 Other requirements	Α.28

10.2 Problem design	Α.29

10.2.1 Problem Solution Deliverable 1	Α.29

10.2.1.1 Problem features and structure	Α.29

10.2.1.2 Algorithm characterisation	Α.29

10.2.1.3 Problem design	Α.30

10.2.2 Problem Solution Deliverable 2	Α.32

10.2.2.1 Problem features and structure	Α.33

10.2.2.2 Algorithm characterisation	Α.33

10.2.2.3 Problem design	Α.33

10.2.3 Problem Solution Deliverable 3	Α.35

10.2.3.1 Problem features and structure	Α.35

10.2.3.2 Algorithm characterisation	Α.35

10.2.3.3 Problem design	Α.37

10.3 Concluding remarks	Α.40

11. ANNEX F: GLOSSARY	Α.41

11.1 Definitions	Α.42

11.2 Translations	Α.50

�

0.	Introduction

� TOC \o "1-4" �0. INTRODUCTION	� GOTOBUTTON _Toc449268323 � PAGEREF _Toc449268323 �i��

0.1 The Chic-2 Methodology	� GOTOBUTTON _Toc449268324 � PAGEREF _Toc449268324 �iv��

0.2 Using this Guide	� GOTOBUTTON _Toc449268325 � PAGEREF _Toc449268325 �vii��

�

�It is well known that Information Technology and telecommunications have led to unprecedented increases in modern organisational efficiency. Computer networks now exist in almost all organisations from the smallest to the largest. This has been brought about by the power of modern computers combined with decreasing hardware costs, greatly enhanced graphics capabilities and the ease of use of current office software.

Less well known is the increasingly significant contribution that optimisation techniques have made in this progress.

The features common to the process of updating all the flight schedules of an airline for the next IATA season, preparing a next month’s production schedule for a car manufacturer, forward ordering of raw materials for an animal food processor, or assigning plant to building sites for a construction company, are that such plans are the fruit of a large number of interdependent elementary decisions. It is for example not possible to assign an aircraft to the 7.30 am Paris-London flight without considering all other flights on the route throughout the day, or the onward routing of the aircraft once it has landed in London. These decisions are interdependent because they involve tasks (flights) to which have to be met from a pool of sharable resources (aircraft). The makeup of an airline’s fleet is a fixed resource for use in short-term flight planning. It is clear that committing resources at some given moment will limit the scope for choice in the future. Any optimisation will therefore need to take account of anticipated future requirements based on a broader set of alternatives than short-term local criteria. Cost and benefit criteria, for example would need to be global. For example it may in the long run be more economic to use a larger aircraft with a reduced load factor on the 7.30 am flight in order to ensure that enough capacity is available on the return 9.30 am and subsequent flights where much larger passenger loads are expected. Local decisions are invariably evaluated as part of the entire airline’s flight program for the day, week or season.

This airline example illustrates that the decisions that need to be taken will inevitably involve a degree of combinatorial complexity which can make the eventual solution computationally hard. This is particularly the case when other sources of complexity are taken into consideration. These can include issues such as the uncertainty of the outcome, other criteria that need to be addressed and frequently the effect of decisions made by competing companies.

Optimisation techniques facilitate decision making in cases where computational complexity is seen as the predominant aspect of the problem to be solved. Often it is only through the use of efficient optimisation techniques that related problems involving multiple criteria or robust optimisation can be solved at all.

The number of IT applications containing optimising features in some form or another increases daily. This is due as much to technological progress as to increased demand since the former raises expectations that more and better features will now become available.

Optimisation techniques first made their appearance in business planning with the extensive use of Linear Programming models. Computers have been available to exploit the Simplex algorithm almost from the time that Dantzig proposed it in 1947.

Optimisation of the makeup of raw materials has been in use for decades in the oil industry to solve problems such as the blending of feedstocks. In the animal feed industry, competition and erosion of margins have rendered the technique essential for survival.

Today supply chain management models are extensions of linear programming in the context of long term planning. The applications involve large, sometimes huge linear programming models. Since however the simplex algorithm is so powerful, such models can now be run on comparatively small computers. A production planning model with 100,000 variables and 10,000 constraints can be solved optimally in a few minutes on a Pentium© NT© machine. A new optimal solution derived from the previous one by changing a price or the capacity of a plant is given in a few seconds.

Solving problems at a more tactical or operational level gives rise to more complex models typical of scheduling or routing problems. Short-term problems can often give rise to a far greater number of constraints in models of considerable complexity which can be non-linear. Many of the variables can be discrete, typically with only two value choices. These make the problem harder to solve. Optimisation models based on discrete variables are termed combinatorial optimisation problems. Variables in such models represent “yes/no” choices or some other selection over discrete alternatives. The classical “travelling salesman problem” is a typical example. A salesman has to choose the shortest route that enables him to visit a given set of clients and return to his starting point. This is an optimisation problem in which a cost function, here distance, has to be minimised. Generalisations of this academic problem (formally, finding the shortest Hamiltonian circuit in a graph) are computationally hard to solve but have led to the development of more complex yet more realistic models such as the multiple vehicle routing problem. This involves constraints such as the duration of each tour or the total load that a vehicle can carry. Extensions of such models have been proposed when constraints on the delivery time exist, such as fixed dates or delivery times within time windows.

Human resource scheduling is another area which has seen significant progress both in the theoretical treatment of the problem and in practical applications. Recent work has demonstrated the benefit of hybrid approaches towards these problems in which the overall problem is partitioned into building daily rosters and then assembling them into, say, weekly timetables. The first part can be solved using a Linear Programming model and the second treated as a pure Constraint Satisfaction problem.

Recent progress in optimisation technology

The complexities involved in solving those real-life optimisation problems which are not amenable to Linear Programming approaches has for many years led to the use of heuristics, where experience was used to generate and constrain possible sets of values in turn for the variables of the problem until a satisfactory answer was found—a process usually known as generate and test. This situation is now changing partly because of the increased power now available from computers. This means that computationally more complex applications are now feasible simply because computers are more powerful, and what were once mainframe applications can now be run on Unix or NT workstations or even on a notebook computer. The other reason for change is that new algorithms have emerged such as Constraint Programming which enable pruning to be applied of the range of possible values of the problem variables that need to be searched for a solution. In this technique each variable is assigned an initial domain of possible values, constraints are applied to prune off any impossible combinations and only as a final stage are the residual ranges searched for a solution. This test and generate technique is capable of reducing the computational complexity of a problem by orders of magnitude and lies at the core of currently available tools such as ILOG Solver, CHIP from Cosytec and ECLiPSe from IC-Parc. There has also been progress in basic optimisation methods such as Linear Programming and Mixed Integer Programming (MIP) which has made current packages much more efficient. Solving a MIP model currently with CPLEX or XPRESS-MP on a PC will outperform the same model solved using the former MPSX product on a mainframe. MPSX was for many years the industry yardstick for optimisation performance.

An example of the progress possible using the above techniques involves bus driver scheduling. The basic mathematical model, published over 20 years ago, consists of the traditional generate and test sequence, generating a set of feasible shifts, and then selecting from them a subset that satisfies all the individual routes or tasks. It is a “set covering problem” which is easily modelled and relatively easily solved using a Linear Programming package. When the problem was first solved 20 years ago, complex combinatorial techniques such as column generation models did not exist. The only feasible approach was to generate a limited number of potential shifts. At the time, the maximum number of shifts that the RATP (the Paris public transport authority) could pass to the optimisation model was 3000. It subsequently transpired that up to 300,000 shifts would be needed if the computer was to do better than a human expert. Of course then the available computer solution, being worse that the manual one, was not used. Nowadays the computer solution is always as good as or better than that of the best experts not only because a modern Pentium PC can outperform a mainframe of 20 years age, but also because of the efficiency of the CPLEX solver and the progress achieved in column generation techniques. These enable millions of shifts to be explored “implicitly”.

The purpose of this methodology is to guide a competent application designer through a design process that combines the techniques separately described above to deliver solutions consistently better than those intuitively provided by domain experts.

0.1	The Chic-2 Methodology

Implementing optimisation techniques within an IT project is a complex activity involving sophisticated technologies and requiring a lot of skills in modelling. Hence, optimisation appears as risky and sometimes costly. But because of the potential benefits, clearly it should be considered, and methodological work should support organisations in implementing such projects.

The Chic-2 Methodology aims to efficiently address the development and implementation of software applications which involves the use of optimisation techniques such as mathematical programming techniques, constraint programming, stochastic methods and heuristics. We refer in the Chic-2 Methodology to the notion of Large Scale Combinatorial Optimisation (LSCO) to show that a methodology is probably more important when the problem to solve is complex, and cannot be solved adequately by a single technique. In such situations, one will have to decompose the complex problem into sub-problems which can be solved by the current optimisation techniques. We therefore refer to the term of hybrid solutions when a software application relies on different optimisation techniques. Several models and algorithms exist in the application either to solve different sub-problems, or to solve a single one but in co-operative way by mutually exchanging flows of information.

Although the priority of the Chic-2 Methodology is to address LSCO problems, it is important to say that many of the guidelines provided in the methodology also apply to less complex situations for which a single technique (i.e. not necessarily hybrid) can be implemented.

The Chic-2 Methodology focuses on optimisation aspects of an IT project. It does not compete with existing software development project methodologies, and it should be consistent with such general methodologies. It is based on the experience of a consortium of industries, consulting firms, and research centres grouped in the Chic-2 ESPRIT project.

Achieving the organisation’s objectives

In a world where competitiveness becomes more and more important, industry and commerce are faced with the need to continuously optimise their resources and processes. Generally speaking, any IT project aims at increasing organisational efficiency. Sometimes the main objective in implementing a new application is to reduce administrative work done previously by hand or with the help of a an existing older application. Often though, the provision of better quality solutions (i.e. the quality of the solution built with the support of the system) is outlined as a major objective.

Clearly the use of LSCO techniques should aim at this second objective, that of providing better quality solutions. This quality can be measured in terms of cost (provide the same quality of service, or same level of production using fewer resources), of benefits (increased sales or profit) or in terms of the quality of the operations (provide a better or more secure service with the same amount of resources), or any compromise solution between these objectives.

If an LSCO module is to be efficient for the organisation in respect to the previous criteria we assume that it will either:

provide solutions of the same quality than those made by the domain experts in the organisation but in a much shorter time (objective one)

or provide solutions of better quality than those made by the domain experts (objective two)

or both

Obviously, it is important to understand the potential benefits in a preliminary feasibility study where LSCO is under consideration. We will emphasise in this methodology the importance of a prototyping activity in regard to this objective (typically in the Exploration of the LSCO Opportunity stage of the project lifecycle).

Support for the end-user

Optimisation techniques enable an automatic approach to finding solutions to a combinatorial problem. Resource allocation problems often have this combinatorial characteristic. An LSCO module can be integrated into a Decision Support System (DSS) where it will be used interactively by the end-user. Implementing an LSCO module should not be viewed as “a black box providing the optimal solution” but rather as a “powerful problem solving machine interacting with a human end-user”. It is true that there is room for fully automatic decision making, but for almost all LSCO applications, this is not the most appropriate approach, although the percentage of fully automatic decision making systems may increase in the future. Therefore, the LSCO module will have to be designed carefully to take into account the interactions which the end-user will need. How is he going to control the decision making process with the automatic problem-solving module? If we consider that most decision-making situations involve multiple optimisation criteria, it is important to give the end-user any facility to control the decision-making process in using the way he wishes the different criteria.

For complex situations, it is also necessary to give the end-user the opportunity to directly interact with the solution. This interactivity includes a number of possibilities such as :

choose the optimisation criteria, fix their relative importance, modify aspiration levels for criteria or soft constraints and ask the LSCO module to provide a solution according to these control variables

manually modify any solution provided by the LSCO module

fix some part of the solution and ask for the LSCO module to finish the work.

All these interactions will be facilitated if an appropriate Graphical User Interface (GUI) exists. For an application which requires or provides a large amount of data, an access to a database is almost mandatory.

For these reasons, beyond the prototype stage, which will focus mainly on the LSCO component, developing an IT project with an LSCO module has all the flavour of developing other IT projects.

As far as end-users are concerned an LSCO project is never an isolated LSCO project, but an IT project with an LSCO module which achieves some “automatic solution building”. Nevertheless the Chic-2 Methodology will mainly focus on the LSCO part of the project.

Implementing an LSCO module in an IT project

How should an LSCO module be implemented?

Buy an existing solution, which already has one or more LSCO components?

Or make an LSCO module by internal or external development?

This “make or buy” decision depends on various criteria.

For mature business opportunities and problems, LSCO technologies are already available in commercial vertical packages. Using such an approach involves buying a software application package.

Examples can be given such as :

supply chain management software where optimisation models are included in the packages (I2, J.E. Edwards, Numetrics, Manugistic,…)

animal feed packages, where the blending of raw materials is modelled and solved by linear programming techniques. All the companies in this business nowadays use such packages in order to optimise the purchase of their raw ingredients

bus driver scheduling systems which include some run-cutting optimisation modules

fleet assignment models, or crew scheduling for airline companies

Nevertheless, some of these packages require a lot of expertise in modelling, parameterisation and tuning activities. Therefore although they may seem at first glance an interesting solution enabling reduction of risk and improvement in cost control, in reality they may prove more costly than expected, and not so well tailored to the specific needs of the company. This is why, even when such packages exist, a bespoke system can sometimes be a better solution for the organisation. If increasing the quality of the solution is a major issue, then definitely serious comparison of the two approaches (make or buy) should be considered, based an a benchmarking study.

In this context a prototype should be implemented to evaluate the “make” option.

Often, new problems are very specific, large scale combinatorial problems for which no efficient solution has already been publicised. Although complex, some of these optimisation problems can now be solved thanks to the availability of increasingly powerful and accessible optimisation tools as well as progress in research, particularly in using developments that exploit co-operation between different optimisation techniques.

Some of these problems can be solved by a well-known single technique such as a Linear Programming model or a Simulated Annealing heuristic. Some others require almost a Research and Development activity for which a prototyping activity will play a crucial role.

Because of such a variety of situations, it is useful to have in mind the lifecycle of seven well defined stages of an LSCO project (see section 1). Although this lifecycle appears as a sequential procedure, many iterative and non-sequential processes may take place within each stage.

For new problems, the key stage of the life cycle in the Chic-2 Methodology is the Exploration of the LSCO Opportunity stage. It is during this stage that one or even several competing prototypes should be developed before any decision of industrialisation.

0.2 This Guide

If LSCO is an opportunity for management, implementing such technologies in an IT project requires skills of very different types:

business oriented skills and knowledge enabling an understanding of the business issues, problems, difficulties, challenges

skills in modelling management situations (resource allocation, scheduling,…)

skills in designing and implementing resolution algorithms

software technology for designing and implementing algorithms

Unfortunately, very few companies currently have the required levels of expertise and experience to launch such an optimisation project without taking too many risks of failure or of drift in development time and costs.

The Chic-2 Methodology has been conceived in order to:

lower the expertise level needed to develop or manage optimisation projects,

enhance the quality of solutions by widening the set of candidate techniques,

reduce the time required to handle new problems by structuring the development process,

thus leading to a reduction of the overall cost of optimisation projects, and an increase of their adequacy and efficiency.

A detailed analysis of the required skills, and of the various roles of the people involved in a LSCO project is proposed in section 1.3. The user of this methodology may range from an engineer with just a basic knowledge of optimisation techniques who is to participate in the development or management of a LSCO project, right through to the specialist of a specific technique who wishes to explore the use of hybrid algorithms. The user may be a member of a LSCO team or may be part of the customer organisation that wants to sub-contract part or all of the LSCO development. The LSCO project may be limited to a feasibility study, to the industrialisation of an existing prototype or may need a complete development. It may be a stand-alone project or a part of a global IT project.

The Chic-2 Methodology first defines a flexible framework for optimisation projects (Section 1). A seven-stage development lifecycle is proposed. Each stage is characterised by its objective, which is achieved by performing some generic activities. The three main generic technical activities whose contents are specific to the development of LSCO projects and their respective positions in the lifecycle are identified: Problem Definition (Section 3), the Design of a solution (Section 4) and its Programming (Section 5). These activities are divided into tasks which are described and for which best practices guidelines are provided.

The methodology particularly stresses the importance of project management to insure the quality of development and of the resulting optimisation application (Section 2).

It should be emphasised that the Chic-2 Methodology is not intended to represent a standalone project management and development methodology. The information presented complements the standard methodologies already in use in commercial and industrial environments and is intended to indicate where, in those standard methodologies, particular attention should be paid to areas which are specific to LSCO projects.

Moreover, the methodology is definitely not a “cookbook” for solving commercial and industrial optimisation problems.

To get the best from this Guide, please note:

All the users of the methodology should be familiar with the description of the proposed lifecycle (Section 1) as well as the risk section of Project Management (Section 2.1). From the lifecycle, the user can directly turn towards the generic activities and tasks with which he is concerned.

For a quick review, the tables at the top of main sections and chapters summarise the addressed activities and tasks.

A Glossary (Annex F) contains the technical terms used in this Guide.

0.2	How to Use this Guide

Read the Introduction and Lifecycle description in People and Process

This will result in a general understanding of:

the purpose of an optimisation project

how is it structured

what are the different roles to be fulfilled

Identify the role you will carry out

Go to the relevant parts of the Art and Craft Section

understand the guidelines relevant to your role

In time develop as needed a better understanding of the other roles

Esprit Project 22165 – D3.4	The Chic-2 Methodology for Combinatorial Applications - Engineering for Optimisation Projects

PREFACE

Table of Contents

INTRODUCTION		� PAGE �ix�	

