

Problem Definition Activity

Chapter Contents

� TOC \o "1-4" �3. PROBLEM DEFINITION ACTIVITY	� GOTOBUTTON _Toc451167017 � PAGEREF _Toc451167017 �3.1��

3.1 Problem Definition Deliverable (PDD)	� GOTOBUTTON _Toc451167018 � PAGEREF _Toc451167018 �3.4��

3.2 Conceptual Modelling	� GOTOBUTTON _Toc451167019 � PAGEREF _Toc451167019 �3.7��

3.2.1 Guideline: Conceptual model	� GOTOBUTTON _Toc451167020 � PAGEREF _Toc451167020 �3.7��

3.3 Requirements Capture / Refinement Task	� GOTOBUTTON _Toc451167021 � PAGEREF _Toc451167021 �3.11��

3.3.1 WHAT to be captured & refined	� GOTOBUTTON _Toc451167022 � PAGEREF _Toc451167022 �3.12��

3.3.2 WHO is involved in the requirements capture / refinement procedure	� GOTOBUTTON _Toc451167023 � PAGEREF _Toc451167023 �3.13��

3.3.3 HOW to capture & refine requirements	� GOTOBUTTON _Toc451167024 � PAGEREF _Toc451167024 �3.13��

3.3.3.1 Reports on essential system aspects	� GOTOBUTTON _Toc451167025 � PAGEREF _Toc451167025 �3.14��

3.3.3.2 Observe and Interview key members of the customers’ team	� GOTOBUTTON _Toc451167026 � PAGEREF _Toc451167026 �3.15��

3.3.3.3 Analysis of existing Decision Support System	� GOTOBUTTON _Toc451167027 � PAGEREF _Toc451167027 �3.15��

3.3.3.4 Analysis of existing input data sets and solutions	� GOTOBUTTON _Toc451167028 � PAGEREF _Toc451167028 �3.15��

3.3.4 Issues on Requirements Capture and Refinement	� GOTOBUTTON _Toc451167029 � PAGEREF _Toc451167029 �3.16��

3.3.4.1 User interaction and LSCO team performance	� GOTOBUTTON _Toc451167030 � PAGEREF _Toc451167030 �3.16��

3.3.4.2 Experience	� GOTOBUTTON _Toc451167031 � PAGEREF _Toc451167031 �3.16��

3.3.4.3 Knowledge	� GOTOBUTTON _Toc451167032 � PAGEREF _Toc451167032 �3.16��

3.3.4.4 Commitment / persistence	� GOTOBUTTON _Toc451167033 � PAGEREF _Toc451167033 �3.17��

3.3.4.5 Conflicts	� GOTOBUTTON _Toc451167034 � PAGEREF _Toc451167034 �3.17��

3.3.4.6 Communications	� GOTOBUTTON _Toc451167035 � PAGEREF _Toc451167035 �3.17��

3.4 Problem Definition Validation Task	� GOTOBUTTON _Toc451167036 � PAGEREF _Toc451167036 �3.19��

3.4.1 Guideline: Quick prototyping	� GOTOBUTTON _Toc451167037 � PAGEREF _Toc451167037 �3.20��

3.5 Ending the Problem Definition activity – Planning Issues	� GOTOBUTTON _Toc451167038 � PAGEREF _Toc451167038 �3.21��

��

�
�
�

Position in the lifecycle�

Whenever it is needed to obtain information on the problem and its context.

During the Exploration of the LSCO Opportunity stage, the definition activity may focus on particular parts of the problem which are unclear or whose resolution is not obvious. It may also help to scope the project more precisely.

During the Full Requirement Study stage, the definition of the whole problem is addressed.

�
�
�
�
�

Description�

The objective of this activity is for the LSCO team to collect, organise and validate the customer's requirements so as to have a clear understanding of the problem in order to design a solution. A previous definition of the problem under consideration could well serve as a base for this work.

The problem definition activity can be decomposed into three tasks:

Requirements capture and refinement: this task deals with collecting precise information on the problem and organising it into a document that will then be used throughout the project, the Problem Definition Deliverable (PDD).

Validation of the Problem Definition where the LSCO team ensures that the knowledge acquired on the problem is adequate to proceed further

 Conceptual Modelling: this task focuses on re-expressing the requirements in a form that leads to the design and coding of a solution.

During the validation task it may become clear that part of the definition has to be refined, so leading to the iterative process shown on Figure 3.1.

�EMBED Unknown���

Figure 3.1 Problem Definition Activity

�
�
�
�
�

Participants�

Problem Owner Side:

Project Manager

Domain Expert (key participant in the Exploration of the LSCO Opportunity stage)

End Users (mostly involved in the Full Requirements Study stage)

IT Department (mostly involved in the Full Requirements Study stage)

LSCO Technology Provider Side:

LSCO Project Manager

LSCO Expert (responsible for the execution of the Exploration of the LSCO Opportunity stage)

LSCO team (responsible for the execution of the Full Requirements Study stage. The involvement of the LSCO team is essential during the validation of the problem definition)

�
�
�
�
�
Input�
Draft / previous problem definitions, if any.�
�
�
�
�

Output�

The Problem Definition Deliverable (PDD) that will be used as a reference for the LSCO team throughout the project and may also serve as a contractual document.

�
�

Problem Definition Deliverable (PDD)

�The objective of this document is to present, in an organised form, a precise problem definition, including business objectives, system architecture, data specifications, usability requirements, technical & functional specifications and project management requirements.

The information included in the PDD is organised in three sections:

Problem Overview and Structure – gives general information about the problem and its possible decomposition into separate LSCO sub-problems (modules), specifying all the relationships between the modules.

Conceptual Model(s) – a formal representation of each sub-problem, in natural language.

Other requirements – whether related to technical or business issues.

Section 1: Problem Overview and Structure

	(Organisational Decomposition and sub-problem definition)

The first part of the Problem Definition Deliverable should explicitly give a clear overview of the structure of the problem, including its possible decomposition into two or more sub-problems. This decomposition is often required for organisational, geographical, cultural or other reasons and may well be asked for by the customer. Decomposition may well be apparent in the way in which the problem is currently solved, for example, by two departments co-operating by solving the problem in two stages.

Unless the business process can be completely recast during the LSCO project, the problem should be decomposed into sub-problems following the current organisational separation so that tasks performed by different people should correspond to different sub-problems. as well as the business workflow (document or data exchanges between users, as well as man-computer interaction should correspond to inputs and outputs of sub-problems).

One should however avoid the pitfall of problem over-decomposition. Decomposition and global optimisation are antagonistic as progressive optimisation of sub-problems is only a crude approximation to global optimisation of the whole problem. Thus, one should keep in mind, while writing the PDD, that fine-grain decomposition may forbid high optimisation gains, while coarse grain decomposition may require changes to some aspects of the business process.

The PDD should demonstrate in a clear and unambiguous way the succession of modules and the relationship between them, their inputs, their outputs and the data flows between the modules.

�

Figure 3.2 Example of a problem organisational decomposition

For each of the modules the following information is provided:

Objective – brief description of the module

Input – data to be used within this module, whether coming directly from the customer, or as an input from previous modules

Output – data required by the user or needed as an input for a following module or for a previous one if feedback is needed.

Clearly the decomposition requires a consistent data model to be used across the whole problem. Consequently, there are also technical requirements which need documenting relating to the global data model and also to the shared Database Management System.

Section 2: Conceptual Model(s)

The second part of the PDD gives the conceptual model for each problem module. The conceptual model gives the main structure of the problem and identifies its data, constraints, criteria and objectives. It should remain independent of any mathematical definition and any kind of solution issue. If possible, all its information should be given in natural language. This will allow a quicker and better understanding of the problem definition by the LSCO team – whatever their speciality – and will facilitate validation of the definition with the customer.

A description of the conceptual model is given in section 3.4.

Section 3: Other Requirements

Apart from the requirements related to the problem per-se, additional information can be provided by the customer and categorised into three broad categories: Functional, Technical and Business Requirements:

Functional requirements :

These describe the way in which the user wants to interact with the system. The user may require the ability to stop the computation, so as to guide the optimisation process or to modify a solution. A clear specification is required of the information to be displayed in the user interface, as well as the specific presentation methods (graphs, tables, toolbars, menus) which facilitate the effective functioning of the overall system.

Customer’s expectations of system performance and the possible compromises between execution times (CPU performance) and solution quality should also be stated here.. It should be possible for the end-user to tune performance parameters so as to trade off defined quality criteria and execution time.

Technical requirements:

These include all required software and hardware specifications, so that the system can be compatible, integrated and connected with the rest of the users’ information systems, whether existing or being developed simultaneously with the LSCO component. More specifically, technical requirements are concerned with information falling into the following categories:

Information System (IS) Environment

IS Methodology

Hardware components

Software components

Operating System, Database.

Communications interfaces

This section may also include a description of preferred methods for the solution. The user may want to use a technique he already knows in order to be able to perform future maintenance work, or may want to explore a particular new technique.

Business requirements :

This category includes all non-technical requirements:

Cost / Budgetary constraints on the Project

Project requirements: constraints on delivery dates, etc.

Description of Deliverables and Documentation to be supplied by the Project:

User guides / training material

Maintenance documentation

Conceptual Modelling

Description�

The purpose of this task is to organise and express the user requirements in a form that will be useful for the design and programming activities. The conceptual modelling task highlights the main structure of the problem from a technical perspective while remaining verbal and self-understanding.

�
�
�
�
�

Issues�

The main issue in conceptual modelling lies in preparing a high level representation of the system, identifying major user services and their relationships. This representation is a document written in a “common language”, shared between the LSCO system designers and customers.

�
�
�
�
�

Milestones�

Conceptual Model

�
�
�
�
�

Guidelines�

Description of the concepts used in the Conceptual Model.

�
�

Guideline: Conceptual model

�The conceptual model for each of the modules identified by the organisational decomposition may have the general form shown below:

�EMBED Word.Picture.6���

Figure � STYLEREF 1 \n �3�.3 Conceptual Model

��
Input data corresponds to what is initially given by the user as known data but may also include data flow from a preceding module. A data structure can be defined as a list of entities with specific properties. Data properties should include:�
�

Type of data :

Domain / Range / Units – The data to deal with each entity has to be specified.

Data represent quantitative measures, so units have to be specified, or by qualitative measures (ordinal scale, preferences, indices,..) or even as sets (set of characteristics, options,..). For instance, in a fleet scheduling problem, data includes information on available routes (properly represented by Booleans), the corresponding distances (measured in km), vehicles and their properties (such as capacity in kilograms) and orders to be delivered with their properties (quantity in kilograms, type of order represented by strings, destination etc.).

Data information:

Granularity – the units / level of detail required for each variable. For example, it is necessary to decide whether to consider each individual product item, family of products, or even some notion of a single product (i.e. “cement in tons” or “cars”)

Horizon in both time and space, determined by whether the system is addressing a long term planning need or short term decision making processes, has a direct impact on the size of the LSCO sub-problem.

Size – the volume of data the system will have to deal with.

Completeness – state whether data is available for testing or will have to be simulated. In the case where data has to be extracted from a database or have to be computed (via a simulation, for example in a nuclear industry), access times must be determined.

External Properties:

Certainty / uncertainty level. Determine which variables are a-priori known or are subject to change in problem solving. For instance, in fleet scheduling, data concerning available routes between cities involve a degree of uncertainty due to unpredictability in weather and congestion. Other examples of uncertainty arise through vehicle breakdown, order cancellation and delays to delivery.

Once uncertainty is identified robustness requirements must be explicitly addressed by the user.

�EMBED Word.Picture.6����
Constraints constitute a very important part of the conceptual model. They can be classified into categories: hard, soft and preferences�
�

Hard constraints are constraints that make a clear distinction between a feasible solution and one which is not feasible. They include obvious physical impossibilities like “a flight is either assigned to a single aircraft or is not assigned at all”, clearly a flight is not going to be assigned to two aircraft. In the fleet scheduling problem, hard constraints represent the fact that a vehicle cannot be assigned to two different routes at the same time. Often these constraints are so obvious to the user that he will not even state them. Nevertheless, the PDD must contain all such constraints.

Soft constraints are declared by the user (or the organisation) as constraints but can be violated. For instance in a staff scheduling problem, the user will say “no isolated day-off”, but after some discussion, or more simply looking at his hand-made rosters, he will admit that he allows some isolated days-off but it should be as low as possible. In the fleet scheduling problem, the user may avoid assigning a certain route to a vehicle at a particular time of day due to known bad travelling conditions.

Preferences – When soft constraints are introduced in the Problem Definition, it is important to grasp some information on the user’s preferences between the different soft constraints. Often, there is a clear priority between the soft constraints. For example, in the fleet scheduling problem it may be preferable for certain vehicles to carry a particular type of cargo or to follow certain pre- determined good routes. From the customer’s point of view, it might be strongly preferred that certain orders are delivered as soon as possible or as close to one another as possible. This has a direct consequence in the criteria definition. Sometimes, the degree of violation will be explicitly introduced as a criterion to minimise as it is the case, for instance, for the quality of interference in wireless communication networks.

�EMBED Word.Picture.6����
Criteria provide a clear idea of what is to be achieved and how to evaluate and validate every solution found, since they contribute to the objective function. The conceptual model should include :�
�

A list of all criteria. The user with the assistance of the expert quantifies the soft constraints, the preferences and the more explicit, often economic, goals into a set of criteria that fully define all the factors which form part of the optimisation. In the fleet scheduling problem there are several types of criteria to be optimised. Temporal criteria require the avoidance of delivery delays, whereas economic criteria require reduction in driving distance and number of vehicles, minimising the quantity of undelivered goods etc. Other criteria involving a wide range of preferences and soft constraints can be defined.

The satisfiability of criteria and their priorities or weights. It is important in a problem to prioritise the defined criteria and to explicitly assign a weight to each one, so explicitly specifying their importance to the user. In the fleet scheduling paradigm, the company may estimate client-satisfaction (minimisation of delays, undelivered goods, etc.) to be a first priority goal compared covering the least distance. Such being the case the weights of the corresponding criteria should be set accordingly.

An aggregation rule when it is known. In many situations a lexicographic rule is chosen to express a clear hierarchy between the criteria. Such a situation often arises when soft constraints are introduced. Any violation to the constraint as often a higher priority than optimising the initial criterion (an economic criterion for instance).

��
Output data includes information similar to the one of the input variables. It specifies the decision variables and any other additional information related to the solution output :�
�

Output data: The decision or target variables are specified. These variables are the system targets, that is the variables to which the system assigns values during the optimisation procedure and which then represent the solution. As in the case of input data the customer has to provide precise data information (data units and type).

Other Information: Apart from assigning values to the output variables, LSCO systems are able to generate a number of additional information, that may provide the customer with a better view of the system output. This type of extra information, to be included in the system outputs, is documented in this part of the Conceptual Model. Additional information is mostly related to the capability of commercial solvers to keep track of the optimisation procedure and produce statistics on various solving aspects, such as :

Values on criteria (upper/lower bounds)

Values on constraints

Slack variables, representing the difference between a given level to a constraint and the level of the activity obtained in the solution

Shadow / Dual values – when slack variables are null, some models such as linear programming models provide easily the dual values which play an important role in some strategic planning models for instance. In the problem definition, the user may require to have access to such dual values for some of the constraints he will define

�Conceptual Model: Warehouse location problem

A factory has to deliver goods to its customers and has a specific number of locations where it is possible to build warehouses. For the construction of a warehouse, a cost referred to as “fixed cost” is defined, plus a variable cost for the transportation of goods to customers dependent on the warehouse location. A customer will be served by exactly one warehouse.

The problem is to determine the number and location of the warehouses that minimise the total fixed and variable costs.

Input data

For the warehouse location problem, the input data are:

A set of customers

A set of potential warehouse locations with the cost of building a warehouse there

A set of cost per customer such that one cost is associated to the delivery from one specific warehouse location. The table of elements (customer, location, cost) is fully given but it is yet unknown from which location the customer will be delivered.

Output data

Output data describe what the user is looking for, which in this case are:

The warehouse location from which a customer will be delivered, and consequently, the cost of delivery to each customer

The locations where warehouses will be built.

Constraints

The constraints for the warehouse location problem are logistic constraints rather than company rules:

Each customer is served by exactly one warehouse

If a warehouse is not built it can not be the delivery point to any customer.

Decision criteria and objective function

The decision criteria contribute to the objective function.

Decision criteria: The total cost, that is the sum of all the fixed costs according to which warehouse is built, plus the cost of delivery from a warehouse to a customer.

Objective function: This problem is defined with certainty and there are no questions regarding the objective function.

The objective function is to minimise the total cost: fixed cost plus delivery cost.

Requirements Capture / Refinement Task

Description�

The purpose of this task is to document, organise and refine the knowledge on the problem or part of the problem to solve and to incorporate it into the Problem Definition Deliverable (PDD).

�
�
�
�
�

Issues�

The main issue in capturing the user requirements lies in the clarity, precision and completeness of the statements. Natural language can be very ambiguous. It should therefore be made sure that the meaning of each requirement is uniformly understood by all parties and that no LSCO aspect has been missed.

�
�
�
�
�

Milestones�

Updated Problem Definition Deliverable (PDD)

�
�
�
�
�

Guidelines�

implementation of a Problem Definition Working Group (PDWG)

key questions for structuring the information collection

�
�

�Several methods have been designed to enable requirements to be captured in a structured way in the development of a conventional information system. These requirements lead to a list of processes and functions describing how the user will interact with the computer. An LSCO system will usually need to be contained within a general information system to make it usable in a business environment, and existing well-established methods are adequate to capture requirements at the most generic level.

However, an area of concern lies in the specifics which define the core LSCO problem. The effective solution of problems LSCO problems needs a very detailed and correct description of the problem to be solved. Difficulty in capturing LSCO requirements may come about in a number of ways:

the customer is unsure about what an optimisation system can do. This leads to a decrease the level of detail in the information given on the problem.

knowledge concerning the problem requiring optimisation is not clearly formalised. This is often the case when replacing manual optimisation, where knowledge mostly comes from experience and where procedures can have become established because they are seen to work, rather than based on a full understanding of all the issues.

The issue of ‘knowledge mining’ has then to be addressed. In this context, knowledge can be information, skills or experience. Knowledge sharing has always been difficult because a person who is knowledgeable in a subject matter can utilise his knowledge in a subconscious way. While it may be easy for him to state how he does certain things because this is an explicit and conscious process, it is difficult to extract his thinking behind why he does it the way he did.

The target of the requirements capture and refinement task is to obtain sufficient knowledge about the problem to be able to solve it. This is made easier by the implementation of a group where all the people concerned with the LSCO application are represented, the Problem Definition Working Group (PDWG). This group should first concentrate on answering a set of key questions that help the extraction of information on the problem. Information about the problem should then be organised for efficient use throughout the project: this is the goal of the Problem Definition Deliverable (PDD).

WHAT to be captured & refined

As described above the main purpose of the requirements capture and refinement task is the preparation of a single document (PDD) which incorporates detailed information about the problem nature as well as about the services which the LSCO system is expected to provide.

During most IS development procedures, the essential information to be captured is mainly concerning the system concepts, the constraints ruling the system operation, the system services and system performance. Unlike most information systems, the development of an LSCO system requires not only a detailed system definition, but the precise specification of the specific problem.

It is essential that the developer is capable of extracting a all information about the problem concept, objectives, constraints, data and criteria as well as the anticipated systems services and performance, which fall into the following categories:

1. Organisational Decomposition

The developer has to determine the possibility of decomposing the system into two or more sub systems whose services, objectives, inputs and outputs are defined separately. In many cases the problem to be solved may be decomposed into several sub problems, for various reasons, such as strategic, organisational or geographical. This inherent problem structure is reflected on the system structure and thus it has to be captured and documented.

In other cases it is convenient to decompose the system, not because of a natural problem decomposition but as a result of prior experience, or so as to be consistent with existing solving systems.

The developer has to capture the anticipated system structure, the relationship between the system components (data flows) and between the components and the systems environment (input / output).

2. Functional requirements

Functional requirements concern the system services provided to the user and the way that the user interacts with the system. At an early stage the customer has some expectations for system performance, system goals, solution quality, computation times, interfaces and other facilities. Commonly customers, and most probably the end-users, are not concerned with the technical details of the system. For this reason the developer must always check system feasibility and interact with the customer.

Chronologically, functional requirements may be addressed before Organisational Decomposition, in order to facilitate the specification of the needs of the end-user.

3. Technical requirements

Technical requirements are concerned with the software and hardware configuration of the system and more specifically the IS environment, the hardware components (types of machines, memory, disk capacity), software components (interfaces, languages), Operating system and Database information.

Technical requirements are commonly affected by technological developments in software and hardware technology. Therefore customers’ requirements are likely to evolve and be modified throughout the project life cycle.

WHO is involved in the requirements capture / refinement procedure

Problems often occur in communicating with various members of the customer’s team. End-users range from clerical staff to top executives responsible for the organisation's operations and their IT skills range from non-existent to fairly advanced. Often clients are not particularly IT literate. Business managers understand the business and its objectives but may find it difficult to express their wishes in clear IT related terms. The more senior managers are needed to resolve “over egged” specifications which can be a major problem when junior managers define their requirements. Moreover, there is nearly always a requirement for management information and reporting. This variety of skills and shared knowledge within the customer organisation may introduce lack of understanding during requirement definition and a subsequent loss of time.

The Problem Definition Working Group (PDWG)

A good option for inaugurating an effective co-operation with the customer is to implement a working group in the organisation including at least three types of participants and skills:

an engineer or manager specialist in the problem to be solved (domain expert)

one or two potential users of the new system

an LSCO specialist if he exists in the organisation, or an engineer in the IT department.

The structure of the group ensures that the LSCO team meets the real system users and not some of their “representatives”, who are usually unable to define the system requirements in sufficient detail. The domain expert and LSCO or IT expert ensure that the requirements remain within reasonable and realistic lines.

The formulation of a PDWG will not only facilitate requirements capture, but will enable the LSCO team to validate and refine these as the Problem Definition Activity proceeds. The PDWG can also be responsible for validation of the PDD. Experience has shown that this “liaison with the customer” saves considerable time in verifying the correctness of customer data.

PDWG meetings may be held on a very regular basis (i.e. once a week etc.). However, although frequent meetings can deliver good results in requirements capturing and validation, they may also introduce risks to the project unless the customer demands are incorporated within the project management change control processes.

HOW to capture & refine requirements

Requirements capture and refinement (as well as validation) are facilitated and accelerated by reinforcing the level of understanding between the LSCO team and the customer so enhancing the quality of information flow to and from both sides. This can be achieved by the use of a number of “tools and tricks”, as shown below:

List of Tools:

Reports on essential system aspects

Observe and Interview key members of the customers team

Analyse existing Decision Support System (if any)

Analyse Data sets & solutions (typical and asymptotical)

Conceptual Modelling

Produce Dummy Screens

Reports on essential system aspects

The LSCO team has to insure that key information about the problem is captured as early as possible. For this purpose, it is recommended that some initial questions are identified, so that these key points are resolved in a timely manner. The customer is required to produce a report, providing comprehensive answers and clarifying the points under question.

An example of questions of particular importance, needing answers in the Requirements Capture task, are given below. Clearly more questions dependent on the specific project requirements also require answer:

Is an organisational decomposition required?

The first step in the user requirements capture process is related to the problem of Organisational Decomposition.

An example can be given in companies operating buses. The bus operating problem is divided into two problems. Problem one deals with scheduling the buses, and problem two with scheduling the bus drivers. The output of problem one is a basic input for solving problem two (the so-called “run cutting” problem). But the two problems are linked. Good practitioners in this field know very well that they can achieve better overall results if they allow some interaction between the two problems. Typically, they will anticipate some run cutting constraints when scheduling buses. For instance, they will know that it may be possible to incorporate one or two more bus runs, using the same number of bus drivers, so achieving better service. Alternatively, modifying the departure time of a bus run by a few minutes may allow a reduction in the required number of bus drivers.

Airlines provide another example, where flight scheduling and crew scheduling, although interacting in strongly, are each so complex that they need to be performed by separate groups in the company. Eventually, when the algorithmic and computer power of is great enough more collaboration between the corresponding algorithms will be feasible. This could well lead to a reorganisation of business processes leading to better overall efficiency in planning and scheduling.

What functionality should be in the LSCO part of the project?

A second step deals with user requirements for the scope of the LSCO part of the project, identifying the decisions to be computed using some form of automatic solution building, and what part should be explicitly reserved to the user as a more exploratory part of the Decision Support System (DSS).

An example can be given in strategic planning tools in supply chain management. The user might want a system that enables optimisation of the cost of product distribution while separately deciding on warehouse location. In this case, locating the warehouses is a “manual” decision and the assignment of customers to one or more warehouses is an automatic decision.

What are the requirements for each LSCO sub-problem?

The next step is the specification of business options & objectives and listing the business constraints (mandatory hard constraints) and the business objectives (soft constraints). Finally, the user has to give more precise and detailed information on the input data, objectives, the restrictions and rules (constraints), preferences, criteria etc.

By getting answers on these key questions the LSCO team is able to produce a conceptual model for the problem under study and incorporate it into an initial version of the Problem Definition Deliverable.

Observe and Interview key members of the customers’ team

This basic technique is not used as much as it should be. Forming a PDWG provides the developer with a very efficient and flexible tool to enhance the level of communication with the customer. The LSCO expert should meet those members of the customers’ team with knowledge on all the parts of the problem domain. It is essential that meetings with technical staff are held in the customers’ premises. The developer is then able to observe the customer solving the problem, assess their technical background and get an understanding of their interactions.

Written reports and interviews assist the LSCO expert to get a clear view of hidden problem constraints, major traps for the development stage. A drawback of this technique is that the LSCO expert will get a view of the problem limited to a few instances of the problem. This is why there is also an important role for the domain expert who provides important input on the wider view of the problem.

Analysis of existing Decision Support System

When an existing DSS exists, a very efficient way to define the user requirements is to analyse the functionality of the existing system and to ask the PDWG to express the requirements by differences.

Moreover, when the current DSS contains a LSCO module, an analysis of the corresponding PDD and PSD should be performed.

Analysis of existing input data sets and solutions

Very often the PDWG will save a lot of time by analysing a solution provided by the user (either manually, or by using the existing DSS). Input data must also be analysed. The PDWG should make sure that the data sets and solutions provided are representative of real, typical instances of the problem. It may also help to use some toy examples in order to understand the actual solution process.

Discussion with the users should enable the LSCO expert to understand what sort of implicit data or knowledge is used in conjunction with formalised data (written or computerised). Implicit data that are involved in making manual decisions such as aspiration levels and or constraints have to be stated explicitly for the new LSCO application.

A risk is that the LSCO expert can excessively simplify the problem by working only on small examples.

Issues on Requirements Capture and Refinement

User interaction and LSCO team performance

Project team members' and users' performance is usually considered to result from ability and motivation, where ability is deemed to result from knowledge and skill, while motivation, in turn, is affected by education, experience, training, and interest. These factors are strongly related to effective requirements capture and refinement as they affect the level of co-operation between the developer and the customer.

Experience

There is a common misconception that people tend to make fewer errors as they gain experience in an activity. However, this is not always the case.

There is no doubt that during the problem definition activity the project team members work in a complex and often “fuzzy” area. Furthermore, organisations and people are all different to each other. Therefore, replication of the techniques and tools that were used in another project does not automatically guarantee that the same results will occur. People's previous experience helps them to tackle the difficulties they face at the beginning of the project. Step by step, their understanding of the peculiarities of the system improves and this enables them to use their experience to improve their performance.

Knowledge

Knowledge itself is a human attribute and comes in many varied forms. We can distinguish, according to Kirakowski [Kirakowski, 1988], five different forms of knowledge:

the knowledge of facts;

the knowledge of definitions;

the knowledge of consequences;

the knowledge of performance;

and the meta-knowledge.

Knowledge can have two basic characteristics, validity and value. However, value can come into play only if validity exists.

It has been said before that although at the beginning of the project the members of the project team have little experience, it soon grows as they gain understanding of the particular requirements of the LSCO problem under examination. This greater understanding comes from the increase of their knowledge of the problem, the people who are involved in it, and their approach to solve the problem. As the validity of project managers' knowledge increases, its value does as well. This makes them feel more secure, confident and faster at taking decisions. This, of course, has an immediate effect in the development time and cost of the project (i.e. reduction in both time and cost).

In contrast to the knowledge of the project team members, users' knowledge does not always positively motivate them. At the beginning, users do not know what the developer want to do nor what analysts want them to do. However, after the process has started and some meetings or workshops have taken place, they become better informed and can understand the whole purpose of developing the system and their role in this process in a better way.

This knowledge does not always have a positive effect on them and their performance. If, for example, they realise that their job is now in danger because of the new system, they may (over)react in a negative and unpredictable way. Generally, though, the more they are involved in the development process, the better they can understand it and their role in it and the more they try to contribute to the better development of it. In this process, the knowledge of the results of their efforts is of great significance, because it highlights their mistakes or misunderstandings and so enables them to overcome these and, therefore to improve their performance.

Commitment / persistence

Persistence is effort maintained over time. It is measured in the form of time spent at an activity or the equivalent, such as the number of attempts to solve a problem. Duration of effort should not be confused with intensity of effort, the latter being related to commitment. Subjects with specific goals, such as a reduction in cost, spent more time working on them than those without specific goals. Moreover, specific challenging goals which however turn out to be easy to address by combinatorial optimisation, lead people to work longer at a task than other types of goals.

Conflicts

Different members of the customer organisation have different requirements, and they may all be equally important. In addition, there may be quite diverse needs among the user population, especially different working practices and aspirations. However, because of communication gaps within the organisation, these differences may not be anticipated. In fact, it is fairly easy to get a boss and his subordinates to express a different understanding about the same problem. However, one of the most dangerous traps, is not contradictory requirements, but vague requirements, because they can not be identified before the system starts working. Formalising priorities for the different tasks can reduce the risks.

Communications

The importance of communication in affecting employees' attitudes and motivating them to improved job performance has been well recognised. Therefore, the fact that there may be considerable difficulties in communication between users and system specialists can be of crucial importance for the system development. This problem is caused because often, even if the specialists are part of the same organisation, they may speak a quite different technical language to the one used by the user department. In addition, neither side may adequately appreciate the difficulty the other side has in understanding the significance of what they are saying. It may also not become apparent to the people concerned that these difficulties exist because users feel inhibited about revealing their ignorance in settings which may contain many important people within the organisation.

Problem Definition Validation Task

Description�

The purpose of this task is to validate the information contained in the PDD before its use for problem solution design and programming activities.

�
�
�
�
�

Issues�

Experience has shown that customers are often unable to specify correctly their needs on paper. In most cases, especially when the problem is new and the user non LSCO literate, the LSCO team has to utilise a number of tools and tricks that will assist in validating the problem requirements, that is to check the completeness and correctness of the problem definition contained in the PDD.

�
�
�
�
�

Milestones�

If successful, validated PDD.

Otherwise, iterations on Requirements Refinement task.

�
�
�
�
�

Guidelines�

A set of “tools and tricks” that may also be used for the refinements of the requirements.

�
�

The problems in clearly defining the requirements often arise from a difference in the knowledge between the customer and the LSCO team. It is then important to estimate the knowledge shared among the project partners. This knowledge can be seen by two different aspects:

LSCO knowledge / experience on LSCO projects.

Industry domain knowledge

�

The LSCO team (D) often knows very few things about the industrial domain of the problem at hand. Customers (C) are very familiar with their industrial domain but are not generally LSCO-literate. Taking into account the problem context and the shared knowledge (LSCO + Industrial) between developer and customer, the LSCO team can use any or a combination of the tools – shown below – that will assist :

move to a higher level of industrial knowledge (D'), thus getting a better grasp of the given problem

provide the customer with some LSCO knowledge (C'), enabling him to be more specific, realistic, willing and optimistic.

Guideline: Quick prototyping

For some problems, those which can be partially solved by easy and quick prototyping, an efficient way to validate an initial PPD is to implement such a prototype. It can be the case when a heuristic is not too complex to implement (such as a simulated annealing model) or when a simple linear program model, for which easy prototyping tools exist, seems appropriate.

Prototypes, in the sense of incremental development, play an important role in problem solution and client satisfaction. They can be used to really assess the business effectiveness of the planned approach, and help the client understand the nature of the problem and the ramifications of the solution on the business.

Two important issues, related to the building of the first prototype are: Scope and required development time. The scope of the first prototype is an issue that has to be examined at the first stage of an incremental development. At this stage experts usually work with the client to try to identify the minimum set of items from the functional requirement specification that could prove useful in a business context. The general idea is that the scope of the first prototype is closely related to the aspect the client needs to validate.

It should be emphasised that the decision to do more detail prototyping can only be taken by the project management.

After a decision for building a prototype is made the LSCO team may follow two different approaches:

To start building a full prototype (initially incomplete and based on a vague problem understanding) which will be presented to the customer, to be modified and revised throughout the project lifecycle and become the final application. Object Oriented Design facilitates the incremental aspect of the task.

Build a “disposable” prototype, in order to model a first approach to the main problem solution, which will be improved through an iterative procedure of experimentation and customer feedback. The model will be iteratively enriched as misunderstandings are detected, new requirements are discovered and specification conflicts are resolved. The prototype is then thrown away and the procedure for building a system based on the qualitative and quantitative customer specifications is initiated. This prototype may be:

A prototype “nutshell” to demonstrate the process of user interaction and system functionality, without having any computation facility.

A prototype solver, to demonstrate the system capabilities and output, data handling and solution procedure.

A combination of the above, to demonstrate an instance of the final system.

The second approach is often more efficient as the requirements capture procedure becomes more analytical. The prototype is developed on a convenient platform allowing the LSCO team to respond rapidly and flexibly to customer requests for system modifications. Moreover the customer is able to experiment until they are satisfied with the result and approve re-implementation of the final version.

In this respect it is important to distinguish between the prototyping procedure in this stage and prototyping used to develop the final application. More information about prototyping is contained in chapter 4.

Ending the Problem Definition activity – Planning Issues

The problem definition activity can be divided into three steps with each of them referring to a specific process within the activity: (a) capture, (b) refine and (c) validate captured information. Working in a specific project, analysts start gathering information about the requirements that the system must satisfy, then examine this information and construct the Problem Definition Deliverable (PDD). Finally, they validate and verify this document to ensure that it is complete, consistent and correct. This process is repeated until all are satisfied with the requirements specification or until resources are exhausted.

�

Figure 3.4 The R-T-C scheme

The decision of when to end this iterative process should be based on the comparison between the value of the improving specification (R1, R2…), the cost (C1, C2…) and the time spent on the task (T1, T2…). As shown in the figure above, proposed by P Chatzoglou [Chatzoglou, 1997], the relationship between information value, time spent and cost cannot be represented by a straight line but rather by a curve. Thus, although in principle information can be determined when time and cost are given, in practice this can not be done unless the exact shape of the curves that represent the relationship between time, cost and information is determined. It is therefore essential that the procedures of requirements capture, refinement and validation are carefully scheduled so that the risk of following a time and money consuming “curve” is minimised and the information captured reaches a reasonable quality threshold (R1, R2…) in reasonable time.

Esprit Project 22165 – D3.4	The Chic-2 Methodology for Combinatorial Applications - Engineering for Optimisation Projects

Problem Definition Activity		� PAGE �3.1�	

