
A Generic Model and Hybrid Algorithm forHoist Scheduling ProblemsRobert Rodo�sek and Mark WallaceIC-Parc, Imperial College, SW7-2AZ LondonE-mail: frr5, mgwg@icparc.ic.ac.ukAbstract. This paper presents a robust approach to solve Hoist Sch-eduling Problems (HSPs) based on an integration of Constraint LogicProgramming (CLP) and Mixed Integer Programming (MIP). By con-trast with previous dedicated models and algorithms for solving classesof HSPs, we de�ne only one model and run di�erent solvers.The robust approach is achieved by using a CLP formalism. We showthat our models for di�erent classes of industrial HSPs are all basedon the same generic model. In our hybrid algorithm search is separatedfrom the handling of constraints. Constraint handling is performed byconstraint propagation and linear constraint solving. Search is appliedby labelling of boolean and integer variables.Computational experience shows that the hybrid algorithm, combiningCLP and MIP solvers, solves classes of HSPs which cannot be handledby previous dedicated algorithms. For example, the hybrid algorithmderives an optimal solution, and proves its optimality, for multiple-hoistsscheduling problems.1 Introduction1.1 The Hoist Scheduling ProblemMany industrial processes employ computer-controlled hoists for material han-dling [2, 4, 14, 16, 22]. The hoists are programmed to perform a �xed sequenceof moves repeatedly. Each repetition of the sequence of moves is called a cycleand the total time required by the hoists to complete the cycle is called a cycletime. A typical application is an automated electroplating line for processingprinted circuit boards (jobs). The importance of minimising the cyclic time isevident by the fact that the lot sizes for electroplating jobs are usually largeand a production run may require weeks between changeovers [22]. Even a smallreduction in the cycle time can result in a signi�cant saving of time and cost.Due to the nature of di�erent industrial processes, speci�c approaches fordi�erent classes of HSPs have been developed. There are two drawbacks of theproposed approaches. First, the models and solution algorithms are dedicatedto each class of problems, and second, an optimal solution and the proof ofoptimality has been shown only for restricted classes of HSPs [10].

1.2 A Generic Model and Solver for HSPsThis paper addresses all the di�erent classes of HSPs using a single generic ap-proach. This approach uses Constraint Logic Programming (CLP) as the mod-elling language, and models the di�erent classes of HSPs by extending a singleunderlying model with extra constraints. The models are handled by a genericalgorithm which uses a combination of constraint propagation and linear solving.The HSP problem involves both linear constraints and logical constraints,and CLP is a powerful language for modelling such problems. The language usedin this paper to model HSPs is CLP(R)1, an instance of the CLP scheme [13].However while the CLP Scheme envisages a single constraint solver for all theconstraints, this paper follows [3] and passes constraints to either (or both) of twodi�erent solvers. In this setup, we can separate the de�nition and the behaviourof constraints. A practical consequence is that the programmer can concentrateon modelling of the problem and any problems with the performance of thedefault behaviour can be ironed out afterwards.The hybrid algorithms for solving HSPs combines a CLP solver and a MIPsolver such that both solvers share the variables and constraints to cooperate in�nding an optimal solution. The experiments on HSPs have shown that thereare problem classes which can be solved neither by constraint propagation norMIP alone, but which succumb to this combination of the two.Moreover the combination is not an exclusive one, where some constraintsare handled by one solver and the remainder by the other solver. Indeed everyconstraint is passed to both solvers. This application, therefore, shows the valueof allowing a single constraint to be handled by more than one solver.1.3 Outline of the PaperIn this paper two contributions are presented. First, models for classes of HSPscan be de�ned independently of any solver which will be used during the searchfor an optimal solution. Second, the proposed hybrid algorithm derives a schedulewith the minimal cyclic time and proves its optimality for classes of HSPs whichcannot be handled by previous dedicated CLP and MIP solvers.The remainder of this paper is organised as follows. Section 2 presents relatedwork. Section 3 models di�erent classes of HSPs. Section 4 demonstrates how touse a CLP formalism to apply di�erent solvers on the same model. Section 5presents the computational experience with the proposed hybrid approach. Fi-nally, Section 6 concludes the paper.1 By CLP(R) we mean constraint logic programming over numerical equations and in-equations. The implementation we use is ECLiPSe [9], which supports not only linearconstraint solving, but also �nite domain propagation, and various other constrainthandling facilities.

2 Related Work2.1 Hoist Scheduling Models and ProgramsPrevious approaches to minimise the cycle time of HSPs are mostly mathemati-cal programming-based approaches [15, 16, 18, 22]. Recently, several constraintprogramming-based approaches have been developed [2, 4]. In the following wepresent classes of HSPs, the models, and the solution algorithms which havebeen used in the proposed approaches.Phillips and Unger [18] used a mixed integer programming model to deter-mine a schedule with the minimum cyclic time for a real one-hoist schedulingproblem with 12 chemical treatment tanks. The Phillips and Unger's (P&U's)HSP has become a benchmark problem in several follow-up studies.Shapiro and Nuttle [22] introduced a branch-and-bound procedure and usedlinear programming on di�erent subproblems to bound the search space.Lei and Wang [15] introduced a heuristic algorithm for two-hoists schedulingproblems with both hoists on the same track. The algorithm uses a partitioningapproach by which the production line is partitioned into two sets of contiguoustanks and each hoist is assigned to a set. Lei et. al. [14] introduced also anotherheuristic algorithm for the class of two-hoists scheduling problems with bothhoists on the same track. In contrast to the algorithm in [15], the movements ofboth hoists must be scheduled to avoid tra�c collisions. The algorithm is notable to guarantee the optimal solution.Baptiste et. al. [2] presented advantages and drawbacks of di�erent kinds ofconstraint programming-based approaches. All approaches demonstrated thatthe good versatility of CLP language allows one to develop very rapidly com-putational models for di�erent classes of HSPs. The empirical results show thatCLP with a linear solver (Prolog III) is more e�ective than constraint propaga-tion over �nite domains in dealing with the HSPs. Prolog III was able to producean optimal one-hoist schedule for the P&U's problem in 30 minutes and the �nitedomain solver in 306 minutes on SUN station Sparc 4/60. To increase the powerof consistency control within the constraints solver, the disjunctive constraintshave been used in an active way to reduce the domain of each variable. Thismodi�cation of the CLP approach helps the rational solver to derive the optimalschedule in 40 seconds.All HSPs introduced above have been shown by the authors to belong to theclass of NP-hard problems [10]. Existing approaches which derive the minimalcycle time are limited to the single-hoist cases and use branch-and-bound proce-dures, whose e�ciency quickly diminishes as the number of tanks in the systemincreases. Scheduling two or more hoists further expands the search space, andmakes the task of searching for the global optimal solution extremely di�cult.2.2 MIP, CLP and Hybrid AlgorithmsHoist scheduling problems involve both logical and linear constraints. A pi-oneer in the combination of logical constraint solving and OR techniques is

Hooker [11]. An implemented system which combines logic and linear program-ming is 2LP [17]. A mathematical modelling language and implementation thatinterfaces to both CLP and linear solvers is presented in [1].One of the �rst CLP platforms to support both constraint propagation andlinear solving was CHIP [5]. However the solvers were not designed to handleconstraints with shared variables. A CLP implementation supporting the combi-nation of constraint propagation and linear programming with shared constraintsand variables was described in [3].The linear constraint solvers of these two systems were internal ones, andlacked the scaleability of commercial matrix-based implementations such asCPLEX [6] and XPRESS-MP [23]. Nevertheless several researchers identi�edproblems and problem classes that could not be handled by the major MIPpackages, but could be solved using constraint propagation. Examples were partyplanning [20] and machine allocation [8].In 1995 an integration was developed between the CLP platform ECLiPSeand the commercial packages CPLEX and XPRESS-MP [21]. This was used tobuild a hybrid algorithm solving a
eet scheduling problem [12]. Subsequentlyan automatic translator was built to map models expressed in ECLiPSe to MIPmodels [19]. The resulting MIP model can be solved using constraint propagationand search in ECLiPSe; linear solving and search in an external MIP package; orlinear solving in an external package, and propagation and search in ECLiPSe.The paper [19] describes how this system was used to improve on the CLP resultsof [8, 20], and to solve a number of other problems.The current paper uses the same implementation to solve to optimality someproblem classes that have never previously been solved, neither using CLP norMIP techniques.3 Modelling the Di�erent HSP ClassesIn this section we present natural models for several classes of HSPs. The modelsare not tailored for any solver, and models for di�erent classes are obtained bysimply adding or changing the relevant constraints: no remodelling is attempted.The modelling language syntax is based on Edinburgh Prolog, with someextensions to make the models easier to read.2{ for(El,Min:Max) do Goal, applies the goal to each number in the range.{ A functional syntax can be used where an integer is expected. For example thegoal plus(2,1) < 5 is expanded into the goal plus(2,1,N), N<5.{ Finally an array syntax is de�ned such that Array[N] picks out the Nth member ofthe array Array, for example: Var = f(5,3,1), X is Var[2] which instantiatesX to 3.3.1 Single Cyclic SchedulingInformal Description The simplest cyclic HSP contains a single hoist andthe number of sequential chemical treatment tanks in the production line. Each2 These extensions have been implemented in ECLiPSe.

tank applies chemical or plating treatments, such as H2SO4 activating or Nickelplating, to the jobs. A large number of identical jobs is placed at the initial stageof the production line and these jobs have to be processed in the order that tanksare sequenced. The hoist is programmed to handle the inter-tank moves of thejobs, where each move consists of three simple hoist operations: (i) lift a job froma tank; (ii) move to the next tank; and (iii) submerge the job in that tank. Uponcompletion of a move, a hoist travels to another tank for the next scheduledmove. Both the hoist travelling times and the times to perform moves are givenconstants. The time of each move is independent of the move direction. A hoistcan carry one job at a time, and no bu�er exists between tanks. A job mustremain in each tank for a certain amount of time, between a minimum and amaximum: this is the tank's time window. The �xed sequence of moves thatthe hoist performs in each cycle is de�ned by a one-hoist cyclic schedule [18].Exactly one job is removed from each tank in a cycle, and therefore, one jobenters and one job leaves the production line in a cycle. Figure 1 represents aone-hoist scheduling problem with 6 tanks and three jobs present in the systemsimultaneously.
tank 3 tank 6

track

hoist

tank 1

processed

jobs jobs
unprocessed

tank 2

job2

tank 4 tank 5

job3 job1Fig. 1. A one-hoist scheduling problemCLP Model This class of one-hoist scheduling problems can be captured by thefollowing model. The model is expressed in CLP syntax: input data is expressedas facts; constraints as clauses; variables start with an upper-case letter. We usea bold font for types; for example numTanks(Integer)means that the predicatenumTanks takes a single argument which is an integer.{ numTanks(Integer). The number (=12) of chemical treatment tanks in the pro-duction line.{ empty(Tank, Tank, Time). Tank is an integer denoting a tank. Time is alsoan integer. The predicate empty is used to record the times of travel from tank totank for the hoist when empty. It records times for every pair of tanks.{ full(Tank, Time). The transport times of jobs from a tank to the next tankon the production line.{ numJobs(Integer). The number (=3) of jobs in the production line.

{ minTime(Tank, Time). The minimum time a job can stay in each tank.{ maxTime(Tank, Time). The maximum time a job can stay in each tank.The problem variables are those whose value is found during the search for theshortest possible cycle:{ Entry. An array of the times at which the jobs are put into the tanks.{ Removal. An array of the times at which the jobs are removed from the tanks.{ Period. The time of a cycle.A single cyclic HSP with time windows can be de�ned by four types of con-straints.First, we relate the array of variables Entry to the array of decision variablesRemoval. For each tank, the entry time is the removal time from the previoustank, plus the transportation time between the two tanks. The \0th" tank is thestack of unprocessed jobs.lin1(Removal,Entry):-for(Tank,1:numTanks) doRemoval[Tank-1] + full(Tank-1) = Entry[Tank].Second, the entry time of a job to a tank is related straightforwardly to its re-moval time from this tank: the di�erence between them is equal to the treatmenttime in the tank. Due to the nature of chemical treatments, the processing of ajob in a tank must be completed within a given time window. These intervalsimpose time window constraints on the hoist movements. Scheduling with timewindow has been studied by Phillips and Unger [18].lin2(Removal,Entry) :-for(Tank,1:numTanks) doEntry[Tank] + minTime(Tank) � Removal[Tank],Entry[Tank] + maxTime(Tank) � Removal[Tank].Third, since one job is removed from the production line during each cyclethe time of any job in the system cannot be longer than the time of NumJobscycles.lin3(Removal,Period) :-Removal[numTanks] + full(numTanks) � numJobs * Period.Fourth, the hoist can only do one thing at a time. Thus a constraint isrequired to prevent the hoist transporting a job from tank T1 to T1 + 1 at thesame time as it is transporting the same, or another, job from tank T2 to T2+1.A clash will obviously occur if a task is being performed on a job at the sametime as any other task on the same job. Less obviously a clash will occur if a taskis being performed on a job at time Time, and another task is being performedon the same job at time Time+Period. In this case the clash will be between the�rst task on one job and the second task on the following job. In fact a clashwill occur if two tasks are being performed on a job at any pair of times Timeand Time+N*Period, for N up to but not including the number of jobs at thesame time on the production line.To ensure no clash between the transportation from T1 to T1 + 1 and T2 toT2 +1, either one job must be removed from tank T1 after the other was placed

in tank T2 + 1, leaving time for the hoist to travel empty from tank T2 + 1 totank T1; or the job must be placed in tank T1 + 1 before being removed fromtank T2, leaving time for the hoist to travel empty from T1 + 1 to T2.This constraint is the core of the generic HSP model. It is expressed in termsof the following clauses:disj(Removal,Entry,Period) :-for(T1,1:numTanks-1) do for(T2,T1+1:numTanks) dofor(K,1:numJobs-1) dodisj1(T1,T2,K,Removal,Entry,Period).disj1(T1,T2,K,Removal,Entry,Period) :-Entry[T1+1] + empty(T1+1,T2) + K * Period � Removal[T2].disj1(T1,T2,K,Removal,Entry,Period) :-Entry[T2+1] + empty(T2+1,T1) � Removal[T1] + K * Period.This disjunctive constraint is super�cially similar to the resource constraints en-countered in disjunctive scheduling, which enforce that one task is performed ei-ther before or after another task [7]. However the disjunctive constraints in hoistscheduling involve not just the two task variables, Entry[T1] and Removal[T2]for example, but they also involve a third variable Period. The occurrence of athird variable makes the handling of the hoist scheduling disjunctive constraintsquite di�erent. In case there are only two variables, choosing one alternativefor each disjunctive constraint, together with propagation, su�ces to decide theglobal consistency of the constraints. In case three variable are involved, by con-trast, choosing disjuncts and propagating without failing, no longer su�ces toguarantee global consistency.The whole single cyclic scheduling problem with time windows, denoted byhsp1, is de�ned as follows:problem hsp1:minimize Periodsubject to lin1(Removal,Entry), lin2(Removal,Entry),lin3(Removal,Period), disj(Removal,Entry,Period).Other classes of HSPs can be de�ned by an extension or a small modi�cation ofthis generic HSP model.3.2 Scheduling with Tank CapacityEach tank has a �nite capacity. There is a limit to the number of jobs it cantreat at any one time. The papers on one-hoist scheduling problems considerusually the maximum capacity of each tank equal to one.{ tankCapacity(Tank, Integer). The capacity of each tank.The tanks must never contain more jobs than their capacities. So for tank T1,a job must be removed before the arrival of the job which is tankCapacity(I)jobs (=cycles) behind it on the production line. We introduce the followingconstraint:

lin4(Removal,Entry,Period) :-for(Tank,1:numTanks) doRemoval[Tank] - Entry[Tank] � tankCapacity(Tank) * Period.The P&U's problem with tank capacity is denoted by hsp2 and it containsconstraints lin1, lin2, lin3, lin4, disj.3.3 Scheduling with Multiple Hoists on One TrackHSP can use two or more hoists on the same track. In the multiple hoist problemwe need a variable which associates a hoist to each activity - transporting a jobfrom one tank to the next. Data:{ numHoists(Integer). The number of hoists (=2) in the system.Variable:{ Hoist An array recording which hoist is assigned to each activity. Hoist[T] is thehoist which transports a job from tank T to T+1.The multiple hoist problem can be modelled by changing only the disjunctiveconstraint disj from the previous model. The new disjunctive constraint onlydi�ers by allowing an extra alternative: the case where the two activities areperformed by di�erent hoists.We assume the hoists are numbered, with the hoists further along the tracktowards the higher-numbered tanks also having higher numbers. Because thehoists cannot pass each other, if two activities do overlap in time, the activityinvolving the higher-numbered tank must be performed by the higher-numberedhoist.mhdisj(Removal,Entry,Hoist,Period) :-for(T1,1:numTanks-1) do for(T2,T1+1:numTanks) dofor(K,1:numJobs-1) domhdisj1(T1,T2,K,Removal,Entry,Hoist,Period).mhdisj1(T1,T2,K,Removal,Entry, H,Period) :-Entry[T1+1] + empty(T1+1,T2) � Removal[T2] + K * Period.mhdisj1(T1,T2,K,Removal,Entry, H,Period) :-Entry[T2+1] + empty(T2+1,T1) + K * Period � Removal[T1].mhdisj1(T1,T2,K,Removal,Entry,Hoist,Period) :-/* Comment: T2>T1 */Hoist[T2] � Hoist[T1] + 1.The whole P&U's problem with multi hoists on one track is denoted by hsp3and it contains constraints lin1, lin2, lin3, lin4, mhdisj.Notice that Lei and others introduced two quite di�erent models for the 2-hoist problem, the partitioning model [15], and the tra�c-collision approach [14].hsp3 models the tra�c-collision approach. The weaker partition approach couldbe modelled by adding the single constraintpartition(Hoist) :-for(I,1:numTanks-1) do for(J,I+1:numTanks) doHoist[J] � Hoist[I].

3.4 Scheduling with Multiple TracksHSPs can contain hoists on more than one track. Previous approaches towardsolving cyclic HSPs have been limited to single-track cases. Our model for thatproblem is very similar to the model for the previous class of HSPs. Since thehoists use di�erent tracks it is enough to force that the hoists for each tank aredi�erent. We adapt the model of hsp3 by adding a single extra clause to theprocedure for mhdisj1, viz:mhdisj1(T1,T2,K,Removal,Entry,Hoist,Period) :-Hoist[T1] � Hoist[T2] + 1.The whole P&U's problem with multi hoists on di�erent tracks is denoted byhsp4 and it contains lin1, lin2, lin3, lin4, and the modi�ed mhdisj.4 Deriving Models for Di�erent SolversWe use the CLP formalism for modelling and solving HSPs. Once a CLP programhas been developed for a class of HSPs it is relatively easy, compared with themathematical programming approach, to adapt the model for other classes ofHSPs and run di�erent solution algorithms.4.1 ModellingCLP has greater expressive power than traditional mathematical programmingmodels in two ways:{ Constraints involving disjunction can be represented directly{ Constraints can be encapsulated (as predicates) and used in the de�nitionof further constraintsHowever, a CLP model can be automatically translated into a traditional MIPmodel by{ Eliminating disjunctions in favour of auxiliary boolean variables{ Unfolding predicates into their de�nitionsThis translation is only applicable on condition that any recursively de�nedconstraints can be fully unfolded at the time of translation. This condition issatis�ed in the HSP model, and all the other large scale industrial optimisationproblems we have addressed. The translation is presented in detail in [19]. Webrie
y summarise the key steps, and present a toy example.{ For each possible top level goal, p(X1, ..., Xn) add to the program a singleclausep(X1...Xn) :- p(X1...Xn,1).The extra �nal argument is an input boolean (1 imposes the constraint,whilst 0 would relax it).

{ Each predicate de�nitiondisj(X1...Xn) :- Body1....disj(X1...Xn) :- BodyN.is translated into a single-clause predicatedisj(X1...Xn,B) :- Body1[B1], ..., BodyN[BN], B1+...+BN=B.The bodies Bodyi[Bi] are produced by adding an extra argument Bi toevery goal.{ Each linear constraint X � Y is translated into another linear constraintX + m * B � Y + m where m is the number (hi(X)� lo(Y)). Value hi(X)is the upper bound of X and lo(Y) is the lower bound of Y . Note, everytranslated linear constraint is equivalent to the original constraint if theauxiliary binary variable is instantiated to 1; and it is true for every valueof X and Y within their ranges, if it is instantiated to 0.After translation, the resulting CLP program has no choice points. When theinput data of a given problem are supplied, the translated program is automat-ically unfolded into a conjunction of linear constraints.4.2 ExampleThe programprog(X, Y) : � X::1..10, Y::1..10, diff(X, Y).diff(X, Y) : � Y+2 � X.diff(X, Y) : � X+2 � Y.is translated into the program:prog(X, Y) : � prog(X, Y, 1).prog(X, Y, B) : � X::1..10, Y::1..10, diff(X, Y, B).diff(X, Y, B) : � Y+2+ B1�11 � X+11, X+2+ B2�11 � Y+11, B1+B2 = B.The goal prog(3,Y) is unfolded into the constraints:1 � Y � 10, Y+2+ B1�11 � 3+11, 3+2+ B2�11 � Y+11, B1+B2 = 1.4.3 SolvingThe proposed evaluation algorithm allows an integration of MIP with CLP us-ing a unique model for a problem. The derived linear constraints are treatedeither by the MIP solver, or the CLP solver, or by both solvers. Our hybridalgorithm combines both solvers such that search is separated from the handlingof constraints. Search is applied by labelling of boolean and integer variables.Constraint handling is performed by constraint propagation of the CLP solverand linear constraint solving of the MIP solver.

We have implemented the integration of CLP with MIP by using the ECLiPSeconstraint logic programming platform and the XPRESS-MP mathematical pro-gramming package [9, 23]. This allows XPRESS to be used to solve problemsmodelled in ECLiPSe. The control of the search process and the constraintpropagation is handled by CLP while the linear constraint solving is handledby MIP. The constraint propagation is performed by a consistency algorithm on�nite domains and it represents a component of the ECLiPSe package. On theother hand, the linear constraint solving is performed by the simplex algorithmwhich is a component of the XPRESS package.Communication between the solvers is supported by the attributed variablesof ECLiPSe. For the purposes of the hoist scheduling problem, the informationcommunicated is just the upper and lower bounds of the variables.Naturally the main performance bene�t of the hybrid solver is due to theearly detection of failure by the di�erent solvers. Each solver detects certainfailures which would not have been detected by the other solver until a laternode in the search tree. For example constraint propagation fails immediatelywith constraints,X::0..2, Y::0..2, X+2*Y = 3, X-Y = 1.but cannot detect any inconsistency in the constraints:X::1..10, Y::1..10, 2*X+2*Y � 20, X+Y � 11.A linear solver has precisely the complementary behaviour, detecting the incon-sistency of the second constraint set, but not the �rst.On the HSP problem, we apply the following three solvers:{ CLP solver. The constraints are considered only by ECLiPSe. The searchis done by labelling binary variables �rst. Constraint handling is performedby constraint propagation on �nite domains.{ MIP solver. The constraints are considered only by XPRESS. The searchis done by performing the default XPRESS branch-and-bound procedure.Constraint handling is performed by linear constraint solving (simplex). Theoptimal solution of the whole problem is returned to ECLiPSe.{ CLP&MIP solver.The constraints are considered by ECLiPSe and XPRESS.The search is done by labelling binary variables �rst. Constraint handling isperformed by constraint propagation on �nite domains and linear constraintsolving.5 Empirical ResultsLet us discuss the empirical results of the hybrid CLP&MIP solver relative tothe results of the CLP and MIP solvers on the following HSPs from Section 2:The empirical results in Table 2 show that HSPs are hard for our CLP solver.However, the
exibility of CLP gives the programmer the choice of a variety

Table 1. Hoist scheduling problemshsp1 the P&U's problem with 12 tanks and 4 jobshsp2 the P&U's problem with the tank capacity equal to 2hsp3 the collision-based P&U's problem with 2 hoists on one trackhsp4 the P&U's problem with 2 hoists on two tracksof constraint solvers and variable domains. Baptiste et al. [2] compared two do-mains and associated constraint solvers from di�erent CLP languages: CHIP's�nite domains and Prolog III's rational numbers. Their empirical results showwhen a constraint solver should be chosen in preference to another constraintsolver and how to control the search towards an e�cient running program.The MIP solver has di�culties to derive an optimal solution to all HSPs. Thesolver is very e�cient for problems hsp1 and hsp2, and ine�cient for problemshsp3, and hsp4.Table 2. Characteristics of the solvers on di�erent HSPsThe CLP solver:Time Time Time Min. cycle FD fails(1st sol.) (opt.sol.) (proof opt.) timehsp1 1204 sec > 60 min - - > 20000hsp2 3371 sec > 60 min - - > 20000hsp3 > 60 min - - - > 20000hsp4 > 60 min - - - > 20000The MIP solver:Time Time Time Min. cycle Nodes(1st sol.) (opt.sol.) (proof opt.) time processedhsp1 4 sec 6 sec 7 sec 521 1200hsp2 6 sec 8 sec 8 sec 521 1521hsp3 7 sec > 60 min - - > 50000hsp4 6 sec > 60 min - - > 50000The CLP&MIP solver:Time Time Time Min. cycle FD fails LP fails(1st sol.) (opt.sol.) (proof opt.) timehsp1 19 sec 73 sec 105 sec 521 1338 502hsp2 28 sec 76 sec 102 sec 521 1399 521hsp3 218 sec 926 sec 961 sec 395 4179 1768hsp4 36 sec 68 sec 185 sec 379 1300 92By applying the CLP&MIP solver, simplex and the constraint propagation on�nite domains helped to derive an optimal solution and to prove its optimality. Itfollows that the proposed constraint handling is very useful procedure by cutting

the solution space and deriving an optimal solution to the HSPs in reasonabletime. There is a certain level of orthogonality between constraint propagationand linear constraint solving. The number of FD-failures and the number of LP-failures show that both constraint handling procedures are needed to prune thesearch space. Since constraint propagation is performed before linear constraintsolving it is di�cult to say which procedure is more important.All timings in Table 2 are in CPU seconds running on a SUN-SPARC/20."FD-fails" denotes the number of failures by performing constraint propagationand "LP-fails" denotes the number of failures by linear constraint solving.We show the robustness of the hybrid approach by solving 100 randomlygenerated two-hoists HSPs with multiple tracks. The problems represent mod-i�cations of problem hsp4 in Section 2. The limits on processing times, Min(i)and Max(i), i = 1; :::; NumTanks, are determined by drawing values from twosampling functions, fMin(i) = Min(i) � 10 + 20 � r1 and fMax(i) = Max(i) �10 + 20 � r2, where r1 and r2 are (0; 1) uniform random numbers [15]. Once thevalues of these processing time limits are computed, they are used as constants.The hoist travelling times are also determined in a similar way using a samplingfunction fFull(i) = Empty(i; i+ 1) + 15 + 10 � r3.Table 3. The CLP&MIP solver on 100 randomly generated hsp4Derived optimal solutions 100Min. time 167 secMax. time 1146 secAvg. time 314 secTable 3 represents the minimum, maximum, and average computation timesneeded to derive optimal schedules of the generated HSPs. The results demon-strate that the hybrid solver is a robust algorithm and successfully derives anoptimal solution and proves its optimality to all HSPs with two hoists on di�er-ent tracks.6 ConclusionsWe have presented models for several classes of industrial HSPs and an e�-cient translation to a generic model for di�erent solution techniques, i.e. theCLP solver, the MIP solver, or hybrid CLP&MIP solvers. These models andsolvers have been benchmarked on some problems which have been the subjectof previous research both using CLP, MIP and heuristic algorithms.The proposed CLP&MIP solver can solve several classes of HSPs which havenever previously been solved to optimality. Neither the CLP solver nor the MIPsolver alone are able to solve them in reasonable time. The experimental resultsdemonstrated that constraint propagation and linear constraint solving are or-thogonal up to certain degree. An infeasibility of several HSPs is recognised by

only one of the procedures. The proposed integration of CLP with MIP allowscomparisons between the two approaches and gives a clearer idea of when CLPshould be chosen in preference to MIP, and when an integrated solver is quickerthan the CLP solver or the MIP solver.However the HSP experiments have revealed an unexpected, but very im-portant, bene�t of hybrid solvers. The experiments show that, if constraints arepassed to both a constraint propagation engine and a linear solver, the robust-ness of the model may be dramatically enhanced. The same generic model canbe easily and naturally adapted for all the di�erent classes of HSPs, and theycan all be solved.Using either MIP or CLP solvers alone, problem modelling is made harderbecause models must be designed speci�cally for the solver, as for example in[14, 15, 16, 18, 22]. In fact, when the same generic model is solved by a CLPor an MIP solver alone, only a subset of the di�erent problem classes can bee�ectively handled. Our hope is that hybrid solvers may make it possible tosimplify problem modelling, by reducing the need to address issues of solvere�ciency at the modelling stage.Our work makes a contribution to the long-term objective of separating themodelling and solving of combinatorial problems. With the powerful modellingfacilities of CLP, with multiple solvers and
exible search control, the encodingof a correct model of the problem can indeed be a guaranteed step towardsan e�cient running program. The consequences can be revolutionary - withprogrammers actually taking modelling seriously.Acknowledgements Many thanks to the IC-PARC group who has con-tributed to the writing of this paper through helpful discussions and criticisms.References1. Barth, P., Bockmayr, A.: Modelling Mixed-Integer Optimisation Problems in Con-straint Logic Programming. MPI Report Nr. I-95-2-011 (1995)2. Baptiste, P., Legeard, B., Manier, M.A., Varnier, C.: A Scheduling Problem Op-timisation Solved with Constraint Logic Programming. Proc. of the PACT Conf.(1994) 47-663. Beringer, H., De Backer, B.: Combinatorial Problem Solving in Constraint LogicProgramming with Cooperating Solvers. Chapter 8 in Logic Programming: FormalMethods and Practical Applications ed. C. Beierle and L. Pluemer Elsevier (1995)4. Cheng, C.C., Smith, S.F.: A Constraint Satisfaction Approach to MakespanScheduling. Proc. of the AIPS Conf. (1996) 45-525. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.:The Constraint Logic Programming Language CHIP. Proc. of the FGCS Conf.(1988) 693-7026. CPLEX. Using the CPLEX Callable Library. CPLEX Optimization, Inc. (1997)7. Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving Large Combinatorial Prob-lems in Logic Programming. Journal of Logic programming 8 (1995) 75-938. Darby-Dowman, K., Little, J., Mitra, G., Za�alon, M.: Constraint Logic Program-ming and Integer programming Approaches and their Collaboration in Solving anAssignment Scheduling Problem. Constraints 1(3) (1997) 245-264

9. ECLiPSe User Manual Version 3.7.1. IC-PARC, Imperial College, London (1998)10. Hanen. C.: Study of a NP-Hard Cyclic Scheduling Problem: The Recurrent Job-Shop. European Journal of Operations Research 72 (1994) 82-10111. Hooker, J.N., Osorio, M.A.: Mixed Logical/Linear Programming. Proc. of the IN-FORMS CSTS Conf. Atlanta (1996)12. Hajian, M., Sakkout, H.El, Wallace, M., Richards, E.: Towards a Closer Integrationof Finite Domain Propagation and Simplex-Based Algorithms. Proc. of the AIMaths Conf. Florida (1995) www.icparc.ic.ac.uk/papers.html13. Ja�ar, J., Lassez, J.L.: Constraint Logic Programming. Proc. of the ACM POPLSymposium Munich (1997)14. Lei, L., Armstrong, R., Gu, S.: Minimizing the Fleet Size with Dependent Time-Window and Single-Track Constraints. Operations Res. Letters 14 (1993) 91-9815. Lei, L., Wang, T.J.: The Minimum Common-Cycle Algorithm for Cycle Schedulingof Two Material Handling Hoists with Time Window Constraints. ManagementScience 37(12) (1991) 1629-163916. Lei, L., Wang, T.J.: Determining Optimal Cyclic Hoist Schedules in a Single HoistElectroplating Line. IEE Transactions 26(2) (1994) 25-3317. McAloon, K., Tretko�, C.: Optimization and Computational Logic. Wiley-Interscience (1996)18. Phillips, L.W., Unger, P.S.: Mathematical Programming Solution of a HoistScheduling Problem. AIIE Transactions 8(2) (1976) 219-25519. Rodo�sek, R., Wallace, M.G., Hajian, M.T.: A New Approach to Integrating MixedInteger Programming with Constraint Logic Programming. Annals of OperationalResearch. Recent Advance in Combinatorial Optimization: Theory and Applications(to appear) www.icparc.ic.ac.uk/papers.html20. Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The ProgressiveParty Problem: Integer Linear Programming and Constraint Programming Com-pared. Constraints 1(2) (1996) 119-13821. Schimpf. J.: ECLiPSe Approach to Solver Integration and Cooperation. Proc. ofthe INFORMS CSTS Conf. Monterey (1998)22. Sharpio, G.W., Nuttle, H.: Hoist Scheduling for a PBC Electroplating Facility. IIETransactions 20(2) (1988) 157-16723. Dash Associates. XPRESS-MP Reference Manual. Dash Associates UK (1993)

This article was processed using the LATEX macro package with LLNCS style

