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Abstract. The generic hoist scheduling problem is NP-hard and arises from auto-
mated manufacturing lines. In recent work using the constraint logic programming
(CLP) formalism, a unified model has been developed with the problem description
and solution method separated. We provide an improved model and new prepro-
cessing stages where, as before, solutions and proof of optimality are provided by
a hybrid CLP-MIP algorithm. The new algorithm is more scalable and robust. We
give empirical results for a range of problem classes on benchmark problems from
several sources.
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1. Introduction

Hoist scheduling is an abstraction of a common industrial problem.
Computer-controlled hoists (or transport robots) are used in PCB
electroplating and other sectors to move material through some fixed
sequence of operations. The importance of optimising the hoist move-
ments is that the same procedure is performed continuously for many
weeks, and a change in the production run may require several weeks
of downtime (Shapiro and Nuttle, 1988).

The first solutions to the hoist scheduling problem used mathemat-
ical programming (Phillips and Unger, 1976). Later, artificial intel-
ligence techniques in the forms of local search and constraint logic
programming (CLP) were applied (Baptiste et al., 1994; Lam, 1997).
More recently, a hybrid technique that combines MIP and CLP has
been developed (Rodosek and Wallace, 1998). In this paper, we elab-
orate and generalise the hybrid approach, presenting a revised CLP
model and new preprocessing stages.

Below we introduce and classify the hoist scheduling problem (HSP)
in more detail, and, in Section 2, present the new model. Section 3
discusses the solvers used and the hybridization between them, and
Section 4 gives our results for a number of benchmark problems. Finally,
we draw some conclusions in Section 5.
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1.1. HOIST SCHEDULING

The simplest case of the hoist scheduling problem is the basic problem
introduced by Phillips and Unger (1976). A single computer-controlled
hoist operates on a single track above a sequential line of tanks. A large
number of identical jobs are placed at the initial stage of the line. Each
job is to be processed through the tanks and placed at the far end.

Hoist scheduling is distinguished from classical scheduling problems,
such as flowshop or jobshop, in that, first, no waiting of jobs during an
operation is permissible, second, travel times of an operation are not
negligible, and third, there is no intermediate storage between tanks. In
addition, to reflect the industrial situation, the prescribed processing
times in the tanks are bounded in a time window but need not be fixed.

Jobs are assumed to be identical in the basic problem. If the jobs
differ or fall into multiple types, the nature of the HSP changes and
the algorithms are quite different. The same occurs if the arrival of
jobs is not known in advance (the dynamic hoist scheduling problem
(Lamothe et al., 1994)).

In the cyclic hoist scheduling problem (CHSP), the same sequence
of operations is repeated. One complete sequence is a cycle, and the
length of time required for one cycle is the period (or cycle time or
makespan). In a single part problem, one job enters and one job leaves
the system in every cycle. In a multi-part or r-part system, r jobs enter
and leave in every cycle (Kats et al., 1999). Generalising the CHSP, the
n-periodic hoist scheduling problem (Levner et al., 1995) has a cycle
composed of n smaller repeated sequences. The most common case in
industry is the cyclic hoist scheduling problem with homogeneous jobs
(Shapiro and Nuttle, 1988).

The basic problem does not account for all of industrial practice.
The most notable extension is to multiple hoists, which may share one
track or have one track each. If the number of hoists is greater than
the number of tracks, collisions must be avoided, which necessitates
hoist assignment (how hoists are assigned to tanks). Other variations
from the basic problem include a single load/unload stage rather than
one stage at each end, and multi-function tanks, those visited by a job
more than once. Either of these possibilities entails bidirectional hoist
movement while carrying a job. Some tanks may be duplicated or have
a capacity greater than one, in order to reduce a bottleneck in the line.

Varnier et al. (1997) give a partial survey of the literature on the
forms of the HSP. To further aid in the classification, we propose a

notation for the problem classes similar to that used in queueing theory.
Denote a class of the HSP as F/H/T/A/r to indicate:

— F: zero or more of the flags:



C: cyclic

D: dynamic

H: heterogeneous jobs
N: non-sequential

— H: the number of hoists, 1 (single) or M (multiple)
— T: the number of tracks, 1 (single) or M (multiple)
— A: hoist assignment!, one of:

e D (determined, i.e. partitioned)
e C (collision-based)
e O (optimal)

— r: the number of parts, 1 or an integer r

Terms may be omitted where implied or irrelevant: for instance,
we consider only single-part problems so will omit the r term. Phillips
and Unger’s problem PU12, introduced below, is classified as C/1/1,
for example, whereas the most general problem considered by Rodosek
and Wallace (1998) is C/M/M/C. The notation is easily extensible.

1.2. PrREvVIOUS WORK

1.2.1. MIP Approaches

Phillips and Unger (1976) introduced the HSP and provided the now-
famous benchmark problem, PU12. They used a MIP model to find the
minimum cycle time for this real-world twelve-tank problem?.

Shapiro and Nuttle (1988) introduced a revised branch-and-bound
procedure and used MIP on different sub-problems to bound the search
space. Levner et al. (1995) improved the upper bound for the period.

Lei and Wang (1991) solved the HSP for two hoists on the same
track. They introduced a new heuristic algorithm which partitions the
line of tanks into two contiguous sets and assigns to each hoist one set.
Lei et al. (1993) gave an improved heuristic, where the hoists must
be scheduled to avoid traffic collisions (no partitioning is used). They
were not able to guarantee the optimal solution.

There have been a number of works presenting progressively better
or broader MIP models (Armstrong et al., 1992; Chen et al., 1998; Yih
et al., 1993; Leung et al., 1997) and branch-and-bound procedures (Lei
and Wang, 1994; Ng and Leung, 1997). Bidirectional multiple hoists
were considered first by Manier (1994).

1.2.2. CP Approaches
The first approach to exploit constraint programming was by Baptiste
et al. (1992). They demonstrated that the versatility of CLP allowed
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the rapid development of computational models for different classes of
hoist scheduling problems. Their results showed that CLP with a linear
solver is more effective than constraint propagation over finite domains.
They were able to produce an optimal schedule for the problem PU12,
with a revised model, in less than one minute.

Varnier and others (Varnier et al., 1997; Manier et al., 2000)
extended this work to model multiple hoists and non-sequential treat-
ment, including multi-function and duplicated tanks but not higher
capacity tanks. They resolved the hoist assignment in only a restricted
form using heuristics.

Cheng and Smith (1996) considered a multi-product single-hoist
HSP where each job may require treatment in a subset of the tanks
(tank skipping). Mak et al. (1998) used constraint satisfaction to solve
the single-hoist CHSP with multi-function and duplicated tanks and a
single load/unload stage.

1.2.3. Hybridization and Hybrid Approaches

Tsang et al. (1999) document a range of difficult combinatorial prob-
lems solved by exploiting integer programming (IP) and constraint
programming (CP) together in hybrid approaches. Hooker et al. (2000)
provide a generic scheme for hybridization between optimisation and
constraint satisfaction methods, emphasising the complementary
strengths of the two methods respectively in search and relaxation and
in inference and strengthening. Several researchers report on problems
not solvable in reasonable time by either IP or CP alone, but which fall
to a combined approach (Baptiste et al., 1998).

A hybrid model was first applied to the HSP by Rodosek and Wallace
(1998). Their model was resolved using propagation and search in the
CLP platform ECL'PS® and linear solving in an external package. The
advantage of hybridization for the HSP has been to extend the class
of problems that can be handled by a single model, to allow a single
solver algorithm to work across these classes, and to provide proof of
optimality in cases which are beyond traditional methods.

Rodosek and Wallace (1998) consider a generic class of CHSP with
single or multiple hoists, tracks, and tank capacities. In their hybrid,
every constraint is passed to a CLP solver and a MIP solver. They
introduced a harder thirteen-tank variant, PU13, of the Phillips and
Unger problem, in which jobs are moved from the load stage to the
first tank by a separate mechanism. To be able to compare results, we
will consider PU13 rather than PU12.

Other algorithmic approaches to the problem were partially surveyed
in Hall et al. (1997). For example, petri-nets (Denat et al., 2000),
genetic algorithms for the single-hoist instance (Lim, 1997), and local
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search, notably simulated annealing (Lam, 1997). With the exception of
certain restricted or simplified cases, all the hoist scheduling problems
introduced above have been shown to be NP-hard (Hanen, 1994).

This paper contributes a more scalable and robust hybrid model,
improving the work of Rodosek and Wallace (1998). We provide results
analysing the performance of the three main approaches to the HSP
on known benchmark problems, and point out future enhancements for
the hybridization.

2. The Model

The expressiveness of CLP allows the easy modelling of both the lin-
ear and disjunctive constraints in the HSP. We exploit the automatic
translation of Rodosek et al. (1997) to produce from the declarative
CLP model one suitable for a MIP solver.

2.1. VARIABLES AND NOTATION

The following are all integers, with the decision variables in bold face:

N number of tanks

R number of tracks

H number of hoists

J number of simultaneous jobs

T number of treatments

S(i) tank for i*" treatment

C(j) capacity of tank j

m(7) minimum treatment time in tank j

M(j)  maximum treatment time? in tank j

E(j,k) time to move empty hoist from tank j to tank k
F(j,k) time to move full hoist from tank j to tank &
T(1) actual time of ' treatment

R(i) removal time upon completion of i*" treatment
B(i) number of the hoist that performs the i'" transfer operation
P cycle period

The hoists and tanks are numbered from left to right; the load and
unload tanks are considered to be tanks 0 and N + 1 respectively?. We
take the i'"" transfer operation as being from tank S(i) to tank S(i+1);
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hence T' > N + 1 if every tank is used (strict inequality is possible in
the case of multi-function tanks).

For all tanks, E(j,k) = E(k, j). For non-duplicated tanks, F(7j,j) =
0, while for duplicated tanks, following Shapiro and Nuttle (1988),
E(j,7) # 0 and we take E(j,k) = max;(E®(j5,k)), where ED(j,-)
denotes the I duplicated tank at position j.

For those variables which relate to tanks by absolute index rather
than by treatment sequence, we write C; for C(S(i)), F; for
F(S(7),S(i + 1)), etc. For the other variables, R; = R(i), etc. We will
consider later only sequential treatments, that is when T'= N + 1 and
S(1) = 1.

In an industrial setting, the time to perform a transfer operation is
greater than the time to move the hoist between two tanks: we must
raise the job, allow it to drip off above the tank, move, stabilise and
lower. Without loss of generality, we include all this in the full times.

Our model differs from previous CLP approaches in that we optimise
using the removal times. Previous authors used both entry and removal
times (Rodosek and Wallace, 1998), entry and treatment times (Varnier
et al., 1997) or treatment and removal times (Mak et al., 1998). A sin-
gle variable per treatment yields a smaller search space and simplified
constraints; the treatment times can be derived by:

(1) Ti=Ri— (Ri1+ Fi1)

Given a single-part cycle, we suppose the system is in steady state;
thus exactly one job enters and one job leaves the system in every cycle.
We seek values for the unknowns R(i), B(i), and P; the period will be
integral since the data is integral.

2.2. CONSTRAINTS

The constraints for a simple single-part cyclic HSP with time windows
and tank capacities fall into four categories: the treatment sequence,
the 1-part cycle, the tanks, and the hoists.

First, the cyclic structure and tank capacities are linked. If a tank
is full to its capacity, the first job that entered (we assume first-in,
first-out) must be removed before the arrival of the next job. Hence,
considering tank i with tank capacity C(i), a job must be removed
before the arrival of the job which is C(i) cycles behind it in the
production sequence. We derive:

Ry < P-Cy

2) | R LF
Ri<P-Ci+Ri 1+ F; 1

In the case of simple capacities, the same holds with C; = 1.
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The cyclic structure leads to a second constraint, since in every cycle
all T' operations must be performed once. It follows that the process
time for a job cannot be greater than the product of the number of
jobs and the period:

(3) Rr+Fr<J-P

Third, the treatment time for every tank must be bounded by the
given data. Using (1), we have:

(4) m; <R — (Ri-1 + Fi—1) < M;

Finally, we have constraints on the hoists. Since each hoist can
perform only one action at a time, we must avoid: removal of jobs
from multiple tanks at once, removal of a job from a tank while the
hoist is transporting another job, and the movement of the hoist faster
or slower than the specified translation times.

Assuming a 1-part system, more subtly, a resource clash on a hoist
will occur if we ask it to perform a task on a job at time 7, and a task
is being performed on another job at time 7+ P. Here, the clash will be
between the first task on one job and the second task on the following
job. Generalising, we must rule out two tasks for any pair of times 7
and 7+ kP, where 0 < k < J.

It follows that at the centre of the HSP model is a three-variable
disjunctive constraint: exactly one of

(5) Ri+F;+FEj1,<Rj+k-P
or
(6) Ri+F;+FEj1;,+k-P<R;

must hold, forall k =1,...,J—-1;4¢5=1,...,T; j <.
2.3. BOOLEAN VARIABLES AND PREPROCESSING

We use a boolean variable to denote, given any two tanks ¢ > j, whether
the hoist either goes first to ¢ (when (5) applies) or to ;7 (when (6)
applies). For each pair of tanks 7 > j and distance k between jobs in
the production sequence, let B; ;; be a boolean variable such that (5)
holds iff B; ;1 = 1. Then constraint (5) becomes (with (6) similarly):

(7) Ri+ Fi+ Ei1; < Rj+ kP + (1= Bijs) - Q

where 2 is an integer that dominates the expression (a ‘big-M’ term).
Let us now assume sequential treatment. It is possible to eliminate
certain contradictory situations in advance by a preprocessing step,
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initialising some of the B; ;. Consider a job m in tank ¢ and a job
m+k, 1 <k < J,in tank j = ¢ — 1. With unit tank capacities it is
trivially not possible to move job m + k before m; that is, the hoist
must visit ¢ before j, or equivalently, B; ;; = 1.

More generally, for 2 <i<T and 1 < j,k,m < T,

(8) (j=i—m/\k2m)=>Bi,j,k=1

The reduction in boolean variables reduces the search space and the
number of active constraints, and sharpens the relaxation bounds. With
four-job PU13, for example, the reduction is from 234 to 98 variables.

2.4. FUurTHER HSP CLASSES

2.4.1. Multiple Hoists, Multiple Tracks

The same model applies for C/M/M as C/1/1 but with some constraints
removed. We assume that each treatment tank S(7) is assigned to one
hoist B(S(i)) which will handle the tank for the i*! transfer. Since each
hoist has a dedicated track, collisions are not possible. Hence, if two
tanks are handled by different hoists, neither (5) nor (6) applies.

As before, we explicitly unfold the disjunction with an auxiliary
boolean, in order to be able to perform some preprocessing. For each
pair of tanks 4« > j, introduce Cj; such that the disjunction applies
only if both tanks are handled by the same hoist:

(9) B; 76 B]‘ <~ Cz',j =1
Hence, (5) becomes:

(10) R, + F; + Ei+1’j < Rj + kP + (1 — Bi,j,k + Ci,j) -Q

Without loss of generality, we assign B(1) = 1 to remove symmetries.
It is not possible to similarly set Ry = m; this may prevent the optimal
period from being found.

2.4.2. Hoist Assignment

Before we can present the model for C/M/1/x, we must discuss the
problem of hoist assignment. Varnier et al. (1997) describe the three
possibilities in the literature. In order of generality:

1. Disjoint zones (Lei and Wang, 1991). Each hoist is assigned a con-
tiguous set (or zone) of tanks, and moves only within this set. Sets
are disjoint between hoists except for boundary tanks.

2. Collision-based (Hanen and Munier, 1994; Lei and Wang, 1994;
Manier, 1994). The sets for each hoist need not be disjoint, nor
even contiguous. The hoists must be managed to avoid collisions.
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3. Optimal (Kats and Levner, 1997; Levner et al., 1995). Rather than
fixing the number of hoists then assigning tanks, find the minimal
number of hoists that can achieve a given period, or the minimal
period.

The third class, C/M/1/0, is a very difficult problem. It has been
solved by non-CP methods only when other restrictions have been
placed on the HSP (Kats and Levner, 1997; Lei et al., 1993), such
as fixed processing times rather than time windows. With CP, we can
find the number of hoists that minimises P, by labelling H upwards
from the lowest value in its domain, until the period found with H + 1
hoists is the same as that with H hoists.

Varnier et al. (1997) consider the second class, C/M/1/C, but with
some restrictions. They assume, reasonably, that overlap tanks are
accessed only by adjacent hoists, and, more restrictively, that each
hoist has at least one tank that it alone accesses. Their solution uses
heuristics and is not guaranteed to be optimal. Below, we make the first
assumption but not the second, thus giving the optimal collision-based
hoist assignment.

2.4.3. Multiple Hoists, Single Track

We assume again sequential treatment. First, the additions to the basic
model for C/M/1/D. Every hoist has a set of tanks that it handles, and
the intersection with the other zones is null except for boundary tanks.

To achieve this, a system of constraints related with the B(7) variables
is added:

(11) Bli—1)+1>B@)>B(i-1) (i=2,...,T-1)

The domains of the B(7) can be reduced by eliminating unreachable
tanks (since hoists may not pass each other). Observe that the first
tank can be reached by the first hoist alone, the second tank by the
first and the second hoists only, etc. By symmetry, B(1) € {1}, B(2) €
{1,2},...,B(N—-1) e {H—-1,H}, B(N) € {H}. Further, as in C/M/M,
we need no constraint for those tanks handled by different hoists, but
now the relation for the Cj ; is linear: C; ; = B; — B;.

Second, collision-based hoist assignment, C/M/1/C. We must con-
sider three new possibilities:

— B(i) = B(j): tanks i and j are handled by the same hoist; the
disjunctive constraint remains unchanged.

— B(i) > B(j): the disjunctive constraint is unnecessary, because
tanks ¢ and j are handled by hoists which will never meet.
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— B(i) < B(j): the disjunctive constraint must be modified to ensure
the first hoist to move retires in time for the second.

Introducing additional boolean variables D; ;, we obtain:

B¢>Bj<:>0i’j:1

(12)
B; <Bj<$Di,j=1

and constraint (5) now becomes, for i > j and 01 = Ej1,j-1 — Eip1

(13) R, + F, + EiJrLj < Rj + kP + ((1 — Bi,j,k) + Cij) -Q -6 -Di,j

2.4.4. Duplicated and Multi-function Tanks
Duplicated tanks are often used in industry to remove a bottleneck on
the line: for instance for a drying stage that takes 10 times longer than
any other stage. We have instead considered higher capacity tanks.
Multi-function tanks are those that are visited more than once by
the same job. From such a non-monotonic treatment sequence, it fol-
lows that jobs will have to be transported both right and left, which
adds considerably to the complexity of the problem, particularly in
hoist assignment. Combining load and unload stages also introduces
bidirectional hoist movement; Mak et al. (1998) examine this case and
show a small change in the constraint model they give is sufficient.

3. The Solvers

To find solutions to the constraint model given in the previous sections,
we implemented solvers for the three main approaches to the HSP —
pure CP, pure MIP and hybrid — using the Prolog-based ECL!PS® plat-
form (IC-Parc, 2001). ECL'PS® implements a number of CLP schemes
and provides an interface to internal and commercial solvers. For the
constraint propagation, we used the fd finite domain solver built-in to
ECLIPS®. For the MIP solving, we used the CPLEX package.

Initial bounds for the unknowns, the period P and removal times
R(7), are crucial to the MIP solver (constraint propagation will infer
the bounds in the CP solver). For the period, the bounds are:

2521 my + 2%121 F,

(14) ~ <P
and

T
(15) P <Y (mg+ Fp)

k=1
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The second inequality (15) is obtained by supposing we process one
job at a time, but is not the tightest known; Levner et al. (1995) give an
algorithm based on a merge-sort of interval sets. For PU13, for example,
the bound is 933 rather than 1472 (Mak et al., 1998). However, since
the CP search begins from the lower bound of the period, the upper
bound is of little relevance to the CP solver.

For the removal times, the bounds are:

T T-1
(16) m(1) < R(E) <> Mp+ Y Fy (i=1,...,T)
k=1 k=1

The final sum is only to 7" — 1 because the time to move the job
from the last treatment tank to the unload station is irrelevant to the
removal times.

3.1. CP SOLVER

The constraints, those described in Section 2, are considered only by
the fd solver; propagation is performed over finite domains. Heuristics
can be applied easily in CP to decisions such as the order of labelling
of the variables and the order of value selection. We evaluated various
possibilities before settling on that which performed best overall.

First we label the period, P, starting from the lowest value in its
domain. If constraint propagation yields a consistent situation from
the candidate value of P, we attempt to label the other variables. By
labelling P from the lowest value, the first solution found will be the
optimal solution; no separate proof of optimality is necessary.

After P, we label the assignment of hoists to transfer operations
(in multi-hoist problems), then the removal times, R(i), and finally the
auxiliary booleans. This order gives maximum constraint propagation
and search tree pruning. We used no in-search symmetry breaking.

For the problem C/M/1/D, we applied a redundant constraint: at
most T'— H +1 treatments can be handled by a single hoist (since each
hoist must perform at least one treatment not to be redundant). This
constraint furthers propagation a little, and is also applied to the CP
component of the hybrid solver.

3.2. MIP SOLVER

The constraints are passed to the MIP solver via the eplex interface of
ECL'PS®. Search is performed within the MIP package, by the default
linear solving algorithm chosen by the CPLEX heuristics.

MIP performance is very dependent on the number of variables and
on the bounds for the objective. The preprocessing steps of boolean
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variable reduction, symmetry removal and hoist assignment domain
reduction give a marked improvement, examined in Section 4. The
optimal period and whole solution is returned to ECLIPSe.

For the problem C/M/1/C, we performed a two-stage solution. The
first solves the same problem but with partitioned hoist assignment.
This is much simpler than collision-based assignment but — since the
period for the latter, being less constrained, cannot be larger than the
former — this first step provides a greatly improved upper bound on
the period. With this upper bound, we then solve the full problem.
This technique was also used for the hybrid solver.

3.3. HYBRID SOLVER

The constraints here are considered by both solvers, with search control
handled by ECL'PS®. Information obtained by one solver is immedi-
ately available to the other via shared bounds and variable domains.

We first perform constraint propagation on finite domains, poten-
tially yielding new upper and lower bounds on the variables. Second,
the LP solver is invoked on the continuous relaxation (integer condi-
tions omitted). When the relaxed problem is solved, control returns to
ECLIPS® with the lower bound on P improved.

Third, we label the period P, as in Section 3.1. If a candidate value
is acceptable after propagation, we attempt to label the other variables
(hoist assignment, and then removal times) by domain splitting. Should
this succeed, we have the optimal solution; should it fail, we backtrack
to label P further.

In the previous hybrid method (Rodosek and Wallace, 1998), the
LP solver was invoked on the relaxed problem each time the bounds on
P changed. Our experimentation showed that the information gained
by subsequent invocations did not outweigh the cost overhead of the
LP solver runs. While the simpler hybrid performs better overall, the
argument can be made for a greater LP involvement in some cases.

Indeed, Rodosek and Wallace show that both finite domain and LP
failures are necessary to prune the search space, and that there is a
certain amount of orthogonality between the two methods. The hybrid
algorithm gains from the LP solver global consistency of the continuous
relaxation, an improved lower bound on the period, and (although we
do not make use of them) suggested values for the other variables.

Most important to the hybrid is the quality of the bound provided
by the relaxation. We discuss in Section 5 the formulation of the hybrid,
co-operation between the solvers, and quality of the relaxed bound.
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Table I. Hoist scheduling problems from Rodosek and Wallace

RW1 PU13 with four jobs

RW2 RW1 with tank capacity two

RW3 RW1 with two hoists and one track, collision based
RW4  RW1 with two hoists and two tracks

Table II. Results for the instance PU13

Parameters Solution Time (secs)
hoists tracks capacity jobs period cp mip hybrid
1 1 1 4 521 1.95 2.61 4.90
1 1 2 4 521 27.20 2.88 69.96
2 2 1 4 379 6.45 101.72 11.36
2 2 1 8 219 * * 352.25
3 3 1 11 155 * 8550  311.91
4 4 1 11 151 7207  13.88 11.19
2 1 1 395 1192 7.65 89.64
2 1 1 7 251 * 620.83 3601
3 1 1 10 196 * 15910 *
4 1 1 11 152 9092 2612 645.76

4. Results and Analysis

4.1. EMPIRICAL RESULTS

We give the results of the three solvers, pure CP, pure MIP and hybrid,
for a range of data sets and problem parameters. The results were
obtained on a 450MHz Pentium IT with 384MB memory, using ECL'PS®
version 5.1. The times given below are in seconds to find the optimum
and prove optimality. CPLEX version 7.0 was the LP solver used, with
default settings and propagation.

The first results are those for variants of the PU13 problem. Table 1
shows the four benchmark problems considered in Rodosek and Wallace
(1998), and in our results, given in Table II, these correspond to the
lines with four jobs. The other lines in Table II give the number of jobs
for which the minimal period is first achieved; * denotes more than
18,000 seconds (five hours) of CPU time.

Figure 1 shows our results for PU13 with four hoists and four tracks.
An extended timeout of 40,000 seconds was used. The hardest instances
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Omip
B hybrid

Jobs

Figure 1. Solvers compared: PU13 with four hoists and four tracks

are with 9 and 10 jobs, when only hybrid finds a solution. It appears
that 7 jobs is easier than 6 or 8, but the general trend is that the
problem moves from easy to hard to easier again.

Our results for optimal period agree with previous work where the
problems have been considered before. To find the number of jobs
for which the period is minimal has not been previously done using
a hybrid method, and to our knowledge not been done by any method
for C/M/1/C. Three tracks, one hoist appears the hardest class of those
we examined and, for large numbers of jobs, all of the solvers struggle.

In the question of hoist assignment, partitioning the line simplifies
the situation greatly. We found that every instance of C/M/1/D could
be consistently solved by MIP, for example, in less than one minute,
and often in a few seconds with any solver. C/M/1/C is a much harder
problem but gives correspondingly lower cycle times — for instance,
with three hoists and ten jobs, 196 compared to 217.

We examined our results in light of those reported by Rodosek and
Wallace. A closer consideration of their constraint model reveals a flaw:
the following illegal possibility is permitted. A hoist carrying a job j
descends to a tank containing some other job k, releases j and picks
up k in the same instant. Clearly this is not possible unless there is
some intermediate storage. This possibility cannot occur in our model
because the inequality in (2) is strict.’

We produced benchmarks with the three solvers on other problems.
Firstly, we used three data sets appearing in the literature: SZS5, LKS9
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Table III. 100 randomly-generated instances of RW4

literature  hybrid

minimal time 167 0.13
maximal time 1146 34.18
mean time 314 8.71

and DEGEM. None of these presented any hard problem instances for
the HSP classes we consider. Were, for instance, the multi-part HSP to
be considered, then these production lines with fewer tanks may become
interesting. Details and timings obtained are given in the Appendix.

Secondly, we introduced a new problem, RYS16, with sixteen tanks,
and tested the solver performance. The size of the new problem gave
many hard instances. The results, broadly, are in accordance with those
for PU13. For simpler instances, there is little to choose between the
solvers. For harder instances, the hybrid is often at an advantage. For
example, with four hoists and tracks, four jobs is solved quickly by all
solvers but five jobs proves difficult for MIP. We do not give detailed
timings here.

Thirdly, we used a randomly generated problem following Lei and
Wang (1991). Minimal and maximal processing times are generated for
each tank by mqnq(i) = m(i) — 10+ 2071 and M,.4,q(i) = M (7) — 10 +
2079, and the full travel times are Fy.q,q(7,7+1) = F(i,i+1)+15+10r3,
where 71,79, 73 are U[0, 1] random variables.

Table TIT compares the results given in Rodosek and Wallace (1998)
with our hybrid solver, for 100 random instances with two hoists, two
tracks and four jobs. The times given are to prove optimality; the
literature results were obtained on a Sun Sparc/20. The results indicate
the robustness of the hybrid approach.

For the problems C/1/1 and C/M/M, our solver proved to be ap-
proximately 2-5 times faster than that of Rodosek and Wallace, sup-
posing identical hardware. For instance, to prove optimality with four
jobs, two hoists and two tracks took 11.4s compared to 289s, and four
jobs, two hoists and one track took 90s compared to 2105s. This may
be attributed to the simplified constraint model and the improved
hybridization.

4.2. ANALYSIS

There are two key factors in the HSP: the combinatorial complexity and
the constrainedness. We consider an instance of the HSP to be easy if
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the number of jobs is at most twice the number of hoists; otherwise,
we consider the instance to be hard.

For easy problems, the fastest solutions are found using pure CP,
although the difference with the other solvers is not notable. Using fd
only, most of the search tree is pruned. For hard problems, the fastest
solutions are usually found using the hybrid solver: with occasional
exceptions, the hybridization avoids the prohibitive CPU time the other
solvers may require.

Multiple-capacity tanks are handled far better by MIP than CP or
hybrid. However, we found no interesting instances among the data sets
where the extra capacity improved the solution, most likely because
the limiting resource in the long PU13 production line is not the tank
capacities but the hoists.

Secondly, there is a distinction between highly constrained and weakly
constrained problems, by which we mean constrainedness in the classi-
cal CP sense, not in terms of feasible set. C/M/1 is more constrained,
for example, than C/M/M.

We observe that highly constrained problems are solved quickly by
CP (if they are not hard problems). A large number of constraints en-
sures rapid £d propagation, which is the main element of the CP solver.
In contrast, weakly constrained problems are solved more quickly by
MIP, because its effort is dominated by the size of the branch-and-
bound search tree, which depends on the number of integer variables
rather than the number of constraints. The hybrid method, therefore,
gives at least reasonable performance provided the orthogonality of the
hybridization is effective.

5. Conclusion

In this work, we considered a revised hybrid approach to the hoist
scheduling problem. The new model is more robust and scalable than
the old, performing well across a range of problem classes and bench-
mark data. We used new preprocessing steps, in the case of sequen-
tial treatment, to reduce the search space, and we suggested a novel
notation for the classes of the HSP.

5.1. HYBRIDIZATION AND THE HOIST SCHEDULING PROBLEM

In some instances of the HSP, the pure CP solver works well; in others,
the pure MIP solver. Neither is able to perform consistently across
the range of problems we examined. Our MIP solver provides better
performance than our CP solver for weakly constrained hoist problems,
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DrrricuLTY
Easy Hard
Weak MIP Hybrid/MIP
CONSTRAINEDNESS
Strong Cp Hybrid

Figure 2. HSP solvers compared: conclusion

and overall, the results showed it handles more problem classes in
reasonable time. Figure 2 summarises our comparison of the solvers.
We have seen that CLP is easily adapted to the different HSP classes,
with changes in the constraints only, and has a search procedure that
is straight-forward to describe and easy to modify.

The performance of the hybrid approach can be attributed to two
factors. First, the early detection of different failures by the component
solvers (for which CP and linear solvers are orthogonal), and second,
the complementary strength of LP in guiding search towards the global
optimum and of CP in handling disjunctions. Thus our experience in
the HSP is in line with the theory given by Hooker et al. (2000).

In the previous hybrid formulation, the linear solver was invoked at
each node in the CP search. We found that, overall, the cost of these
invocations outweighed their usefulness, and that a simpler hybrid with
single LP invocation gave better performance.

In sequencing problems, to which HSP is related, it is common for
boolean formulations to have weak relaxations. If it were possible to
find simple cutting inequalities, some of the auxiliary boolean variables
we use could be omitted — an approach that has worked in other
applications of hybrid methods. The correspondingly smaller relaxation
then could be solved at more nodes in the search for both hybrid and
MIP approaches.®

We have seen that hybridization retains the modelling advantage of
CP while leading to a more robust solver. For larger problems, in par-
ticular, the hybrid solver can often find solutions and prove optimality
when neither our CP or MIP solvers can do so. In almost every case,
the hybrid solver is better than the previous hybrid approach, and our
results overall are competitive with the best of those obtained so far
by any approach in the literature.

5.2. FURTHER WORK

Three areas appear promising for future work on hybrid HSP. First,
improving the existing hybrid solver. It may be appropriate to invoke
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the LP solver subsequently once fd has progressed by some degree. It
is the case that more symmetries could be removed than at present.

In the class C/M/1, the problem can be decomposed into two parts:
hoist-tank assignment as a master problem and hoist scheduling as a
subproblem. When the subproblems are independent, a tighter form
of hybridization than we have used, notably Benders decomposition
(Eremin and Wallace, 2001), may give better results; this independence
is so for C/M/1/D but not for collision-based assignment.

Our combined use of explicit and automated constraint linearization,
choice of problem variables and presolving of the partitioned problem
have together yielded an efficient MIP model. Even so, there is room
for improvement. For instance, using the better upper bound of Levner
et al. (1995) for C/M/1/D should yield the solution more quickly (and
would give some aid to the hybrid, too). In addition, the automated
translator of Rodosek et al. (1997) has been recently extended (Ottos-
son and Thorsteinsson, 2000); this may allow us to exploit more of the
modelling features of CLP and to tighten the linear relaxation.

Second, the model given in Section 2 holds for multi-function tanks
and non-sequential treatment, although as noted, some of the prepro-
cessing steps do not (it would be necessary to relax expressions in which
S(i) occurs as a subscript). Constraint-based solutions to the HSP
with these extensions have already been demonstrated (Mak et al.,
1998; Varnier et al., 1997), but a hybrid solver not yet applied.

Other possible extensions include a single load /unload stage (which
would be straight-forward), multi-part cycles (challenging, but per-
mits better solutions) and C/M/1/0O optimal hoist allocation (very
challenging, perhaps heuristics would be necessary).

Third, there appears to have been no work to date on the HSP with
H hoists and R tracks where 1 < R < H and H > 3. This increases
the complexity, with the new problem of how to assign hoists to tracks
as well as to transfer operations. To refine and apply the CLP-MIP
hybrid to such problems seems a natural step.

Appendix

As discussed in Section 1.2, PU13 is a variant of the classic benchmark
problem PU12 in which the tanks are thought of as arranged in a circle.
Specifically, an extra tank is added at the front of the line, with minimal
treatment time 120 and maximal treatment time unbounded. Jobs are
automatically entered into this first tank, and travel times from it to
the others are as from the load stage to the tanks in PU12.

We considered three other previously known data sets:
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Table IV. Results for the real-world problem DEGEM

Parameters Solution Time (secs)

hoists tracks capacity jobs period cp mip  hybrid

693 0.01 0.01 0.01
347 0.02 0.03 0.06
250 0.05 0.05 0.09
250 0.08 0.07 0.12
347 0.04 0.19 0.15
250 0.07 0.23 0.19
250 0.15 0.30 0.23
250 0.07 0.22 0.19
250 0.15 0.18 0.22
347 0.22 0.03 0.06
250 0.04 0.05 0.09
250 0.08 0.07 0.12
250 0.05 0.05 0.09
250 0.08 0.07 0.12

W W N NN WWNNDNRFE = = =
= o R = =W W N NN e
e T e T T e T e T o S e S O e O S S
W R W N R W R WN R WND -

— SZS5: five tank test problem from Song et al. (1993)
— LKSO: nine tank problem from Levner et al. (1996)
— DEGEM: seven tank real-world process from Kats et al. (1999)

We did not use the ten tank benchmark problem ‘SSZ’ quoted in
Kats et al. (1999) because it contained non-integer travel times. As
discussed in Section 4, none of these data sets were challenging. For
instance, Table IV gives the results for the problem DEGEM.

RYS16 is a sixteen tank problem of our construction, based loosely
on PU13. The data for the problem is as follows, with the empty travel
times given in Table V:

m(i) = [0,120, 150,100, 120, 90, 200, 25, 60, 0, 60, 45, 130, 120, 90, 30, 30]
M (i) = [0, 00,200,120, 195, 125, 200, 40, 120, 00, 120, 75, 50, 00, 120, 60, 60]
F(i,i+ 1) = [0,31,22,22, 20,25, 10, 23,22, 50, 22, 22, 46, 27, 22, 30, 30
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Table V. Empty travel times in RYS16

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0 11 14 16 14 19 10 24 26 29 6 8 10 11 4 5 5 0
1 110 2 5 2 8 1213151710 3 1 11 6 4 7 6
2 14 2 0 2 0 5 8 10131512 6 3 14 8 5 9 10
3 16 5 2 0 2 3 5 8 101315 8 6 16 10 6 7 3
4 14 2 0 2 0 5 9 10131512 6 3 1412 7 9 14
5 19 8 5 3 5 0 3 5 7 1018 11 9 19 14 8 11 10
6 1012 8 5 9 3 0 2 5 7 20 14 11 22 16 16 13 10
7 241310 8 10 5 2 0 2 5 23 16 14 24 18 17 11 9
8 26151310 13 7 5 2 0 2 25 19 16 26 20 18 9 8
9 291715131510 7 5 2 O 0 21 19 29 22 19 11 7
10 6 10 12 15 12 18 20 23 256 0 0O 7 9 6 24 20 13 7
1 8 3 6 8 6 11 1416 1921 7 0 2 8 26 26 15 11
12 101 3 6 3 9 11 14 16 19 9 2 0 10 28 27 13 20
13 11 11 14 16 14 19 22 24 26 29 6 8 10 0 26 28 12 14
14 4 6 8 10 12 14 16 18 20 22 24 26 28 26 0 28 12 14
15 5 4 5 6 7 8 16 17 18 19 20 26 27 28 28 0 12 14
6 5 7 9 7 9 11 1311 9 11 13 15 13 12 12 12 0 14
17 0 6 10 3 14 10 10 9 8 7 7 11 20 14 14 14 14 0

Notes

! In the case of multiple hoists on a single track.

2 In fact, the solution they published is not optimal. Phillips and Unger found the
optimum for three simultaneous components (jobs), but a solution of lower period
exists with four jobs.

8 It is permissible for this value to be unbounded.

* It may be that the two physically coincide, that is, a single load/unload stage.

5 A further consequence of this is that the time for the hoist to return to the
load stage, having deposited a finished job at the unload stage, cannot be zero. For
PU13, which would otherwise permit this possibility, the period could therefore be
one second shorter in certain cases, namely 11 jobs with 3 or 4 hoists and tracks.

® We are grateful to an anonymous reviewer for this observation.
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