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t. The generi
 hoist s
heduling problem is NP-hard and arises from auto-mated manufa
turing lines. In re
ent work using the 
onstraint logi
 programming(CLP) formalism, a uni�ed model has been developed with the problem des
riptionand solution method separated. We provide an improved model and new prepro-
essing stages where, as before, solutions and proof of optimality are provided bya hybrid CLP{MIP algorithm. The new algorithm is more s
alable and robust. Wegive empiri
al results for a range of problem 
lasses on ben
hmark problems fromseveral sour
es.Keywords: hoist s
heduling, hybrid methods, modelling, ben
hmarks1. Introdu
tionHoist s
heduling is an abstra
tion of a 
ommon industrial problem.Computer-
ontrolled hoists (or transport robots) are used in PCBele
troplating and other se
tors to move material through some �xedsequen
e of operations. The importan
e of optimising the hoist move-ments is that the same pro
edure is performed 
ontinuously for manyweeks, and a 
hange in the produ
tion run may require several weeksof downtime (Shapiro and Nuttle, 1988).The �rst solutions to the hoist s
heduling problem used mathemat-i
al programming (Phillips and Unger, 1976). Later, arti�
ial intel-ligen
e te
hniques in the forms of lo
al sear
h and 
onstraint logi
programming (CLP) were applied (Baptiste et al., 1994; Lam, 1997).More re
ently, a hybrid te
hnique that 
ombines MIP and CLP hasbeen developed (Rodo�sek and Walla
e, 1998). In this paper, we elab-orate and generalise the hybrid approa
h, presenting a revised CLPmodel and new prepro
essing stages.Below we introdu
e and 
lassify the hoist s
heduling problem (HSP)in more detail, and, in Se
tion 2, present the new model. Se
tion 3dis
usses the solvers used and the hybridization between them, andSe
tion 4 gives our results for a number of ben
hmark problems. Finally,we draw some 
on
lusions in Se
tion 5.Published in Annals of Operations Resear
h 115 (2002). 
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21.1. Hoist S
hedulingThe simplest 
ase of the hoist s
heduling problem is the basi
 problemintrodu
ed by Phillips and Unger (1976). A single 
omputer-
ontrolledhoist operates on a single tra
k above a sequential line of tanks. A largenumber of identi
al jobs are pla
ed at the initial stage of the line. Ea
hjob is to be pro
essed through the tanks and pla
ed at the far end.Hoist s
heduling is distinguished from 
lassi
al s
heduling problems,su
h as 
owshop or jobshop, in that, �rst, no waiting of jobs during anoperation is permissible, se
ond, travel times of an operation are notnegligible, and third, there is no intermediate storage between tanks. Inaddition, to re
e
t the industrial situation, the pres
ribed pro
essingtimes in the tanks are bounded in a time window but need not be �xed.Jobs are assumed to be identi
al in the basi
 problem. If the jobsdi�er or fall into multiple types, the nature of the HSP 
hanges andthe algorithms are quite di�erent. The same o

urs if the arrival ofjobs is not known in advan
e (the dynami
 hoist s
heduling problem(Lamothe et al., 1994)).In the 
y
li
 hoist s
heduling problem (CHSP), the same sequen
eof operations is repeated. One 
omplete sequen
e is a 
y
le, and thelength of time required for one 
y
le is the period (or 
y
le time ormakespan). In a single part problem, one job enters and one job leavesthe system in every 
y
le. In a multi-part or r-part system, r jobs enterand leave in every 
y
le (Kats et al., 1999). Generalising the CHSP, then-periodi
 hoist s
heduling problem (Levner et al., 1995) has a 
y
le
omposed of n smaller repeated sequen
es. The most 
ommon 
ase inindustry is the 
y
li
 hoist s
heduling problem with homogeneous jobs(Shapiro and Nuttle, 1988).The basi
 problem does not a

ount for all of industrial pra
ti
e.The most notable extension is to multiple hoists, whi
h may share onetra
k or have one tra
k ea
h. If the number of hoists is greater thanthe number of tra
ks, 
ollisions must be avoided, whi
h ne
essitateshoist assignment (how hoists are assigned to tanks). Other variationsfrom the basi
 problem in
lude a single load/unload stage rather thanone stage at ea
h end, and multi-fun
tion tanks, those visited by a jobmore than on
e. Either of these possibilities entails bidire
tional hoistmovement while 
arrying a job. Some tanks may be dupli
ated or havea 
apa
ity greater than one, in order to redu
e a bottlene
k in the line.Varnier et al. (1997) give a partial survey of the literature on theforms of the HSP. To further aid in the 
lassi�
ation, we propose anotation for the problem 
lasses similar to that used in queueing theory.Denote a 
lass of the HSP as F/H/T/A/r to indi
ate:� F: zero or more of the 
ags:



3� C: 
y
li
� D: dynami
� H: heterogeneous jobs� N: non-sequential� H: the number of hoists, 1 (single) or M (multiple)� T: the number of tra
ks, 1 (single) or M (multiple)� A: hoist assignment1, one of:� D (determined, i.e. partitioned)� C (
ollision-based)� O (optimal)� r: the number of parts, 1 or an integer rTerms may be omitted where implied or irrelevant: for instan
e,we 
onsider only single-part problems so will omit the r term. Phillipsand Unger's problem PU12, introdu
ed below, is 
lassi�ed as C/1/1,for example, whereas the most general problem 
onsidered by Rodo�sekand Walla
e (1998) is C/M/M/C. The notation is easily extensible.1.2. Previous Work1.2.1. MIP Approa
hesPhillips and Unger (1976) introdu
ed the HSP and provided the now-famous ben
hmark problem, PU12. They used a MIP model to �nd theminimum 
y
le time for this real-world twelve-tank problem2.Shapiro and Nuttle (1988) introdu
ed a revised bran
h-and-boundpro
edure and used MIP on di�erent sub-problems to bound the sear
hspa
e. Levner et al. (1995) improved the upper bound for the period.Lei and Wang (1991) solved the HSP for two hoists on the sametra
k. They introdu
ed a new heuristi
 algorithm whi
h partitions theline of tanks into two 
ontiguous sets and assigns to ea
h hoist one set.Lei et al. (1993) gave an improved heuristi
, where the hoists mustbe s
heduled to avoid traÆ
 
ollisions (no partitioning is used). Theywere not able to guarantee the optimal solution.There have been a number of works presenting progressively betteror broader MIP models (Armstrong et al., 1992; Chen et al., 1998; Yihet al., 1993; Leung et al., 1997) and bran
h-and-bound pro
edures (Leiand Wang, 1994; Ng and Leung, 1997). Bidire
tional multiple hoistswere 
onsidered �rst by Manier (1994).1.2.2. CP Approa
hesThe �rst approa
h to exploit 
onstraint programming was by Baptisteet al. (1992). They demonstrated that the versatility of CLP allowed



4the rapid development of 
omputational models for di�erent 
lasses ofhoist s
heduling problems. Their results showed that CLP with a linearsolver is more e�e
tive than 
onstraint propagation over �nite domains.They were able to produ
e an optimal s
hedule for the problem PU12,with a revised model, in less than one minute.Varnier and others (Varnier et al., 1997; Manier et al., 2000)extended this work to model multiple hoists and non-sequential treat-ment, in
luding multi-fun
tion and dupli
ated tanks but not higher
apa
ity tanks. They resolved the hoist assignment in only a restri
tedform using heuristi
s.Cheng and Smith (1996) 
onsidered a multi-produ
t single-hoistHSP where ea
h job may require treatment in a subset of the tanks(tank skipping). Mak et al. (1998) used 
onstraint satisfa
tion to solvethe single-hoist CHSP with multi-fun
tion and dupli
ated tanks and asingle load/unload stage.1.2.3. Hybridization and Hybrid Approa
hesTsang et al. (1999) do
ument a range of diÆ
ult 
ombinatorial prob-lems solved by exploiting integer programming (IP) and 
onstraintprogramming (CP) together in hybrid approa
hes. Hooker et al. (2000)provide a generi
 s
heme for hybridization between optimisation and
onstraint satisfa
tion methods, emphasising the 
omplementarystrengths of the two methods respe
tively in sear
h and relaxation andin inferen
e and strengthening. Several resear
hers report on problemsnot solvable in reasonable time by either IP or CP alone, but whi
h fallto a 
ombined approa
h (Baptiste et al., 1998).A hybrid model was �rst applied to the HSP by Rodo�sek andWalla
e(1998). Their model was resolved using propagation and sear
h in theCLP platform ECLiPSe and linear solving in an external pa
kage. Theadvantage of hybridization for the HSP has been to extend the 
lassof problems that 
an be handled by a single model, to allow a singlesolver algorithm to work a
ross these 
lasses, and to provide proof ofoptimality in 
ases whi
h are beyond traditional methods.Rodo�sek and Walla
e (1998) 
onsider a generi
 
lass of CHSP withsingle or multiple hoists, tra
ks, and tank 
apa
ities. In their hybrid,every 
onstraint is passed to a CLP solver and a MIP solver. Theyintrodu
ed a harder thirteen-tank variant, PU13, of the Phillips andUnger problem, in whi
h jobs are moved from the load stage to the�rst tank by a separate me
hanism. To be able to 
ompare results, wewill 
onsider PU13 rather than PU12.Other algorithmi
 approa
hes to the problemwere partially surveyedin Hall et al. (1997). For example, petri-nets (Denat et al., 2000),geneti
 algorithms for the single-hoist instan
e (Lim, 1997), and lo
al



5sear
h, notably simulated annealing (Lam, 1997). With the ex
eption of
ertain restri
ted or simpli�ed 
ases, all the hoist s
heduling problemsintrodu
ed above have been shown to be NP-hard (Hanen, 1994).This paper 
ontributes a more s
alable and robust hybrid model,improving the work of Rodo�sek and Walla
e (1998). We provide resultsanalysing the performan
e of the three main approa
hes to the HSPon known ben
hmark problems, and point out future enhan
ements forthe hybridization. 2. The ModelThe expressiveness of CLP allows the easy modelling of both the lin-ear and disjun
tive 
onstraints in the HSP. We exploit the automati
translation of Rodo�sek et al. (1997) to produ
e from the de
larativeCLP model one suitable for a MIP solver.2.1. Variables and NotationThe following are all integers, with the de
ision variables in bold fa
e:N number of tanksR number of tra
ksH number of hoistsJ number of simultaneous jobsT number of treatmentsS(i) tank for ith treatmentC(j) 
apa
ity of tank jm(j) minimum treatment time in tank jM(j) maximum treatment time3 in tank jE(j; k) time to move empty hoist from tank j to tank kF (j; k) time to move full hoist from tank j to tank kT (i) a
tual time of ith treatmentR(i) removal time upon 
ompletion of ith treatmentB(i) number of the hoist that performs the ith transfer operationP 
y
le periodThe hoists and tanks are numbered from left to right; the load andunload tanks are 
onsidered to be tanks 0 and N +1 respe
tively4. Wetake the ith transfer operation as being from tank S(i) to tank S(i+1);



6hen
e T � N + 1 if every tank is used (stri
t inequality is possible inthe 
ase of multi-fun
tion tanks).For all tanks, E(j; k) = E(k; j). For non-dupli
ated tanks, E(j; j) =0, while for dupli
ated tanks, following Shapiro and Nuttle (1988),E(j; j) 6= 0 and we take E(j; k) = maxl(E(l)(j; k)), where E(l)(j; �)denotes the lth dupli
ated tank at position j.For those variables whi
h relate to tanks by absolute index ratherthan by treatment sequen
e, we write Ci for C(S(i)), Fi forF (S(i); S(i + 1)), et
. For the other variables, Ri � R(i), et
. We will
onsider later only sequential treatments, that is when T = N + 1 andS(i) � i.In an industrial setting, the time to perform a transfer operation isgreater than the time to move the hoist between two tanks: we mustraise the job, allow it to drip o� above the tank, move, stabilise andlower. Without loss of generality, we in
lude all this in the full times.Our model di�ers from previous CLP approa
hes in that we optimiseusing the removal times. Previous authors used both entry and removaltimes (Rodo�sek and Walla
e, 1998), entry and treatment times (Varnieret al., 1997) or treatment and removal times (Mak et al., 1998). A sin-gle variable per treatment yields a smaller sear
h spa
e and simpli�ed
onstraints; the treatment times 
an be derived by:Ti = Ri � (Ri�1 + Fi�1)(1)Given a single-part 
y
le, we suppose the system is in steady state;thus exa
tly one job enters and one job leaves the system in every 
y
le.We seek values for the unknowns R(i), B(i), and P ; the period will beintegral sin
e the data is integral.2.2. ConstraintsThe 
onstraints for a simple single-part 
y
li
 HSP with time windowsand tank 
apa
ities fall into four 
ategories: the treatment sequen
e,the 1-part 
y
le, the tanks, and the hoists.First, the 
y
li
 stru
ture and tank 
apa
ities are linked. If a tankis full to its 
apa
ity, the �rst job that entered (we assume �rst-in,�rst-out) must be removed before the arrival of the next job. Hen
e,
onsidering tank i with tank 
apa
ity C(i), a job must be removedbefore the arrival of the job whi
h is C(i) 
y
les behind it in theprodu
tion sequen
e. We derive:R1 < P � C1Ri < P � Ci +Ri�1 + Fi�1(2)In the 
ase of simple 
apa
ities, the same holds with Ci � 1.



7The 
y
li
 stru
ture leads to a se
ond 
onstraint, sin
e in every 
y
leall T operations must be performed on
e. It follows that the pro
esstime for a job 
annot be greater than the produ
t of the number ofjobs and the period: RT + FT � J � P(3)Third, the treatment time for every tank must be bounded by thegiven data. Using (1), we have:mi � Ri � (Ri�1 + Fi�1) �Mi(4)Finally, we have 
onstraints on the hoists. Sin
e ea
h hoist 
anperform only one a
tion at a time, we must avoid: removal of jobsfrom multiple tanks at on
e, removal of a job from a tank while thehoist is transporting another job, and the movement of the hoist fasteror slower than the spe
i�ed translation times.Assuming a 1-part system, more subtly, a resour
e 
lash on a hoistwill o

ur if we ask it to perform a task on a job at time � , and a taskis being performed on another job at time �+P . Here, the 
lash will bebetween the �rst task on one job and the se
ond task on the followingjob. Generalising, we must rule out two tasks for any pair of times �and � + kP , where 0 < k < J .It follows that at the 
entre of the HSP model is a three-variabledisjun
tive 
onstraint: exa
tly one ofRi + Fi +Ei+1;j � Rj + k � P(5)or Rj + Fj +Ej+1;i + k � P � Ri(6)must hold, for all k = 1; : : : ; J � 1; i; j = 1; : : : ; T ; j < i.2.3. Boolean Variables and Prepro
essingWe use a boolean variable to denote, given any two tanks i > j, whetherthe hoist either goes �rst to i (when (5) applies) or to j (when (6)applies). For ea
h pair of tanks i > j and distan
e k between jobs inthe produ
tion sequen
e, let Bi;j;k be a boolean variable su
h that (5)holds i� Bi;j;k = 1. Then 
onstraint (5) be
omes (with (6) similarly):Ri + Fi +Ei+1;j � Rj + kP + (1�Bi;j;k) � 
(7)where 
 is an integer that dominates the expression (a `big-M' term).Let us now assume sequential treatment. It is possible to eliminate
ertain 
ontradi
tory situations in advan
e by a prepro
essing step,



8initialising some of the Bi;j;k. Consider a job m in tank i and a jobm + k, 1 � k < J , in tank j = i � 1. With unit tank 
apa
ities it istrivially not possible to move job m + k before m; that is, the hoistmust visit i before j, or equivalently, Bi;j;k = 1.More generally, for 2 � i � T and 1 � j; k;m < T ,(j = i�m ^ k � m)) Bi;j;k = 1(8)The redu
tion in boolean variables redu
es the sear
h spa
e and thenumber of a
tive 
onstraints, and sharpens the relaxation bounds. Withfour-job PU13, for example, the redu
tion is from 234 to 98 variables.2.4. Further HSP Classes2.4.1. Multiple Hoists, Multiple Tra
ksThe same model applies for C/M/M as C/1/1 but with some 
onstraintsremoved. We assume that ea
h treatment tank S(i) is assigned to onehoist B(S(i)) whi
h will handle the tank for the ith transfer. Sin
e ea
hhoist has a dedi
ated tra
k, 
ollisions are not possible. Hen
e, if twotanks are handled by di�erent hoists, neither (5) nor (6) applies.As before, we expli
itly unfold the disjun
tion with an auxiliaryboolean, in order to be able to perform some prepro
essing. For ea
hpair of tanks i > j, introdu
e Ci;j su
h that the disjun
tion appliesonly if both tanks are handled by the same hoist:Bi 6= Bj , Ci;j = 1(9)Hen
e, (5) be
omes:Ri + Fi +Ei+1;j � Rj + kP + (1�Bi;j;k + Ci;j) � 
(10)Without loss of generality, we assignB(1) = 1 to remove symmetries.It is not possible to similarly set R1 = m1; this may prevent the optimalperiod from being found.2.4.2. Hoist AssignmentBefore we 
an present the model for C/M/1/x, we must dis
uss theproblem of hoist assignment. Varnier et al. (1997) des
ribe the threepossibilities in the literature. In order of generality:1. Disjoint zones (Lei and Wang, 1991). Ea
h hoist is assigned a 
on-tiguous set (or zone) of tanks, and moves only within this set. Setsare disjoint between hoists ex
ept for boundary tanks.2. Collision-based (Hanen and Munier, 1994; Lei and Wang, 1994;Manier, 1994). The sets for ea
h hoist need not be disjoint, noreven 
ontiguous. The hoists must be managed to avoid 
ollisions.



93. Optimal (Kats and Levner, 1997; Levner et al., 1995). Rather than�xing the number of hoists then assigning tanks, �nd the minimalnumber of hoists that 
an a
hieve a given period, or the minimalperiod.The third 
lass, C/M/1/O, is a very diÆ
ult problem. It has beensolved by non-CP methods only when other restri
tions have beenpla
ed on the HSP (Kats and Levner, 1997; Lei et al., 1993), su
has �xed pro
essing times rather than time windows. With CP, we 
an�nd the number of hoists that minimises P , by labelling H upwardsfrom the lowest value in its domain, until the period found with H +1hoists is the same as that with H hoists.Varnier et al. (1997) 
onsider the se
ond 
lass, C/M/1/C, but withsome restri
tions. They assume, reasonably, that overlap tanks area

essed only by adja
ent hoists, and, more restri
tively, that ea
hhoist has at least one tank that it alone a

esses. Their solution usesheuristi
s and is not guaranteed to be optimal. Below, we make the �rstassumption but not the se
ond, thus giving the optimal 
ollision-basedhoist assignment.2.4.3. Multiple Hoists, Single Tra
kWe assume again sequential treatment. First, the additions to the basi
model for C/M/1/D. Every hoist has a set of tanks that it handles, andthe interse
tion with the other zones is null ex
ept for boundary tanks.To a
hieve this, a system of 
onstraints related with the B(i) variablesis added: B(i� 1) + 1 � B(i) � B(i� 1) (i = 2; : : : ; T � 1)(11)The domains of the B(i) 
an be redu
ed by eliminating unrea
habletanks (sin
e hoists may not pass ea
h other). Observe that the �rsttank 
an be rea
hed by the �rst hoist alone, the se
ond tank by the�rst and the se
ond hoists only, et
. By symmetry, B(1) 2 f1g; B(2) 2f1; 2g; : : : ; B(N�1) 2 fH�1;Hg; B(N) 2 fHg. Further, as in C/M/M,we need no 
onstraint for those tanks handled by di�erent hoists, butnow the relation for the Ci;j is linear: Ci;j = Bi �Bj .Se
ond, 
ollision-based hoist assignment, C/M/1/C. We must 
on-sider three new possibilities:� B(i) = B(j): tanks i and j are handled by the same hoist; thedisjun
tive 
onstraint remains un
hanged.� B(i) > B(j): the disjun
tive 
onstraint is unne
essary, be
ausetanks i and j are handled by hoists whi
h will never meet.



10� B(i) < B(j): the disjun
tive 
onstraint must be modi�ed to ensurethe �rst hoist to move retires in time for the se
ond.Introdu
ing additional boolean variables Di;j , we obtain:Bi > Bj , Ci;j = 1Bi < Bj , Di;j = 1(12)and 
onstraint (5) now be
omes, for i > j and Æ1 = Ei+1;j�1 �Ei+1;j:Ri + Fi +Ei+1;j � Rj + kP + ((1 �Bi;j;k) + Cij) � 
� Æ1 �Di;j(13)2.4.4. Dupli
ated and Multi-fun
tion TanksDupli
ated tanks are often used in industry to remove a bottlene
k onthe line: for instan
e for a drying stage that takes 10 times longer thanany other stage. We have instead 
onsidered higher 
apa
ity tanks.Multi-fun
tion tanks are those that are visited more than on
e bythe same job. From su
h a non-monotoni
 treatment sequen
e, it fol-lows that jobs will have to be transported both right and left, whi
hadds 
onsiderably to the 
omplexity of the problem, parti
ularly inhoist assignment. Combining load and unload stages also introdu
esbidire
tional hoist movement; Mak et al. (1998) examine this 
ase andshow a small 
hange in the 
onstraint model they give is suÆ
ient.3. The SolversTo �nd solutions to the 
onstraint model given in the previous se
tions,we implemented solvers for the three main approa
hes to the HSP |pure CP, pure MIP and hybrid| using the Prolog-based ECLiPSe plat-form (IC{Par
, 2001). ECLiPSe implements a number of CLP s
hemesand provides an interfa
e to internal and 
ommer
ial solvers. For the
onstraint propagation, we used the fd �nite domain solver built-in toECLiPSe. For the MIP solving, we used the CPLEX pa
kage.Initial bounds for the unknowns, the period P and removal timesR(i), are 
ru
ial to the MIP solver (
onstraint propagation will inferthe bounds in the CP solver). For the period, the bounds are:&PTk=1mk +PTk=1 FkN ' � P(14)and P � TXk=1 (mk + Fk)(15)



11The se
ond inequality (15) is obtained by supposing we pro
ess onejob at a time, but is not the tightest known; Levner et al. (1995) give analgorithm based on a merge-sort of interval sets. For PU13, for example,the bound is 933 rather than 1472 (Mak et al., 1998). However, sin
ethe CP sear
h begins from the lower bound of the period, the upperbound is of little relevan
e to the CP solver.For the removal times, the bounds are:m(1) � R(i) � TXk=1Mk + T�1Xk=1 Fk (i = 1; : : : ; T )(16)The �nal sum is only to T � 1 be
ause the time to move the jobfrom the last treatment tank to the unload station is irrelevant to theremoval times.3.1. CP SolverThe 
onstraints, those des
ribed in Se
tion 2, are 
onsidered only bythe fd solver; propagation is performed over �nite domains. Heuristi
s
an be applied easily in CP to de
isions su
h as the order of labellingof the variables and the order of value sele
tion. We evaluated variouspossibilities before settling on that whi
h performed best overall.First we label the period, P , starting from the lowest value in itsdomain. If 
onstraint propagation yields a 
onsistent situation fromthe 
andidate value of P , we attempt to label the other variables. Bylabelling P from the lowest value, the �rst solution found will be theoptimal solution; no separate proof of optimality is ne
essary.After P , we label the assignment of hoists to transfer operations(in multi-hoist problems), then the removal times, R(i), and �nally theauxiliary booleans. This order gives maximum 
onstraint propagationand sear
h tree pruning. We used no in-sear
h symmetry breaking.For the problem C/M/1/D, we applied a redundant 
onstraint: atmost T�H+1 treatments 
an be handled by a single hoist (sin
e ea
hhoist must perform at least one treatment not to be redundant). This
onstraint furthers propagation a little, and is also applied to the CP
omponent of the hybrid solver.3.2. MIP SolverThe 
onstraints are passed to the MIP solver via the eplex interfa
e ofECLiPSe. Sear
h is performed within the MIP pa
kage, by the defaultlinear solving algorithm 
hosen by the CPLEX heuristi
s.MIP performan
e is very dependent on the number of variables andon the bounds for the obje
tive. The prepro
essing steps of boolean



12variable redu
tion, symmetry removal and hoist assignment domainredu
tion give a marked improvement, examined in Se
tion 4. Theoptimal period and whole solution is returned to ECLiPSe.For the problem C/M/1/C, we performed a two-stage solution. The�rst solves the same problem but with partitioned hoist assignment.This is mu
h simpler than 
ollision-based assignment but | sin
e theperiod for the latter, being less 
onstrained, 
annot be larger than theformer | this �rst step provides a greatly improved upper bound onthe period. With this upper bound, we then solve the full problem.This te
hnique was also used for the hybrid solver.3.3. Hybrid SolverThe 
onstraints here are 
onsidered by both solvers, with sear
h 
ontrolhandled by ECLiPSe. Information obtained by one solver is immedi-ately available to the other via shared bounds and variable domains.We �rst perform 
onstraint propagation on �nite domains, poten-tially yielding new upper and lower bounds on the variables. Se
ond,the LP solver is invoked on the 
ontinuous relaxation (integer 
ondi-tions omitted). When the relaxed problem is solved, 
ontrol returns toECLiPSe with the lower bound on P improved.Third, we label the period P , as in Se
tion 3.1. If a 
andidate valueis a

eptable after propagation, we attempt to label the other variables(hoist assignment and then removal times) by domain splitting. Shouldthis su

eed, we have the optimal solution; should it fail, we ba
ktra
kto label P further.In the previous hybrid method (Rodo�sek and Walla
e, 1998), theLP solver was invoked on the relaxed problem ea
h time the bounds onP 
hanged. Our experimentation showed that the information gainedby subsequent invo
ations did not outweigh the 
ost overhead of theLP solver runs. While the simpler hybrid performs better overall, theargument 
an be made for a greater LP involvement in some 
ases.Indeed, Rodo�sek and Walla
e show that both �nite domain and LPfailures are ne
essary to prune the sear
h spa
e, and that there is a
ertain amount of orthogonality between the two methods. The hybridalgorithm gains from the LP solver global 
onsisten
y of the 
ontinuousrelaxation, an improved lower bound on the period, and (although wedo not make use of them) suggested values for the other variables.Most important to the hybrid is the quality of the bound providedby the relaxation. We dis
uss in Se
tion 5 the formulation of the hybrid,
o-operation between the solvers, and quality of the relaxed bound.



13Table I. Hoist s
heduling problems from Rodo�sek and Walla
eRW1 PU13 with four jobsRW2 RW1 with tank 
apa
ity twoRW3 RW1 with two hoists and one tra
k, 
ollision basedRW4 RW1 with two hoists and two tra
ksTable II. Results for the instan
e PU13Parameters Solution Time (se
s)hoists tra
ks 
apa
ity jobs period 
p mip hybrid1 1 1 4 521 1.95 2.61 4.901 1 2 4 521 27.20 2.88 69.962 2 1 4 379 6.45 101.72 11.362 2 1 8 219 * * 352.253 3 1 11 155 * 8550 311.914 4 1 11 151 7207 13.88 11.192 1 1 4 395 1192 7.65 89.642 1 1 7 251 * 620.83 36013 1 1 10 196 * 15910 *4 1 1 11 152 9092 2612 645.764. Results and Analysis4.1. Empiri
al ResultsWe give the results of the three solvers, pure CP, pure MIP and hybrid,for a range of data sets and problem parameters. The results wereobtained on a 450MHz Pentium II with 384MB memory, using ECLiPSeversion 5.1. The times given below are in se
onds to �nd the optimumand prove optimality. CPLEX version 7.0 was the LP solver used, withdefault settings and propagation.The �rst results are those for variants of the PU13 problem. Table Ishows the four ben
hmark problems 
onsidered in Rodo�sek andWalla
e(1998), and in our results, given in Table II, these 
orrespond to thelines with four jobs. The other lines in Table II give the number of jobsfor whi
h the minimal period is �rst a
hieved; * denotes more than18,000 se
onds (�ve hours) of CPU time.Figure 1 shows our results for PU13 with four hoists and four tra
ks.An extended timeout of 40,000 se
onds was used. The hardest instan
es
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Figure 1. Solvers 
ompared: PU13 with four hoists and four tra
ksare with 9 and 10 jobs, when only hybrid �nds a solution. It appearsthat 7 jobs is easier than 6 or 8, but the general trend is that theproblem moves from easy to hard to easier again.Our results for optimal period agree with previous work where theproblems have been 
onsidered before. To �nd the number of jobsfor whi
h the period is minimal has not been previously done usinga hybrid method, and to our knowledge not been done by any methodfor C/M/1/C. Three tra
ks, one hoist appears the hardest 
lass of thosewe examined and, for large numbers of jobs, all of the solvers struggle.In the question of hoist assignment, partitioning the line simpli�esthe situation greatly. We found that every instan
e of C/M/1/D 
ouldbe 
onsistently solved by MIP, for example, in less than one minute,and often in a few se
onds with any solver. C/M/1/C is a mu
h harderproblem but gives 
orrespondingly lower 
y
le times | for instan
e,with three hoists and ten jobs, 196 
ompared to 217.We examined our results in light of those reported by Rodo�sek andWalla
e. A 
loser 
onsideration of their 
onstraint model reveals a 
aw:the following illegal possibility is permitted. A hoist 
arrying a job jdes
ends to a tank 
ontaining some other job k, releases j and pi
ksup k in the same instant. Clearly this is not possible unless there issome intermediate storage. This possibility 
annot o

ur in our modelbe
ause the inequality in (2) is stri
t.5We produ
ed ben
hmarks with the three solvers on other problems.Firstly, we used three data sets appearing in the literature: SZS5, LKS9



15Table III. 100 randomly-generated instan
es of RW4literature hybridminimal time 167 0.13maximal time 1146 34.18mean time 314 8.71and DEGEM. None of these presented any hard problem instan
es forthe HSP 
lasses we 
onsider. Were, for instan
e, the multi-part HSP tobe 
onsidered, then these produ
tion lines with fewer tanks may be
omeinteresting. Details and timings obtained are given in the Appendix.Se
ondly, we introdu
ed a new problem, RYS16, with sixteen tanks,and tested the solver performan
e. The size of the new problem gavemany hard instan
es. The results, broadly, are in a

ordan
e with thosefor PU13. For simpler instan
es, there is little to 
hoose between thesolvers. For harder instan
es, the hybrid is often at an advantage. Forexample, with four hoists and tra
ks, four jobs is solved qui
kly by allsolvers but �ve jobs proves diÆ
ult for MIP. We do not give detailedtimings here.Thirdly, we used a randomly generated problem following Lei andWang (1991). Minimal and maximal pro
essing times are generated forea
h tank by mrand(i) = m(i)� 10+ 20r1 and Mrand(i) =M(i)� 10+20r2, and the full travel times are Frand(i; i+1) = E(i; i+1)+15+10r3,where r1; r2; r3 are U[0; 1℄ random variables.Table III 
ompares the results given in Rodo�sek and Walla
e (1998)with our hybrid solver, for 100 random instan
es with two hoists, twotra
ks and four jobs. The times given are to prove optimality; theliterature results were obtained on a Sun Spar
/20. The results indi
atethe robustness of the hybrid approa
h.For the problems C/1/1 and C/M/M, our solver proved to be ap-proximately 2{5 times faster than that of Rodo�sek and Walla
e, sup-posing identi
al hardware. For instan
e, to prove optimality with fourjobs, two hoists and two tra
ks took 11.4s 
ompared to 289s, and fourjobs, two hoists and one tra
k took 90s 
ompared to 2105s. This maybe attributed to the simpli�ed 
onstraint model and the improvedhybridization.4.2. AnalysisThere are two key fa
tors in the HSP: the 
ombinatorial 
omplexity andthe 
onstrainedness. We 
onsider an instan
e of the HSP to be easy if



16the number of jobs is at most twi
e the number of hoists; otherwise,we 
onsider the instan
e to be hard .For easy problems, the fastest solutions are found using pure CP,although the di�eren
e with the other solvers is not notable. Using fdonly, most of the sear
h tree is pruned. For hard problems, the fastestsolutions are usually found using the hybrid solver: with o

asionalex
eptions, the hybridization avoids the prohibitive CPU time the othersolvers may require.Multiple-
apa
ity tanks are handled far better by MIP than CP orhybrid. However, we found no interesting instan
es among the data setswhere the extra 
apa
ity improved the solution, most likely be
ausethe limiting resour
e in the long PU13 produ
tion line is not the tank
apa
ities but the hoists.Se
ondly, there is a distin
tion between highly 
onstrained and weakly
onstrained problems, by whi
h we mean 
onstrainedness in the 
lassi-
al CP sense, not in terms of feasible set. C/M/1 is more 
onstrained,for example, than C/M/M.We observe that highly 
onstrained problems are solved qui
kly byCP (if they are not hard problems). A large number of 
onstraints en-sures rapid fd propagation, whi
h is the main element of the CP solver.In 
ontrast, weakly 
onstrained problems are solved more qui
kly byMIP, be
ause its e�ort is dominated by the size of the bran
h-and-bound sear
h tree, whi
h depends on the number of integer variablesrather than the number of 
onstraints. The hybrid method, therefore,gives at least reasonable performan
e provided the orthogonality of thehybridization is e�e
tive. 5. Con
lusionIn this work, we 
onsidered a revised hybrid approa
h to the hoists
heduling problem. The new model is more robust and s
alable thanthe old, performing well a
ross a range of problem 
lasses and ben
h-mark data. We used new prepro
essing steps, in the 
ase of sequen-tial treatment, to redu
e the sear
h spa
e, and we suggested a novelnotation for the 
lasses of the HSP.5.1. Hybridization and the Hoist S
heduling ProblemIn some instan
es of the HSP, the pure CP solver works well; in others,the pure MIP solver. Neither is able to perform 
onsistently a
rossthe range of problems we examined. Our MIP solver provides betterperforman
e than our CP solver for weakly 
onstrained hoist problems,



17Diffi
ultyEasy HardWeak MIP Hybrid/MIPConstrainedness Strong CP HybridFigure 2. HSP solvers 
ompared: 
on
lusionand overall, the results showed it handles more problem 
lasses inreasonable time. Figure 2 summarises our 
omparison of the solvers.We have seen that CLP is easily adapted to the di�erent HSP 
lasses,with 
hanges in the 
onstraints only, and has a sear
h pro
edure thatis straight-forward to des
ribe and easy to modify.The performan
e of the hybrid approa
h 
an be attributed to twofa
tors. First, the early dete
tion of di�erent failures by the 
omponentsolvers (for whi
h CP and linear solvers are orthogonal), and se
ond,the 
omplementary strength of LP in guiding sear
h towards the globaloptimum and of CP in handling disjun
tions. Thus our experien
e inthe HSP is in line with the theory given by Hooker et al. (2000).In the previous hybrid formulation, the linear solver was invoked atea
h node in the CP sear
h. We found that, overall, the 
ost of theseinvo
ations outweighed their usefulness, and that a simpler hybrid withsingle LP invo
ation gave better performan
e.In sequen
ing problems, to whi
h HSP is related, it is 
ommon forboolean formulations to have weak relaxations. If it were possible to�nd simple 
utting inequalities, some of the auxiliary boolean variableswe use 
ould be omitted | an approa
h that has worked in otherappli
ations of hybrid methods. The 
orrespondingly smaller relaxationthen 
ould be solved at more nodes in the sear
h for both hybrid andMIP approa
hes.6We have seen that hybridization retains the modelling advantage ofCP while leading to a more robust solver. For larger problems, in par-ti
ular, the hybrid solver 
an often �nd solutions and prove optimalitywhen neither our CP or MIP solvers 
an do so. In almost every 
ase,the hybrid solver is better than the previous hybrid approa
h, and ourresults overall are 
ompetitive with the best of those obtained so farby any approa
h in the literature.5.2. Further WorkThree areas appear promising for future work on hybrid HSP. First,improving the existing hybrid solver. It may be appropriate to invoke



18the LP solver subsequently on
e fd has progressed by some degree. Itis the 
ase that more symmetries 
ould be removed than at present.In the 
lass C/M/1, the problem 
an be de
omposed into two parts:hoist-tank assignment as a master problem and hoist s
heduling as asubproblem. When the subproblems are independent, a tighter formof hybridization than we have used, notably Benders de
omposition(Eremin and Walla
e, 2001), may give better results; this independen
eis so for C/M/1/D but not for 
ollision-based assignment.Our 
ombined use of expli
it and automated 
onstraint linearization,
hoi
e of problem variables and presolving of the partitioned problemhave together yielded an eÆ
ient MIP model. Even so, there is roomfor improvement. For instan
e, using the better upper bound of Levneret al. (1995) for C/M/1/D should yield the solution more qui
kly (andwould give some aid to the hybrid, too). In addition, the automatedtranslator of Rodo�sek et al. (1997) has been re
ently extended (Ottos-son and Thorsteinsson, 2000); this may allow us to exploit more of themodelling features of CLP and to tighten the linear relaxation.Se
ond, the model given in Se
tion 2 holds for multi-fun
tion tanksand non-sequential treatment, although as noted, some of the prepro-
essing steps do not (it would be ne
essary to relax expressions in whi
hS(i) o

urs as a subs
ript). Constraint-based solutions to the HSPwith these extensions have already been demonstrated (Mak et al.,1998; Varnier et al., 1997), but a hybrid solver not yet applied.Other possible extensions in
lude a single load/unload stage (whi
hwould be straight-forward), multi-part 
y
les (
hallenging, but per-mits better solutions) and C/M/1/O optimal hoist allo
ation (very
hallenging, perhaps heuristi
s would be ne
essary).Third, there appears to have been no work to date on the HSP withH hoists and R tra
ks where 1 < R < H and H � 3. This in
reasesthe 
omplexity, with the new problem of how to assign hoists to tra
ksas well as to transfer operations. To re�ne and apply the CLP{MIPhybrid to su
h problems seems a natural step.AppendixAs dis
ussed in Se
tion 1.2, PU13 is a variant of the 
lassi
 ben
hmarkproblem PU12 in whi
h the tanks are thought of as arranged in a 
ir
le.Spe
i�
ally, an extra tank is added at the front of the line, with minimaltreatment time 120 and maximal treatment time unbounded. Jobs areautomati
ally entered into this �rst tank, and travel times from it tothe others are as from the load stage to the tanks in PU12.We 
onsidered three other previously known data sets:



19Table IV. Results for the real-world problem DEGEMParameters Solution Time (se
s)hoists tra
ks 
apa
ity jobs period 
p mip hybrid1 1 1 1 693 0.01 0.01 0.011 1 1 2 347 0.02 0.03 0.061 1 1 3 250 0.05 0.05 0.091 1 1 4 250 0.08 0.07 0.122 2 1 2 347 0.04 0.19 0.152 2 1 3 250 0.07 0.23 0.192 2 1 4 250 0.15 0.30 0.233 3 1 3 250 0.07 0.22 0.193 3 1 4 250 0.15 0.18 0.222 1 1 2 347 0.22 0.03 0.062 1 1 3 250 0.04 0.05 0.092 1 1 4 250 0.08 0.07 0.123 1 1 3 250 0.05 0.05 0.093 1 1 4 250 0.08 0.07 0.12� SZS5: �ve tank test problem from Song et al. (1993)� LKS9: nine tank problem from Levner et al. (1996)� DEGEM: seven tank real-world pro
ess from Kats et al. (1999)We did not use the ten tank ben
hmark problem `SSZ' quoted inKats et al. (1999) be
ause it 
ontained non-integer travel times. Asdis
ussed in Se
tion 4, none of these data sets were 
hallenging. Forinstan
e, Table IV gives the results for the problem DEGEM.RYS16 is a sixteen tank problem of our 
onstru
tion, based looselyon PU13. The data for the problem is as follows, with the empty traveltimes given in Table V:m(i) = [0; 120; 150; 100; 120; 90; 200; 25; 60; 0; 60; 45; 130; 120; 90; 30; 30℄M(i) = [0;1; 200; 120; 195; 125; 200; 40; 120;1; 120; 75;1;1; 120; 60; 60℄F (i; i+ 1) = [0; 31; 22; 22; 20; 25; 10; 23; 22; 50; 22; 22; 46; 27; 22; 30; 30℄A
knowledgementsWe are grateful to Mark Walla
e for many wise insights, and thankAndrew Eremin and the anonymous reviewers for their suggestions.The �rst author is supported by CICYT grant TAP98-0364.



20 Table V. Empty travel times in RYS160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170 0 11 14 16 14 19 10 24 26 29 6 8 10 11 4 5 5 01 11 0 2 5 2 8 12 13 15 17 10 3 1 11 6 4 7 62 14 2 0 2 0 5 8 10 13 15 12 6 3 14 8 5 9 103 16 5 2 0 2 3 5 8 10 13 15 8 6 16 10 6 7 34 14 2 0 2 0 5 9 10 13 15 12 6 3 14 12 7 9 145 19 8 5 3 5 0 3 5 7 10 18 11 9 19 14 8 11 106 10 12 8 5 9 3 0 2 5 7 20 14 11 22 16 16 13 107 24 13 10 8 10 5 2 0 2 5 23 16 14 24 18 17 11 98 26 15 13 10 13 7 5 2 0 2 25 19 16 26 20 18 9 89 29 17 15 13 15 10 7 5 2 0 0 21 19 29 22 19 11 710 6 10 12 15 12 18 20 23 25 0 0 7 9 6 24 20 13 711 8 3 6 8 6 11 14 16 19 21 7 0 2 8 26 26 15 1112 10 1 3 6 3 9 11 14 16 19 9 2 0 10 28 27 13 2013 11 11 14 16 14 19 22 24 26 29 6 8 10 0 26 28 12 1414 4 6 8 10 12 14 16 18 20 22 24 26 28 26 0 28 12 1415 5 4 5 6 7 8 16 17 18 19 20 26 27 28 28 0 12 1416 5 7 9 7 9 11 13 11 9 11 13 15 13 12 12 12 0 1417 0 6 10 3 14 10 10 9 8 7 7 11 20 14 14 14 14 0Notes1 In the 
ase of multiple hoists on a single tra
k.2 In fa
t, the solution they published is not optimal. Phillips and Unger found theoptimum for three simultaneous 
omponents (jobs), but a solution of lower periodexists with four jobs.3 It is permissible for this value to be unbounded.4 It may be that the two physi
ally 
oin
ide, that is, a single load/unload stage.5 A further 
onsequen
e of this is that the time for the hoist to return to theload stage, having deposited a �nished job at the unload stage, 
annot be zero. ForPU13, whi
h would otherwise permit this possibility, the period 
ould therefore beone se
ond shorter in 
ertain 
ases, namely 11 jobs with 3 or 4 hoists and tra
ks.6 We are grateful to an anonymous reviewer for this observation.Referen
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