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Chapter 1IntroductionThis technical report describes PADDY, a partial deduction system for full Sepia [28] Prolog.There is also a user guide available.A programmer often has a general purpose program which is to be used for speci�c applications.For example, a string matching program may be used repeatedly with the same string, a meta-interpreter with the same object program, or an inference engine with the same knowledgebase. This can be exploited by deriving versions of the program which run faster for thosespecial cases. Deriving specialised versions is called program specialisation. Derivation is doneby performing execution steps (resolution or execution of system calls) before run time, by aprocess called partial evaluation. The potential of partial evaluation was independently realisedby Ershov [8], Futamura [12] and Turchin [47] in the 1970's. It was �rst applied to logicprogramming by Komorowski [20] who gave it the more appropriate name of Partial Deduction(PD). PD performs resolution (or unfolding) steps on a logic program in a controlled way priorto execution.PADDY is a partial deduction 1 system for Sepia Prolog with the following features:� It can handle full Sepia programs, including advanced features such as modules and delayedgoals.� It is fully automatic, but has a few parameters which may be altered by the user wherenecessary.� It is based on an established unfold/fold transformation system which preserves the se-quence of answer substitutions, making it provably correct on pure Prolog programs.� It always terminates.� It has a powerful adaptive transformation strategy: that is, it alters its behaviour as thetransformation proceeds, exploiting useful knowledge gained during the transformation.This makes it potentially more powerful than a system based purely on static analysis.� It has been designed to have fast transformation times compared to other adaptive strate-gies. Its transformation time is a linear function of the number of nodes in a partialdeduction tree, whereas for many systems it is quadratic.1The transformation we apply is not strictly partial deduction because system calls are handled, and alsobecause the \fold" transformation is allowed. Nevertheless, the aims and results are almost identical to those ofPD, and so we shall use this term. 1



2 CHAPTER 1. INTRODUCTIONIt has been tested successfully on various examples, including several meta-interpreters andPADDY itself.Chapter 2 describes PADDY's transformation strategy for pure Prolog programs. Chapter 3describes a general approach to the transformation of full Sepia programs. Chapter 4 combinesthe two techniques, giving a partial deduction system for full Sepia. Chapter 5 assesses PADDYand compares it with other systems. Appendix A shows some applications of PADDY.



Chapter 2Transformation strategy for purePrologIn this chapter we de�ne a transformation strategy for pure Prolog programs, that is programsconsisting only of de�nite clauses. We describe how to make the transformation terminate in areasonable time, give correct results and specialise programs satisfactorily.PD must be guided by a strategy , that is a rule specifying the order in which literals are to beselected for unfolding, when to stop unfolding, when to replace atoms by more general ones andso on. The choice of strategy is crucial, as it a�ects the quality of the transformation (that is,how well it improves programs), how long it takes and whether or not it terminates.As noted by Jones [17], strategies may be divided into those which are decided before unfoldingbegins by static analysis (sometimes called binding time analysis [18]) and those which dependupon knowledge derived during the transformation itself, which we shall call adaptive. Adaptivestrategies are potentially more powerful, because they have access to knowledge which cannotalways be predicted by static analysis. However, they tend to be considerably slower.Many adaptive strategies construct an SLD-tree 2 whose root is a query to be partially deduced.As the tree is constructed, each new atom is compared with its ancestors to detect in�nitesubtrees. This method has been used successfully in many systems (for example [1, 2, 11, 25,32, 36, 41]) and gives good results. The price paid is the time spent scanning ancestors at eachnode of the tree, which increases as the tree gets deeper. This makes these systems impracticalfor programs which have large search spaces.An alternative adaptive technique is to store atoms in an unstructured set of de�nitions usedfor folding purposes, instead of a tree (for example [9]), but this does not solve the problem:as the transformation proceeds the set of de�nitions grows, and so the search for appropriatede�nitions takes longer as the set grows.The common factor in these strategies is that a growing set of data is derived during thetransformation, and must be scanned at each atom. In the �rst case the transformation timewill be quadratic in the depth of the tree, and in the second case quadratic in the number ofde�nitions made.We propose that partial deduction strategies be designed so that they can adaptively exploit thederived data, but so that the analysis time spent on each atom is independent of the size of the2As SLD-trees play no part in this paper we will not de�ne them here. For a formal de�nition see [26].3



4 CHAPTER 2. TRANSFORMATION STRATEGY FOR PURE PROLOGdata set. Hence the transformation time will be linear in the number of atoms analysed, whichis a signi�cant saving. The main problem in designing such a strategy is detecting in�nite loopswithout using the ancestor relationship, and without being so conservative that little unfoldingis performed. We show that this can be solved, and in fact that such a strategy can be powerful.Firstly the transformation rules (Section 2.1) and some preliminary de�nitions are given (Section2.2), then our strategy is described (Section 2.3). Its termination (Section 2.4) and correctness(Section 2.5) are shown, and it is then re�ned to make it more powerful (Section 2.6). The speedof the strategy is discussed (Section 5.2) and demonstrated on a simple example. The quality ofthe strategy is assessed by applying it to several benchmark programs and comparing the resultswith those of other systems (Section 5.1).2.1 The transformation rulesPD as de�ned in [20, 26] uses only one rule called unfolding.� The unfold rule for logic programs is simple: select a resolving atom in a clause body andreplace the clause by the set of its resolvents.We choose to introduce two further rules from the program transformation literature calledde�nition and fold. The unfold/fold method was �rst introduced by Burstall & Darlington [4]and Manna & Waldinger [27] for functional languages, and by Tamaki & Sato [43] for logicprogramming. The other two rules are:� The de�nition rule allows us to add a new clause to the program at any time during thetransformation, as long as its head predicate symbol does not already appear anywhereelse in the program. We shall call the new clause a de�nition.� The fold rule is a form of inverse unfold. If an atom in a clause body is an instance of ade�nition body, then the atom can be replaced by the de�nition head, with correspondingvariable bindings and subject to certain safety criteria. These criteria vary from systemto system, but typically say that an atom cannot be folded if it is not the result of someprevious unfolding. There are also restrictions on variable bindings to force a correcttreatment of local variables (appearing in a clause body but not in the head). Thesetechnicalities are not relevant to this paper, and we refer the reader interested to any ofseveral papers [15, 19, 33, 40, 43, 44].A partial deducer normally takes a program consisting of a set of de�nite clauses plus a query? � p where p is an atom with partially-instantiated arguments. We take a slightly di�erentapproach and replace the query by a goal clause new(v) : �; p introduced by the de�nition rule,where v is the set of free variables appearing in p. The input program is then P[fgoal clauseg.The transformation consists of a sequence of rule applications, each one creating an equivalentprogram.The fold rule turns out to be very useful for our strategy, which constructs a set of de�nitionssu�cient to fold any atom encountered while unfolding. From now on, in place of the termunfolding strategy we will use the more general term transformation strategy .



2.2. PRELIMINARY DEFINITIONS 52.2 Preliminary de�nitionsA generalisation of two terms t1 and t2 is a term tg such that tg�1 = t1; tg�2 = t2 for somesubstitutions �1; �2. The most speci�c generalisation of t1 and t2 is a generalisation which is aninstance of all other generalisations. It is unique up to variable renaming.We de�ne a function �d;P from atoms to ground terms which, given a �nite program P and a �xedinteger d has a �nite range. We call the image of an atom under this function its pattern. Thepattern of a term is the term itself with all variables, subterms whose function symbol does notoccur in P and subterms below a �xed depth d (which we shall call the pattern depth) replaced bya new constant � which does not occur in P. For example, given P containing function symbolsf0; 1; f; g; h; ig and a pattern depth d = 2, an atom f(99; V; g(0; h(i(1)))) has the variable V , thenew symbol 99 and the deep subterm i(1) replaced by �, giving f(�; �; g(0; h(�))). The patternfunction �d;P maps all atoms which can occur during unfolding to a �nite set of ground terms| a property which will be important later.2.3 An adaptive partial deduction strategyWe �rst describe a basic strategy, which will be re�ned in Section 2.6. The basic strategy isshown in Figure 2.3.1 in the form of a logic program (but with if-then-else and \for each" addedfor brevity). It works by applying the unfold rule, making a de�nition for each new atom atthe start of a clause body and folding those atoms, and reunfolding de�nitions which turn outto be non-recursive. The set of de�nitions is kept �nite by taking msg's at strategic points, sothat for each pattern encountered there is a sequence of increasingly general de�nitions. Thisensures that eventually every atom can be folded.The transformation begins by setting a table D of de�nitions (used for folding) to the emptystate. A pattern depth d is chosen which remains �xed throughout the transformation. Clausesare represented by a pair: the head, and the body which is an ordered list of atoms (thelist representation makes the description easier). The main transformation starts by callingtransform on the goal clause, and the transformation proceeds by applying a sequence ofunfold, de�ne and fold steps as described in Section 2.1. The rules are applied as follows.A: The �rst transform clause applies when everything in the clause has been unfolded, andthen a unit clause is added to the output program Pout.B: The second transform clause has three cases:B1: If the clause was not created by the unfold rule then it must be a de�nition in D, andso the unfold rule is applied. This is to conform with the underlying unfold/fold system(see Section 2.5). transform is then applied to each resolvent. If the clause is not inD but atom is a new atom (introduced by the folding rule) which is known to be non-recursive, that is it cannot call itself even indirectly, then again the unfold rule is appliedand transform applied to each resolvent. A predicate cannot be marked non-recursiveuntil it, and all predicates called by it, are completely transformed. We use a cheap,su�cient test for non-recursion, based on a constructed call-graph.B2: If atom is a (possibly recursive) new atom it is not unfolded.B2a: Instead, an atom aux is created for the rest of the atoms in the clause body, and transfor-mation proceeds from the aux clause. The arguments of aux are the variables occurring in



6 CHAPTER 2. TRANSFORMATION STRATEGY FOR PURE PROLOGInput program: Pin [ fgoal clausegOutput program: PoutInitialise Pout and the table of de�nitions D to \empty"Choose pattern depth d > 0Call transform(head; body) where goal clause = (head; body)(each clause h : � a1; a2; : : : ; an is represented by a pair (h; a1:a2 : : :an:nil))A transform(head; NIL) : �add (head; NIL) to PoutB transform(head; atom:rest) : �B1 if rest = NIL and (head; atom:NIL) was not produced by unfoldingor atom is a non-recursive new atom thenfor each resolvent (head�; body) resolving on atomin (head; atom:rest), transform(head�; body)B2 else if atom is a new atom thenB2a create a new atom aux whose arguments are the freevariables of rest which also occur in head or atom,B2b transform(aux; rest),B2c if aux has 1 clause thenresolve on aux in (head; fold:aux) and add the result to Poutelse if aux has 0 clauses thendo nothingelse add (head; atom:aux:NIL) to PoutB3 elseB3a matching-def(atom),B3b �nd the most recent (def 0; atom0:NIL) 2 D suchthat �d;Pin(atom0) = �d;Pin(atom);B3c choose-fold(atom; def 0; atom0; fold),B3d if fold is completely transformed and has 1 clause thenresolve on fold in (head; fold:rest) to get (head�; body),transform(head�; body)else transform(head; fold:rest)matching-def(atom) : �if 6 9(def 0; atom0:NIL) 2 D such that �d;Pin(atom0) = �d;Pin(atom) thenadd a new de�nition (def; atom:NIL) to D,transform(def; atom)choose-fold(atom; def 0; atom0; fold) : �if atom = atom0� for some substitution � thenlet fold = def 0�else let atomg = msg(atom; atom0) where atom = atomg�,add a new de�nition (defg; atomg :NIL) to D,transform(defg ; atomg),let fold = defg�Figure 2.3.1: The basic transformation strategy



2.4. TERMINATION 7these atoms (excluding those not occurring in atom and head) and the predicate symbolis new.B2b: aux is transformed.B2c: The fold rule is applied to introduce aux to the current clause, but aux may be unfoldedback into the clause if it only has 0 or 1 clause. If it has more than 1 clause it could beunfolded back, but this would shift the choice point to the left of atom, violating Prolog'sleft-to-right computation rule. This would not cause any correctness problems but mightincrease the amount of backtracking at run time.B3: Otherwise apply the fold rule to atom, and if there is no de�nition to fold with we createone:B3a: matching-def checks to see if there is an existing de�nition whose clause body atom hasthe same pattern as atom. If not, then it creates a de�nition for atom itself and recursivelytransforms it.B3b: Now there exists at least 1 de�nition with the required pattern, and the recursive call totransformmay have created more. We choose the most recent de�nition (def 0; atom0:NIL)because it will subsume previous de�nitions with the same pattern (this will become clearerin Section 2.4).B3c: Now we try to apply the fold rule by calling choose-fold. The fact that the de�nition hasthe same pattern does not guarantee that the fold rule will apply. If it does apply thenwe apply it, otherwise we make another de�nition whose clause body atomg is the msg ofatom and atom0, and recursively transform it. The fold rule certainly applies with thisde�nition because atom is an instance of atomg.B3d: Now if fold is completely transformed and has only 1 clause, we unfold fold back into theclause. Unfolding new atoms with only 1 clause would not be safe at B1 because theremay be a single recursive clause, in which case unfolding would not terminate. However,it is safe here because it is only unfolded once. transform proceeds with the (possiblyunfolded back) clause.The strategy is adaptive in the sense that it modi�es its behaviour according to the contentsof the de�nition table D, which grows as the transformation proceeds. At points B3a and B3b,D must be searched for a de�nition with a given pattern. However, we can make this searchin constant time if we store de�nitions using a hash function based on the pattern (since thepattern is a ground term, the hash function is simple). Thus the total analysis time is a linearfunction of the number of atoms analysed.2.4 TerminationFor the transformation to terminate, the set of generated de�nitions must (i) be �nite, and (ii)have the property that any leftmost atom (atom in Figure 2.3.1) occurring during transformationcan be folded using at least one de�nition from the set.(i) The pattern function �d;P has all atoms in its domain, and its range is a �nite set ofpatterns. For each pattern encountered, a sequence of de�nitions is made as the trans-formation proceeds, and choose-fold ensures that each de�nition in the sequence is the



8 CHAPTER 2. TRANSFORMATION STRATEGY FOR PURE PROLOGmsg (atomg) of the previous de�nition (atom0) and the latest atom (atom). Because gen-eralisation only occurs when atom 6= atom0� for any substitution � we know that atomg isnot a variant of atom, and therefore that each pattern gives rise to a sequence of strictlyincreasingly general de�nitions. Such a sequence must be �nite. There are a �nite numberof possible patterns, and therefore a �nite number of possible de�nitions.(ii) In the limit, each de�nition sequence with pattern � approaches a de�nition whose bodyatomg is the most general term with the pattern �, that is � itself with the constant �replaced by variables. Any atom with pattern � can be folded by its limiting de�nition.Hence the strategy always terminates.2.5 CorrectnessThere are several unfold/fold systems in the literature whose correctness is well-established, withrespect to various program semantics. Our strategy is based upon a recent system of Proietti& Pettorossi [33] which is 
exible enough for our purposes, and which preserves the sequenceof answer substitutions of pure Prolog programs. We superimpose our strategy upon this un-fold/fold system to achieve a PD-like transformation. Each application of a transformation rulein the strategy is allowed by the underlying system. In particular, the test B1 of Figure 2.3.1derives from a folding restriction in that system: the fold rule cannot be applied to any clausewhich is not the product of previous applications of the unfold rule.In partial deduction as de�ned in [20, 26] the input is a set of de�nite clauses plus a query, andonly the unfold rule is applied. Lloyd & Shepherdson [26] state two conditions which must besatis�ed in order to preserve correctness (success and �nite failure sets), called closedness andsingularity . Similar results were given by Cheng, van Emden and Strooper [5]. As noted inthe former paper, if there is no specialised query but just a clause to be unfolded then theseconditions are automatically satis�ed. Unfold/fold transformation systems are analogous to thisspecial case of partial deduction, in the sense that there is no specialised query but only clausesto be unfolded or folded. Any \specialisation" occurs in the application of the de�nition rule,in particular when adding the goal clause.2.6 Re�nementsThe basic strategy can be re�ned to make it more powerful without a�ecting its correctness ortermination. The strategy referred to after this section is the re�ned version.2.6.1 Choosing non-recursive de�nitionsThe choice of matching de�nition (see B3a, Figure 2.3.1) can be made more 
exible than simplychoosing the most recent de�nition. Searching a growing set of de�nitions for the \best" onewould cause the overhead we want to avoid, but we can make a small �xed number of otherde�nitions immediately available. An obvious choice is the de�nition (def; atom:NIL) createdin matching-def. We have found a useful heuristic to be: if def is non-recursive, then choosedef instead of def 0 (at B3b). This leads to extra unfolding back (at B1) if we ensure thatchoose-fold selects fold = def .



2.6. REFINEMENTS 92.6.2 Reducing generalisationThe indexing of de�nitions by pattern is sometimes too crude. Atoms which are quite di�erentyet have the same pattern are subsumed by their msg, losing useful information. In particular,say we have atom = append(1:2:3:4:5:6:7:8:NIL; a; b)atom0 = append(1:2:3:4:5:6:7:8:9:NIL; a; b)(at B3c) which are both �nitely computable, and the pattern depth d = 5. Then both atomand atom0 have the same pattern append(1:2:3:4:5:�; �; �) and may therefore be generalisedto an atom append(1:2:3:4:5:c; a; b), which is not �nitely computable. A solution is not totake the msg of atom and atom0 if the term size of atom is strictly less than that of atom0.Instead we can simply use atom as the new de�nition body. Termination is not a�ected bythis re�nement because any sequence of atoms which either (strictly) increases in generality or(strictly) decreases in term size must terminate. We assume that the term size function satis�esa = b� ! termsize(a) � termsize(b)The following de�nition of term size satis�es this requirement:termsize(t) = ( 0 if t is a variable1 +Pni=1 termsize(ai) if t = f(a1; : : : ; an)2.6.3 System calls and unde�ned predicatesCalls to executable system predicates (for example 1 < 2) can be handled by generalising B1 toinclude the case that atom is an executable system call. Instead of resolving with clauses, theexecution must be simulated by a metacall (call=1). If atom is a non-executable system call(for example 1 < v) or an unde�ned predicate (a common situation in database applications,for instance) then generalise B2 to include these cases.2.6.4 The auxiliary de�nition hash tableAuxiliary predicates are often introduced because the leftmost atom in a clause body is notto be unfolded. Many auxiliary predicates may be introduced, and some may have identicalde�nitions (up to variable renaming). To reduce transformation time and generated code size,auxiliary predicates are stored in a hash table similar to the de�nition hash table but indexedby a di�erent key. Recall that a de�nition (d : � a) is indexed by �d;P(a). Similarly we indexan auxiliary predicate new : � a1; : : : an by the term (�d;P(a1); : : : �d;P(an)). Instead ofcreating a new auxiliary predicate for a conjunction, we may then fold with an existing one, ifits body is a variant of the conjunction.2.6.5 Accelerated terminationAnother modi�cation to the transformation strategy has been added to accelerate the transfor-mation when it has generated many patterns. When the number of patterns exceeds a thresholdvalue, the term depth d is automatically set to 1 for the rest of the transformation, thus limitingthe possible number of patterns and allowing the system to terminate gracefully.



Chapter 3Unfolding tactics for full SepiaThis chapter is concerned with the tactical problems of applying the unfold rule to full standardSepia programs. We focus on the correctness of the unfold rule and ignore the strategic aspectsof when or where to apply it.Source-level transformation tools for Prolog often use the unfold rule, for example partial de-duction systems and some compilers. The unfold rule consists of applying the resolution ruleprior to execution, and can improve the e�ciency of programs by eliminating resolution steps,propagating variable bindings and discovering dead end computations.Although this rule is very simple when applied to pure Prolog, it becomes problematic when ap-plied to full Prolog, that is Prolog with the usual control structures: conjunction (,), disjunction(;), the cut (!), negation-as-failure (not), if-then-else (: : :! : : : ; : : :) and once-only calls (once).The advanced features of Sepia (delayed atoms, modules and so on) create further problems.This paper proposes a three phase approach to unfolding full Sepia programs:1. Program simpli�cation, which avoids the incorrect propagation of the cut during unfolding,and also avoids generating complex control structures. All the usual control structures arereduced to conjunction and the ancestral cut, giving a program with a simple structurewhich can be unfolded more easily.2. Unfolding the simpli�ed program, for which an unfold rule is speci�ed which avoids variouspitfalls. The unfold rule is a tactical rule which can be applied in various ways. It canform the basis for a transformation strategy, de�ned by a user.3. Elimination of a class of redundancies which are commonly introduced by unfolding sim-pli�ed programs.The problems associated with unfolding full Sepia are described in Section 3.1. Section 3.2describes the program simpli�cation method. Section 3.3 describes the unfold rule for simpli�edprograms. Section 3.4 describes how to eliminate some redundancies in unfolded simpli�edprograms. An illustrative example is given in Section 3.6. An example of the application of themethod to unfolding interpreters is given in Section 3.7.The six problems are described in Section 3.1. Section 3.2 describes program simpli�cation.Section 3.3 describes the unfold rule for simpli�ed programs. Section 3.4 describes how toeliminate some redundancies in unfolded simpli�ed programs. An illustrative example is given10



3.1. PROBLEMS WITH UNFOLDING FULL SEPIA 11in Section 3.6. An example of the application of the method to unfolding interpreters is givenin Section 3.7.Notation: predicate symbols and atoms will be written x, constants X , function symbols andgeneral terms x, a conjunction of atoms (which may be empty) X and a tuple of terms x. Anexpression a[x=y] will denote an atom a with each occurrence of the term x replaced by theterm y.3.1 Problems with unfolding full SepiaIn this section we describe some of the problems encountered when designing a transformer forfull Sepia, providing motivation for the subsequent sections. Most of the problems have beenmentioned in other papers, for example [3, 23, 25, 31, 49, 50].3.1.1 Generating complex control structuresFull Sepia has several control structures which make unfolding problematic. Complex expressionsmay be generated by unfolding, and to handle these correctly a transformer must know manyrules such as:� disjunction and if-then-else are transparent to cut, that is the e�ects of a cut reach outsidethese control structures;� negation and metacalls (call, once) are not transparent to cut, that is the e�ects of thecut are local;� the disjunction operator `;' is associative except when it appears in if-then-else;� negated atoms cannot be executed until they are ground;� variable bindings cannot be propagated from one disjunct to another, for example x = 0cannot be unfolded in the disjunction (x = 0; a(x)).Correctly implementing all these rules is an error-prone task. Furthermore, it is possible thatnot all cases will be considered, so that opportunities for unfolding are missed.3.1.2 Propagating cut incorrectlyConsider the program p(x) : � q(x): q(0) : � !:p(2): q(1):Unfolding q naively we get p(0) : � !:p(1):p(2):which is not equivalent. Given a query ? � p(x) the original program returns (x = 0; x = 2)whereas the unfolded version returns only x = 0. The incorrectness arises because the scope ofthe cut has been propagated from q to p. In general, an atom which matches a clause containing



12 CHAPTER 3. UNFOLDING TACTICS FOR FULL SEPIAa cut cannot be unfolded. This is serious because a program may be written with many cuts,in which case very little unfolding can be done.There are cases where atoms which call the cut directly can be unfolded [3, 25, 31, 36] but theyare the exception rather than the rule.3.1.3 Propagating failure incorrectlyIn pure Prolog an atom may be unfolded which is not leftmost in a clause body, and which doesnot match any clause head. This causes the clause to be deleted, pruning the search space ofthe program. We refer to this as failure propagation. However, in full Sepia this is unsafe. Saywe have a clause p : � write(HELLO); f :where f is an atom matching no clauses. Unfolding f deletes the p clause altogether, which isincorrect because the side e�ect of the write atom is lost with it. As well as write, the cut andall other atoms with side e�ects have this problem.3.1.4 Propagating variable bindings incorrectlyUnfolding an atom which is not leftmost in a clause body may cause variable bindings to bepropagated backward; that is, variables in preceding atoms (including the clause head) maybecome bound earlier than they would under the Prolog left-to-right computation rule. This isuseful because it may lead to earlier detection of failure but it can be incorrect. Say we have aprogram p(x) : � var(x); a(x): a(0):A query ?� p(v) succeeds with the answer v = 0. Unfolding a givesp(0) : � var(0):The same query now fails, and so the unfolding was incorrect. Even with ground atoms backwardbinding propagation can be incorrect. Considerp(x) : � write(HELLO); a(x): a(0):A goal ? � p(1) instantiates a(x) to a(1), which causes the same problem as f in Section 3.1.3.3.1.5 Changing the order of solutionsThe order of solutions is important in full Sepia, because changing the order may make somesolutions unreachable even if there are only a �nite number of solutions. For example if we havea clause goal1(x) : � goal(x); !:then the order of the solutions (x = t1; x = t2; : : :) for goal determines the set of solutionsfx = t1g for goal1. In general we must preserve the order of solutions, but simply taking carenot to change the order of clauses when unfolding is not su�cient. Consider the programp(x) : � q(x); r: q(0): r:q(1): r:



3.2. SIMPLIFYING SEPIA PROGRAMS 13Calling ?� p(v) gives (v = 0; v = 0; v = 1; v = 1). Unfolding r:p(x) : � q(x): q(0):p(x) : � q(x): q(1):now calling ? � p(v) gives (v = 0; v = 1; v = 0; v = 1). The order has changed because r wasnot the leftmost atom in the clause and the choice point of r was moved to the left, violatingSepia's left-to-right computation rule. It is not safe in general to unfold a non-leftmost atom ina goal which matches more than one clause head.3.1.6 Redundant unfoldingA common programming technique is to use grue cuts [30] to avoid computations which willfail anyway. If the e�ects of grue cuts are ignored then the search space covered by a programtransformer will be larger than necessary, and a transformer will waste time exploring branchesof this space which would never be reached during run time.Another common technique is to use red cuts [30] to throw away solutions. If the e�ects of redcuts are ignored then this may a�ect the termination of the unfolding process, because a redcut may be used to select a solution from an in�nite set of solutions.Even if a program transformer is guaranteed to terminate, ignoring the e�ect of a cut may a�ectthe quality of the unfolded program. Suppose the transformer ensures termination by takinga generalisation of certain visited atoms (a common technique in partial deduction systems).Ignoring a cut may cause more atoms to be visited, making the generalisation more generalthan necessary and possibly losing important variable bindings. This e�ect has been observedwhen specialising meta-interpreters to object programs by partial deduction. An example isdescribed in Section 3.7, and similar problems are mentioned in [31].3.2 Simplifying Sepia programsTo avoid the problem of Section 3.1.2, namely the restriction on unfolding atom calling cuts,Venken [49] proposed annotating cuts where necessary during unfolding to make their scopeexplicit. The annotated cut is sometimes called the ancestral cut [30], and it is expressed bytwo predicates: mark(v) succeeds on being called, binds v to a unique value, and fails onbacktracking; !(v) succeeds on being called and removes all choice points back to mark(v).We use ancestral cuts to avoid the unfolding restriction, but by transforming all cuts intoancestral cuts before unfolding begins. At the same time, we eliminate all other control constructsexcept conjunction. This is done as follows:Negation: replace (not a) by (a ! fail; true).Once-only calls : replace once(a) by (a! true).If-then-else: replace (a ! b) by (mark(v); a; !(v); b) and (a1 ! b1; a2 !b2; : : : ; an) by mark(v); (a1; !(v); b1; a2; !(v); b2; : : : ; an)where v is a new variable.



14 CHAPTER 3. UNFOLDING TACTICS FOR FULL SEPIACut : for each predicate p which has a clause containing a cut, replace every atom p(x) byp(x; v) where v is a new variable, precede each atom p(x; v) in a clause body bymark(v),and in each p clause replace each cut by !(v) where v is the new argument in the clausehead.Disjunction: replace p : � L; (a1; : : : ; an); Rby 8><>: p : � L; new(x); R:new(x) : � ai: (i = 1 : : :n)where new is a new predicate symbol created for each disjunction (which we shall refer toas an auxiliary predicate), and x is the set of variables occurring in both the disjunctionand p, L or R.After applying these transformations each clause body consists only of conjunctions of atoms.From a transformation point of view, simpli�ed programs are written in pure Prolog plus somepredicates with special properties. This avoids the problem of generating complex control ex-pressions described in Section 3.1.1.3.3 Unfolding simpli�ed programsNow we specify an unfold rule for simpli�ed programs which avoids the problems described inSections 3.1.3, 3.1.4, 3.1.5 and 3.1.6, namely the useless unfolding of redundant branches, theincorrect propagation of variable bindings and failure, and changing the order of solutions.3.3.1 A predicate classi�cationBefore describing the unfold rule, we make a classi�cation of predicates. A predicate p is classedas either:� binding sensitive if (a; v1 = v2) 6= (v1 = v2; a) for some atom a with predicate symbolp (where the vi are variables and 6= denotes di�erent operational semantics). Examples ofbinding sensitive predicates are var and ==.� failure sensitive if (a; fail) 6= fail for some atom a with predicate symbol p. The cutand all predicates with side e�ects are failure sensitive. All failure sensitive predicates arealso binding sensitive, because any atom v1 = v2 may become equivalent to fail duringunfolding, if v1 and v2 become bound to non-uni�able terms.� pure if it is neither binding nor failure sensitive.This classi�cation is similar to that of [36]. The system predicates of Sepia must be classi�edby hand when designing a program transformer. The classi�cation of all other predicates canbe deduced by the rule:



3.3. UNFOLDING SIMPLIFIED PROGRAMS 15any atom matching a clause head whose clause body contains a binding [failure]sensitive atom is itself classed as binding [failure] sensitive, otherwise it is classed aspure.When in doubt (for example when handling atoms whose clauses are unknown) it is always safeto classify an atom as failure sensitive. A predicate such as loop de�ned by (loop : � loop)should strictly be classed as failure sensitive, but we shall class it as pure because non-productivein�nite loops are rarely used.The !=1 predicate is failure sensitive. The mark=1 predicate is not failure sensitive because(mark(v); fail) is always equivalent to (fail; mark(v)): it sets up a mark for subsequentcomputation, and fail has no subsequent computation. Nor ismark=1 binding sensitive because(mark(v); v1 = v2) is always equivalent to (v1 = v2; mark(v)): either v1 = v2 succeeds in whichcase it is equivalent to true, or it fails, and mark=1 is not failure sensitive.3.3.2 The unfold ruleThe unfold rule given in this section avoids all the problems mentioned in Section 3.1 exceptone, which is partially solved in the next section. It begins with a clauseC : p : � a1; : : : ; aNUnfolding a chosen atom ai is done as follows:1. If i = 1 then replace C by the set of resolvents using all matching clauses for a1.2. If i > 1 then:a. If ai matches no clauses then C is replaced byp : � a1; : : : ; ai�1; failand fail is propagated back through a1 : : : ai�1.b. If ai matches one clause (h : � T) then C is replaced byC0 : p : � a1; : : : ; ai�1; (ai = h); T; ai+1; : : : ; aNand (ai = h) is propagated through C0.c. If ai matches more than one clause then make a new auxiliary de�nitionD : new : � ai; : : : ; aNwhere the arguments of new are the free variables of ai+1; : : : ; aN which also occurin p; a1. Fold C using D givingC0 : p : � a1; : : : ai�1; newC is replaced by C0 and unfolding is applied to ai in D.Some notes on the unfold rule follow.



16 CHAPTER 3. UNFOLDING TACTICS FOR FULL SEPIAFailure propagationThis is done in (a) by applying the rule:replace (a; fail) by fail if a is not failure sensitiverepeatedly until either a failure sensitive aj (j < i) is encountered, or until the clause (p : � fail)is reached (which can be deleted in most Prologs).Variable binding propagationThis is done in (b) as follows. First split the atom ai = h into several atoms of the form v = twhere v is a variable and t is a term (this is always possible). Then propagate each v = t throughT; ai+1 : : : an to give T[v=t]; ai+1[v=t]; : : : ; an[v=t]. Then move each v = t in turn as far tothe left as possible by repeatedly applying the rule:replace p : � X; a; v = t; Y:by p : � X; v = t; a[v=t]; Y:if either(1) a is binding or failure sensitive and(i) v does not occur in p, X or a(ii) or t is a variable which does not occur in p, X or a(2) or a is pure.The condition that v (or t) is a variable which does not occur anywhere to the left of v = tensures that v = t always succeeds so that it can be safely swapped with failure sensitive a. Italso ensures that v (or t) cannot occur in a even by aliasing so that v = t can be safely swappedwith binding sensitive a. The condition is su�cient to ensure safety, but could be weakened byabstract interpretation to detect aliasing and freeness of variables. This is outside the scope ofthis paper.System callsIf ai is a system call then instead of using clauses the program transformer must simulate itsexecution. System calls cannot always be unfolded: those with side e�ects, and some withoutsu�cient bindings on their arguments. For example, a < b can only be �nitely unfolded if aand b are both bound to numbers. A program transformer must therefore know when systempredicates can be unfolded and how to unfold them.The e�ects of foldingThe introduction of the auxiliary predicate by folding in (c) negates any direct advantage gainedby the unfolding of ai. However, it propagates all the variable bindings gained from unfoldingai to the atoms ai+1 : : :aN , which is likely to lead to directly useful unfolding later.



3.4. POST-UNFOLDING OPTIMISATIONS 173.3.3 Executing ancestral cutsWe have not yet addressed the problem in Section 3.1.6: that a transformer may explore branchesof a program which will never be reached during execution, by ignoring the e�ects of the cut.If enough is known at unfolding time about the status of predicate arguments, then some cutscan be executed to prune the program as it is being unfolded. This idea is used in [3, 31, 36].We shall adapt the standard cut execution rule to the ancestral cut as follows.Say we have chosen ai = p(x; v) for unfolding, and the clauses for p areCj : p(xj ; vj) : � Xj: (j = 1 : : :k)whereXi = (!(vi); R) for some i. If the uni�er of p(x; v) and p(xi; vi) does not bind any variablesof p(x; v) then only clauses C1 : : :Ci need be used for unfolding, and clauses Ci+1 : : :Ck can bediscarded. In fact by analogy with standard Prolog, if we have a mode analysis of the programthen we only need to ensure that the uni�er does not bind any input variables of p(x; v). Forfurther details on this idea see [3, 31, 36].In the standard cut execution rule the executed cut can be removed, but this is not generallypossible with ancestral cuts. For example, say we have a programp(x) : �mark(v); q(x); r(x; v):r(x; v) : � !(v): q(0):r(2; v): q(1):A query ?� p(v) would give v = 0. If we prune r using !(v) to giver(x; v) : � !(v):the answer is the same. But if we also delete !(v) to giver(x; v):then there are two answers (v = 0; v = 1) because the cut did not refer to its parent predicater. Hence it is incorrect to remove !=1 in general. In Section 3.4.2 we show that it is possibleunder certain circumstances.3.4 Post-unfolding optimisationsMechanically generated programs often contain redundancies of various kinds, and it is usuallypro�table to apply some simple tidying up rules after unfolding. For example [14] provides rulesfor the removal of redundant function symbols, [34] describe how to eliminate certain variablearguments, and some general optimisation techniques are given in [37].Unfolding simpli�ed programs creates a special class of redundancies associated with the an-cestral cut predicates, and we now describe some new ways of eliminating these redundancies.These are intended to be applied automatically after unfolding.3.4.1 Reintroduction of standard cutsThe standard cut can be implemented more e�ciently than ancestral cuts, and so it is bene�cialto replace ancestral cuts by standard cuts after the unfolding where possible. This can be doneas follows. First we make a de�nition:



18 CHAPTER 3. UNFOLDING TACTICS FOR FULL SEPIAreplace p : � L; mark(v); mark(v0); R.by p : � L; mark(v); R[v0=v].replace p : � L; mark(v); !(v); R.by p : � L; mark(v); R.replace p : � L; !(v); !(v0); R.by p : � L; !(v0); R[v=v0].replace p : � L; !; !(v); R.by p : � L; !(v); R.replace p : � L; !(v); !; R.by p : � L; !; R[v=v0]).replace p : � L; !(v); mark(v0); R.by p : � L; !(v); R[v0=v].replace p : � L; mark(v); R.by p : � L; R.(if v does not occur in R)Figure 3.4.1: Eliminating redundant cut predicatesDe�nition 1 (local cut argument) Argument i of a predicate p=n (1 � i � n) is a local cutargument of p=n if:� it is a variable in every p=n atom in the program,� every p=n atom is immediately preceded by an atom mark(v) where v is the ith argumentof the atom,� in every p=n clause, every occurrence of the ith argument v of the head occurs only inatoms of the form !(v).Now if we have a predicate p(a1; : : : ; an) where ai is a local cut argument of p=n then we canreplace all corresponding atoms !(v) by ! in the clauses for p=n. Moreover the atoms mark(ai)preceding each p=n atom can be deleted, and the ith argument can be dropped from every p=natom in the program. This is the inverse of the transformation in Section 3.2 which replacedstandard cuts by ancestral cuts.3.4.2 Removal of ancestral and standard cutsFigure 3.4.1 shows some rules for removing both standard and ancestral cut atoms. The lastrule can be applied much more often if redundant arguments are �rst removed from predicates.A simple rule which is su�cient to detect unused local cut arguments is:an argument of a predicate is redundant if in each clause head for the predicate itis a variable and does not appear in any other argument, nor in any atoms in theclause body.The next to last rule is a generalisation of a rule in [7] which optimises contiguous \functional"atoms, and is related to intelligent backtracking strategies.



3.5. HANDLING ADVANCED SEPIA FEATURES 19In Section 3.3.3 it is noted that an \executed" !(v) cannot in general be deleted. However, ifv is a local cut argument then !(v) is replaced by ! using the cut reintroduction rule of Section3.4.1. We can then apply the well known rule:delete any cut at the start of the last clause for a predicate.3.5 Handling advanced Sepia featuresApart from the extra complexity imposed by the advanced features, they each cause specialproblems when unfolding. A conservative but simple solution is to treat all such atoms asnon-unfoldable system calls. We now discuss each feature.3.5.1 ModulesThe Sepia module system is a partitioning of program components, and between modules is arelation called visibility . If module A is invisible to module B then the predicates of A cannotbe seen by B. This a�ects unfolding, because an invisible predicate cannot be unfolded. Wherevisibility can be predicted statically, the unfold rule can be modi�ed to distinguish betweenvisible and invisible predicates. However, if visibility can change dynamically then unfoldingbetween modules is unsafe. For complete safety, no predicate is allowed to be unfolded which isde�ned inside any module other than the top level (sepia) module.3.5.2 Dynamic predicatesIn Sepia most predicates are classed as static, which means that they cannot be asserted norretracted. This enables them to be compiled more e�ciently. Predicates which are to beasserted or retracted must be declared as dynamic. The unfolding of dynamic predicates isunsafe because their clauses at transformation time may be di�erent to those at runtime. Noatom whose predicate symbol is classed as dynamic is unfolded.Dynamic atoms must be classed as failure sensitive, because any dynamic predicate p may havea clause such as p : � write(HELLO):added at runtime, causing it to have side e�ects.3.5.3 Delay declarationsSepia predicates may have delay declarations, that is declarations stating when they shouldnot be selected for resolution. These can only be safely unfolded when it is certain that theseconditions are satis�ed, and so no atom with a delay declaration is unfolded.Delayed atoms also a�ect the correctness of failure and binding propagation. We assume herethat all predicates with delay declarations are pure, and that atoms can never be delayed acrossimpure atoms. In a future paper delayed atoms will be treated in more detail.



20 CHAPTER 3. UNFOLDING TACTICS FOR FULL SEPIA3.5.4 Meta-level predicatesThere are several predicates which call others, and are treated as non-unfoldable and failuresensitive: all solution predicates (setof , �ndall etc.), sound negation calls (~=1, although ~ = =2is unfolded when it is safe to do so), constructive negation calls (neg and if-then-else) andcatch-and-throw calls (block, exit block). The call=1 predicate is only unfolded if its argumentis a non-variable unfoldable atom, in which case it inherits the purity or impurity of the atom.If its argument is a variable, it is treated as non-unfoldable and failure sensitive.3.6 A simple exampleTo illustrate our program simpli�cation, unfold rule and optimisation rules, consider the pro-gram: p(x) : � q(x); r(x):p(2):q(1) : � !: r(1) : � !:q(3): r(4):We would like to perform some unfolding on this program to make p more e�cient, but neitherq nor r can be unfolded in the p clause because they both call a cut. Nor is a cut executionrule applicable. Hence no improvement by unfolding is possible by the program in this form.We now apply our approach. The simpli�ed program is:p(x) : �mark(v1); q(x; v1); mark(v2); r(x; v2):p(2):q(1; v1) : � !(v1): r(1; v2) : � !(v2):q(3; v1): r(4; v2):To unfold q, create an auxiliary predicate:p(x) : �mark(v1); new(x; v1):p(2):new(x; v1) : � q(x; v1); mark(v2); r(x; v2):q can now be unfolded in the new clause:new(1; v1) : � !(v1); mark(v2); r(1; v2):new(3; v1) : �mark(v2); r(3; v2):r can be unfolded in both these clauses. The �rst clause becomesnew(1; v1) : � !(v1); mark(v2); !(v2):and the second clause is deleted via failure propagation. Now new can be unfolded in the �rstp clause: p(1) : �mark(v1); !(v1); mark(v2); !(v2):p(2):Finally, the conjunction (mark(v1); !(v1); mark(v2); !(v2)) has no e�ect and can be deletedusing the rules of Section 3.4: p(1):p(2):



3.7. APPLICATION TO META-INTERPRETERS 213.7 Application to meta-interpretersThe example of Section 3.6 does not illustrate the ancestral cut execution rule, which has beenfound particularly useful in meta-interpreter specialisation. A common interpretation strategyis to split up a conjunction of atoms, process these separately, join the results and continue:...int((a; b)) : � p(a; a0); p(b; b0); join(a0; b0; c); int(c):...join(TRUE; b; b) : � !:join(a; TRUE; a) : � !:join(a; b; (a; b)):Now consider the case where the two p atoms are unfolded and bind a, b, a0 and b0 to TRUE.The int clause then becomesint((TRUE; TRUE)) : � join(TRUE; TRUE; c); int(c):The join of TRUE and TRUE is TRUE, and the last atom in the clause will become int(TRUE).But if the pruning e�ect of the cut is ignored then join gives this answer twice, plus an extraanswer int((TRUE; TRUE)). These cases are never reached during execution, and unfoldingtime is wasted. Worse, in some interpreters the e�ects may propagate to give atomsint(TRUE)int((TRUE; TRUE))int((TRUE; TRUE;TRUE)) : : :This either prevents the transformer from terminating, or forces it to replace all these atoms bythe more general atom int(v), sacri�cing specialisation.A cut execution rule can avoid this. If we simplify the program then after unfolding we haveint((TRUE; TRUE)) : �mark(v); join(TRUE; TRUE; c; v); int(c):where join(TRUE; b; b; v) : � !(v):join(a; TRUE; a; v) : � !(v):join(a; b; (a; b); v):Now to unfold join we create an auxiliary predicateint((TRUE; TRUE)) : �mark(v); new(v):new(v) : � join(TRUE; TRUE; c; v); int(c):then unfold join: new(v) : � !(v); int(TRUE):new(v) : � !(v); int(TRUE):new(v) : � int((TRUE; TRUE)):Now the ancestral cut execution rule applies and the second and third new clauses can bepruned, avoiding redundant clauses.



Chapter 4Transformation strategy for fullSepiaIn this chapter we superimpose the transformation strategy for pure Prolog (Chapter 2) ontothe unfolding tactics for full Sepia (Chapter 3) to obtain a transformation strategy for full Sepia.We also add a simple static analysis before transformation, and some extra optimisations aftertransformation. The complete transformation system consists of 5 phases, which are describedin this chapter: source program# simpli�cationsimpli�ed program# static analysissimpli�ed program + analysis# partial deductiontransformed program# reductionreduced program# optimisationoutput program4.1 Phase 1: simpli�cationThis is the simpli�cation described in Section 3.2. The advanced Sepia features are left un-changed in the program, but control structures not=1, once, ! and ! and `;' are removed,leaving only `;' and the ancestral cut. This makes transformation simpler and more powerful byavoiding various unfolding restrictions. 22



4.2. PHASE 2: STATIC ANALYSIS 234.2 Phase 2: static analysisThe static analysis classi�es predicates using the scheme described in Section 3.3.1. PADDYhas the failure and binding sensitivities of all system calls built in. The classi�cation of allother (user de�ned) predicates can be deduced by the rule: any atom matching a clause headwhose clause body contains a binding [failure] sensitive atom is itself classed as binding [failure]sensitive. This rule is applied repeatedly until no new binding [failure] sensitive predicates arefound. When in doubt about an atom it is always safe to classify an atom as failure sensitive (andtherefore also binding sensitive). This applies to atoms such as call(v) because v may becomebound to a binding [failure] sensitive atoms, also to atoms whose predicates are unde�ned. Apredicate such as loop de�ned by (loop : � loop) should strictly be classed as failure sensitive,but we shall class it as pure because non-productive in�nite loops are rarely used.4.3 Phase 3: partial deductionThis is the main part of the transformation. The re�ned transformation strategy of Chapter 2is superimposed upon the unfold rule of Chapter 3.The transformation strategy already creates auxiliary predicates as required by the unfold rule,though for di�erent reasons. All that remains is to modify the transformation strategy tocorrectly handle propagation of failure and variable bindings in full Sepia. This is done bymodifying the transformation strategy at B2c (Figure 2.3.1, page 6) as follows. Recall that atthis point of the transformation, we have a clause(head; atom:aux:NIL)where atom has not been unfolded and the auxiliary predicate aux has been completely trans-formed. Now if aux has exactly one clause (h; t) then instead of unfolding it immediately as inthe pure Prolog case, we follow the unfold rule for full Sepia to get(head; atom:(aux = h):t:NIL)and propagate aux = h back through atom. Alternatively, if aux has no clauses then instead ofdoing nothing we replace aux by fail to get(head; atom:fail:NIL)and propagate fail back through atom.4.4 Phase 4: reductionThe output �le contains one extra feature: calls to import the ancestral cut predicates, whichare not part of standard Sepia. These calls always appear, although they are only necessary ifthe program contains calls to the ancestral cuts.4.5 Phase 5: optimisationThis is the optimisation phase described in Section 3.4, which tidies up some of the most commonredundancies generated by transforming simpli�ed programs.



Chapter 5Comparison with other approachesIn this chapter we assess the PADDY system and compare it with others in the literature usingseveral criteria: quality, speed, correctness, termination, handling of full Prolog and some of thetechniques used.5.1 Quality of transformationIt is easy to design fast, correct, terminating partial deduction strategies which make littleimprovement, but if a system gives trivial improvements it is of small interest because theability of a transformation strategy to improve programs is its raison d'être.It is di�cult to compare the quality of di�erent systems analytically, and so we applied PADDYto the 7 benchmark programs given in the survey paper of Lam & Kusalik [24]. In that pa-per these programs were used to compare 5 systems: Mult (Levi & Sardu [25]), Constraints(Fujita [9]), Pure (Kursawe [21]), ProMiXy (Lakhotia & Sterling [23]) and Pevaly (Takeuchi &Furukawa [42]). 1 To these we added Mixtus (Sahlin [36]) and PADDY. The examples are allpure Prolog, selected for their di�ering characteristics (degree of determinism, depth of recursionetc.). They are:� relative: the well-known \relative" program� match: a simple string matching problem� contains: a complicated string matching problem� transpose: a deterministic, deeply recursive matrix transposition problem� ssupply: a nondeterministic, solution-intensive database problem� depth: a simple meta interpreter� grammar: a de�nite clause grammar translationEach example was specialised with respect to a query and the search tree sizes of the originaland transformed programs were compared using more speci�c queries. The results are shown inFigure 5.1.1.1Only those names marked y were given by their respective authors.24



5.2. SPEED OF TRANSFORMATION 25automatic systemsprogram original Peval ProMiX Constraints Pure Mult Mixtus PADDYrelative 112 2 2 88 2 73 4 2match 59 46 59 56 50 57 52 54contains 109 9 109 109 30 57 22 21transpose 69 2 2 63 2 2 2 2ssupply 25 2 2 19 2 8 2 2depth 38 2 13 38 2 2 4 2grammar 160 6 77 17 146 77 6 6Figure 5.1.1: Search tree sizes for residualsThe best results were given by Peval, as might be expected from a non-automatic system. Ifthere is an optimum transformation strategy for a given program, a user might �nd it wherea general purpose automatic system would not. This optimum strategy can be communicatedto a non-automatic partial deducer via a set of declarations, which say which literals should orshould not be unfolded.For the automatic strategies, the best result for each example (ignoring small di�erences in the�gures) was given by PADDY and Mixtus together. In most examples at least one other systemgave the same result, but no other system did so for all examples. Hence PADDY and Mixtusgave equal best results overall, but PADDY used a less expensive strategy.5.2 Speed of transformationStrategies which compare atoms with their ancestors in an SLD-tree give good results but havea large analysis overhead. The time spent searching for the ancestors of each atom in an SLD-tree is proportional to its depth in the tree, giving a total analysis time which is quadratic inthe depth of the tree. Examples are the strategies of Benkerimi & Lloyd [1], Bruynooghe, deSchreye and Martens [2], Fuller & Abramsky [11], Levi & Sardu [25], Proietti & Pettorossi [32],Sahlin [36] and Sterling & Beer [41].The strategy of Fujita [9] does not compare ancestors. Instead it stores each atom in an un-structured set which must be searched for folding purposes. The total time spent comparingatoms in this strategy is therefore quadratic in the number of nodes in the tree.The strategy of Gallagher [13] also does not compare ancestors. It has a phase called 
owanalysis which collects a set of atoms subsuming all the atoms occurring while unfolding. Thisset is then used to construct a specialised program. The 
ow analysis takes the atoms in thequery as the initial set and iteratively constructs the �nal set. At each iteration the atoms inthe current set are unfolded, new atoms are added from the resulting clause bodies, and the setis reduced by taking generalisations of similar atoms. Since the set reduction step must scanthe current set, this seems to indicate a worst case behaviour which again depends quadraticallyupon the number of nodes in the SLD-tree.Non-adaptive strategies use static analysis to plan the transformation in advance, and do notanalyse a growing set of data while unfolding. Their transformation times should thereforebe linear in the number of nodes in the SLD-tree. Examples are Kursawe's system [21] andthe Logimix system of the DIKU group in Copenhagen (not yet available to our knowledge).However, we expect these to be more conservative than ours, because static analysis cannot
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PADDYFigure 5.2.1: Comparison of transformation timespredict everything which can be discovered during the transformation, as noted by Fuller andAbramsky [11].Although our strategy analyses a growing set of data while unfolding, the analysis time it spendson each atom is independent of the size of the set. Hence the total analysis time is linear inthe number of nodes in the tree. This makes it an order of magnitude faster than other knownadaptive strategies. However, we expect it to be somewhat slower than non-adaptive strategiesbecause it may make a de�nition for an atom, fold it, transform it and then unfold it back ifit is non-recursive. A non-adaptive strategy would simply unfold the atom in the �rst place,assuming it is clever enough to know that it will be non-recursive.To illustrate our point about transformation times, consider the following family of recursiveprograms: program N = 8>>>><>>>>: p0  p1p1  p2...pN  p0where pi (i = 0 : : :N) are atoms of arity 0. This example is designed to be a simple test oftransformation time as a function of search space size, without irrelevant complications (suchas uni�cation overhead of arguments) which should be the same for any PD system.Say a PD system is unfolding programN . If it uses loop detection based on ancestors in the SLD-tree, then at the ith atom pi it must examine i� 1 ancestors. Thus the number of comparisonswill be PN�1i=0 i = N(N � 1)=2. Our strategy, on the other hand, only tries to examine at mostone other atom at each pi, and in fact only �nds an atom with the same pattern when it reachesthe last clause pN  p0. Thus the number of comparisons is at most N � 1.To demonstrate this, we compared PADDY with Sahlin's Mixtus system [36] on this familyof programs. We ran both partial deducers on a Sun 3 workstation under Sepia, and thetransformation times are shown in Figure 5.2.1. As can be seen, the transformation times ofPADDY are roughly linear in N whereas those of Mixtus are roughly quadratic in N . This is not



5.3. TREATMENT OF PROLOG CONTROL STRUCTURES 27a criticism of Mixtus, but a comparison of the complexities of the two transformation methods.5.3 Treatment of Prolog control structuresWe identify three basic approaches for handling control structures when unfolding full Prologprograms.Firstly, the problems of unfolding full Prolog can be minimised by a variety of techniques. Thishas the advantage of operating directly on standard Prolog programs, but the disadvantagesthat unfolding requires complicated rules and is not always applicable. The partial deductionsystems of Bugliesi & Russo [3], Levi & Sardu [25], Owen [31] and Sahlin [36] follow this approach.They show that the restriction on unfolding atoms which call cuts can be lifted under certaincircumstances; also that even when an atom cannot be unfolded, variable bindings can sometimesbe propagated by taking the least common generalisation of the matching clause heads. Thelatter technique recovers some of the bene�ts of unfolding, but it is only applicable if the bindingson the clause heads are mutually exclusive [3]. The unfolding restriction can also be avoidedby removing cuts, and Debray [6] shows that many common uses of the cut can be removed bystatic analysis.Secondly, the programmer can be forced to write programs in a more easily unfoldable style.The partial deduction system of Takeuchi & Furukawa [42] is restricted to programs written inif-then-else style. O'Keefe [29] advocates replacing most uses of the cut by if-then-else whichcan be unfolded easily, and the few cases which cannot be replaced will not greatly restrict theapplication of unfolding. However, it sometimes takes considerable skill to reorganise a programso that cuts can be replaced by if-then-else. In particular, disjunctions containing cuts cannotbe directly mapped to the if-then-else form.Thirdly, new pruning operators can be introduced, moving away from standard Prolog to lan-guages which behave better under unfolding. This is the approach we follow, by eliminatingall Prolog control constructs leaving only conjunction and ancestral cuts. Full Prolog can alsobe augmented with ancestral cuts, as done by Venken [49], which removes an unfolding restric-tion but not the complications of unfolding full Prolog. Part of Van Roy's Aquarius Prologsystem [35] transforms Prolog into a simpler form called Kernel Prolog with ancestral cuts,eliminating if-then-else and cut in the same way as our approach. Kernel Prolog programs havea slightly di�erent form to our simpli�ed programs, using disjunctions and uni�cation madeexplicit by introducing equalities. The Prolog implementation of Taylor [48] also has a mappingto a simpler form called normalised Prolog. Again, normalised Prolog programs are slightlydi�erent to simpli�ed programs. They contain disjunctions, explicit uni�cation and a version ofthe cut localised to disjunctions. Both these systems map programs to a simpler form to obtaine�cient Prolog compilation. The G�odel language has a new pruning operator described by Hill,Lloyd and Shepherdson [16] which, like the ancestral cuts, has the property that unfolding doesnot change the meaning of programs.There are two minor disadvantages with our approach. Firstly, it relies upon the use of ancestralcuts, which are not available in all Prologs. This is not really a problem because they areavailable in some well known implementations, for example Sepia and BIM Prolog. Secondly, thee�ciency of if-then-else, negation-as-failure and once-only calls over cut is lost when simplifyingprograms. Recent work on high-performance Prolog implementations [35, 48] does not relyupon these control constructs, but to make our method useful for current Prologs we intendto investigate better post-unfolding optimisations, such as reintroduction of if-then-else. An



28 CHAPTER 5. COMPARISON WITH OTHER APPROACHESalternative approach would be to retain if-then-else when simplifying, then cuts could be replacedby ancestral cut, while negation-as-failure and once-only calls could be replaced by if-then-else.Although complicating the language somewhat, the control structure of the original programcould be preserved more faithfully during transformation, giving the programmer more controlover the result.5.4 CorrectnessMost strategies in the literature are correct, in the sense of preserving some program semantics,for example the success set, the �nite failure set or the minimum Herbrand model. Ours issuperimposed onto an unfold/fold system by Proietti & Pettorossi [33] which preserves thesequence of answer substitution semantics. Moreover, it always terminates whereas some donot, for example [1, 9, 25, 41].5.5 FoldingMost partial deduction strategies use only the unfold rule. Owen [31] argues that folding is a use-ful rule, necessary to transform certain programs satisfactorily, whereas Lakhotia [22] argues thatadding extra rules such as folding complicates PD unnecessarily. Our view is that unfold/foldtransformation is an elegant method. However, a common problem with the unfold/fold methodis that it is hard to automate. In particular, the introduction of useful de�nitions (by the de�ni-tion rule) often requires user intervention, called the Eureka step in [4]. Our strategy automatesthe Eureka step and constructs a set of de�nitions which subsume all atoms encountered, as dothose of Fujita [9] and de Schreye & Bruynooghe [38].5.6 Self-applicationSome partial deduction systems [10, 11] are self-applicable: that is, they can speed themselvesup, specialise themselves with respect to interpreters to produce compilers, or even specialisethemselves with respect to themselves to produce compiler-compilers. PADDY is written inSepia and can handle Sepia, and therefore can be applied to itself, but the result is no fasterthan the original. This is partly because the implementation relies upon side-e�ects and failure-driven loops, which are useless for information propagation by unfolding. Another reason isthat it is an online strategy. It is noted in [17] that the only partial evaluators so far which aresuccessfully self-applicable use o�ine strategies. Self-application is a specialised research areaoutside the scope of this report.5.7 Term abstractionMany partial deduction strategies use some form of abstraction on atoms, to remove someinformation and hence ensure termination. We use an abstraction (the pattern in Section 2.2)related to term depth abstractions [45]. Gallagher [13] writes that this form of abstraction isgenerally too crude when used to remove information from atoms directly. However, we onlyuse it indirectly as a hash function to locate an atom which may then be used to form an msg.



Appendix AExamplesPADDY has been successfully applied to several programs, and been used for deductive databasequery optimisation [46] via meta-interpreter specialisation. Here we show sample programs withtheir transformed versions as produced by PADDY. For each example the pattern depth (Section2.2) is set to d = 5. We use the usual Prolog syntax where predicate symbols and constants arewritten x and variables X.A.1 Matrix transpositionThis is a simple example from [13, 24] to show that specialised queries to recursive programsmay sometimes be �nitely unfoldable. It is one of the examples mentioned in Section 5.1.transpose(A,[]) :- nullrows(A).transpose(A,[B|C]) :- makerow(A,B,D), transpose(D,C).makerow([],[],[]).makerow([[A|B]|C],[A|D],[B|E]) :- makerow(C,D,E).nullrows([]).nullrows([[]|A]) :- nullrows(A).The query clause istest(A,B,C,D,E,F,G,H,I,R1,R2,T) :-transpose([[A,B,C,D,E,F,G,H,I],R1,R2],T).and the result of the transformation is the unit clausetest(A,B,C,D,E,F,G,H,I,[J,K,L,M,N,O,P,Q,R],[S,T,U,V,W,X,Y,Z,Z1],[[A,J,S],[B,K,T],[C,L,U],[D,M,V],[E,N,W],[F,O,X],[G,P,Y],[H,Q,X],[I,R,Z1]]).29



30 APPENDIX A. EXAMPLESA.2 String matchingThis example has been used in [9, 13, 24], and shows how a naive string matching program canbe transformed into the Knuth-Morris-Pratt algorithm by partial deduction. It is also one ofthe examples mentioned in Section 5.1.contains(Pat,Str) :- con(Str,([],Pat)).contains(A,B) :- con(B,([],A)).con(A,(B,[])).con([A|B],C) :- new(A,C,D), con(B,D).new(A,(B,[A|C]),(D,C)) :- append(B,[A],D).new(A,(B,[C|D]),(E,F)) :- A~=C, append(B,[A],G), append(E,H,B),append(I,E,G), append(H,[C|D],F).append([],A,A).append([A|B],C,[A|D]) :- append(B,C,D).The query clause iscontains_aab(S) :- contains([a,a,b],S).and the specialised program iscontains_aab(A) :- con-0(A).con-0([a|A]) :- con-9(A).con-0([A|B]) :- A~=a, con-0(B).con-9([a|A]) :- con-21(A).con-9([A|B]) :- A~=a, aux-39(B, A).aux-39(A, B) :- con-0(A).aux-39(A, a) :- con-9(A).con-21([b|A]).con-21([A|B]) :- A~=b, aux-37(B, A).aux-37(A, B) :- con-0(A).aux-37(A, a) :- con-9(A).aux-37(A, a) :- con-21(A).A.3 Tracer specialisationThis is a simple tracing interpreter for pure Prolog



A.4. COMPILING BOTTOM-UP TO TOP-DOWN 31tracer(Goal) :- tracer(Goal,0).tracer((A,B),Depth) :- !, tracer(A,Depth), tracer(B,Depth).tracer(Goal,Depth) :- system(Goal), !, Goal.tracer(Goal,Depth) :- clau(Goal,Body), writeln(Depth-Goal),Depth1 is Depth+1, tracer(Body,Depth1).system(true).system(_ is _).specialised to a Fibonnacci object programclau(fib(0,1),true).clau(fib(1,1),true).clau(fib(A,B),(A1 is A-1, A2 is A-2, fib(A1,B1), fib(A2,B2), B is B1+B2)).The query clause istracerfib(A,B) :- tracer(fib(A,B)).and the specialised interpreter istracerfib(A,B) :- aux-47(A,B,0).aux-47(0,1,A) :- writeln(A-fib(0,1)), B is A+1.aux-47(1,1,A) :- writeln(A-fib(1,1)), B is A+1.aux-47(A,B,C) :- writeln(C-fib(A,B)), D is C+1, E is A-1, F is A-2,aux-47(E,G,D), aux-47(F,H,D), B is G+H.A.4 Compiling bottom-up to top-downHere we have an interpreter which can interpreter programs which have been adorned to express alimited form of mixed top-down/bottom-up execution. Other work on compiling such executionstrategies into a top-down strategy is in [39].mixcomp(G) :- mixcomp(G,[],_).mixcomp([],Li,Li).mixcomp([A|B],Li,Lo) :- tstep(A,Li,Lt), mixcomp(B,Lt,Lo).tstep(add_lemma(G),Li,Lo) :- tstep(G,Li,Lt), append(Lt,[G],Lo).tstep(drop_first_lemma(G),[G|Li],Li).tstep(drop_lemma(G),Li,Lo) :- delete(G,Li,Lo).tstep(is_lemma(G),Li,Li) :- member(G,Li).tstep(bottomup(G),Li,Li) :- member(G,Li).tstep(bottomup(G),Li,Lo) :- brule(H,T), mixcomp(T,Li,Lt),append(Lt,[H],Ls), bstep(G,H,Lo,Ls).



32 APPENDIX A. EXAMPLEStstep(G,Li,Li) :- system(G), G.tstep(G,Li,Lo) :- trule(G,T), mixcomp(T,Li,Lo).bstep(G,G,Ls,Ls).bstep(G,_,Lo,Ls) :- brule(H,T), mixcomp(T,Ls,Lt),append(Lt,[H],Lt1), bstep(G,H,Lo,Lt1).append([],G,G).append([H|T],G,[H|S]) :- append(T,G,S).member(G,[G|_]).member(G,[_|L]) :- member(G,L).delete(G,[G|L],L).delete(G,[H|L],[H|X]) :- delete(G,L,X).system(true).system(_ is _).This is to be specialised with respect to an adorned Fibonnacci program which generates lemmasin a bottom-up way:trule(fib(0,1),[]).trule(fib(1,1),[]).brule(fib(N,X),[drop_first_lemma(fib(P,Z)),is_lemma(fib(Q,Y)),drop_lemma(Q is P+1),add_lemma(N is Q+1),X is Y+Z]).The interpreter maintains a list of lemmas which may be added to by add_lemma (in which casethe added lemma must �rst be proved by interpreting it), subtracted from by drop_lemma (non-deterministic) or drop_first_lemma (deterministic), or examined by is_lemma (non-deterministic).In the recursive fib clause the �rst recursive fib call is taken from the lemmas and the secondrecursive call is also a lemma but is not deleted. The two calls to is which add 1 can also betreated as lemmas. First the last such lemma is deleted from the list, and then a new one isproved and added. The results of the two recursive calls are added, and then because the clauseis a brule instead of a trule it is to be interpreted bottom-up, and so its head is added to thelemmas.The query clause isfib(I,F) :- mixcomp([add_lemma(fib(0,1)),add_lemma(1 is 0+1),add_lemma(fib(1,1)),bottomup(fib(I,F))]).The list of lemmas is initialised to contain two fib lemmas and one is lemma, and fib is calledin bottom-up mode.



A.5. LEMMA GENERATION 33The specialised interpreter isbfib(0,1).bfib(1,1).bfib(2,2).bfib(3,3).bfib(4,5).bfib(A,B) :- bstep-152(A,B,C,5,4,5,8).bstep-152(A,B,[bfib(C,D),A is C+1,bfib(A,B)],D,C,A,B).bstep-152(A,B,C,D,E,F,G) :- H is F+1, I is G+D,bstep-152(A,B,C,G,F,H,I).The 3rd argument of fib is the lemma list, and plays no part in the computation, and could beremoved by a more sophisticated redundant argument removal than PADDY currently has.A.5 Lemma generationHere we take the same interpreter with a di�erently adorned Fibonnacci program, which gener-ates lemmas in a top-down way and reuses them. The object program is:trule(fib(0,1),[]).trule(fib(1,1),[]).trule(fib(N,X),[Q is N-1,add_lemma(fib(Q,Y)),P is Q-1,is_lemma(fib(P,Z)),X is Y+Z]).The strategy here is to add the �rst recursive fib call for reuse and to take the second fib callfrom the lemmas (it will have been added during interpretation of the �rst call). No lemmas aredeleted in this program.the query clause isfib(I,F) :- mixcomp([add_lemma(fib(0,1)),fib(I,F)]).and the specialised interpreter istfib(A,B) :- tstep-8(0,1,C), app-31(C,0,1,D), tstep-40(A,B,D,E).tstep-8(0,1,[]).tstep-8(1,1,[]).tstep-8(A,B,C) :- D is A-1, tstep-8(D,E,F), app-31(F,D,E,C),I is D-1, mem-20(I,J,C), B is E+J.app-31([],A,B,[tfib(A,B)]).
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