A Conservative Approach to
Meta-Programming in Constraint Logic
Programming

Pierre Lim and Joachim Schimpf

European Computer-Industry Research Centre
Arabellastrafie 17, 81925 Minchen, Germany
{pierre,joachim }@ecrc.de

Abstract. Constraint Logic Programming [4] extends Logic Program-
ming by generalizing the notion of unification to constraint solving. This
is achieved by fixing the interpretation of some of the symbols in the
language. The two alternative mechanisms used in the currently imple-
mented CLP systems to achieve this operation are: (1) fix the interpreta-
tion before the program executes or (2) fix the interpretation at a point
during program execution when it is used in a constraint. CLP(R) [5]
and Prolog-111 [1] take the first approach whereas CHIP [2] takes the sec-
ond approach. The problem with the first approach is that interpreted
terms cannot be manipulated syntactically. The problem with the second
approach is that all constraint operations have to be made explicit and
this increases the difficulty of programming. We propose a synthesis of
both approaches that overcomes their individual difficulties. Our method
is implemented in the ECL'PS® compiler system.

1 Introduction

The fundamental operation of unification in Logic Programming (LP) has been
generalized to constraint solving in Constraint Logic Programming (CLP) [4].
Although this generalization greatly improves the efficiency and utility of CLP
languages compared to LP languages it also complicates meta-programming.
The problem is to decide how and when to assign the fixed interpretations of
some of the functors. For example, the functors 1, 2 and + in an arithmetic CLP
language are interpreted respectively as the arithmetic constants one, two and
the addition function. So the equation 1 + 2 = X + Y is equivalent to 3 = X
+ Y. However, for meta-programming the symbols 1, 2 and + should be treated
simply as uninterpreted symbols, so that the equation 1 + 2 = X + Y has the
solution { X = 1, ¥ = 2 }. It is not equivalent to 3 = X + Y which is unsatis-
fiable. The reconciliation of this overloading of functors is addressed by Heintze
et al. [3] in which they give a theoretical framework for the problem and discuss
a solution for the CLP(R) language. The problem with their method is that it
i1s not conservative i.e. it does not preserve the current LP meta-programming
functionality, but rather it defines new functionality to replace that which was
lost. The conservation of current functionality is important because it means

that tools, techniques and applications developed for LP systems are usable on
CLP systems. On the other hand, CHIP which distinguishes constraints syntac-
tically has no problem with meta-programming but every constraint operation
has to be made explicit, i.e all head unifications are syntactic not semantic. This
1s counter-intuitive if one expected, say, the + symbol to denote addition. More-
over the requirement for explicit constraint operations places an extra burden
on the programmer.

We present a simple syntactic transformation which achieves a synthesis
of both approaches and overcomes their individual difficulties and provide an
implementation in the ECL'PS®! system. Our presentation is organized in the
following way. First, we define the class of structures we are dealing with, i.e.
those containing uninterpreted functors. The extensions to unification required
by CLP are then discussed. Next, the approach of [3] is briefly reviewed. We use
their theoretical basis in further discussions of the meta-programming problem
and the solution. The CHIP approach is then discussed and be build on this ap-
proach to develop our solution. Qur solution and its implementation in ECL! PS¢
is then given. In sections 7 and 8 we present a comparison with the approach of
[3] and give our solutions to their examples. Finally some concluding remarks
are made and a summary of our results is given.

2 Structures with uninterpreted functors

The fundamental extension of LP to CLP is the assignment of a non-Herbrand
interpretation to some of the function symbols in the language and the inclu-
sion of relations other than syntactic equality (according to a given algebraic
description called the structure of computation). Of particular importance is
the structure of the Herbrand Universe (HU) since this is the core of the Prolog
programming language. In order to utilize Prolog programming techniques un-
interpreted functors have to be included. We define the class of structures with
uninterpreted functors which we denote parametrically as HU(D) where D rep-
resents the underlying algebraic structure e.g. rationals, reals, finite domains.
Prolog has the structure HU(L) since there is no structure under that of the
uninterpreted functors.

We now give some definitions and then proceed to consider the types in
these structures. A sort is a name of a type and a signature is a sequence of sorts.
The alphabet of a CLP(HU(D)) language is partitioned into several classes.

— [T is the set of uninterpreted (programmed) predicate symbols, e.g. laplace,
fibonacci, nqueens.

— IIp ({Ip N II = 0) is the set of interpreted predicate symbols and contains
at least = (syntactic equality) in addition to any other predicates in D, e.g.
for the rational arithmetic structure in CHIP the following symbols denote

! ECL'PS®is the platform on which work on constraint handling is being performed
at ECRC.

the usual arithmetic equality and inequality relations: { $<=, $<, $> $>=, $=

}.

— X is the set of uninterpreted function symbols e.g. typeDevice, relay and
[1. Constant symbols are 0-ary function symbols.

— Xp (Zp NX = B) is the set of interpreted function symbols, e.g. for the
rationals they are {+ - *,/} U Ro where R¢ is the set of constant symbols
for the rational numbers.

— V' is the set of variable symbols. We adopt the Prolog convention that all
identifiers beginning with an uppercase letter or an underscore are variable
symbols.

The first issue is to decide the range of variables. For this we have to
know what the types are. In HU(D) there are two types: D and F7T. D is the
parametric type, e.g. for HU(R) D is the structure of the rational numbers.
D-terms are built from symbols in Zp (respecting signatures). F7 is the type
of finite trees over D. F7T -terms are built from symbols in X' and D-terms, i.e.
functors in X are constructors which can take as arguments either an (i) an
uninterpreted constant, (ii) a D-term or (iii) an F7-term. The usual logical
variables range over F7T-terms. We introduce a new kind of variable called a
solver-variable which ranges over D-terms. Note that solver-variables are atomic
within F7-terms.

3 Extended unification

For the class of structures HU(D) we have to distinguish when to send equalities
resulting from head unification to the constraint solver for D. This extension is
summarized in the table below: sv abbreviates solver-variable and unify denotes
the standard syntactic unification operation. As one would expect the essential
operations are: D-terms are sent to the constraint solver for D, unifications
between D-terms and F7T -terms fail, both D-terms and F7 -terms are bound to
variables and an equality between a solver-variable and an F7 -term fails.

| Extended Unification Table |

| =$= | 2p | X | variable |solver—variable|
2p send to solver| fail bind send to solver
X fail unify bind fail
variable bind bind bind bind v — sv
solver-variable|send to solver| fail |bind v — sv|send to solver

4 The approach of Heintze et al.

The approach of [3] is to extend the underlying structure of computation for
meta-programming and this is accomplished as follows.

— For every interpreted function symbol a new uninterpreted function symbol

(called the M-coded form) is added into X. For example, for p = { +, -,
.,/ } we add the corresponding M-coded forms { ¥, =, %, 7 } to X. We shall
follow the convention of [3] and denote M-coded forms by placing a hat over
the symbol.

— The function quote maps an interpreted function symbol to its M-coded

form.

— The function eval maps an M-coded form back to its interpreted symbol.

The formal definitions (given by Heintze et al.) of quote and eval are given

below. The M-coded forms, quote and eval, and the axiom system below define
a scheme of meta-programming structures of computation called M which can

be added to any CLP language. An instance CLP(R + M) is given by [3].

|4 if t is the variable V

fA(quote(tl)7 .., quote(ty))if tis f(t1, ..., tn),
quote(t) = n > 0 and f is interpreted

f(tl,...,tn) if ¢ is f(tl,...,tn),

n > 0 and f is uninterpreted

eval(f(ti,...,tn)) = fleval(ty),. .., eval(ty)),n >0
eval(g(t}7 oo tn)) =gleval(tr), ... eval(tn)),n >0
eval(quote(t)) =t

Using the meta-programming structure above we say that CLP(R) is an

eval-quote language, i.e. all symbols are interpreted unless explicitly quoted.
Thus to facilitate meta-programming CLP(R +.M) provides the functions quote
and eval and the following functionality (tabulated below).

Modified Functionality

nonground/1 Fails if its argument has a unique value

nonvar/1 Succeeds if its argument is constrained

var/1 Fails if its argument is constrained

rule/2 Like clause/2 of Prolog and produces F7 -terms
assert/1 Asserts the rule with the projection of the variables of the

rule (from constraint store) conjoined in the body
retract/1 Retracts the rule using extended unification

New Functionality

coded _ccs/1 Produces an M-coded term representing the constraint
store
ground/1 Succeeds if its argument has a unique value

quoted rule/2 Like rule/2 but produces M-coded terms
constructed/1 [Succeeds if its argument is bound to a structure
unconstructed/1 |Fails if its argument is bound to a structure
arithmetic/1 Succeeds if its argument is a R-term
syntactic/1 Fails if its argument is a R-term

quoted retract/1|Like retract but uses syntactic unification only

5 The CHIP approach

CHIP [2] is a quote-eval language, i.e. all symbols are quoted unless explicitly
evaluated. However that there is no quote or eval function but instead the
interpreted predicates (denoted by symbols in IT) evaluate their arguments.
Note that the eval operation also marks (operationally the tag is changed) all
variables as solver-variables?. For example, for the CHIP constraint X + Y $= 6
* Z involving the the rational arithmetic relation $=/2 the following steps are
performed.

1. Both arguments are evaluated, i.e. eval(X + Y) and eval(6 * Z). This
has the effect that the variables X, Y and Z are marked as solver-variables
and the binary functors + and * get assigned their arithmetic interpretation.

2. The evaluated equality constraint is then added to the constraint store (i.e.
the set of collected constraints) and a satisfiability check is made.

Since all symbols are quoted, there is no problem with meta-programming.
However, this means that CHIP does not do semantic head unification at all,
unlike CLP(R). However, all semantic head unifications can be shifted into the
body where the interpreted predicates will evaluate correctly (see section 6.1 for
the transformation). For example, the transformation of a program to compute
Fibonacci numbers is given below where in CHIP the symbol $>= denotes the
rational arithmetic relation for greater-than-or-equal-to.

|The CLP(R) Fibonacci Program| [The CHIP Fibonacci Program |

£fib(0,1). £fib(X,Y) (- X $=0, Y $= 1.
fib(1,1). £fib(X,Y) (- X $=1, Y $= 1.
£fib(N,X1+X2) :- fib(N,Y) :-
Y $= X1 + X2,
N >= 2, N $>= 2,
fib(N-1,X1), fib(N-1,X1),
fib(N-2,X2). fib(N-2,X2).

6 Our method and its implementation in the ECL'PS®
compiler system

Since not all clauses in a CLP program will use extended unification we make a
distinction between those that have purely syntactic head unification, which we
shall refer to as ordinary clauses, and those that use extended head unification,
which we shall refer to as constraint clauses. In this way, we get the advantages of
the eval-quote approach but with ordinary clauses we also get the usual LP term
handling capability. In CLP(R) all clauses are constraint clauses. We distinguish
constraint clauses in our language by a different neck operator <-. (See section

2 This operation is trailed and undone on backtracking

8.2 for an example containing both kinds of clauses). Thus we can write the
Fibonacci program as follows.

£fib(0,1) <- true.

fib(1,1) <- true.

fib(N,X1+X2) <-
N $>= 2,
fib(N-1,X1),
£ib(N-2,X2) .

The ECL'PS® system contains CHIP constraint handling functionality
and is the platform currently used at ECRC to investigate constraint handling.
Constraint clauses are handled by preprocessing with the objective of moving
all extended unifications into the body. This is accomplished by using the global
macro facility of the ECL'PS® compiler to expand all clauses with the <- neck
(See Appendix A). However, a naive search for interpreted functors and replace-
ment with a new variable produces incorrect results. Consider the following
example. Since there are no interpreted functors in the head no preprocessing is
done at all. But the query max(1+3,1+1,2+2) incorrectly fails against the trans-
formed program because a syntactic unification i1s performed where a semantic
unification should have been done.

|Original CLP(R) Program| |Transformed ECL'PS® Program)]

max(X,Y,X) :- max(X,Y,X) :-
X >= Y. X $>=Y.
max(X,Y,Y). max(X,Y,Y) :-
true.

We now formally present our transformation and argue that it is correct.

6.1 Transformation of constraint clauses

We split the description of our transformation into two cases. One where there is
sufficient ground information to determine the type of unification and the other
where there is not.

Case 1: The head argument is not a variable. If a subterm in the head of a
constraint rule contains an interpreted symbol i.e. either an interpreted constant
or an interpreted functor then we replace the term by a new variable and insert
a solver call in the body. (See the example for the Fibonacci program above).

Case 2: The head argument is a variable. Here we consider the problem of alias-
ing. There are two cases, (i) where the call performs the alias and (ii) where
the definition performs the alias. The first case occurs when the variable ap-
pears only once in the head e.g. p(X,Y). In this situation we can simply perform

a binding since the only “atomic” object that exists is the multiply-occurring
D-term 1n the call i.e. there are no unifications between any head variables. So
clauses such as:

p(X,Y) <- true.

simply have <- replaced by :-.

Case (ii) arises where a variable appears more than once in the head of
a constraint clause. In this case there could be a unification between two head
variables. (See the example for max/3 above). Here we must move the extended
unifications between head variables into the body, i.e. the decision for a syntactic
or semantic unification is taken at runtime. For max/3 the transformed program
is given below.

max(X1,Y,X2) :-
X1 =$= X2,
X1 $>=7Y.

max(X,Y1,Y2) :-
Y1 =$= v2,
true.

7 Comparison with existing work

CLP(R 4+ M) modifies the functionality of a number of standard Prolog builtin
predicates. The changes essentially involve extensions to the operations to cover
the cases where constraints are involved. Compared with our approach we do not
modify the builtins but instead can write new versions requiring the addition of
a few new builtin predicates. We shall go through the list of builtin predicates
that are modified in CLP(R 4+ M) (the list is in section 4). If we assume that
variables are instantiated if they have a unique value then there is no need to
change nonground/1. For modified_var/1 we provide the following code.

modified_var(X) :-
var(X),
[

modified_var(X) :-
solver_variable(X).

In a similar way to modified nonvar/1 we provide modified var/1.

modified_nonvar(X) :-
not(modified_var(X)).

The code for modified rule/2, modified assert/1 and modified retract/1
are given in Appendix B.

Some of the new functionality provided in CLP(R 4+ M) is redundant
in ECLIPS®. ground(X) can be written as not(nonground(X)) where not/1 is

negation-as-failure. quoted rule/2 is the same as clause/2. constructed(X)
can be written as compound(X) and unconstructed(X) can be written as
not(constructed(X)). syntactic/1is asimple term inspection predicate much
like numbervars/3 which checks a term to make sure there are no (syntactic
versions of the) interpreted functors in X and there are no solver-variables. (For
solver-variables we need a new builtin, say solver variable/1, which simply
checks the tag). We have no need for explicit M-coded forms in FT-terms
since all D-terms are atomic. arithmetic(X) is written as not(syntactic(X)).
quoted retract/1 is the same as retract/1.

Our approach has several advantages over that of [3].

1. Since we are conservative of the standard meta-programming functionality
of Prolog, standard Prolog code will run without problems.

2. We do not modify the standard semantics of any of the Prolog builtin pred-
icates. Again, this has the advantage of the point above.

3. Our approach is more flexible because instead of hard-coding new function-
ality into existing builtins we can write the required builtins at the user level
on top of existing functionality.

4. Our approach conserves all existing Prolog optimizations including index-
ing. Since the transformation moves all semantic unifications into the body
what is left in the head must be purely syntactic and so standard indexing
techniques can be used to discriminate between constraint clauses.

5. Ordinary clauses not using constraints do not pay any performance penalty.

6. Our scheme has the advantage that all syntactic unifications are scheduled
first. Since calling the constraint solver for D is usually more expensive than
syntactic unification, if the unification fails due to some Herbrand constraint
being violated then the D constraint solver will not be called.

7. Our approach offers the user the possibility of tailoring the constraint han-
dling mechanism since the transformation can be performed manually to
achieve any degree of mixed syntactic and semantic head unification han-

dling.
8. Thus we do not need explicit M-coded forms nor any explicit quote or eval
function.
8 Examples

In this section we examine several example that have been given by [3] and
discuss their implementation in ECL*PS®.

8.1 The standard meta-circular interpreter

We now compare the standard meta-interpreters as implemented for both

CLP(R + M) and ECL'PS*.

‘ CLP(R + M) meta-interpreter ‘ ‘ ECL!PS® meta-interpreter
goal(true). goal(true).
goal((A,B)) :- goal((A,B)) :-
goal(4), goal(4),
goal(B). goal(B).
goal(X) :- goal(X) :-
constraint(X). constraint(X).
goal(X) :- goal(X) :-
rule(X,z), clause(X,Z),
goal(Z). goal(Z).
constraint(A = B) :- constraint(A = B) :-
A = B. A = B.
constraint(A > B) :- constraint(A $= B) :-
A > B. A $= B.
constraint(A $> B) :-
A $> B.

The most noticeable differences are:

— We do not require a special version rule/2 of clause/2 in the fourth clause
of goal/1. This is because the semantic unifications have been moved into the
body where calls to the constraint solver for D can be treated like builtins.

— We add to constraint/1 a clause for semantic equality, i.e. $=.

— We use the ECL'PS® symbols (e.g. $>) for rational constraints in the defini-
tion of constraint/1. The usual inequality symbols are already utilized by
standard Prolog arithmetics.

8.2 Symbolic differentiation

Heintze et al. [3] give a program in CLP(R 4+ M) for the symbolic differentiation
of a function in one variable as follows.

dif£(T,0) :-
ground(T) .
diff(X,1) :-
unconstructed(X),
!
diff(quote(A + B), quote(DADX + DBDX)) :-
diff(A, DADX),

diff(B, DBDX).

diff(quote(A * B), quote(DADX * B + DBDX * A)) :-
diff(A, DADX),
diff(B, DBDX).

?- Y = quote(X#X + 2*X + 1),
diff(Y, DYDX),
eval(DYDX) = 0,
T = eval(Y),
printf("Turning point: X = %, Y = % \n",[X,T]).

In ECL!PS® the program is as follows.

dif£(T,0) <-
ground(T) .

diff(X,1) <-
unconstructed(X),
]

diff (A+B,DADX+DBDX) :-
diff (A,DADX),
diff(B,DBDX).

diff (A*B,DADX*B+DBDX*A) :-—
diff (A,DADX),
diff(B,DBDX).

7- Y = X*X + 2xX + 1,
diff(Y,DYDX),
DYDX $= O,
T $= Y,
printf("Turning point: X = %d, Y = %d \n",[X,T]).

The code for ground/1 and unconstructed/1 are as given earlier. Note that in
the third and fourth clauses there is no need in ECL!PS€ to quote the arguments
in the head. We simply write them as ordinary clauses; this has the effect of
quoting all head arguments. Since = means Herbrand unification there is no
need to quote the second argument of the first goal in the query. There is no
need to eval arguments in the third and fourth goals in the query because the
D constraint solver automatically evaluates its arguments.

8.3 Partial evaluation
A technique of partial evaluation is also described by [3]. What is done is to
execute a query and then use the simplified form of the answer to construct new

rules. These new rules, of course, represent specializations w.r.t. the query. They
give the following example.

10

resistor(V,I,R) :-
V = I*R.

?- resistor(V,I1,R1), resistor(Vv,I2,R2),
I = I1+I2,
assert(parallel_resistors(V,I,R1,R2)).

This results in the following being asserted.

parallel_resistors(V,I,R1,R2) :-
I = V/R1 + V/R2.

In ECL?PS® one can implement the above as follows.

resistor(V,I,R) <-
V $= I+*R.

?- resistor(V,I1,R1), resistor(Vv,I2,R2),
I $= I1+I2,
modified_assert(parallel_resistors(V,I,R1,R2) :- true).

What modified assert/1 does is to get the variables in the head, perform
a projection of the constraint store w.r.t. these variables, append these con-
straints into the body creating a new body B1 and then finally add this new
syntactic clause into the dynamic database. Incidentally, it should be noted
that modified assert/1 corresponds to the CLP(R 4+ M) assert/1 extended
to deal with constraints. The important point to note here is that instead of
hard-coding the meta-programming functionality we provide two new builtins
solver_variable/1 and projection/23. Together with eristing functionality
this is sufficient to program whatever specialized versions of the existing builtins
1s required at the user level. This makes our approach more flexible and allows
better tailoring (of builtins) to application specifications.

9 Conclusion

The incorporation of constraint handling into logic programming systems is an
important development and we have shown how it can be be integrated with
existing technology such that the existing functionality is preserved and the
standard environment, i.e. builtin predicates, is unchanged. We have discussed
the two possible approaches to implementing the mechanism that assigns the
fixed interpretation i.e. quote-eval and eval-quote. Each of the alternatives has
drawbacks but by combining both approaches through context we have a syn-
thesis which overcomes the problems of the individual approaches. We have

® projection(V,C) binds C to a copy of the constraint store in which all variables not
in the list V have been eliminated. This domain-specific builtin is provided by the
user.

11

presented an algorithm for implementing our method through a simple syntactic
transformation, argued its correctness and given an implementation in ECL!PS®.
Comparisons with existing CLP(R 4+ M) meta-programming examples have been
made. In summary, the advantages of our approach are as follows.

— Standard Prolog code runs unchanged.

— We do not require explicit quote or eval functions.

— We do not require a complex meta-programming constraint solver to deal
with equations explicitly containing calls to quote or eval as in CLP(R +

— Our approach is more flexible (the user can perform the transformation
manually to tailor the system to application specifications).

— We do not alter the standard environment.

— Code not using constraints does not pay a penalty.

— We schedule (usually cheaper) Herbrand unifications first, thereby short-
circuiting calls to the D-constraint solver in case of failure.

— We do not hard-code the meta-programming facilities into the system e.g.
modified_assert.

Acknowledgements

We thank Alex Herold, Mark Wallace, Mireille Ducassé and Pascal Brisset for
discussions and comments. This work was partially supported by Esprit Project

5291 CHIC.

References

1. Alain Colmerauer, “Opening the Prolog-I11 Universe”, BYTE Magazine, August,
1987.

2. Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane Ag-
goun, Thomas Graf and Frangoise Berthier, “The Constraint Logic Programming
Language CHIP”, Proceedings of the 1988 International Conference on Fifth Gen-
eration Computer Systems, ICOT, 1988.

3. Nevin Heintze, Spiro Michaylov, Peter Stuckey and Roland Yap, “On Meta-
Programming in CLP(R)”, Proceedings of the 1989 North American Conference
on Logic Programming, Cleveland, Ohio, USA, October 16-20, 1989.

4. Joxan Jaffar and Jean-Louis Lassez, “Constraint Logic Programming”, Proceedings
of the 1987 ACM Symposium on Principles of Programming Languages, Munich,
January 1987, pp. 111-119.

5. Joxan Jaffar and Spiro Michaylov, “Methodology and Implementation of a CLP
System”, Proceedings of the 4" International Conference on Logic Programming,
Melbourne, 1987, pp. 196-218.

12

Appendix A.

h
o
% Operator declaration for constraint clauses

%
:— op(1200,xfx,<-).

h
% Operator declarations for Rationals

A

:— op(700,xfy,$=).
1= op(700,xfx,$<=).
:— op(700,xfx,$<).
:— op(700,xfx,$>).
1= op(700,xfx,$>=).
1= op(700,xfy,=%$=).

h
% Interpreted functors for the Rationals

A

interpreted(X) :- integer(X).
interpreted(_ + _).
interpreted(_ - _).
interpreted(_ * _).
interpreted(_ / _).

transform((Head <- Body), (NewHead :- NewBody)) :-
functor(Head, F, A4),
functor(NewHead, F, 4),
find_semantic_unifs(A, Head, NewHead, [], SemUnifs, [1,

Varmap),

find_aliases(Varmap, Aliases),
add_goals(Aliases, Body, Bodyl),
add_goals(SemUnifs, Bodyl, NewBody).

find_semantic_unifs(0, _, _, Goals, Goals, Aliases, Aliases)
|
find_semantic_unifs(N, Head, NewHead, Goals0O, Goals,
AliasesO, Aliases) :-—
arg(N, Head, Arg),
arg(N, NewHead, Aux),
find_semantic_unifsi(Arg, Aux, GoalsO, Goalsi,
AliasesO, Aliasesl),

13

N1 is N-1,
find_semantic_unifs(N1, Head, NewHead, Goalsl, Goals,
Aliasesl, Aliases).

find_semantic_unifs1(X, Y, Goals, Goals, Al, [X=Y[|Al]l) :-
var(X),
]

find_semantic_unifs1(X, Y, Goals, [Y $= X | Goals], Al, Al) :-
interpreted(X), !'.

find_semantic_unifs1(X, X, Goals, Goals, Al, Al) :-
atomic(X), !.

find_semantic_unifs1(X, Y, GoalsO, Goals, AlQ, Al) :-
functor(X, F, 4),
functor(Y, F, 4),
find_semantic_unifs(4, X, Y, GoalsO, Goals, Al0, Al).

find_aliases([]1, [1) :- !'.

find_aliases(Aliases0, Aliases) :-—
sort(AliasesO, [First|Morel),
find_aliases(First, More, [], Aliases).

find_aliases(X=X, [], Al, Al) :- !'.
find_aliases(X=Y, [X1=Y1|Morel, AlO, Al) :-
(X ==x1 -
Al1 = [Y =$= Y1]|Al0]

X=Y,
Al1l = Al0

),

find_aliases(X1=Y1, More, All, Al).

add_goals([]1, Body, Body) :- !.
add_goals([Goal|Goals], Body0, (Goal , Body)) :-
add_goals(Goals, BodyO, Body).

:— define_global_macro((<-)/2,transform/2, [clause]).

The =$= predicate is a user-level predicate that reifies extended unification. It is
only used in the case where there is a head unification between two variables. In
this case, both variables could be F7T-terms requiring a combination of syntactic
and semantic unification.

14

Appendix B.

interpreted(_ $= _).
interpreted(_ $< _).
interpreted(_ $> _).
interpreted(_ $<= _).
interpreted(_ $>= _).
interpreted(_ =$= _).

modified_clause(H,B) :-
functor(H,F,A),
find_semantic_unifs(A,H,NewHead, [],SemUnifs, [1,Varlap),
clause(NewHead,B),
extended_unifs(SemUnifs),
find_aliases(VarMap,Aliases),
extended_unifs(Aliases).

extended_unifs([]) :- !.

extended_unifs([H|T]) :-
call(H),
extended_unifs([T]).

get_vars(T,VarsSeen,NewVars) :-
modified_var(T),
|
NewVars = [T|VarsSeen].
get_vars(T,VarsSeen,NewVars) :-
functor(T,_,Arity),
Arity > O,
|
get_vars_aux(Arity,T,VarsSeen,NewVars).
get_vars(T,Vars,Vars).

get_vars_aux(0,_,Vars,Vars) :- !.
get_vars_aux(N,T,VarsO,Vars) :-
arg(N,T,Arg),
get_vars(Arg,VarsO,Vars1),
Ni is N - 1,
get_vars_aux(N1,T,Varsi,Vars).

get_vars(T,V) :-
get_vars(T,[1,V1),
sort(0,<,V1,V).

modified_assert(H :- B) :-
get_vars(H,V),

15

projection(V,C),
add_goals(C,B,B1),
assert(H :- B1).

goals_only((G1,G2),G,0) :-
goals_only(G1,G,01),
goals_only(G2,01,0).
goals_only(G,I,I) :-
interpreted(G),
]
goals_only(G,I,[GII]).

modified_retract(H :— B) :-
functor(H,F,A),
find_semantic_unifs(A,H,NewHead, [],SemUnifs, [],VarMap),
clause(NewHead,Y),
goals_only(B, []1,BOnly),
goals_only(Y,[],Y0Only),
B =Y,
extended_unifs(SemUnifs),
find_aliases(VarMap,Aliases),
extended_unifs(Aliases),
retract(NewHead :- Y).

This article was processed using the IATpX macro package with LLNCS style

16

