
Logical Loops

Joachim Schimpf

IC-Parc, Imperial College,
London SW7 2AZ
United Kingdom

J.Schimpf@ic.ac.uk

Abstract. We present a concrete proposal for enhancing Prolog and Pro-
log based Constraint Logic Programming languages with a new language
construct, the logical loop. This is a shorthand notation for the most
commonly used recursive control structure: the iteration or tail recursion.
We argue that this enhancement fits well with the existing language con-
cepts, enhances productivity and maintainability, and helps newcomers
to the language by providing concepts that are familiar from many other
programming languages. The language extension is implemented and has
been in everyday use over several years within the ECLiPSesystem.

1 Introduction

Almost 30 years after its inception, Prolog and Prolog-based systems are still
the most widespread implementations of logic programming languages. Prolog
exhibits a characteristic simplicity, and economy of concepts, which makes some
fall in love with the language, but confuses many newcomers, and prompts others
not to take it seriously.

More recent attempts at better logic programming languages have taken quite
radical measures, like adding strict typing and moding (Gödel [6], Mercury [9]),
integrating logic and functional styles (Curry [5], Mercury) or dismissing most of
the Prolog heritage, keeping essentially logical variables in a host language that
concentrates on other main aspects (Oz [10], Ilog solver [8]).

The enhancements presented in this paper are not about such fundamental
modifications. They keep the underlying concepts unchanged, while at the same
time making Prolog programming

– more effective and maintainable, by allowing shorter programs and reducing
the likelihood of errors

– more elegant and readable, by making the programmer’s intention more ex-
plicit

– more accessible to newcomers, by providing familiar concepts

The features we introduce can be explained, understood, and implemented by
program transformation or preprocessing. They could, therefore, be dismissed as
mere ‘syntactic sugar’. However, we believe that the substantial benefit gained
from such comparatively simple measures warrants this presentation.

2

For a new language feature to make a difference and become fully accepted by
programmers, there are three prerequisites:

1. it has to fit naturally with the existing language concepts as well as the pro-
grammer’s preconceptions

2. it has to provide a clear advantage when used (be it in code size, elegance,
maintainability, robustness or otherwise)

3. it must not have an overhead cost when used (otherwise programmers will be
tempted to use more efficient, lower level methods)

The enhancements described here are all implemented and have been part of
the ECLiPSe constraint logic programming system [4] since 1998. They are and
have been in everyday use by a substantial number of programmers and are, to the
author’s best knowledge, well accepted and appreciated by the users of the system.
Although we report experiences with a constraint logic programming system,
rather than plain Prolog, this distinction is not essential for our presentation.
The stronger declarative character of constraint logic programming does however
make the proposed features even more attractive in that setting.

The rest of the paper is divided into motivation, introduction of the loop
construct, comparison with higher-order approaches, comparison with bounded
quantification, and a discussion of some remaining semantic issues.

2 Motivation

Our work was motivated by our observation of different classes of Prolog users.
First, newcomers to Prolog, who already struggle with the unfamiliar concepts
of logical variables and backtracking, are uncomfortable with the requirement
to do everything by recursion - the hope was that an iteration construct would
lower the threshold for them. Second, in our particular area of research, we had a
need to convince mathematical programmers that one could model mathematical
optimization problems in Prolog - the loop construct (together with additional
support for arrays) helped us in this respect. Third, there are well-known software
engineering issues when Prolog is being used for larger applications. Although
the features described here present only a part of our efforts to address those
issues, they do make a contribution by helping to make programs more readable,
understandable and thus easier to maintain.

3 Loops

A look at the average Prolog program shows that the vast majority of all recursions
are in fact iterations. Most of them are iterations over lists, some are iterations
over integers (which may or may not represent structure/array indices), and very
few iterate over other structures or index sets.

Not only novice programmers, and programmers that have been trained on
imperative languages, resent to being forced to express everything through re-
cursion. Seasoned Prolog programmers also find it tedious to have to write an

3

auxiliary predicate for every iteration. We note that these auxiliary predicates
often serve no other purpose: they are only invoked once, they are not useful on
their own, they are not abstractions of any useful concept. Incidentally, this often
makes it difficult to invent sensible names for these predicates: in practice they
often just inherit the parent predicate’s name adorned with some suffix.

Our initial idea for improving the situation was to provide a comprehensive
library of higher-order primitives (see e.g. [7]). A limited version of such a library
had been available before, providing efficient versions of the basic higher-order
predicates like map/3, foldl/4, filter/3 etc. However, this library was under-used
and never seemed to provide quite the right tool. During the redesign, we soon
realised that going beyond these basics would require to consider additional con-
cepts like lambda expressions, composition of higher-order predicates, and pro-
gram transformation for efficiency. This however, would have conflicted with our
initial objective: it was unlikely that anything based on such complex concepts
would be readily accepted by novices, and it was doubtful whether as such it
would have constituted a simplification compared to the recursions we wanted to
replace.

3.1 Iteration

Our eventual solution is more easily explained as a shorthand for common pro-
gramming patterns (we will discuss its relationship with the higher order approach
later in section 6). Given the importance of iteration, and the ubiquity of loop
constructs in imperative languages, why should it not be possible to come up
with a loop construct that would take into account the particularities of logic
programming?

Some requirements were clear. We definitely wanted to be able to replace the
verbose and tedious

write_list(List) :-
write("List: "),
write_list1(List).

write_list1([]).
write_list1([X|T]) :-

write(X),
write_list1(T).

with something straightforward like

write_list(List) :-
write("List: "),
(foreach(X,List) do write(X)).

This can obviously be implemented quite easily by automatically generating a
recursive auxiliary predicate from the do-loop construct, and replacing the do-
construct with a call to this auxiliary.

Similarly, we would like to iterate over the arguments of a structure by writing

4

?- ..., (foreacharg(X,Structure) do write(X)).

or over consecutive integers by writing

?- ..., (for(I,1,100) do write(I)).

3.2 Aggregation

Iteration is usually not done to perform side effects like in the above example,
but to accumulate information, for instance compute the sum of list elements. In
Prolog, one would use an accumulator pair of arguments to a recursive predicate
as in

?- ..., sumlist(Xs, 0, Sum).

sumlist([], S, S).
sumlist([X|Xs], S0, S) :- S1 is S0+X, sumlist(Xs, S1, S).

In our shorthand notation, we introduce the fromto-specifier which is used in the
following way:

?- ..., (foreach(X,Xs),fromto(0,S0,S1,Sum) do S1 is S0+X).

The intuition is that the aggregation process starts from the constant 0 and even-
tually gets to the resulting Sum. In between, each individual iteration step starts
from S0 (the result that has been accumulated so far) and computes the next
intermediate result S1.

3.3 Mapping

Mapping (in the sense of the higher-order predicate map/3) means to establish a
relationship between two lists (or arrays) by stating that a particular relationship
holds between all pairs of corresponding list elements. Corresponding elements
are those that occupy the same position in their respective list. Mapping is an
extremely common concept in logic programming.

In Prolog, mapping is achieved in a straightforward way by recursing over two
lists in parallel:

?- ..., one_up(Xs, Ys).

one_up([], []).
one_up([X|Xs], [Y|Ys]) :- Y is X+1, one_up(Xs, Ys).

Unlike in functional programming, mappings in Prolog have the nice property that
they work in multiple modes (as long as the predicate establishing the relationship
between the elements works in multiple modes). This means they can be used to
test a relationship between two lists, to construct the second list given the first,
construct the first list given the second, or even generate all valid pairs of lists.

Mapping can be covered simply by extending our loop syntax to allow iteration
over two lists at the same time, allowing us to write the above example as

5

?- ..., (foreach(X,Xs),foreach(Y,Ys) do Y is X+1).

Obviously, every foreach specifier corresponds to one argument in the recursive
formulation. It is therefore a simple generalisation to allow an arbitrary number
of foreach specifiers in one loop, this allowing iteration over many lists in parallel.
In terms of higher-order predicates, this corresponds to map/4, map/5 etc. For
example the above example can be generalised to

?- ..., (foreach(X,Xs),foreach(Y,Ys),foreach(Z,Zs) do Z is X+Y).

3.4 Full Functionality

The ideas introduced above are the basic ingredients for our general loop con-
struct: It has a close correspondence to a simple tail-recursive predicate, and it
can have one or more iteration specifiers, each of which corresponds to one or two
arguments in a recursive predicate. The general form of a logical loop is

(IterationSpecs do Body)

where IterationSpecs is a comma-separated sequence of iteration specifiers, and
Body is a general goal (possibly compound). Valid iteration specifiers (in our
actual implementation) and their informal meanings are
fromto(First,In,Out,Last) Iterate Body starting with In=First and stopping

with Out=Last. In and Out are local variables in Body.
foreach(X,List) Iterate Body with X ranging over all elements of List from first

to last. X is a local variable in Body. This can be used both for iterating over
an existing list or for constructing a new list.

foreacharg(X,StructOrArray) Iterate Body with X ranging over all arguments
of StructOrArray from left to right. X is a local variable in Body. Cannot be
used for constructing a term.

for(I,MinExpr,MaxExpr) Iterate Body with I ranging over numbers from Min-
Expr to MaxExpr. I is a local variable in Body. MinExpr and MaxExpr can be
arithmetic expressions. Can be used only for controlling iteration, i.e. Max-
Expr cannot be uninstantiated.

for(I,MinExpr,MaxExpr,Step) The same as above, but a step width different
from 1 can be specified.

count(I,Min,Max) Iterate Body with I ranging over ascending integers from
Min up to Max. I is a local variable in Body. This is similar to the for-specifier,
but its main use is for counting iterations rather than controlling them, i.e.
Max can be uninstantiated.

param(Var1,Var2,...) For declaring variables in Body as shared with the con-
text. By default, variables in Body are local. For a more detailed discussion
see section 8.

In principle, the fromto specifier alone would be sufficient: it is the most general
one and can be used to express all the others (which we leave as an exercise for
the interested reader). On the other hand, one could have introduced even more
specifier shorthands, for instance a reverse list iterator, or a list suffix iterator. We
have settled with the above set because it provides reasonably intuitive shorthands
for the most common cases, in addition to the general fromto.

6

4 Transformation scheme

We now give the precise semantics of our loop construct by transformation to
plain Prolog. Every goal of the form

(IterationSpecifiers do Body)

is substituted by a goal

PreCallGoals, `(CallArgs)

where ` is a new, unique predicate symbol, CallArgs is a sequence of arguments
to `, and PreCallGoals is a possibly empty conjunction of goals to be executed
before the call to `. In addition, the transformation creates a definition for ` which
is always of the following form1:

`(BaseArgs) :- !.
`(HeadArgs) :- PreBodyGoals, Body, `(RecArgs).

Here, BaseArgs, HeadArgs and RecArgs are sequences of arguments, Pre-
BodyGoals is a possibly empty conjunction of goals, and Body is a literal copy
of the original loop body.

Figure 1 shows a detailed tabular rendering of the translation rules. The trans-
lation algorithm looks up the matching rule for every specifier and collects each
specifier’s contribution to the six argument/goal sequences. Finally, a loop replace-
ment goal and an auxiliary predicate definition are assembled from these collected
sequences. The order of the specifiers in the do-construct is not important2. It is
merely a specification of what the loop iterates over.

Example Consider the following loop with three iteration specifiers:

?- (foreach(X,List), count(_,1,N), fromto(0,S0,S1,Sum) do
S1 is S0+1

).

According to the above specification, the transformation results in the following
goal and predicate definition:

?- From is 1-1, % PreCallGoals
do_1(List, From, N, 0, Sum). % Initial call

do_1([], _1, _1, _2, _2) :- !. % Base clause
do_1([X|_1], _2, _3, S0, _4) :- % Recursive clause head

I is _2 + 1, % PreBodyGoals
S1 is S0+1, % Body
do_1(_1, I, _3, S1, _4). % Recursive call

1 The cut (!) in the definition should be ignored for now, its role is discussed in detail
in section 8

2 Although with some compilers the indexing in the auxiliary may be affected

7

T
ra

n
sl

a
ti

o
n

S
ch

e
m

e
fo

r
It

e
ra

ti
o
n

S
p
e
c
ifi

e
rs

It
er

a
ti
o
n

S
p
ec

ifi
er

T
ra

n
sf

o
rm

a
ti
o
n
-

ti
m

e
co

n
d
it
io

n
P

re
-C

a
ll

g
o
a
ls

In
it
ia

l
ca

ll
a
rg

u
m

en
ts

B
a
se

cl
a
u
se

h
ea

d
a
rg

u
m

en
ts

R
ec

u
rs

iv
e

cl
a
u
se

h
ea

d
a
rg

u
m

en
ts

P
re

-B
o
d
y

g
o
a
ls

R
ec

u
rs

iv
e

ca
ll

a
rg

u
-

m
en

ts

It
e
ra

ti
o
n
S
p
ec

ifi
e
r

P
re

C
a
ll
G

o
a
ls

C
a
ll
A

rg
s

B
a
se

A
rg

s
H

ea
d
A

rg
s

P
re

B
o
d
y
G

o
a
ls

R
ec

A
rg

s

f
r
o
m
t
o
(
F
ro

m
,
I0

,
I1

,
T
o
)

n
o
n
g
r
o
u
n
d
(
T
o
)

F
ro

m
,

T
o

L
0
,
L
0

I0
,
L
1

I1
,
L
1

f
r
o
m
t
o
(
F
ro

m
,
I0

,
I1

,
T
o
)

g
r
o
u
n
d
(
T
o
)

F
ro

m
T
o

I0
I1

f
o
r
e
a
c
h
(
X
,
L
)

L
[
]

[
X
|T]

T

f
o
r
e
a
c
h
a
r
g
(
A
,
S
)

f
u
n
c
t
o
r
(
S
,
,
N
)
,

N
1
i
s
N
+
1

S
,
1
,
N
1

,
I
0
,
I
0

S
,
I
0
,

I
2

I
1
i
s
I
0
+
1
,

a
r
g
(
I
0
,
S
,
A
)

S
,
I
1
,

I
2

c
o
u
n
t
(
I,

F
ro

m
E
x
p
r,

T
o
)

v
a
r
(
I)
,

i
n
t
e
g
e
r
(
T
o
)

F
r
o
m
i
s

F
ro

m
-

E
x
p
r-
1

F
r
o
m

T
o

I
0

I
i
s
I
0
+
1

I

c
o
u
n
t
(
I,

F
ro

m
E
x
p
r,

T
o
)

v
a
r
(
I)

F
r
o
m
i
s

F
ro

m
-

E
x
p
r-
1

F
r
o
m
,

T
o

L
0
,
L
0

I
0
,
L
1

I
i
s
I
0
+
1

I,
L
1

f
o
r
(
I,

F
ro

m
E
x
p
r,

T
o
)

v
a
r
(
I)
,

n
u
m
b
e
r
(
T
o
)
,

S
t
o
p
i
s

T
o
+
1

F
r
o
m
i
s

m
i
n
(
F
ro

m
E
x
p
r,

S
t
o
p
)

F
ro

m
S
t
o
p

I
I
1
i
s

I+
1

I
1

f
o
r
(
I,

F
ro

m
E
x
p
r,

T
o
E
x
p
r)

v
a
r
(
I)

F
r
o
m
i
s

F
ro

m
-

E
x
p
r,

S
t
o
p

i
s
m
a
x
(
F
r
o
m
,

T
o
E
x
p
r
+
1
)

F
r
o
m
,

S
t
o
p

L
0
,
L
0

I,
L
1

I
1
i
s

I+
1

I
1
,
L
1

p
a
r
a
m
(
P
)

P
P

P
P

T
h
e

m
et

a
-l
ev

el
va

ri
a
b
le

s
in

b
o
ld

it
a
li
c

st
y
le

(e
.g

.F
ro

m
)
st

a
n
d

fo
r

a
rb

it
ra

ry
te

rm
s

o
cc

u
rr

in
g

in
th

e
so

u
rc

e
p
ro

g
ra

m
.
T

h
e

sy
m

b
o
ls

T
,
N

1
,
I0

,
I1

,
I2

,
L
0
,
L
1
,
S
to

p
re

p
re

se
n
t

a
u
x
il
ia

ry
va

ri
a
b
le

s
w

h
ic

h
g
et

in
tr

o
d
u
ce

d
b
y

th
e

tr
a
n
sf

o
rm

a
ti
o
n

(n
ew

in
st

a
n
ce

s
fo

r
ev

er
y

it
er

a
ti
o
n

sp
ec

ifi
er

).
S
p
ec

ifi
er

s
w

h
ic

h
d
o

n
o
t
m

a
tc

h
a
n
y

o
f
th

es
e

ru
le

s
a
re

tr
ea

te
d

a
s
co

m
p
il
e-

ti
m

e
er

ro
rs

.
T

h
e

tr
a
n
sl

a
ti
o
n

o
f
th

e
fo

r/
4

sp
ec

ifi
er

h
a
s
b
ee

n
o
m

it
te

d
fo

r
sp

a
ce

re
a
so

n
s.

Fig. 1. Translation scheme for Iteration Specifiers

8

Implementation In our system, this transformation is normally performed by
the inlining facility of the compiler. In most Prolog systems, a similar effect can
be achieved by means of the term expansion mechanism.

In case a do-loop is constructed at runtime and meta-called, the system per-
forms the same transformation, but meta-calls (i.e. interprets) the resulting code
rather than actually generating a recursive predicate. One one hand, this is based
on the guess that the compilation overhead might outweigh the gains when the
loop is only run once, on the other hand this avoids the generation of an un-
bounded number of auxiliary predicates, and related garbage collection issues.

5 Loops vs Recursion

As opposed to the equivalent recursive formulation, the loop construct has a
number of advantages which as (not necessarily in order of importance):

Conciseness No need to write an auxiliary predicate, in particular no need to
invent a name for the recursive predicate, and no need to worry about the arity
of the recursive predicate. This leads to 2-3 times shorter code (in terms of token
count) in the above examples3.

Modifiability If an additional value needs to be computed by the iteration,
rather than having to add an argument or an accumulator pair in 4 places in the
code (call, base clause, recursive clause head, recursive call), a single iteration
specifier is added to the loop.

Structure Loops can be freely nested. This will usually show the code structure
more clearly than a flat collection of predicates. Also, the iteration specifiers group
conceptually related information better than scattered predicate arguments.

Abstraction An iteration specifier is an abstraction for a single induction argu-
ment or an accumulator pair. For example in this efficient list reversal predicate

reverse(L, R) :-
(fromto(L,[X|Ls],Ls,[]),fromto([],Rs,[X|Rs],R) do true).

the first fromto translates into a single argument of do 2/3, while the second
translates into an argument pair:

reverse(L, R) :- do_2(L,[],R).
do_2([],R,R) :- !.
do_2([X|Ls],Rs,R) :- do_2(Ls,[X|Rs],R).

The programmer does not need to be concerned about this detail. Both fromto-
specifiers look completely symmetric, they graphically specify the order (from L
to [], and from [] to R) in which the two lists are being traversed. In fact the
predicate works both ways.
3 assuming the common case that no recursive predicate was called more than once

9

Usability Although we have only anecdotal evidence, loops have clearly become
very popular among the users of our implementation. Fears, that the additional
feature would confuse new users more than it helped, seem to have been un-
justified. On the contrary, it seems that loops with fromto-specifiers help with
understanding the equivalent concept of accumulator pairs in recursive code.

6 Loops vs Higher-Order Constructs

Our loop construct offers an alternative to three of the most commonly used
higher-order programming constructs which have found their way from functional
programming into logic programming: map/3, foldl/4 and filter/3 (cf. [7]). For
instance:

map(plus(1),Xs,Ys) (foreach(X,Xs), foreach(Y,Ys) do
plus(1, X, Y)

)

foldl(plus,Xs,0,Sum) (foreach(X,Xs), fromto(0,S0,S1,Sum) do
plus(X,S0,S1)

)

filter(<(5),Xs,Ys) (foreach(X,Xs), fromto(Ys,Ys1,Ys0,[]) do
(X > 5 -> Ys1=[X|Ys0] ; Ys1=Ys0)

)

In those simple instances, the loop formulation is somewhat more verbose than
the higher order one. The reason for this is that the higher order formulation relies
on an auxiliary predicate with a fixed argument convention (e.g. plus/3 with the
last two arguments being the input and output of the mapping). Except in lucky
circumstances, this auxiliary predicate will have to be purpose-written for each
use, a development overhead that we would rather avoid.

Let us therefore consider a more flexible higher-order formulation with lambda-
terms (a syntax for anonymous predicates similar to the one introduced in [12]),
which would avoid the need for the auxiliary, e.g.

foldl(lambda([X,S0,S1], S1 is S0+X), Xs, 0, Sum)

This formulation is now not only of the same length, but also structurally very
similar to our loop formulation. In fact there is a one-to-one correspondence of
constants and variables:

foreach(X,Xs), fromto(0,S0,S1,Sum) do S1 is S0+X

Which version is preferable to a programmer is partly a matter of taste and will
depend on training and on experience with other languages and programming
paradigms. It can however be argued that the loop formulation exhibits a clearer
grouping of related items: the variables X and Xs which are related to the list

10

iteration aspect, and the variables S0,S1,Sum together with the constant 0 which
are related to the aggregation aspect of the code fragment.

A disadvantage of the higher-order constructs is the need for more and more:
map/4, map/5, and combinations like map foldl/5, etc. are frequently needed,
but the provision of all these special cases can only be avoided by sophisticated
program transformation, or the use of auxiliary data tuples [7]. In contrast, the
same loop construct can be used for all these generalisations and combinations.

While it is clear that the higher-order approach has other uses, we argue that,
for expressing iterations, our loop construct is preferable because

1. the loop construct can replace the vast majority of recursions in a form that
is similarly compact and at the same time more explicit in stating the pro-
grammer’s intent. Iteration seems an important enough concept to warrant a
special language construct.

2. higher-order constructs implement arbitrary (not necessarily iterative) tra-
versals of a particular data structure, while loops implement only iterative
traversals but over arbitrary data structures.

3. the loop construct encourages the use of an efficient form of recursion, viz.
tail recursion. This contrasts with the higher order approach which makes the
inefficient foldr and the efficient foldl look interchangeable.

4. the single loop language construct covers the ground of several higher-order
predicates families: map/(2+N), foldl/(2+2N), filter/(2+N).

5. the loop construct provides the building blocks to formulate arbitrary combi-
nations of map / foldl / filter.

6. arguably, both novices and experienced programmers have fewer problems
reading and understanding the meaning of a loop than they have understand-
ing the meaning of a higher-order formulation.

7. unlike the higher-order solution, no complex higher-order typing is involved.

7 Loops vs Bounded Quantification

Voronkov [11], Barklund and Bevemyr [2], Barklund and Hill [3], as well as Apt
[1] have advocated the introduction of bounded quantifiers. Their motivation is
similar to ours: to express iteration more concisely, and in a way that is often
closer to the original specification.

A bounded quantification requires a single finite set (e.g. an integer range, the
elements of a list, etc.) over which the quantification ranges. But while [2] and [1]
consider only the case where the quantification is bounded a priori, [11] is more
general in allowing the termination condition to be depend on the quantified
formula itself. The latter is what makes Voronkov’s language Turing-complete,
even without recursion.

Although bounded quantifiers do provide a significant gain in expressive el-
egance, many simple tasks cannot be expressed at all using a priori bounded
quantification, and are still difficult to express in Voronkov’s more powerful lan-
guage. Consider the simple problem of determining that two lists are identical
(or satisfy any other mapping property in the sense of map/3). This cannot be

11

expressed with a priori bounded quantification because there is no way to express
which list elements correspond to each other. The obvious workarounds that come
to mind are either to quantify over a list of pairs, or to convert the lists to arrays
and then to quantify over the array index. However, this just raises the equally
unsolvable problems of how to construct a list of pairs from two simple lists, or
of how to construct an isomorphic array from a list.

With Voronkov’s quantifiers the formulation is of course possible, but the best
we could come up with is the following rather unnatural solution, employing the
list-suffix-quantifier:

same_lists(XXs, YYs) :-
SameTails = [XXs-YYs|_],
(∀ T v SameTails) T = [[]-[]] ∨ T = [[X|Xs]-[X|Ys],Xs-Ys|_].

The loop construct overcomes this problem simply by having a concept of im-
plicitly ordered iteration steps, and by allowing multiple iteration specifiers to
synchronously traverse multiple data structures or index ranges4:

same_lists(XXs, YYs) :-
(foreach(X,XXs), foreach(Y,YYs) do X=Y).

It can be argued that these difficulties with expressing mappings in the quantifier
approach are partially overcome (or obscured) by the use of arrays. When arrays
are used instead of lists, the above example is easily expressed, by quantifica-
tion over a common array index. Index positions are a way to establish mappings
explicitly, but work only with array-like data structures. It is therefore no coinci-
dence that all the work on a priori bounded quantification has found it necessary
to introduce arrays as a supporting feature.

Iteration specifiers in loops also play the role of the aggregation operators
employed by [2], [3] and [1]. Without aggregation operators, a priori bounded
quantifiers are very limited in their expressive power. Note again that Voronkov
[11] does not need aggregation operators, because his quantifiers (like our iteration
specifiers) can play this role as well.

In our loops, the general fromto-specifier, the list iterator foreach and the
integer iterator count can all serve either as quantifiers (controlling the iteration)
or as aggregators. We have deliberately avoided to define additional specifiers
that would serve only as aggregators, because arbitrary aggregators can be so
easily expressed using the general fromto. For example, the arithmetic maximum-
aggregator is

maxlist([X0|Xs], Max) :-
(foreach(X,Xs), fromto(X0,M0,M1,Max) do

(X > M0 -> M1 = X ; M1 = M0)
).

4 We suggest that the more mathematically inclined reader pronounces all occurrences
of the word ‘do’ in our code as ‘holds’ or ‘:’ in order to eliminate the procedural taste

12

The cited works on bounded quantification investigate not only universal quan-
tifiers but also existential quantifiers. We have not addressed this issue here at
all, but it would seem that, unless one provides means to choose different control
strategies for every existential quantifier, these do not give any significant advan-
tage over the use of member/2 for existential quantification over list elements, or
between/3 for existential quantification over integers.

8 Remaining Issues

Variable Scope in Loop Bodies One aspect that can potentially cause confu-
sion is that the loop body is really an embedded predicate body with its own local
variable scope. The following incorrect code illustrates this. The two occurrences
of ’Array’ are different variables:

sum_array(Array, N, Sum) :-
(for(I,1,N), fromto(0,S0,S1,Sum) do

arg(I, Array, Elem), S1 is S0 + Elem
).

The programmer instead has to write

sum_array(Array, N, Sum) :-
(for(I,1,N), fromto(0,S0,S1,Sum), param(Array) do

arg(I, Array, Elem), S1 is S0 + Elem
).

This situation has no direct counterpart in normal Prolog. The closest analogy are
the bagof/setof predicates which allow locally quantified variables5. Our reason
to opt for the opposite default (variables are quantified locally inside the loop,
unless passed as param) was that this makes the loop semantics independent of
the context (the presence or absence of a variable in the loop context will not
affect the loop semantics). This not only relieves the compiler from the need to
analyze the loop context, it also makes meta-calling of loops feasible.

The programmer needs to be aware that every iteration of the loop corresponds
to a new instance of the loop body. Given the single assignment property of
Prolog variables, this seems to be sufficiently intuitive, and our experience suggests
that programmers do not have a problem with this. The only problem that does
arise in practice is that the programmer forgets to specify the global variables.
Fortunately, in many cases this situation leads to singleton variables in the loop
body and our compiler gives a warning, suggesting that a param might be missing.

Nondeterminism Another point we have glossed over in the above is that our
loop transformation, as implemented, always puts a cut into the base clause, i.e.
the transformation template for the recursive predicate is in fact
5 At the expense of a considerable implementation overhead

13

aux(...) :- !.
aux(...) :- ..., aux(...).

Most of the time, this makes no difference to the semantics (i.e. it is a so-called
green cut). It does of course prevent applications where the number of iterations
is nondeterministic and increases on backtracking.

Nevertheless we consciously made this restriction. The reason was that we
would have been carried too far away from the intuitive idea of a loop. A choi-
cepoint left by the loop construct itself would normally be unexpected and most
likely constitute a (hard to find) bug. This is in fact analogous to Prolog’s if-then-
else construct (... -> ... ; ...), where choicepoints within the condition are
also cut, for very similar reasons.

Note that, of course, the loop body can be nondeterministic and generate mul-
tiple solutions. All we prevent is the number of iterations being nondeterministic.

Termination The termination condition of our loops is restricted to unification,
or a conjunction of unifications. Loops that are terminated by a more complex
condition can be expressed, but only indirectly.
Consider the iteration pattern:

p(... X0 ...) :-
(termination_condition(X0) ->

true
; ...,

p(... X1 ...)
).

This can be expressed through a loop by introducing an explicit control variable
Continue:

(
fromto(continue, _, Continue, stop),
fromto(..., X0, X1, ...), ...

do
(termination_condition(X0) ->

Continue = stop
; ...,

Continue = continue
)

)

This is rather unnatural, and in such cases the use of the loop construct will
often not be appropriate. The example also shows that termination of loops with
fromto-specifiers is not decidable in the general case. But in many special cases
(where iteration specifiers correspond to a priory bounded quantifiers) termination
is trivially guaranteed. This is true for the foreacharg and the for specifier, and
for the foreach specifier when the list position is instantiated to a proper list.

14

Computational Power Prolog with logical loops, but without recursion, is
still Turing-complete. The following is a recursion-free meta-interpreter for pure
Prolog:

solve(Q) :-
(fromto([Q], [G|C0], C1, []) do solve_step(G, C0, C1)).

solve_step(true, C, C).
solve_step((A,B), C, [A,B|C]).
solve_step(A, C, [B|C]) :- clause(A, B).

Typing Unlike most of the related work, we have not found it inevitable to
introduce typing into our language. In the bounded quantifier framework, typing
is used for specifying the semantics, in particular the domains over which the
quantifiers range. In our loop framework, the semantics is formally defined by
way of program transformation, which does in itself not provide a motivation for
typing.

9 Conclusion

We have presented an addition to the Prolog programming language that makes
programs more concise, more readable, easier to modify, less error-prone and more
accessible to newcomers. Iteration often makes it possible to express a problem
in a way that is closer to the original problem specification and also closer to the
programmer’s intuition.

We have not introduced any fundamental change to the language. In particular,
we have neither introduced typing nor a concept of function evaluation that goes
beyond what is already present in the basic language. Our loop construct can be
entirely specified in terms of preprocessing, but is also easy to understand directly.

We have argued that our proposal is closely related to certain well-known
higher-order constructs, but can have advantages over a corresponding higher-
order formulation. Similarly, we have looked at the relationship with bounded
universal quantifiers and shown that our approach in many cases allows a more
natural formulation.

One direction of future work could be to look at ways to compile
iterations more efficiently than the equivalent recursion. We would ex-
pect the techniques investigated in [2] to be applicable to our language.
We intend to make the full loop transformation code available under
http://www.icparc.ic.ac.uk/eclipse/software/loops/.

10 Acknowledgements

I would like to thank Mark Wallace and Stefano Novello for many discussions on
the subject. Part of the work presented here was done in the context of the CHIC-
2 project and I would like to thank our partners, in particular at EuroDecision, for

15

motivating me to make Prolog more suitable for mathematical modelling. Further
thanks to Carmen Gervet, Kish Shen, Josh Singer and Warwick Harvey for their
comments on earlier drafts of this paper.

References

1. K. R. Apt. Arrays, bounded quantification and iteration in logic and constraint
logic programming. Science of Computer Programming, 26(1-3):133–148, 1996.

2. J. Barklund and J. Bevemyr. Prolog with arrays and bounded quantifications. In
A. Voronkov, editor, Proceedings of LPAR’93, pages 28–39. Springer, 1993.

3. J. Barklund and P. Hill. Extending Gödel for expressing restricted quantifications
and arrays. Technical Report No. 102, Uppsala University, March 1995.

4. ECLiPSe Team. ECLiPSe User Manual Version 4.0. Technical report, IC-Parc,
Imperial College, London, July 1998.

5. M. Hanus. Curry: An integrated functional logic language. Technical report, Uni-
verity of Kiel, Kiel, Germany, June 2000.

6. P. Hill and J. Lloyd. The Gödel Programming Language. MIT Press, 1994.
7. L. Naish. Higher-order logic programming in Prolog. Technical Report 96/2, Uni-

versity of Melbourne, Feb. 1996.
8. J.-F. Puget. A C++ implementation of CLP. In Proceedings of SPICIS 94, Singa-

pore, November 1994.
9. Z. Somogyi, F. Henderson, and T. Conway. Mercury: an efficient purely declarative

logic programming language. In Proceedings of the Australian Computer Science
Conference, pages 499–512, Glenelg, Australia, February 1995.

10. P. Van Roy. Logic programming in Oz with Mozart. In D. D. Schreye, editor,
International Conference on Logic Programming, pages 38–51, Las Cruces, NM,
USA, Nov. 1999. The MIT Press.

11. A. Voronkov. Logic programming with bounded quantifiers. In A. Voronkov, editor,
Logic Programming, First and Second Russian Conference, pages 486–514. Springer
LNAI, 1990/1991.

12. D. H. D. Warren. Higher-order extensions to Prolog - are they needed? Machine
Intelligence, 10:441–454, 1982.

