
Bounds Consisten
y Te
hniquesforLong Linear ConstraintsWarwi
k Harvey and Joa
him S
himpfIC-Par
Imperial CollegeExhibition Road, London SW7 2AZ, UKwh�i
par
.i
.a
.ukj.s
himpf�i
par
.i
.a
.ukAbstra
t. We present a number of te
hniques for eÆ
iently a
hievingbounds 
onsisten
y for linear 
onstraints with large numbers of variables.1 Introdu
tionBounds 
onsisten
y is a popular te
hnique in 
onstraint programming over in-tegers and reals [3, 4℄. In this paper we examine how to eÆ
iently propagate alinear 
onstraint to a
hieve and maintain bounds 
onsisten
y. Our te
hniquesare spe
i�
ally aimed at 
onstraints with many variables, typi
ally a
hievingbounds 
onsisten
y in sub-linear time. We do not address the issue of a moreglobal view of a system of 
onstraints, su
h as 
onsidering multiple 
onstraintssimultaneously.Ex
ept where noted, all the te
hniques apply to either real or integer vari-ables, but see Se
tion 5.4 for a dis
ussion of 
oating point rounding issues.This paper is organised as follows. In Se
tion 2 we start by presenting somenotation and the bounds 
onsisten
y algorithm from [1℄ on whi
h we are improv-ing. In Se
tions 3 and 4 we present some re�nements to the basi
 propagationte
hnique. In Se
tion 5 we dis
uss 
ombinations of algorithms, point out somepitfalls and suggest some areas for further investigation.2 Basi
 Two-Pass PropagationSuppose we wish to perform bounds propagation on a 
onstraintnXi=1 aixi � b (1)We assume for simpli
ity of exposition that the xi are distin
t variables and thatai > 0 for all i. If the xi are not distin
t then the propagation performed is likelyto be weaker than ne
essary, but no more so than with other approa
hes. If someCopyright 

2002 IC-Par
, Imperial College, London SW7 2AZ. All rights reserved.



of the ai are negative then some signs, bounds, et
. will be swapped around butotherwise it is the same.For the 
urrent known lower (resp. upper) bound of the variable x we writex (resp. x). For 
onvenien
e we de�ne the interval Ii of variable xi (with respe
tto a given 
onstraint) as the 
ontribution the variable makes to the \variability"of the range of the LHS of (1), i.e.Ii = ai(xi � xi)Following (loosely) [1℄, let F = b� nXi=1 aixi (2)Then the bounds 
onsisten
y 
ondition for the 
onstraint for any xj isxj � Faj + xj (3)Note that if F < 0 then the 
onstraint is unsatis�able (failure).As noted in [1℄, (2) and (3) allow us to 
ompute all the bounds imposed bythe 
onstraint in two passes over the 
onstraint: one to 
ompute F , and one to
ompute the (upper) bounds.In order to maintain bounds 
onsisten
y, this 
omputation needs to be re-peated whenever one or more lower bounds have 
hanged. What we do in thefollowing is to investigate 
ases where this 
omputation step 
an be performedin sub-linear time.3 Re�nementsThe re�nements in this se
tion are based on the observation that ifxj � Faj + xji.e. Ij � F (4)then xj is already bounds-
onsistent with respe
t to the 
onstraint (
.f. (3)). Inparti
ular, if F � maxj Ij (5)then no bound updates will o

ur. Moreover, if it is not the 
ase, then thevariables a�e
ted are exa
tly those for whi
h the 
ondition (4) is violated.There are several ways we might try to exploit this. One is to try to dete
t(
heaply) when no bound updates will o

ur. Another is to try to determine



(
heaply) whi
h bounds need to be updated (whi
h would yield the �rst 
aseif there are none). Of 
ourse neither of these approa
hes need be implementedexa
tly: the right trade-o� might be to use a (safe) approximation.In order to a
hieve any signi�
ant bene�t, any s
heme ought to be able toa
hieve bounds 
onsisten
y with respe
t to the 
onstraint in sub-linear time inat least some 
ases; otherwise it will be at best a 
onstant fa
tor faster than basi
two-pass propagation. In parti
ular this means we 
annot a�ord to re
omputeF every time we wish to propagate the 
onstraint.3.1 Maintaining FF is a
tually quite easy to update in
rementally: whenever the lower bound ofa relevant variable (say xj) is modi�ed, simply adjust F a

ordingly:F := F � aj(new(xj)� old(xj))Note that the 
ost of maintaining this in
rementally is linear in the numberof lower bound 
hanges sin
e the last time the 
onstraint was propagated. Itis possible that this 
ould be more than the number of the variables in the
onstraint (making the 
ost super-linear). However, most solver implementationsalready in
ur a 
ost for notifying ea
h relevant 
onstraint on every bound updateanyway (meaning that maintaining F in
urs at most a 
onstant fa
tor penalty).3.2 Perfe
t PropagationConsider the set of variables xj su
h that F < Ij . As noted earlier, these areexa
tly the variables whi
h need to be updated to a
hieve bounds 
onsisten
y.One way of qui
kly identifying these variables is to maintain a heap (priorityqueue) for every 
onstraint, with one heap entry for ea
h variable xj , using the
orresponding interval sizes Ij for ordering (largest Ij on top). This heap gives
onstant time a

ess to the xj with the largest Ij , and the variables needing abound update are those at the top of the heap. Indeed, if there are p variableswhi
h need bound updates, these 
an be identi�ed in o(p) time.The heap is an auxiliary data stru
ture asso
iated with the 
onstraint, andmaintained over the lifetime of the 
onstraint, i.e. until the 
onstraint is foundto be entailed or disentailed. The heap 
an be set up in linear time (see [2℄)during 
onstraint set-up, but obviously needs to be maintained as the Ijs shrinkduring the 
omputation. Whenever this o

urs (i.e. on every bound 
hange), thevariable's entry may need to be pushed down the heap, whi
h is O(logn). Theseupdate operations need to be undone on ba
ktra
king, whi
h 
an be done withthe same (or perhaps better) 
omplexity as the operations themselves.Note that if the variables are real (non-integer) variables or the 
oeÆ
ientsare unit, then the heap does not even need re-balan
ing after propagation sin
eall the adjusted Ijs are identi
al. If the variables are integer and have non-unit
oeÆ
ients, then any bound update whi
h involved rounding may result in aheap adjustment being ne
essary.



3.3 Redu
ed Frequen
y PropagationThe 
ost of maintaining the heap as dis
ussed above may be prohibitively ex-pensive. Fortunately, there are 
heaper ways to exploit the 
ondition (5). Forexample, we 
an just 
a
he the value of maxj Ij from the last time the 
on-straint was propagated and use this as an approximation of the a
tual 
urrentvalue of maxj Ij . As long as F is no smaller than the 
a
hed value, no propa-gation is ne
essary. When it is smaller, then it may still be that no propagationis ne
essary, but we will not know without either re
omputing maxj Ij or doingthe propagation. This te
hnique allows us to skip the propagation in some 
ases(regardless of whether this propagation was to be performed using the basi
two-pass method or one of the other te
hniques des
ribed below).We expe
t this to be of most bene�t when the 
onstraint is sla
k; that is,when F is signi�
antly larger than maxj Ij . In su
h situations, lower bounds (andthus F ) may be updated many times before F be
omes less than the 
a
hed valueof maxj Ij . Before that point, propagation is guaranteed not lead to any boundupdates and 
an therefore be skipped safely.3.4 Short-Cir
uit Propagation (I)Another te
hnique, whi
h would be most e�e
tive when the variables are booleanand the 
oeÆ
ients vary, is to sort the 
onstraint by de
reasing Ii when it is �rstset up, re
ording this initial interval for ea
h term. Then, when the 
onstraint isbeing propagated, on
e a term is rea
hed whi
h has re
orded interval no largerthan F , there is no need to 
onsider any remaining terms (be
ause they areall guaranteed to satisfy (4)) and the propagation pro
ess may stop. This isparti
ularly e�e
tive for booleans sin
e a propagation pass �xes the values ofthe variables for some pre�x of the terms in the 
onstraints, and these termsdo not need to be 
onsidered again: next time a propagation is required, it 
an
ontinue from where it left o�. Note that this means su
h a 
onstraint 
an bepropagated in O(n) time amortised over a forward exe
ution of the 
onstraint| albeit after an initial setup time of O(n logn).4 Entailment-based re�nementsWe now 
onsider the issue of entailment. LetE = nXi=1 aixi � bIf we know E as well as F then there are further interesting things we 
an try.Observe that if E � 0 then the 
onstraint is entailed and we need never 
onsiderit again (and need not maintain any information asso
iated with it).4.1 Basi
 Entailment Che
kWhen using basi
 two-pass propagation, during the �rst pass to 
ompute F , one
an also 
ompute E, thus enabling entailment to be dete
ted.



4.2 In
remental Entailment Dete
tionWhen using one of the sub-linear propagation te
hniques from Se
tion 3, we donot want to s
an the whole 
onstraint to 
he
k entailment as this would destroythe sub-linearity. To over
ome this, we 
an maintain E in mu
h the same wayas we 
an F , by monitoring the relevant bounds and adjusting E a

ordinglywhen they 
hange, keeping everything sub-linear.4.3 Short-Cir
uit Propagation (II)Next note that E + F =Xi Ii (6)Now suppose that we have \propagated" some set of variables T (updating Eappropriately), and that Xi2T Ii � E (7)Then we have that Xi62T Ii � FIn parti
ular, Ii � F; i 62 TThat is, we 
an skip propagating the rest of the 
onstraint be
ause none of theintervals are large enough to warrant adjusting.Another way of looking at it is that setting all the variables in T to their lowerbounds would result in the 
onstraint being entailed, and so for the remainingvariables all remaining elements of their domains are feasible (and hen
e 
annotbe pruned).Note that most bene�t 
an be derived from the 
ondition (7) if we 
onsiderthe variables with largest Ii �rst. As a heuristi
 we 
an sort the 
onstraint byde
reasing Ii when the 
onstraint is set up (as in Se
tion 3.4), and when prop-agating, 
onsider them in this order. The rationale is that the smaller intervalsat the end of the list 
annot get any larger, so while the large ones at the frontmay get smaller, any large ones must still be towards the front of the list.If one is also using redu
ed frequen
y propagation (Se
tion 3.3) and thus
a
hing maxj Ij , then it may be useful to start the propagation with the 
or-responding variable xj . In highly asymmetri
 
onstraints it may be that thisinterval alone is as large as E, meaning propagation 
an be stopped withoutlooking at any other variables.



pre-sort IjsF E Ijs heap Appli
able te
hniquesno no no no Basi
 two-pass propagationBasi
 entailment 
he
ksyes no no no Redu
ed freq. propagationShort-
ir
uit entailment 
he
ksyes yes no no Redu
ed freq. short-
ir
uit (II) propagationIn
remental entailment dete
tionyes no yes no Redu
ed freq. short-
ir
uit (I) propagationShort-
ir
uit entailment 
he
ksyes yes yes no Redu
ed freq. short-
ir
uit (I) & (II) propagationIn
remental entailment dete
tionyes yes no yes Perfe
t propagationIn
remental entailment dete
tionTable 1. Interesting 
ombinations of te
hniques and their requirements4.4 Short-Cir
uit EntailmentNote that we 
an also use (6) to derive a 
ondition whi
h allows us to short-
ir
uit entailment 
he
ks (assuming we are not maintaining E in
rementally).If we have pro
essed a set of variables T (during a propagation pass or expli
itentailment 
he
k) and we have Xi2T Ii > FThen we have that E >Xi62T Ii � 0and hen
e the 
onstraint 
annot be entailed.5 Dis
ussionTable 1 summarises the interesting 
ombinations of the te
hniques presented inthe earlier se
tions. We do not 
onsider the other 
ombinations interesting forthe following reasons:{ All the propagation approa
hes dis
ussed in this paper require F so that weknow whether or not a bound we are looking at requires updating (and if soby how mu
h). If we do not maintain it we must re
ompute it, whi
h is o(n);thus the basi
 two-pass method (also o(n)) is optimal if F is not maintained.{ If we are using a heap to manage the Ijs, then sin
e we need to 
he
k whetherthe heap needs adjusting on every bound update anyway, we might as wellmaintain E while we are at it: it is a 
onstant extra 
ost per upper bound
hange, and it allows us to stop maintaining F and the heap on
e entailmento

urs.



{ Pre-sorting the 
onstraint based on initial Ijs not useful if we are going tomaintain a heap.5.1 EquationsEquations 
ould of 
ourse be implemented using a pair of mat
hed inequalities.However, it is obvious that this 
ould be improved upon. To begin with, anequation is never entailed until all the variables have be
ome ground. Thus thereis no point 
he
king for entailment (on
e everything is ground, there is no workto save).Also, mu
h 
omputation 
an be shared between the two halves of the 
on-straint. For instan
e, if a heap is being used to manage the Ijs, then this heap is
ommon. Also, one half's E is the other half's F , so that options su
h as short-
ir
uit propagation (II) whi
h depend on E 
an be employed without in
urringany additional maintenan
e 
ost.There is room for further exploitation here, but this is beyond the s
ope ofthis paper.5.2 Heuristi
 Method Sele
tionIt may be possible to sele
t one of the above methods as being suitable for aparti
ular 
onstraint at the time the 
onstraint is set up. For example, 
onsiderPni=1 xi � k where ea
h xi has domain f0; 1g. If k is small then the 
onstraint istight, and it may not be worth 
he
king entailment: n� k upper bounds have tobe redu
ed to 0 before entailment o

urs, saving at most k 
he
ks of (5) on lowerbound 
hanges. On the other hand, if k is 
lose to n then it probably is worth
he
king entailment: it introdu
es only O(n � k) extra work but 
ould save upto k 
he
ks of (5).5.3 Spe
ialisationsIn a number of 
ases, further bene�t 
ould be obtained by spe
ialising the abovete
hniques. In parti
ular, pseudo-boolean 
onstraints seem good 
andidates forthis, as do 
onstraints with only unit 
oeÆ
ients.Some su
h spe
ialisations are obvious: for instan
e, if all 
oeÆ
ients are unitand all variables are boolean (meaning all intervals are of size 1) then thereis no point having a heap, and the same e�e
t 
an be a
hieved with a lower
omplexity data stru
ture (a list). Another 
ase, for booleans with arbitrary
oeÆ
ients, relates to the method presented in Se
tion 3.4: there is no need tore
ord the initial interval for ea
h variable, sin
e this is the same as the variable's
oeÆ
ient.5.4 Floating point 
onsiderationsIn prin
iple, all of the above te
hniques (ex
ept where noted) work for bothinteger and real 
oeÆ
ients and variables. However, if 
oating point numbers



are being used to approximate reals, then 
oating point issues must be takeninto a

ount. Primarily, this involves making sure the results of 
oating pointoperations are rounded appropriately, so that (for example) F and E are al-ways overestimated, so that (for example) bounds imposed are 
onservative andentailment is never dete
ted when it shouldn't have been.With the methods that update values in
rementally, the errors in these values
an in
rease as the 
omputation progresses. To maintain a

ura
y, the values 
anbe periodi
ally re-
omputed from s
rat
h.6 Future WorkFuture work in
ludes examining the open questions dis
ussed above. This willrequire further theoreti
al analysis of the alternative algorithms, as well as im-plementing some of the more interesting approa
hes. An evaluation based onthese implementations should then provide insight into whi
h te
hniques 
ouldbe useful under what 
ir
umstan
es.We would also like to do a 
omparison with other te
hniques for a
hievingbounds 
onsisten
y for linear 
onstraints, su
h as indexi
als.Referen
es1. Warwi
k Harvey and Peter J. Stu
key. Constraint representation for propagation.In Mi
hael Maher and Jean-Fran
ois Puget, editors, Pro
eedings of the Fourth In-ternational Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming |CP'98, LNCS 1520, pages 235{249. Springer, 1998.2. Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting andSear
hing. Addison-Wesley, se
ond edition, 1998.3. J-L. Lauri�ere. A language and a program for stating and solving 
ombinatorialproblems. Arti�
ial Intelligen
e, 10:29{127, 1978.4. W. J. Older and A. Velino. Constraint arithmeti
 on real intervals. In Fr�ed�eri
Benhamou and Alain Colmerauer, editors, Constraint Logi
 Programming: Sele
tedResear
h, pages 175{196. MIT Press, 1993.


