Bounds Consistency Techniques
for
Long Linear Constraints

Warwick Harvey and Joachim Schimpf

IC-Parc
Imperial College
Exhibition Road, London SW7 2AZ, UK
whQicparc.ic.ac.uk
j.schimpf@icparc.ic.ac.uk

Abstract. We present a number of techniques for efficiently achieving
bounds consistency for linear constraints with large numbers of variables.

1 Introduction

Bounds consistency is a popular technique in constraint programming over in-
tegers and reals [3,4]. In this paper we examine how to efficiently propagate a
linear constraint to achieve and maintain bounds consistency. Our techniques
are specifically aimed at constraints with many variables, typically achieving
bounds consistency in sub-linear time. We do not address the issue of a more
global view of a system of constraints, such as considering multiple constraints
simultaneously.

Except where noted, all the techniques apply to either real or integer vari-
ables, but see Section 5.4 for a discussion of floating point rounding issues.

This paper is organised as follows. In Section 2 we start by presenting some
notation and the bounds consistency algorithm from [1] on which we are improv-
ing. In Sections 3 and 4 we present some refinements to the basic propagation
technique. In Section 5 we discuss combinations of algorithms, point out some
pitfalls and suggest some areas for further investigation.

2 Basic Two-Pass Propagation

Suppose we wish to perform bounds propagation on a constraint

Zaiazi S b (1)
i=1

We assume for simplicity of exposition that the x; are distinct variables and that
a; > 0 for all 4. If the z; are not distinct then the propagation performed is likely
to be weaker than necessary, but no more so than with other approaches. If some

Copyright ©2002 IC-Parc, Imperial College, London SW7 2AZ. All rights reserved.



of the a; are negative then some signs, bounds, etc. will be swapped around but
otherwise it is the same.

For the current known lower (resp. upper) bound of the variable 2 we write
z (resp. T). For convenience we define the interval I; of variable x; (with respect

to a given constraint) as the contribution the variable makes to the “variability”
of the range of the LHS of (1), i.e.
I = a;(7T7 — x;)
Following (loosely) [1], let
F=0b- Z a;x; (2)
i=1

Then the bounds consistency condition for the constraint for any z; is

zj < sy T (3)
a;  —
Note that if F' < 0 then the constraint is unsatisfiable (failure).

As noted in [1], (2) and (3) allow us to compute all the bounds imposed by
the constraint in two passes over the constraint: one to compute F', and one to
compute the (upper) bounds.

In order to maintain bounds consistency, this computation needs to be re-
peated whenever one or more lower bounds have changed. What we do in the
following is to investigate cases where this computation step can be performed
in sub-linear time.

3 Refinements
The refinements in this section are based on the observation that if
T < — 4 x;
T ay

i.e.
L<F (4)

then z; is already bounds-consistent with respect to the constraint (c.f. (3)). In
particular, if

F > max1; (5)
J
then no bound updates will occur. Moreover, if it is not the case, then the
variables affected are exactly those for which the condition (4) is violated.
There are several ways we might try to exploit this. One is to try to detect
(cheaply) when no bound updates will occur. Another is to try to determine



(cheaply) which bounds need to be updated (which would yield the first case
if there are none). Of course neither of these approaches need be implemented
exactly: the right trade-off might be to use a (safe) approximation.

In order to achieve any significant benefit, any scheme ought to be able to
achieve bounds consistency with respect to the constraint in sub-linear time in
at least some cases; otherwise it will be at best a constant factor faster than basic
two-pass propagation. In particular this means we cannot afford to recompute
F every time we wish to propagate the constraint.

3.1 Maintaining F

F is actually quite easy to update incrementally: whenever the lower bound of
a relevant variable (say z;) is modified, simply adjust F' accordingly:

F:=F —aj(new(z;) — old(z;))

Note that the cost of maintaining this incrementally is linear in the number
of lower bound changes since the last time the constraint was propagated. It
is possible that this could be more than the number of the variables in the
constraint (making the cost super-linear). However, most solver implementations
already incur a cost for notifying each relevant constraint on every bound update
anyway (meaning that maintaining F' incurs at most a constant factor penalty).

3.2 Perfect Propagation

Consider the set of variables z; such that F' < I;. As noted earlier, these are
exactly the variables which need to be updated to achieve bounds consistency.
One way of quickly identifying these variables is to maintain a heap (priority
queue) for every constraint, with one heap entry for each variable z;, using the
corresponding interval sizes I; for ordering (largest I; on top). This heap gives
constant time access to the x; with the largest I;, and the variables needing a
bound update are those at the top of the heap. Indeed, if there are p variables
which need bound updates, these can be identified in o(p) time.

The heap is an auxiliary data structure associated with the constraint, and
maintained over the lifetime of the constraint, i.e. until the constraint is found
to be entailed or disentailed. The heap can be set up in linear time (see [2])
during constraint set-up, but obviously needs to be maintained as the I;s shrink
during the computation. Whenever this occurs (i.e. on every bound change), the
variable’s entry may need to be pushed down the heap, which is O(logn). These
update operations need to be undone on backtracking, which can be done with
the same (or perhaps better) complexity as the operations themselves.

Note that if the variables are real (non-integer) variables or the coefficients
are unit, then the heap does not even need re-balancing after propagation since
all the adjusted I;s are identical. If the variables are integer and have non-unit
coefficients, then any bound update which involved rounding may result in a
heap adjustment being necessary.



3.3 Reduced Frequency Propagation

The cost of maintaining the heap as discussed above may be prohibitively ex-
pensive. Fortunately, there are cheaper ways to exploit the condition (5). For
example, we can just cache the value of max; I; from the last time the con-
straint was propagated and use this as an approximation of the actual current
value of max; I;. As long as F' is no smaller than the cached value, no propa-
gation is necessary. When it is smaller, then it may still be that no propagation
is necessary, but we will not know without either recomputing max; I; or doing
the propagation. This technique allows us to skip the propagation in some cases
(regardless of whether this propagation was to be performed using the basic
two-pass method or one of the other techniques described below).

We expect this to be of most benefit when the constraint is slack; that is,
when F' is significantly larger than max; I;. In such situations, lower bounds (and
thus F') may be updated many times before F' becomes less than the cached value
of max; I;. Before that point, propagation is guaranteed not lead to any bound
updates and can therefore be skipped safely.

3.4 Short-Circuit Propagation (I)

Another technique, which would be most effective when the variables are boolean
and the coefficients vary, is to sort the constraint by decreasing I; when it is first
set up, recording this initial interval for each term. Then, when the constraint is
being propagated, once a term is reached which has recorded interval no larger
than F', there is no need to consider any remaining terms (because they are
all guaranteed to satisfy (4)) and the propagation process may stop. This is
particularly effective for booleans since a propagation pass fixes the values of
the variables for some prefix of the terms in the constraints, and these terms
do not need to be considered again: next time a propagation is required, it can
continue from where it left off. Note that this means such a constraint can be
propagated in O(n) time amortised over a forward execution of the constraint
— albeit after an initial setup time of O(nlogn).

4 Entailment-based refinements

We now consider the issue of entailment. Let

E:zn:(l,’l‘_lfb
i=1

If we know E as well as F' then there are further interesting things we can try.
Observe that if £ < 0 then the constraint is entailed and we need never consider
it again (and need not maintain any information associated with it).

4.1 Basic Entailment Check

When using basic two-pass propagation, during the first pass to compute F', one
can also compute E, thus enabling entailment to be detected.



4.2 Incremental Entailment Detection

When using one of the sub-linear propagation techniques from Section 3, we do
not want to scan the whole constraint to check entailment as this would destroy
the sub-linearity. To overcome this, we can maintain E in much the same way
as we can F', by monitoring the relevant bounds and adjusting E accordingly
when they change, keeping everything sub-linear.

4.3 Short-Circuit Propagation (II)
Next note that

E+F=ZL’ (6)

Now suppose that we have “propagated” some set of variables T' (updating E
appropriately), and that

ZL’ZE (7)

ieT

Then we have that

N L<F

igT

In particular,
I;<F, igT

That is, we can skip propagating the rest of the constraint because none of the
intervals are large enough to warrant adjusting.

Another way of looking at it is that setting all the variables in T' to their lower
bounds would result in the constraint being entailed, and so for the remaining
variables all remaining elements of their domains are feasible (and hence cannot
be pruned).

Note that most benefit can be derived from the condition (7) if we consider
the variables with largest I; first. As a heuristic we can sort the constraint by
decreasing I; when the constraint is set up (as in Section 3.4), and when prop-
agating, consider them in this order. The rationale is that the smaller intervals
at the end of the list cannot get any larger, so while the large ones at the front
may get smaller, any large ones must still be towards the front of the list.

If one is also using reduced frequency propagation (Section 3.3) and thus
caching max; I;, then it may be useful to start the propagation with the cor-
responding variable z;. In highly asymmetric constraints it may be that this
interval alone is as large as F, meaning propagation can be stopped without
looking at any other variables.



pre-sort Ijs
F E Is heap Applicable techniques

no no no no Basic two-pass propagation
Basic entailment checks
yes no no no Reduced freq. propagation
Short-circuit entailment checks
yes yes no no Reduced freq. short-circuit (II) propagation

Incremental entailment detection

yes 1no yes no Reduced freq. short-circuit (I) propagation
Short-circuit entailment checks
yes yes  yes no Reduced freq. short-circuit (I) & (II) propagation
Incremental entailment detection
yes yes no yes Perfect propagation
Incremental entailment detection
Table 1. Interesting combinations of techniques and their requirements

4.4 Short-Circuit Entailment

Note that we can also use (6) to derive a condition which allows us to short-
circuit entailment checks (assuming we are not maintaining E incrementally).
If we have processed a set of variables T' (during a propagation pass or explicit
entailment check) and we have

> ILi>F

€T
Then we have that
E>>"1;>0
igT

and hence the constraint cannot be entailed.

5 Discussion

Table 1 summarises the interesting combinations of the techniques presented in
the earlier sections. We do not consider the other combinations interesting for
the following reasons:

— All the propagation approaches discussed in this paper require F' so that we
know whether or not a bound we are looking at requires updating (and if so
by how much). If we do not maintain it we must recompute it, which is o(n);
thus the basic two-pass method (also o(n)) is optimal if F' is not maintained.

— If we are using a heap to manage the I;s, then since we need to check whether
the heap needs adjusting on every bound update anyway, we might as well
maintain F while we are at it: it is a constant extra cost per upper bound
change, and it allows us to stop maintaining F' and the heap once entailment,
occurs.



— Pre-sorting the constraint based on initial I;s not useful if we are going to
maintain a heap.

5.1 Equations

Equations could of course be implemented using a pair of matched inequalities.
However, it is obvious that this could be improved upon. To begin with, an
equation is never entailed until all the variables have become ground. Thus there
is no point checking for entailment (once everything is ground, there is no work
to save).

Also, much computation can be shared between the two halves of the con-
straint. For instance, if a heap is being used to manage the I;s, then this heap is
common. Also, one half’s E is the other half’s F', so that options such as short-
circuit propagation (II) which depend on E can be employed without incurring
any additional maintenance cost.

There is room for further exploitation here, but this is beyond the scope of
this paper.

5.2 Heuristic Method Selection

It may be possible to select one of the above methods as being suitable for a
particular constraint at the time the constraint is set up. For example, consider
>i, i < k where each z; has domain {0, 1}. If k is small then the constraint is
tight, and it may not be worth checking entailment: n — k upper bounds have to
be reduced to 0 before entailment occurs, saving at most & checks of (5) on lower
bound changes. On the other hand, if & is close to n then it probably is worth
checking entailment: it introduces only O(n — k) extra work but could save up
to k checks of (5).

5.3 Specialisations

In a number of cases, further benefit could be obtained by specialising the above
techniques. In particular, pseudo-boolean constraints seem good candidates for
this, as do constraints with only unit coefficients.

Some such specialisations are obvious: for instance, if all coefficients are unit
and all variables are boolean (meaning all intervals are of size 1) then there
is no point having a heap, and the same effect can be achieved with a lower
complexity data structure (a list). Another case, for booleans with arbitrary
coefficients, relates to the method presented in Section 3.4: there is no need to
record the initial interval for each variable, since this is the same as the variable’s
coefficient.

5.4 Floating point considerations

In principle, all of the above techniques (except where noted) work for both
integer and real coefficients and variables. However, if floating point numbers



are being used to approximate reals, then floating point issues must be taken
into account. Primarily, this involves making sure the results of floating point
operations are rounded appropriately, so that (for example) F and E are al-
ways overestimated, so that (for example) bounds imposed are conservative and
entailment is never detected when it shouldn’t have been.

With the methods that update values incrementally, the errors in these values
can increase as the computation progresses. To maintain accuracy, the values can
be periodically re-computed from scratch.

6 Future Work

Future work includes examining the open questions discussed above. This will
require further theoretical analysis of the alternative algorithms, as well as im-
plementing some of the more interesting approaches. An evaluation based on
these implementations should then provide insight into which techniques could
be useful under what circumstances.

We would also like to do a comparison with other techniques for achieving
bounds consistency for linear constraints, such as indexicals.

References

1. Warwick Harvey and Peter J. Stuckey. Constraint representation for propagation.
In Michael Maher and Jean-Francois Puget, editors, Proceedings of the Fourth In-
ternational Conference on Principles and Practice of Constraint Programming
CP’98, LNCS 1520, pages 235-249. Springer, 1998.

2. Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting and
Searching. Addison-Wesley, second edition, 1998.

3. J-L. Lauriéere. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10:29 127, 1978.

4. W. J. Older and A. Velino. Constraint arithmetic on real intervals. In Frédéric
Benhamou and Alain Colmerauer, editors, Constraint Logic Programming: Selected
Research, pages 175 196. MIT Press, 1993.



