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Chapter 1

Introduction

This tutorial provides an introduction to programming in EC LiPSe. It assumes a broad under-
standing of constrained optimisation problems, some backgund in mathematical logic and in
programming languages. The tutorial tries to cover most of he basic aspects of using ECIPS®:
underlying concepts, the programming language, library functionality and interaction with the
system.

A few topics have been left out of this tutorial and are coverel elsewhere: TheEmbedding
Manual explains how to embed ECL PS® applications into other software environments, and the
Visualisation Manual describes the use of the constraint visualisation facilites. All the features
described in this tutorial are documented in more detail in the ECL' PS® User Manual, Constraint
Library Manual and in particular the Reference Manual A methodology for developing large
scale applications with ECL'PS® is presented in the documentDeveloping Applications with
ECL'PS® by Simonis.

For an informal introduction to combinatorial optimisatio n and constraint programming see the
article |Constraint Programming® by Wallace. The most closely related books on the subject
are the textbook Programming with Constraints by Marriott and Stuckey [16] (which contains
ECL'PS® examples), and the seminal bookConstraint Satisfaction in Logic Programming [26]
by Van Hentenryck.

A small selection of textbooks on related subjects includesFoundations of Constraint Satisfac-
tion by Tsang [24], Model Building in Mathematical Programming by Williams [29] and Prolog
Programming for Arti cial Intelligence by Bratko [b].

References to more detailed documentation are marked likehis.

Notes that can be skipped on rst reading are marked like this.

Thttp://www.icparc.ic.ac.uk/eclipse/reports/handbook/handbook.ht ~ ml

1
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Chapter 2

Getting started with ECL  'PS®

2.1 How do | install the ECL  'PS® system?

Please see the installation notes that came with ECLPS®. For Unix/Linux systems, these are
in the Te README_UNPor Windows, they are in the Te README_WIN.TXT

Please note that choices made at installation time can a®ect ich options are available in the
installed system.

2.2 How do | read the online documentation?

Under Unix, use any HTML browser to open the Te doc/index.html in the ECL'PS? installa-
tion directory. Under Windows, select the menu entry Start/Programs/ECLiIPSe/Documentation

2.3 Howdo |l run my ECL 'PS® programs?

There are two ways of running ECL' PS® programs. The Trst is using tkeclipse , which provides
an interactive graphical user interface to the ECL'PS® compiler and system. The second is using
eclipse , which provides a more traditional command-line interface. We recommend you use
TKECL 'PS® unless you have some reason to prefer a command-line interfac

2.4 How do | use tkeclipse ?

2.4.1 Getting started

To start TKECL 'PS®, either type the command tkeclipse at an operating system command-
line prompt, or select TKECL'PS® from the program menu on Windows. This will bring up the

TKECL 'PS® top-level, which is shown in Figure2.7.

Note that help on TKECL 'PS® and its component tools is available from theHelp menu in the

top-level window.



File Tools

|eclipse é| : |lengthiL 40), write(hella)

run | more Yes

Results

|\ |7- length(L, 40), write(hello).
L = [ 633, 643, 647, 651, 655, 659, 663, 66T, &TL, &T5,
-J Tes (0.03s cpu)

A

OQutput and Etror Messages

lists. pl  compiled traceshle 6052 bytes in 0.00 seconds
hello

Figure 2.1: TKECL'PS® top-level

2.4.2 Compiling a program

From the File menu, select theCompile ... option. This will bring up a Te selection dialog.
Select the Te you wish to compile, and click on theOpenbutton. This will compile the Te and
any others it depends on. Messages indicating which Tes haveeen compiled and describing
any errors encountered will be displayed in the bottom porton of the TKECL'PS® window
(Output and Error Messages).

If a Te has been modi ed since it was compiled, it may be recomged by clicking on the make
button. This recompiles any les which have become out-of-date

For more information on program compilation and the compiler, please seerhe Compiler
chapter in the user manual.
2.4.3 Executing a query

To execute a query, rst enter it into the Query Entry text eld. You will also need to specify
which module the query should be run from, by selecting the apropriate entry from the drop-
down list to the left of the Query Entry eld. Normally, the default selection of eclipse will

4



be Te; this will allow access to all ECL'PS® built-ins and all predicates that have not explicitly
been compiled into a di®erent module. Selecting another mode for the query is only needed
if you wish to call a predicate which is not visible from the eclipse module, in which case you
need to select that module.

For more information about the module system, please see thModule System chapter in
the user manual.

To actually execute the query, either hit the Enter key while editing the query, or click on the
run button. TKECL 'PS® maintains a history of commands entered during the sessiorand these
may be recalled either by using the drop-down list to the right of the Query Entry eld, or by
using the up and down arrow keys while editing theQuery Entry eld.

If ECL'PS® cannot nd a solution to the query, it will print Noin the Results section of the
TKECL 'PS® window. If it ‘nds a solution and knows there are no more, it will print it in the
Results section, and then print Yes If it nds a solution and there may be more, it will print
the solution found as before, print More and enable the more button. Clicking on the more
button tells ECL 'PS® to try to 'nd another solution. In all cases it also prints the t otal time
taken to execute the query.

Note that a query can be interrupted during execution by clicking on the interrupt  button.

2.4.4 Editing a Te

If you wish to edit a Te (e.g. a program source Ie), then you may do so by selecting the
Edit ... option from the File menu. This will bring up a Te selection dialog. Select the Te

you wish to edit, and click on the Openbutton.

When you have nished editing the Te, save it. After you've saved it, if you wish to update the

version compiled into ECL'PS® (assuming it had been compiled previously), simply click onthe

makebutton.

You can change which program is used to edit your Te by using tke TKECL'PS® Preference
Editor, available from the Tools menu. Alternatively you can use your editor seperately from
ECL'PSE.

2.4.5 Debugging a program

To help diagnose problems in ECLLPS® programs, TKECL'PS® provides the tracer. Itis activated
by selecting the Tracer option from the Tools menu. The next time a goal is executed, the
tracer window will become active, allowing you to step through the program's execution and
examine the program's state as it executes. A full example igjiven in chapter/E.

2.4.6 Getting help

More detailed help than is provided here can be obtained ontie for all the features of TKECL' PSE.
Simply select the entry from the Help menu on TKECL' PS®'s top-level window which corresponds
to the topic or tool you are interested in.

Detailed documentation about all the predicates in the ECL'PS® libraries can be obtained
through the Library Browser and Help tool. This tool allows you to browse the online help for

5



the ECL'PS® libraries. On the left is a tree display of the libraries avaiable and the predicates
they provide.

2 Double clicking on a node in this tree either expands it or cdbpses it again.
2 Clicking on an entry displays help for that entry to the right .

2 Double clicking on a word in the right-hand pane searches for élp entries containing that
string.

You can also enter a search string or a predicate speci catioomanually in the text entry box

at the top right. If there is only one match, detailed help for that predicate is displayed. If
there are multiple matches, only very brief help is display& for each; to get detailed help, try
specifying the module and/or the arity of the predicate in the text “eld.

Alternatively, you can call the help/1 predicate in the query window (which contains the same
information as the HTML Reference Manual). It has two modes d operation. First, when a
fragment of a built-in name is speci ed, a list of short descrigions of all built-ins whose name
contains the speci ed string is printed. For example,

?- help(write).

will print one-line descriptions about write/1 , writeclause/2 , etc. When a unique speci cation
is given, the full description of the speci ed built-in is displayed, e.g. in

?- help(write/1).
or

?- help(ic:alldifferent/1).

2.4.7 Other tools

TKECL 'PS® comes with a number of useful tools. Some have been mentionethove, but here is
a more complete list. Note that we only provide brief descrigions here; for more details, please
see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code ad have it compiled. This is useful
for quick experimentation, but not for larger examples or programs you wish to keep, since the
source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source és have been compiled in the
current ECL'PS® session. You can select les to edit them, or compile them indiidually, as well
as adding new les.



Predicate Browser

This tool allows you to browse through the modules and prediates which have been compiled
in the current session. It also lets you alter some propertie of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicatesselected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allwing a spy point to be placed on the
predicate and the source code viewed.

Inspector

This tool provides a graphical browser for inspecting terms Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded blouble-clicking. A navigation

panel can be launched which provides arrow buttons as an alteative way to navigate the tree.

Note that while the inspector window is open, interaction with other TKECL 'PS® windows is dis-
allowed. This prevents the term from changing while being irspected. To continue TKECL' PS®,

the inspector window must be closed.

Global Settings

This tool allows the setting of some global °ags governing theway ECL!PS® behaves. See also
the documentation for the set_°ag/2 and get_°ag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usag of the ECL'PS® system, up-
dated at regular intervals. See also the documentation for he statistics/0O and statistics/2
predicates.

Preference Editor

This tool allows you to edit and set various user preferencesThis include parameters for how
TKECL 'PS® will start up, e.g. the amount of memory it will be able to use, and a initial
query to execute; and parameters which a®ects the appearanoé TKECL ' PS®, such as the fonts
TKECL 'PS® uses and which editor it launches.

2.5 How do | make things happen at compile time?

A Te being compiled may contain queries. These are goals preded by either the symbol \?-"
or the symbol \:-". As soon as a query or command is encounteredh the compilation of a Te,
the ECL'PS® system will try to satisfy it. Thus by inserting goals in this fashion, things can be
made to happen at compile time.



In particular, a Te can contain a directive to the system to compile another Te, and so large
programs can be split between Tes, while still only requiring a single simple command to compile
them. When this happens, ECLPS® interprets the pathnames of the nested compiled Tes
relative to the directory of the parent compiled Te; if, for e xample, the user calls

[eclipse 1]: compile('src/pl/prog’).
and the Te src/pl/prog.pl contains a query
- [partl, part2].

then the system searches for the Tepartl.pl and part2.pl in the directory src/pl and notin
the current directory. Usually larger ECL'PS® programs have one main TTe which contains only
commands to compile all the subTes. In ECLPS? it is possible to compile this main Te from
any directory. (Note that if your program is large enough to warrant breaking into multiple Tes
(let alone multiple directories), it is probably worth turn ing the constituent components into
modules.)

See sectiori 4.10 for more information about modules.

2.6 How do | use ECL 'PS® libraries in my programs?

A number of Tes containing library predicates are supplied with the ECL 'PS® system. They
are usually installed in an ECL'PS® library directory. These predicates are either loaded aute
matically by ECL 'PS® or may be loaded \by hand".

During the execution of an ECL'PS® program, the system may dynamically load Tes containing
library predicates. When this happens, the user is informedy a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use_module/l
predicates. E.g. to load the library calledlists , use one of the following goals:

- lib(lists)
.- use_module(library(lists))

This will load the library "Te unless it has been already loaded. In particular, a program can
ensure that a given library is loaded when it is compiled, by hcluding an appropriate directive
in the source, e.g.:- lib(lists).

2.7 Other tips

2.7.1 Recommended le names

It is recommended programming practice to give the Prolog saorce programs the sutx .pl, or
.ecl if it contains ECL'PS® specic code. It is not enforced by the system, but it simplies
managing the source programs. Thecompile/l predicate automatically adds the sutx to the
“Tename, so that it does not need to be speci ed; if the literal Tename can not be found, the
system tries appending each of the valid sutxes in turn and tries to nd the resulting Tename.



Chapter 3

Prolog Introduction

3.1 Terms and their data types

Prolog data (terms ) and programs are built from a small set of simple data-types.In this section,
we introduce these data types together with their syntax (their textual representations). For
the full syntax see the User Manual appendix on Syntax.

3.1.1 Numbers

Numbers come in several *avours. The ones that are familiar fom other programming languages
are integers and °oating point numbers. Integers in ECLPS® can be as large as ts into the
machine's memory:

123 0 -27 3492374892749289174
Floating point numbers (represented as IEEE double °oats) ae written as
0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECL'PS® provides two additional numeric types, rationals and bounded reals. ECL'PS® can do
arithmetic with all these numeric types.
Note that performing arithmetic requires the use of theis/2 predicate:

?- Xis 3 + 4.
X =17
Yes

If one just uses=/2 , ECL'PS® will simply construct a term corresponding to the arithmeti c
expression, and will not evaluate it:

?2-X =3+ 4
X=3+4
Yes

For more details on numeric types and arithmetic in general se the User Manual chapter on
Arithmetic.

For more information on the bounded real numeric type, see Chpter 9.
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3.1.2 Strings

Strings are a representation for arbitrary sequences of bys and are written with double quotes:

"hello"
"l am a string!"
"string with a newline \n and a null \O00 character"

Strings can be constructed and partitioned in various ways sing ECL'PS® primitives.

3.1.3 Atoms

Atoms are simple symbolic constants, similar to enumeratio type constants in other languages.
No special meaning is attached to them by the language. Syntically, all words starting with
a lower case letter are atoms, sequences of symbols are atgrasd anything in single quotes is
an atom:

atom quark 486 -*- ?7?? ‘'Atom' ‘an atom'

3.1.4 Lists

A list is an ordered sequence of (any number of) elements, ela®f which is itself a term. Lists
are delimited by square brackets [ ] ), and elements are separated by a comma. Thus, the
following are lists:

[1,2,3]
[london, cardiff, edinburgh, belfast]
['hello", 23, [1,2,3], london]

A special case is the empty list (sometimes callediil), which is written as

I

A list is actually composed of head-and-tail pairs, where the lead contains one list element, and
the tail is itself a list (possibly the empty list). Lists can be written as a[Head|Tail] pair, with
the head separated from the tail by the vertical bar. Thus the list [1,2,3] can be written in
any of the following equivalent ways:

[1,2,3]
[11[2,3]]
[1][2][31]]
[L1[2][3]011

The last line shows that the list actually consists of 3[Head|Tail] pairs, where the tail of the
last pair is the empty list. The usefulness of this notation is that the tail can be a variable
(introduced below): [1|Tail] , which leaves the tail unspeci ed for the moment.
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3.1.5 Structures

Structures correspond to structs or records in other languges. A structure is an aggregate of a
“xed number of components, called itsarguments Each argument is itself a term. Moreover, a
structure always has a name (which looks like an atom). The caonical syntax for structures is

<name>(<arg> _1,...<arg> _n)
Valid examples of structures are:

date(december, 25, "Christmas")
element(hydrogen, composition(1,0))
flight(london, new_york, 12.05, 17.55)

The number of arguments of a structure is called itsarity. The name and arity of a structure are
together called its functor and is often written as name/arity . The last example above therefore
has the functor flight/4

See section 4.1 for information about de ning structures with named "elds.

Operator Syntax

As a syntactic convenience, unary (1-argument) structures an also be written in pre x or post x
notation, and binary (2-argument) structures can be written in in x notation, if the programmer
has made an appropriate declaration (called anoperator declaration) about its functor. For
example if plus/2 were declared to be an in x operator, we could write:

1 plus 100
instead of
plus(1,100)

It is worth keeping in mind that the data term represented by t he two notations is the same,
we have just two ways of writing the same thing. Various logi@l and arithmetic functors are
automatically declared to allow operator syntax, for examgde +/2, not/1 etc.

Parentheses

When pre X, in X and post x notation is used, it is sometimes necessary to write extra paren-
theses to make clear what the structure of the written term is meant to be. For example to
write the following nested structure

+(*(3,4), 5)
we can alternatively write
3*4+5

because the star binds stronger than the plus sign. But to wtie the following di®erently nested
structure

11



Numbers ECL'PSPhasintegers, °oats, rationals and bounded reals
Strings Character sequences in double quotes.
Atoms Symbolic constants, usually lower case or in single quotes.

Lists Lists are constructed from cells that have an arbitrary head and a tail which is
again a list.

Structures  Structures have a name and a certain numberdrity ) of arbitrary arguments.
This characteristic is called the functor, and written name/arity.

Figure 3.1: Summary of Data Types

*(3, +(4, 5)
in in x-notation, we need extra parentheses:
3* (@4 +5)

A full table of the prede ned pre x, in X and post x operators wit h their relative precedences
can be found in the appendix of the User Manual.

3.2 Predicates, Goals and Queries

Where other programming languages have procedures and futions, Prolog and ECL'PS® have
predicates A predicate is something that has a truth value, so it is simiar to a function with

a boolean result. A predicatede nition simply de nes what is true. A predicate invocation (or
call) checks whether something is true or false. A simple examplés the predicate integer/1,
which has a built-in de nition. It can be called to check whether something is an integer:

integer(123) is true
integer(atom) is false
integer([1,2]) is false

A predicate call like the above is also called ggoal A starting goal that the user of a program
provides is called aquery. To show queries and their results, we will from now on use the
following notation:

?- integer(123).
Yes.
?- integer(atom).
No.
?- integer([1,2]).
No.

A query can simply be typed at the eclipse prompt, or entered mto the query “eld in a tkeclipse
window. Note that it is not necessary to enter the ?- pre x. On a console input, is however
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necessary to terminate the query with a full-stop (a dot folloved by a newline). After executing
the query, the system will print one of the answersYes or No.

3.2.1 Conjunction and Disjunction

Goals can be combined to form conjunctions (AND) or disjuncions (OR). Because this is so
common, Prolog uses the comma for AND and the semicolon for ORThe following shows two
examples of conjunction, the rst one is true because both cguncts are true, the second is false:

?- integer(5), integer(7).
Yes.

?- integer(5), integer(hello).
No.

In contrast, a disjunction is only false if both disjuncts are false:

?- ( integer(hello) ; integer(5) ).
Yes.

?- ( integer(hello) ; integer(world) ).
No.

As in this example, it is advisable to always surround disjurctions with parentheses. While not
strictly necessary in this example, they are often requiredo clarify the structure.

In practice, when answering queries with disjunctions, thesystem will actually give a separate
Yes answer for every way in which the query can be satis ed (i.e. poven to be true). For
example, the following disjunction can be satis ed in two ways, therefore system will give two
Yes answers:

?- ( integer(5) ; integer(7) ).
Yes (0.00s cpu, solution 1, maybe more)
Yes (0.02s cpu, solution 2)

The second answer will only be given after the user has explitely asked for more solutions.
Sometimes the system cannot decide whether an answer is thast one. In that case, asking for
more solutions may lead to an alternativeNo answer, like in the following example:

?- ( integer(5) ; integer(hello) ).
Yes (0.00s cpu, solution 1, maybe more)
No (0.02s cpu)

Of course, as long as there was at least onées answer, the query as a whole was true.

3.3 Uni cation and Logical Variables

3.3.1 Symbolic Equality

Prolog has a particularly simple idea ofequality , namely structural equality by pattern match-
ing. This means that two terms are equal if and only if they hawe exactly the same structure.
No evaluation of any kind is perfomed on them:
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?- 3
Yes.
?- 3
No.
?- hello
Yes.

?- hello
No.

?- foo(a,2) = foo(a,2).
Yes.

?- foo(a,2)
No.

?- foo(a,2)
No.

?- foo(3,4)
No.

?- +(3,4)
No.
?-3+4
No.

I
w

I
B

hello.

I
w

foo(b,2).

foo(a,2,c).

7.

I
N

I
N

Note in particular the last two examples (which are equivalent): there is no automatic arithmetic
evaluation. The term +(3,4) is simply a data structure with t wo arguments, and therefore of
course di®erent from any number.

Note also that we have used the built-in predicate =/2, which exactly implements this idea of
equality.

3.3.2 Logical Variables

So far we have only performed tests, giving only Yes/No restis. How can we compute more
interesting results? The solution is to introduce Logical Variables. It is very important to
understand that Logical Variables are variables in the mathematical sense, not in the usual
programming language sense. Logical Variables are simplylgceholders for values which are not
yet known, like in mathematics. In conventional programming languages on the other hand,
variables are labels for storage locations. The important @®erence is that the value of a logical
variables is typically unknown at the beginning, and only becomes known in the course of the
computation. Once it is known, the variable is just an alias for the value, i.e. it refers to a term.
Once a value has be assigned to a logical variable, it remainxed and cannot be assigned a
di®erent value.

Logical Variables are written beginning with an upper-case étter or an underscore, for example

X Var Quark 123 R2D2

If the same name occurs repeatedly in the same input term (e.gthe same query or clause), it
means the same variable.
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Predicate Something that is true or false, depending on its de nition ard its arguments.
De nes a relationship between its arguments.

Goal A logical formula whose truth value we want to know. A goal canbe a conjunction
or disjunction of other (sub-)goals.

Query The initial Goal given to a computation.

Uni cation  An extension of pattern matching which can bind logical variables (place-
holders) in the matched terms to make them equal.

Clause One alternative de nition for when a predicate is true. A clause is logically an
implication rule.

Figure 3.2: Basic Terminology

3.3.3 Uni cation

With logical variables, the above equality tests become mule more interesting, resulting in the
concept of Uni cation . Uni cation is an extension of the idea of pattern matching of two terms.
In addition to matching, uni cation also causes the binding (instantiation, aliasing) of variables
in the two terms. Uni cation instantiates variables such that the two uni ed terms become
equal. For example

X =7 is true with X instantiated to 7
X=Y is true with X instantiated to Y (or vice versa)
foo(X) = foo(7) is true with X instantiated to 7

foo(X,Y) = foo(3,4) is true with X instantiated to 3 and Y to 4
foo(X,4) = foo(3,Y) is true with X instantiated to 3 and Y to 4
foo(X) = foo(Y) is true with X instantiated to Y (or vice versa )
foo(X,X) = foo(3,4) is false because there is no possible val ue for X

3.4 De ning Your Own Predicates

3.4.1 Comments

Since we will annotate some of our programs, we rst introducehe syntax for comments. There
are two types:

Block comment The comment is enclosed between the delimiterg® and */ . Such comments
can span multiple lines, and may be conveniently used to coment out unused code.

Line comment Anything following and including ' % in a line is taken as a comment (unless
the '% character is part of a quoted atom or string).
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3.4.2 Clauses and Predicates

Prolog programs are built from valid Prolog data-structures. A program is a collection of
predicates and a predicate is a collection ofclauses

The idea of a clause is to de ne that something is true. The simfest form of a clause is the
fact. For example, the following two are facts:

capital(london, england).
brother(fred, jane).

Syntactically, a fact is just a structure (or an atom) termin ated by a full stop.
Generally, a clause has the form

Head :- Body.

where Head s a structure (or atom) and Body is a Goal, possibly with conjunctions and disjunc-
tions like the query discussed above. The following is a clae

uncle(X,Z) :- brother(X,Y), parent(Y,Z).

Logically, this can be read as a reverse implication
uncle(X;Z) A brother(X;Y ) ” parent(Y;Z)
or, more precisely
8X 8Z :uncle(X;Z) A9 Y :brother(X;Y )~ parent(Y;Z)

stating that uncle(X,Z) is true if brother(X,Y) and parent( Y,Z) are true. Note that a fact is
equivalent to a clause where the body igrue :

brother(fred, jane) :- true.

One or multiple clauses with the same head functor (same namend number of arguments)
together form the de nition of a predicate. Logically, multiple clauses are read as a djisnction,
i.e. they de ne alternative ways in which the predicate can betrue. The simplest case is a
collection of alternative facts:

parent(abe, homer).
parent(abe, herbert).
parent(homer, bart).
parent(marge, bart).
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The following de nes the ancestor/2 predicate by giving two dternative clauses (rules):

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z).

Remember that a clause can be read logically, with the- taking the meaning of implication,
and the comma separating goals read as a conjunction. The local reading for several clauses
of the same predicate is disjunction between the clauses. Sbe rst ancestor rule above states
that if X is a parent of Y, then this implies that X is an ancestor of Y. The second rule, which
speci es another way X can be an ancestor of Y states that if somother person, Z, is the parent
of Y, and X is an ancestor of Z, then this implies that X is also an ancesir of Y.

It is also important to remember that the scope of a variable rame only extends over the
clause in which it is in, so any variables with the same name irthe same clause refer to
the same variable, but variables which occur in di®erent clases are di®erent even if they
have been written with the same name.

3.5 Execution Scheme

3.5.1 Resolution

Resolution is the computation rule used by Prolog. Given a seof facts and rules as a program,
execution begins with a query, which is an initial goal that is to be resolved. The set of goals
that still have to be resolved is called theresolvent

Consider again theancestor/2 and parent/2 predicate shown above.

ancestor(X,Y) :- parent(X,Y). % clause 1
ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z). % clause 2

parent(abe, homer). % clause 3
parent(abe, herbert). % clause 4

parent(homer, bart). % clause 5
parent(marge, bart). % clause 6

Program execution is started by issuing a query, for example
?- ancestor(X, bart).

This is our initial resolvent. The execution mechanism is nev as follows: In our example, the
Prolog system would attempt to unify ancestor(X, bart)  with the program's clause heads.
Both clauses of theancestor/2 predicate can unify with the goal, but the textually rst clau se,
clause 1, is selected rst, and successfully uni ed with the gal:
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1. Pick one (usually the leftmost) goal from the resolvent. F the resolvent is empty,
stop.

2. Find all clauses whose head successfully uni es with thisaal. If there is no such
clause, go to step 6.

3. Select the rst of these clause. If there are more, remembehe remaining ones. This
is called achoice point

4. Unify the goal with the head of the selected clause. (this ray instantiate variables
both in the goal and in the clause's body).

5. Pre x this clause body to the resolvent and go to 1.

6. Backtrack: Reset the whole computation state to how it waswhen the most recent
choice point was created. Take the clauses remembered in thichoice point and go
to 3.

Figure 3.3: Execution Algorithm

Goal (Query): ancestor(X,bart)

Selected: clause 1
Unifying: ancestor(X,bart) = ancestor(X1,Y1)
results in: X=X1, Yl=bart

New resolvent: parent(X, bart)
More choices: clause 2

The body goal of clause Jparent(X, bart) is added to the resolvent, and the system remembers
that there is an untried alternative { this is referred to as a choice-point

In the same way,parent(X, bart) is next selected for uni cation. Clauses 5 and 6 are possible
matches for this goal, with clause 5 selected rst. There are a body goals to add, and the
resolvent is now empty:

Goal: parent(X, bart)

Selected: clause 5

Unifying: parent(X,bart) = parent(homer,bart)
results in: X = homer

New resolvent:
More choices: clause 6, then clause 2

The execution of a program completes successfully when theris an empty resolvent. The
program has thus found the rst solution to the query, in the form of instantiations to the
original Query's variables, in this caseX = homer ECL'PS® returns this solution, and also asks
if we want more solutions:

?- ancestor(X,bart).
X = homer More? (;)
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Responding with ;' will cause ECL'PS® to try to "nd alternative solutions by backtracking to

the most recent choice-point, i.e. to seek an alternative tgparent/2 . Any bindings done during

and after the selection of clause 5 are undone, i.e. the bindg of X to homeris undone. Clause
6 is now uni ed with the goal parent(X,Y) , which again produces a solution:

Goal: parent(X, bart)

Selected: clause 6

Unifying: parent(X,bart) = parent(marge,bart)
results in: X = marge

New resolvent:
More choices: clause 2

If yet further solutions are needed, then ECL' PS® would again backtrack. This time, parent/2
no longer has any alternatives left to unify, so the next olde choice-point, the one made for
ancestor/2 , is the one that would be considered. The computation is retuned to the state it
was in just before clause 1 was selected, and clause 2 is uni &dth the query goal:

Goal: ancestor(X,bart)

Selected: clause 2

Unifying: ancestor(X,bart) = ancestor(X1,Y1)
results in: Y1 = bart, X1 = X

New resolvent: parent(Z1, bart), ancestor(X1, Z1)
More choices:

For the 'rst time, there are more than one goal in the resolvent the leftmost one, par-
ent(Z1,bart) is then selected for uni cation. Again, clauses 5 and 6 are catidates, and a
new choice-point is created, and clause 5 tried “rst.

Goal: parent(Z1, bart)

Selected: clause 5

Unifying: parent(Z1, bart) = parent(homer, bart)
results in: Z1 = homer

New resolvent;: ancestor(X1, homer)
More choices: clause 6

Eventually, after a few more steps (via nding the ancestor of homey, this leads to a new
solution, with abe returned as an ancestor ofbart :

?- ancestor(X,bart).
X = abe More? (;)

If yet more solutions are requested, then because only one pent for homeris given by the

program, ECL'PS® would backtrack to the only remaining choice-point, unifying clause 6 is
uni ed with the goal, binding Z1 to marge However, no ancestor formarge can be found,

because no parent ofmargeis speci ed in the program. No more choice-points remains to be
tried, so the execution terminates.
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3.6 Partial data structures

Logical variables can occur anywhere, not only as argument®f clause heads and goals, but
also within data structures. A data structure which contains variables is called a partial data
structure, because it will eventually be completed by subsituting the variable with an actual
data term. The most common case of a partial data structure isa list whose tail is not yet
instantiated.

Consider rst an example where no partial lists occur. In the Pllowing query, a list is built
incrementally, starting from its end:

?- L1 =[], L2 = [c|L1], L3 = [b|L2], L4 = [alL3].

L1 =1]

L2 = [c]

L3 = [b, c]
L4 = [a, b, ]

Whenever a new head/tail cell is created, the tail is alreadyinstantiated to a complete list.
But is is also possible to build the list from the front. The following code, in which the goals
have been reordered, gives the same nal result as the code al®

?- L4 = [a|L3], L3 = [b|L2], L2 = [c|L1], L1 = [].

L1 =1]

L2 = [c]

L3 = [b, c]
L4 = [a, b, ]

However, in the course of the computation, variables get inantiated to 'partial lists", i.e. lists
whose head is known, but whose tail is not. This is perfectly égal: due to the nature of the
logical variable, the tail can be Tled in later by instantiat ing the variable.

3.7 More control structures

3.7.1 Disjunction

Disjunction is normally speci ed in Prolog by di®erent clauses of a predicate, but it can also be
speci ed within a single clause by the use of/2 . For example,

atomic_particle(X) :- (X = proton ; X = neutron ; X = electron)

This is logically equivalent to:

atomic_particle(proton).
atomic_particle(neutron).
atomic_particle(electron).
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3.7.2 Conditional

Conditionals can be speci ed using the->/2 operator. In combination with ;/2 , a conditional

similar to “if-then-else' constructs of conventional langu@e can be constructed:X->Y;Z, where
X, Y and Z can be one or more goals, means that iKis true, then Y will be executed, otherwise
Z. Only the rst solution of Xis explored, so that on backtracking, no new solutions forX will

be tried. In addition, if X succeeds, then the “else' partZ will never be tried. If Xfails, then the
“then' part, Y, will never be tried. An example of “if-then-else' is:

max(X,Y, Max) :-
number(X), number(Y),
X >Y -> Max = X ; Max =Y).

where Maxis the bigger of the numbersX or Y. Note the use of the brackets to make the scope
of the if-then-else clear and correct.

3.7.3 Call

One feature of Prolog is the equivalence of programs and dat@both are represented as terms.
The predicate call allows program terms (i.e. data) to be treated as goalscall(X) will cause
Xto be treated as a goal and executed. Although at the time wherthe predicate is executed,
X has to be instantiated, it does not need to be instantiated (o even known) at compile time.
For example, it is possible to de ne disjunction (;) as follows:

X ;Y - call(X).
X ;Y - call(Y).

3.7.4 All Solutions

In the pure computational model of Prolog, alternative solutions are computed one-by-one on
backtracking. Only one solution is available at any time, while previous solutions disappear on
backtracking:

?- weekday(X).
X = mo

More

X =1tu

More

X = we

More

Sometimes it is useful to have all solution together in a list This can be achieved by using one
of the all-solutions predicates ndall/3, setof/3 or bagof/3:
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?- findall(X, weekday(X), List).
X=X

List = [mo, tu, we, th, fr, sa, su]
Yes

For the di®erences between "ndall/3, setof/3 and bagof/3 seelie ECL' PS® Reference Manual.

3.8 Using Cut

Cut (written as !) prunes away part of the Prolog search-space. This can be a wempowerful
mechanism for improving the performance of programs, and ean the suppression of unwanted
solutions. However, it can also be easily misused and over-ed.

Cut does two things:

commit Disregard any later clauses for the predicate.

prune Throw away all alternative solutions to the goals to the left of the cut.

3.8.1 Commit to current clause

Consider the following encoding of the \minimum” predicate:

min(X,Y, Min) :- X <Y, Min
min(X,Y, Min) :- Y=<X, Min

non
<X

Whilst logically correct, the behaviour of this encoding is non-optimal for two reasons. Consider
the goal :- min(2,3,M) . Although the “rst clause succeeds, correctly instantiating M to 2,
Prolog leaves an open choice point. If these clauses and gaatcur as part of a larger program
and goal, a failure might occur later, causing backtracking Prolog would then, vainly, try to
“nd another minimum using the second clause fomin. Firstly the open choice point costs space,
and the secondly the unsuccessful evaluation of the secondacise costs execution time.

To achieve the same logic, but more excient behaviour, the prgrammer can introduce acut.
For example min is typically encoded as follows:

min(X,Y, Min) :- X<Y, !, Min = X.
min(X,Y, Y).

The cut removes the unnecessary choice point and test.

3.8.2 Prune alternative solutions

A cut may occur anywhere where a goal may occur, consider theofiowing:
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first_prime(X, P) :-
prime(X,P), .

wherefirst_prime  returns the rst prime number smaller than X In this case, it calls a predicate
prime/2 , which generates prime numbers smaller tharX, starting from the largest one. The e®ect
of the cut here is to prune away all the remaining solutions toprime(X,P) once the rst one is
generated, so that on backtracking,prime(X,P) is not tried for alternative solutions. The cut
will also commit the execution to this clause forfirst_prime/2 |, but as there is only one clause,
this has no visible e®ect.

3.9 Common Pitfalls

Prolog is di®erent from conventional programming languagesand a common problem is to
program Prolog like a conventional language. Here are somegnts to note:

2 Uni cation is more powerful than normal case discrimination (see sectiori 3.9.1);

2 Prolog procedure calls are more powerful than conventionaprocedure calls. In particular,
backtracking is possible (see section 3.9.2);

3.9.1 Uni cation works both ways

One common problem is to write a predicate expecting certaininstantiation patterns for the
arguments, and then get unexpected results when the argumes do not conform to the expected
pattern. An example is the member relation, intended to chek if an item Item is a member of
a list or not. This might be written as:

member(ltem, [ltem|_]).
member(ltem, [_|List]) :- member(ltem, List).

The expected usage assumes bottem and the list are ground. In such cases, the above predicate
does indeed check iftem occurs in the list given as a second argument. However, if dier of the
arguments are not ground, then potentially unexpected behsgiour might occur. Consider the
case whereltem is a variable, then the above predicate will enumerate the edments of the list
successively through backtracking. On the other hand, if ag of the list elements of the list is
a variable, they would be uni ed with Item. Other instantiation patterns for either arguments
can produce even more complex results.

If the intended meaning is simply to check ifltem is a member of a list, this can be done by:

% is_member(+Element, +List)
% check if Element is an element that occurs in a List of
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% ground elements
is_member(ltem, [Element|_]) :- Item == Element.
is_member(ltem, [_|List]) :- nonvar(List), is_member(lt em, List).

Note the use of comments to make clear the intention of the usef the predicate. The convention
used is that “+' indicates that an argument should be instantiated (i.e. not a variable), “-' for an
argument that should be an uninstantiated variable, and '?' indicates that there is no restrictions
on the mode of the argument.

3.9.2 Unexpected backtracking

Remember that when coding in Prolog, any predicatemay be backtracked into. So correctness
in Prolog requires:

2 Predicate returns the correct answer when rst called.

2 Predicate behaves correctly when backtracked into.

Recall that backtracking causes alternative choices to be xplored, if there are any. Typically
another choice corresponds to another clause in the poredite de nition, but alternative choices
may come from disjunction (see above) or built-in predicateswith multiple (alternative) solu-
tions. The programmer should make sure that a predicate willonly produce those solutions that
are wanted. Excess alternatives can be removed by coding therogram not to produce them,
or by the cut, or the conditional.

For example, to return only the rst member, in the is_member/2 example, the predicate can
be coded using the cut, as follows:

is_member(ltem, [Element|_]) :- Item == Element, !.
is_member(ltem, [_|List]) :- nonvar(List), is_member(lt em, List).

Using conditional

Another way to remove excess choice points is the conditiona

is_member(ltem, [Element|List]) :-
( Item == Element ->
true

nonvar(List), is_member(ltem, List)
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3.10 Exercises

1. Consider again the \family tree" example (see Sectiori 3.2). As well as the parent/2
predicate, suppose we have anale/l predicate as follows:

male(abe).
male(homer).
male(herbert).
male(bart).

De ne a brother/2 predicate, expressed just in terms ofparent/2 and male/l1. Make
sure Homer is not considered his own brother.

2. Consider the following alternative de nition of ancestor/2 :

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).

What is wrong with this code? What happens if you use it to nd out who Bart is an
ancestor of?
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Chapter 4

ECL 'PS®€ Programming

4.1 Structure Notation

In ECL'PS®, structure “elds can be given names. This makes it possible tavrite structures in
a more readable and maintainable way. Such structures rst ned to be declared by specifying
a template like:

.- local struct( book(author, title, year, publisher) ).

Structures with the functor book/4 can then be written as

book with []
book with title:'tom sawyer'
book with [title:'tom sawyer', year:1876, author:twain]

which, in canonical syntax, correspond to the following:

book( , , , )
book(_, 'tom sawyer', , )
book(twain, 'tom sawyer', 1876, )

There is absolutely no semantic di®erence between the two siactical forms. The with-syntax
with names has the advantage that

2 the arguments can be written in any order
2 \dummy" arguments with anonymous variables do not need to bewritten

2 the arity of the structure is not implied (and can be changed by changing the declaration
and recompiling the program)

Sometimes it is necessary to refer to the numerical positiorof a structure eld within the
structure, e.g. in the arg/3 predicate:

arg(3, B, Y)
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When the structure has been declared as above, we can write stead:
arg(year of book, B, Y)

Declared structures help readability, and make programs esier to modify. In order not to lose
these bene ts, one should always use with- and of-syntax when avking with them, and never
write them in canonical syntax or referring to argument positions numerically.

See also theupdate _struct/4 built-in predicate.

4.2 Loops

To reduce the need for auxiliary recursive predicates, ECLPS® allows the use of an iteration
construct

( IterationSpecs do Goals )
Typical applications are: Iteration over a list

?- ( foreach(X,[1,2,3]) do writeln(X) )
1
2
3
Yes (0.00s cpu)
Process all elements of one list and construct another:
?- ( foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3 ).
List = [4, 5, 6]
Yes (0.00s cpu)
Process a list to compute the sum of its elements:
?- ( foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In +X ).
Sum = 6
Yes (0.00s cpu)
Note that the variables X, Y, In and Out are local variables in the loop, while the input list and
Sum are shared with the context.

If a parameter remains constant across all loop iterations ti must be speci ed explicitly (via
param ), for example when iterating over an array:

?- Array = [](4,3,6,7,8),

(
for(1,1,5),
fromto(0,In,Out,Sum),
param(Array)

do

Out is In + Array[l]
)

For details and more examples see the description of thdo/2 built-in predicate. Additional
background can be found in[[23].
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fromto(First,In,Out,Last)
iterate Goals starting with In=First until Out=Last.

foreach(X,List)
iterate Goals with X ranging over all elements of List.

foreacharg(X,StructOrArray)
iterate Goals with X ranging over all arguments of StructOrA rray.

for(I,MinExpr,MaxExpr)
iterate Goals with | ranging over integers from MinExpr to Ma xExpr.

for(l,MinExpr,MaxExpr,Increment)
same as before, but Increment can be speci ed (it defaults to )1

count(l,Min,Max)
iterate Goals with | ranging over integers from Min up to Max.

param(Varl,Var2,...)
for declaring variables in Goals global, ie shared with the ontext.

Figure 4.1: Iteration Speci ers for Loops

4.3 Working with Arrays of Items

For convenience, ECILPS® has some features for facilitating working with arrays of items. Arrays
can be of any dimension, and can be declared with theim/2 predicate:

2- dim(M,[3,4]).

M = [(0(131, _132, 133, _134),
0126, 127, 128, 129),
0121, 122, 123, _124))

yes.

dim/2 can also be used to query the dimensions of an array:

2- dim(M,[3,4]), dim(M,D).

D = [3, 4]
yes.

Note that arrays are just structures, and that the functor is not important.

To access a speci ¢ element of an array in an expression, spfcthe index list of the desired
element, e.g.

?- M = [0, 3, 5),
0, 4, 7)), Xis M[1, 2] + M[2, 3].
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2 Arrays are just structures
2 The functor is not important
2 Declare or query array size withdim/2

2 Access elements in expressions by specifying their indexsti (e.g. A[7] , M[2,3] )

2 |ndices start at 1

Figure 4.2: Array notation

X =10
M = [I0@ 3, 5), 01, 4, 7))
yes.

For further details see the Array Notation section of the Use Manual.

4.4 Storing Information Across Backtracking

In pure logic programming, the complete state of a computaton is reset to an earlier state on
backtracking. The all-solutions predicates introduced in ction 3.7.4 provide a way to collect
solutions across backtracking.

The following section presents ECLPS®'s lower-level primitives for storing information across

failures: bags and shelves. Both bags and shelves are refedrto by handle, not by name,

so they make it easy to write robust, reentrant code. Bags andshelves disappear when the
system backtracks over their creation, when the handle getgarbage collected, or when they are
destroyed explicitly.

4.4.1 Bags

A bag is an anonymous object which can be used to store infornten across failures. A typical
application is the collection of alternative solutions.

A bag is an unordered collection, referred to by a handle. A bg is created using bagcreate/1,
terms can be added to a bag using bagnter/2, and the whole contents of the bag can be
retrieved using bagretrieve/2 or bag_dissolve/2. A simple version of the ndall/3 predicate
from section[3.7.4 can be implemented like:

simple_findall(Goal, Solutions) :-
bag_create(Bag),
(
call(Goal),
bag_enter(Bag, Goal),
fail
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bag_dissolve(Bag, Solutions)

4.4.2 Shelves

A shelf is an anonymous object which can be used to store infaration across failures. A typical
application is counting of solutions, keeping track of the kest solution, aggregating information
across multiple solutions etc.

A shelf is an object with multiple slots whose contents surwe backtracking. The content of
each slot can be set and retrieved individually, or the wholeshelf can be retrieved as a term.
Shelves are referred to by a handle.

A shelf is initialized using shelf.create / 2 or shelf create / 3. Data is stored in the slots (or the
shelf as a whole) with shelfset / 3 and retrieved with shelf_get / 3.

For example, here is a meta-predicate to count the number of dations to a goal:

count_solutions(Goal, Total) :-
shelf_create(count(0), Shelf),
(
call(Goal),
shelf_get(Shelf, 1, OId),
New is Old + 1,
shelf_set(Shelf, 1, New),
fail

shelf_get(Shelf, 1, Total)

)
shelf_abolish(Shelf).

4.5 Input and Output

4.5.1 Printing ECL 'PS® Terms

The predicates of the write-group are generic in the sense thathey can print any ECL 'PS®
data structure. The di®erent predicates print slightly di®erent formats. The write/1 predi-
cate is intended to be most human-readable, whilewriteg/l is designed so that the printed
data can be read back by the predicates of the read-family. If w print the structured term

foo(3+4, [1,2], X, 'a b', "string") the results are as follows:
write: foo(3 + 4, [1, 2], X, a b, string)
writeq: foo(3 + 4, [1, 2], _102, 'a b', "string")

The write-format is the shortest, but some information is missing, e.g. that the sequenca b is
an atomic unit and that string is a string and not an atom. The writeg-format quotes items
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write(+Stream, ?Term)
write one term in a default format.

write _term(+Stream, ?Term, +Options)
write one term, format options can be selected.

printf(+Stream, +Format, +ArgList)
write a string with embedded terms, according to a format string.

writeq(+Stream, ?Term), write _canonical(+Stream, ?Term)
write one term so that it can be read back.

put(+Stream, +Char)
write one character.

Figure 4.3: Builtins for writing

properly, moreover, the variables are printed with unique rumbers, so di®erent variables are
printed di®erently and identical ones identically.
Single characters, encoded in ascii, can be output usingut/1 , for example:

[eclipse: 1] put(97).
a
yes.

452 Reading ECL 'PS® Terms

If the data to be read is in Prolog syntax, it can be read usingread(?Term). This predicate
reads one fullstop-terminated ECL PS°term from stream Stream. A fullstop is de ned as a dot
followed by a layout character like blank space or newline. Eamples:

[eclipse 4]: read(X).
123,a.

X =123, a

yes.

[eclipse 6]: read(X).
[3,X,foo(bar),Y].

X = [3, X, foo(bar), Y]
yes.

Single characters can be input usingget/1 , which gets their ascii encoding, for example:

[eclipse: 1] get(X).
a

X=97

yes.
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read(+Stream, -Term) '
read one fullstop-terminated ECL' PSFterm.

read _term(+Stream, -Term, +Options)
read one fullstop-terminated ECL' PSFterm.

get(+Stream, -Char)
read one character.

read _string(+Stream, +Terminator, -Length, -String)
read a string up to a certain terminator character.

read _token(+Stream, -Token, -Class)
read one syntactic token (e.g. a number, an atom, a bracket, te).

Figure 4.4: Builtins for reading

4.5.3 Formatted Output

The printf-predicate is similar to the printf-function in C, w ith some ECL'PS*-speci ¢ format

extensions. Here are some examples of printing numbers:

?- printf("%d", [123]).

123

yes.

?- printf("%5d,%05d", [123,456]).
123,00456

yes.

?- printf("%6.2f", [123]).

type error in printf("%6.2f", [123])

?- printf("%6.2f", [123.4]).

123.40

yes.

?- printf("%6.2f", [12.3]).

12.30

yes.

The most important ECL ' PS®-speci ¢ format option is %w, which allows to print like the pred-

icates of the write-family:

?- printf("%w", [foo(3+4, [1,2], X, 'a b', "string")]).
foo(3 + 4, [1, 2], X, a b, string)

The %w format allows a number of modi ers in order to access althe existing options for the

printing of ECL 'PS® terms.

For details see thewrite _term/2 and printf/2 predicates.
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| 1/O device | How to open \
tty implicit (stdin,stdout,stderr) or open/3 of a device le
Te open(FileName, Mode, Stream)

string open(string(String), Mode, Stream)

queue open(queue(String), Mode, Stream)

pipe exec/2 , exec/3 and exec_group/3
socket socket/3 and accept/3
null implicit (null stream)

Figure 4.5: How to open streams onto the di®erent I/O devices

454 Streams

ECL'PS® 1/O is done from and to named channels called streams. The fdébwing streams are
always opened when ECIPS® is running: input (used by the input predicates that do not have
an explicit stream argument, e.g.read/1 ), output (used by the output predicates that do
not have an explicit stream argument, e.g.write/1 ), error (output for error messages and all
messages about exceptional states yarning _output (used by the system to output warning
messages )log _output (used by the system to output log messages, e.g. messages abgarbage
collection activity ), null ( a dummy stream, output to it is discarded, on input it always gives
end of Te).

Data can be read from a speci ¢ stream usingread(+Stream, ?Term) , and written to a

speci ¢ stream using write(+Stream, ?Term) . If no particular stream is speci ed, input

predicates read frominput and output predicates write to output .

New streams may be opened onto various I/O devices, see guiesl

All types of streams are closed usinglose(+Stream)

See the complete description of the stream-related built-in pedicates in the Reference Manual

For network communication over sockets, there is a full set bpredicates modelled after the BSD
socket interface: socket/3 , accept/3 , bind/2 , listen/2 |, select/3 . See the reference manual
for detalils.

Output in ECL 'PS® is usually bu®ered, i.e. printed text goes into a bu®er and may at immedi-
ately appear on the screen, in a Ie, or be sent via a network comection. Use°ush(+Stream)

to empty the bu®er and write all data to the underlying device.

4.6 Matching

In ECL'PS® you can write clauses that usematching (or one-way uni cation) instead of head
uni cation. Such clauses are written with the ?- functor instead of :-. Matching has the property
that no variables in the caller will be bound. For example

p(f(a,X)) ?- writeln(X).
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will fail for the following calls:

?- p(F).
?- p(f(A,B)).
?- p(f(A,b)).

and succeed (printing b) for

?- p(f(a,b)).

Moreover, the clause

g(X,X) ?- true.

will fail for the calls

?- q(a,b).
?- q(a,B).
?- q(Ab).
?- q(A,B).

and succeed for

?- q(a,a).
?- q(AA).
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4.7 List processing

Lists are probably the most heavily used data structure in Prolog and ECL' PS?. Apart from uni-
“cation/matching, the most commonly used list processing predicates are: append/3, length/2,
member/2 and sort/2. The append/3 predicate can be used to apend lists or to split lists:

?- append([1, 2], [3, 4], L).

L =11, 2, 3, 4]

Yes (0.00s cpu)

?- append(A, [3, 4], [1, 2, 3, 4]).
A =11, 2]

More (0.00s cpu)

No (0.01s cpu)

?- append([1, 2], B, [1, 2, 3, 4]).
B = [3, 4]

Yes (0.00s cpu)

The length/2 predicate can be used to compute the length of aikt or to construct a list of a
given length:

?- length([1, 2, 3, 4], N).

N=14

Yes (0.00s cpu)

?- length(List, 4).

List = [ 1693, _1695, 1697, _1699]
Yes (0.00s cpu)

The member/2 predicate can be used to check membership in adi (but memberchk/2 should
be preferred for that purpose), or to backtrack over all list members:

?- memberchk(2, [1, 2, 3]).
Yes (0.00s cpu)

?- member(X, [1, 2, 3]).
X=1

More (0.00s cpu)

X =2

More (0.01s cpu)

X =3

Yes (0.01s cpu)

The sort/2 predicate can sort any list and remove duplicates

?- sort([5, 3, 4, 3, 2], Sorted).
Sorted = [2, 3, 4, 5]
Yes (0.00s cpu)

For more list processing utilities, see the documentation dr library(lists).
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4.8 String processing

ECL'PS® (unlike many Prolog systems) provides a string data type andthe corresponding string
manipulation predicates, e.g. stringlength/2, concat_string/2, split _string/4, substring/4, and
conversion from and to other data types, e.g. stringlist/2, atom _string/2, number _string/2,
term_string/2.

?- string_length("hello”, N).
N=5

Yes (0.00s cpu)

?- concat_string([abc, 34, d], S).
S = "abc34d"

Yes (0.00s cpu)

?- string_list("hello", L).

L = [104, 101, 108, 108, 111]
Yes (0.00s cpu)

?- term_string(foo(3, bar), S).
S = "foo(3, bar)"

Yes (0.00s cpu)

4.9 Term processing

Apart from uni cation/matching, there are a number of generi c built-in predicates that work
on arbitrary data terms. The =.. predicate converts structures into lists and vice versa:

?- foo(a, b, ¢) =.. List.
List = [foo, a, b, C]

Yes (0.00s cpu)

?- Struct =.. [foo, a, b, c].
Struct = foo(a, b, ¢)

Yes (0.00s cpu)

The arg/3 predicate extracts an argument from a structure:

?- arg(2, foo(a, b, c), X).
X=b
Yes (0.00s cpu)

The functor/3 predicate extracts functor name and arity fro m a structured term, or, conversely,
creates a structured term with a given functor name and arity:

?- functor(foo(a, b, c), N, A).
N = foo

A=3

Yes (0.00s cpu)

?- functor(F, foo, 3).

F = foo(_1696, 1697, _1698)
Yes (0.00s cpu)
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The term_variables/2 predicate extracts all variables from an arbitrarily complex term:

?- term_variables(foo(X, 3, Y, X), Vars).
Vars = [Y, X]

The copy_term/2 predicate creates a copy of a term with fresh variables:

?- copy_term(foo(3, X), Copy).
Copy = foo(3, _864)
Yes (0.00s cpu)

4.10 Module System
4.10.1 Overview

The ECL'PS® module system controls the visibility of predicate names, gntax settings (struc-
tures, operators, options, macros), and non-logical store ames (records, global variables). Pred-
icates and syntax items can be declared local or they can be prrted and imported. Store names
are always local.

4.10.2 Making a Module

A source le can be turned into a module by starting it with a module directive. A simple
module is:

:- module(greeting).
.- export hello/0.

hello :-
who(X),
printf("Hello %w!%n", [X]).

who(world).
who(friend).

This is a module which contains two predicates. One of them, kllo/0 is exported and can be
used by other modules. The other, who/1l is local and not accesble outside the module.

4.10.3 Using a Module

There are 3 ways to use hello/O0 from another module. The rst pasibility is to import the
whole "greeting” module. This makes everything available tat is exported from "greeting"

.- module(main).
.- import greeting.
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main -
hello.

The second possibility is to selectively only import the helo/0 predicate:

.- module(main).
:- import hello/0 from greeting.

main :-
hello.

The third way is not to import, but to module-qualify the call t o hello/O:

:- module(main).

main :-
greeting:hello.

4.10.4 Quali ed Goals

The module-quali cation using :/2 is also used to resolve name con’icts, i.e. in the case where
a predicate of the same name is de ned in more than one importednodule. In this case, none
of the con’icting predicates is imported - an attempt to call t he unquali ed predicate raises an
error. The solution is to qualify every reference with the malule name:

- lib(ic). % exports $>= / 2
:- lib(eplex). % exports $>= / 2

v (X $>=Y), ...
.., eplex:(X $>=Y), ...

A more unusual feature, which is however very appropriate fo constraint programming, is the
possibility to call several versions of the same predicate yospecifying several lookup modules:

.., [ic,eplex]:(X $>=Y), ...
which has exactly the same meaning as
vy IC(X $>=Y), eplex:(X $>=Y), ...

Note that the modules do not have to be known at compile time, ie. it is allowed to write code
like

after(X, Y, Solver) :-
Solver:(X $>=Y).

This is however likely to be less excient because it prevents @ampile-time optimizations.
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block(Goal, BTag, Recovery)
like call(Goal) , except that in addition a Recovery goal is set up, which
can be called by exit block from anywhere inside the call to Goal. When
exit_block(ETag) is called, then if ETaguni es with a BTagfrom an enclosing
block , the recovery goal associated with thatblock is called, with the system im-
mediately failing back to where the block was called. In addition, ETagcan be used
to pass information to the recovery goal, ifBTagoccurs as an argument oRecovery.

exit _block(ETag)
will transfer control to the innermost enclosing block/3 whoseBTagargument uni es
with ETag

Figure 4.6: Exception Handling

4.10.5 Exporting items other than Predicates

The most commonly exported items, apart from predicates, ae structure and operator declara-
tions. This is done as follows:

:- module(data).
.- export struct(employee(name,age,salary)).
;- export op(500, xfx, reports_to).

Such declarations can only be imported by importing the whoé module which exports them,
i.e. usingimport data.

For more details see the User Manual chapter on Modules.

4.11 Exception Handling

It is sometimes necessary to exit prematurely from an exectumg procedure, for example because
some situation was detected which makes continuing impossie. In this situation, one wants to
return to some de ned state and perform some kind of recovery etion. This functionality is
provided by block/3 and exit_block/1. By wrapping a predicate call into block/3, any irre gular
termination can be caught and handled, e.g.

protected_main(X,Y,Z2) :-

block(

main(X,Y,Z),

Problem,

printf("Execution of main/3 aborted with %w%n", [Problem] )
).
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main(X,Y,Z) :-

( test(...) -> ... ; exit_block(test_failed) ),

When built-in predicates raise errors, this results in the predicate being exited with the tag
abort , which can also be caught:

?- block(X is 1//0, T, true).
arithmetic exception in //(1, 0, X)
X=X

T = abort

Yes (0.00s cpu)

Note that timeouts and stack over°ows also lead to exits and ca be caught this way.

4.12 Time and Memory

4.12.1 Timing

Timings are available via the built-in predicates cputime/1 nd statistics/2 To obtain the CPU
time consumption of a (succeeding) goal, use the scheme

cputime(StartTime),

my_goal,

TimeUsed is cputime-StartTime,

printf("Goal took %.2f seconds%n"”, [TimeUsed])).

The statistics/2  and statistics/0O commands can also be used to obtain memory usage infor-
mation. The memory areas used by ECLPS® are:

Shared and private heap  for compiled code, non-logical store ( bags and shelves, ndal
dictionary of functors, various tables and bu®ers.

Global stack for most ECL! PS? data like lists, structures, suspensions. This is likely tobe the
largest consumer of memory.

Local stack for predicate call nesting and local variables.
Control and trail stack for data needed on backtracking.
Automatic garbage collection is done on the global and trail stack, and on the dictionary.

Garbage collection parameters can be set usinget_°ag/2 and an explicit collection can be
requested usinggarbage _collect/0 .
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4.13 Exercises

1. Using ado loop, write a predicate which, when given a 1-d array, returnsa list containing
the elements of the array in reverse order.

2. Write a predicate transpose(Matrix, Transpose) to transpose a 2-d array.

Can you make it work backwards? (i.e. if Transpose is speci ed, can you make it return
a suitable Matrix ?)
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Chapter 5

A Tutorial Tour of Debugging In
TKECL 'PS€®

This chapter demonstrates a sample debugging session usifkkECL 'PS®, showing how some
of the development tools can be used. We are by no means usindl éhe tools or all the
functionalities of any tool, but hopefully this will give yo u a °avor of the tools so that you will
explore them on your own. You can get more information on the bols from the Help menu, and
from the popup balloons which appear when your mouse cursort@ps over a feature for a few
seconds.

In the tutorial tour, we will assume that you have some knowledge of ECL PS®. It is helpful if
you also have some knowledge of traditional Prolog debuggim although this is not necessary.

This chapter is designed for you to follow while running TKECL' PS®. To keep things simple, the
program is run with a very small data set, but it should be sutcient to see how the techniques
described can be applied to real programs.

At the end of the chapter, there is a summary of the main featues of the main development
tools.

This chapter also contains many screen-shots, some of whictreabest viewed in colour, or in
looking at the actual screen as you follow along.

Balloon help A short description of a feature will popup in a “balloon' when the mouse
cursor stops over the feature for a few seconds.

Help Te Help Tes are available for all the tools and toplevel. They provide more detailed
information on the tools, and can be obtained from theHelp menu, and by typing
Alt-h (Alt and h keys together) in the tool.

Figure 5.1: Getting Help
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5.1 The Buggy Program

The program we will be debugging is a map colouring problem. Te task is to colour a “'map'
of countries with four colours such that no two neighbours hae the same colour. Our program
colours a map of four countries, but has a bug and can colour tev neighbours the same colour.
The map is displayed graphically as shown:

=B EE] wapdena, tel = [ T = T napdemo. tel

| : ..

Map Displays of Program

The countries are identi ed by numbers displayed within eachcountry. On the left, the map has
not yet been coloured. On the right, it has been coloured incoectly by the program (countries
3 and 4 have the same colour).

This program uses code from the map colouring demo program,ral is designed to use the GUI
to display a map. Most of this is not relevant to our debugging session, and although we will
see some of this code during the debugging, it is not necesyaio understand it. You can think
of this debugging session as debugging someone else's coaat, all of which you needs to be
understood.

The program used here is included with your ECL'PS® distribution. You should 'nd it under
the lib_tcl  directory.

The nal step in this debug tutorial is to edit the buggy progra m and correct it. If you want to
do this, you should copy the distributed version of the progiam elsewhere so that you don't edit
the original. You need to copy the following Tes from lib_tcl  to another directory:

debugdemo.ecl mapcolour.ecl mapdebugdemo.tcl buggy dat a.map

To load the program, start TKECL 'PS°®. After start up, switch the working directory to where
you have the programs { if you are using a UNIX system, and havestarted TKECL 'PS® in
the directory of the programs, you are already there. Otherwse, go to the File menu of
TKECL 'PS?, and select the Change directory option. Use the directory browser to nd the
directory containing your programs and select it. This will change your working directory to the
selected directory.

Next, compile debugdemo.ecl. You can do this by selecting theCompile option from the File
menu (you can also compile the Te with the query[debugdemo] from the query entry window).
When the program is compiled, the map display window should @pear, and the program is
ready to run.
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5.2 Running the Program

To start the program, the query “colour' is run: type colour into TKECL 'PS®'s query entry

window, followed by the return key. The program should run, mlouring the map, arriving at

the incorrect solution as shown previously. The program use the standard “generate-and-test'
method, so you will see colour °ashing in the countries as the ypgram tries di®erent colours for
them.

The map display has two buttons: pressingMore will cause the program to nd an alternate

way of colouring the map. PressingDonewill end the program and return control to ECL ' PS®.

You can pressMoreto get more solutions and see that the program returns more dations that

colour countries 3 and 4 to the same colour (along with some tat are correct).

PressDoneto "nish the execution. We will now debug this program.

5.3 Debugging the Program

First type in the query clear to clear the map to its initial state.
The main tool to debug a program is thetracer tool. The tracer is one of the development
tools, all of which can be accessed from th&ools menu of TKECL'PS®. SelectTracer from the

menu as shown below, and a new window for the tracer tool shodlappear.

E BN EE] ECLiFSe 5.4 Toplewel
Hle Tools Help
_____________________ =
n Compile Scratch-pad ry Entry
Iecln |§
Source File Manager
Predicate Browser M LS |
esults
S Delayed Goals
Tracer
Inspector
visualisation Client
S =
——=  Global Settings |
Statistics Error Messages
S Simple Query
ECLiP3e Library Browser and Help
TKECLiP3e Freference Editor
|~ Balloon Help
./ - =]
T

Starting the Tracer Tool

Run the query colour again. To save you from typing in the query, you can use the up-eow
on your keyboard to step back to a previous query. Type returnwhen colour appears in the
query window again.

The tracer tool traces the execution of the program, like thetraditional Prolog debugger, it
stops at “debug ports' of predicates that are executed. Cuently, it is stopped at the call port
of the query colour . The buttons in the middle of the tool are for debugger commanis. Try
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5 N T T T ECLiPSe Tracer

Windows  Options Help

Call Stack

(1) 1 CALL colour
(2) 2 CALL  colouringl{prolog, input_order, indomain, 4, _1TE0)
(3) 3 CALL setup_demons(4, countries( 1972, _1973, _197T4, _1975))

Creep | SKip | up | Leap | Filter | Anort. | Hodebug

Tomvoe: |5 ToDeptn: ([0 .[3999  ToPort: [[Not Crren 2

Y Trace Log

(1} 1 CALL colour

(2) 2 CALL colouringl(prolog, input_order, indomain, 4, _1780)

(%) 9 CALL  functor (Countries, counfries,

(33 3 EAIT functor(contries( 1972, 1973, 1974, 1975) countries, 4)
(4) 3 CALL countries( 1972, 1973, 1974, _1975) =., [countries|Coumtrilis
(4) 3 EXTT countries( 1972, _1973, _1974, _1975) =,, [countries, _1972, _1
(5) 3 CALL  setup_cemche (4, coumtries( 1972, 1973, 1974, _1975))

Figure 5.2: The Tracer Tool

pressing Creep several times, and you should observe something similar to igure [5.2. Unlike
the traditional debugger, the execution trace is shown on tvo text windows: the bottom “Trace
Log' window, which shows a log of the debugger ports much as araditional debugger does;
and the top “Call Stack' window, showing the ancestors ("cdlstack’) of the current goal, which
is updated at each debug port. The goals are displayed with derent colours: blue for a call
port, green (success) for an exit port. Red (failure) for a fél port. Note that in the call stack,
the ancestor goals are displayed in black: this indicates tht the goal is not “current', i.e. the
bindings shown are as they were when the goal was called, andbthnecessarily what they are
now. We will show how these bindings can be “refreshed' lateon.

To avoid stepping through the whole program, we will add a spypoint to a predicate that may be
causing the problem. Spy-points can be added in the traditiomal way, using the spy/1 predicate.
However, we can also use theredicate browser tool: start the Predicate Browser tool from
the Tools menu of TKECL'PS®. This tool allows you to observe and change various properéis
of the predicates in your program. A list of predicates are dsplayed on the left hand side, and a
list of properties on the right. Currently the predicate list is showing all the predicates de ned
in our program (i.e. in the eclipse module). Looking at this list, not_same_colour/3 's name
suggests that it checks that neighbouring countries do not lave the same colour. Select it by
clicking on it, and now the right hand side should display the properties of this predicate:
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= BN T = ECLiPSe Predica
Predicates [def ined

|«

The Predicate Browser Tool

We can now view the source code for the predicate by clicking rothe Show source button,
which opens a source display window to show the source of theekected predicate. The code for
the predicate is:

not_same_colour(Solver, C1-C2, Countries) :-
% get the colours for the countries C1 and C2
arg(C1, Countries, Colourl),
arg(C2, Countries, Colour2),
% send constraint to either the fd or ic solver
Solver: (Colourl #\= Colour2).

The code does indeed check that the countrie€1and C2do not have the same colour.

For our example program, the list is not very long, but some piograms may have many
predicates, and it could be ditcult to nd the predicate you want. The predicate list has
a search facility: typing in part of the name of the predicatein the predicate list will search
for the predicate you want. You can try typing in not_same_colour / 3 to see how this
works.

The predicate browser allows us to change some of the propees of a predicate. We can add a
spy-point to the predicate by clicking on the radio button for spy:

spy ~ Off % on

Setting Spy Property to On

With TKECL 'PS®, we can do more than just place a spy point on a predicate: we caspecify
further conditions for when the tracer should stop at a spy pant, using the “lter tool.

Start the Tter tool by selecting Configure filter from the Options menu of the tracer tool:
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= [ T T Filter
Continue to a port with all of the following properties:

Invocation number from .0 |.. to .. [555955859
Depth from .. o . to... 299999099

Port types:
Wocall W exit W vexit Wredo  ifal W resume | leave
M delay W next W unify W spytenm W modify M else

Predicate specification:

+ Any predicate

- Any predicate with a spypoint

- Specific predicate instance:

Defining madule: Goal template:

3

Condition;

Calling module:

=

Go Close

Figure 5.3: The Tracer Filter Tool

Windows Options

Configure filter ...
[4)) Change print options ...
Analyze failure ...
Refresh goal stack now
W Refresh delayed goals at every trace line

=

oeep | sap | w leap | Fitter

Starting the Filter Tool from the Tracer

The Tter tool opens in a new window, as shown in Figure[5.3. Ths tool allows us to specify
a " lTter' for the debug ports so that the tracer will only stop at a port with the properties
speci ed by the tool. In our case, we want to seenot_same_colour/3 only when countries 3
and 4 are involved. This can be done with the \Predicate speciation” facility, enabled by the
Specific predicate instance: radio button. Pressing this button will allow us to specify a
condition in Prolog syntax which will be checked at each debg port. For our purpose, we enter

the following:

Port types:
W ocall _jexit W "exit W redo o W resume _|
i delay W next W unify W spyterm W modify W else

Predicate specification:

~~ Any predicate

~ Any predicate with a spypoint

4% Specific predicate instance:

Defining module: Goal template:

eclipse él: not_same_colour(_ X-Y, _)
Condition:
[er="a5v=al
Calling module:
3

Setting Conditions for Speci ¢ Predicate Instances

This speci es that the Tter should stop at a not_same_colour/3 goal, when one of the countries
in the pair X-Y is country 4: the Goal template is used to specify the template the debug port
goal should match, and theCondition: can be any ECL PS® goal, perhaps with variables from
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the Goal template , as in our case. The test is done by unifying the goal with the emplate,
and then executing the condition. Note that any bindings are undone after the test.

Note that we have also deselected theexit port in the Tter condition. You can do this by
clicking on the exit radio button. This means that the tracer does not stop at any it port.
Press Goon the Tter tool to start the tracer running with the Tter. You can also press the
Filter command button on the tracer to do the same thing. We see that he tracer has jumped
to a not_same_colour/3 goal involving country 4 as expected. However, there is a gam the
call stack as we skipped over the tracing of some ancestor gisa We can see these goals by
refreshing the goal stack. This can be done by pressing and holding downhe right mouse
button while the mouse cursor is over a goal in the call stackwhich will popup a menu for the
goal:

Call Stack

[6Y] 1 ERLL Wluur‘
() 2 CALL colourin 2l (prolog, 86)
& 3 DRLL setup donened, Dnuntmes( 1588 1585 1550 1591))

+(430) B CALL not_sane_colour(id, 4
Nospy not_same_colour { 3
Display source for this predicate
Inspect this goal
Ohserve this goal
Force failure of this goal
7 Jump to this invocation number (430) | [
Geep | sap | up | Leap Jumplotisdepths o
Toinvoc: [[430 To Depth:  Refresh goal stack en ¥|
Trace Log

(1) 1 CALL culwr
(7 9 rAll rirelfrrnlng  rr reder indenain 4 1TRRY

Popup Menu for a Goal in Tracer's Call Stack

In this case, we have opened the menu oveanot_same_colour/3 , and the options are for this
goal. Various options are available, but for now we choose th Refresh goal stack option.
This will result in the following goal stack display:

+(0) 0 .... trace_body(colour, eclipse)

(131 ..., colour

(2) 2 ..., colouringl(prolog, input_order, indomain, 4, 0)

(1403 370, do_colouringfprolog, input_order, indowain, [4 - 2, 4 - 1, ... -
(428) 4 zdd m Eunstramts(fd [4 2, 4- 1, "], colntries
(429) 5 4 - T intrisstt 10, 1), dl
+{430) & CALL nut “sane Dulnur('Fd 43, coimtries(l, 1, 1, 1Y

Refreshed Call Stack

Notice that the colour of the goals in the goal stack are now dlblue, indicating that the bindings
shown are current.

PressFilter on the tracer several times to jump to other ports involving country 4. You will
see that none of them involve countries 3 and 4. So perhaps cotries 3 and 4 are not checked
by not_same_coulour/3 , i.e. 3-4 or 4-3 are never passed tcot_same_colour/3 . Looking at
the call stack, we can see that the country pair innot_same_colour/3 seem to appear as an
element in a list of country pairs, as far back ascolouring(...) . Unfortunately, the debugger
does not display the whole list. We see something like:

do_colouring(prolog, input_order, indomain, [4 - 2, 4 - 1,

due to the “print depth’ feature, which shortens the printing of large terms. We can examine
the whole list by using the inspector to examine the goal. To @ this, we double click on the
do_colouring(...) goal to "open' it for inspection.
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This will launch the Inspector tool on the do_colouring goal. The inspector displays the term
in a hierarchical fashion as a tree, which allows us to navige the term. The initial display is

shown on the left panel below. We are interested in examinindhe full list. We can look at this

list by double clicking on it to expand the node, which results in the display in the right panel

below. You may need to scroll down to see the whole list:

Using the Inspector

The inspector shows that this list does not contain the pair4-3 or 3-4, which should be there
so that not_same_colour can check that these two countries are not assigned the same loarr.
The inspector tool is modal { when it is open, the rest of TKECL'PS® is inaccessible. Close
the Inspector by clicking on its Close button, go back to the tracer, and see where the country
pair list comes from. It rst appears in the ancestor goalsdo_colouring(prolog,...) , as the
next parent colouring(prolog,...) does not have this list. So the list is created in a body
goal of colouring(...) before do_colouring(...) is called. We can look at the source of
colouring(...) to see how this list is created. To do this, we can selecDisplay source
option from the popup menu for the colouring(...) goal:

Displaying Source for a Goal in the Call Stack

The code for this predicate is quite long, but for our purposes we are only interested in the
country-pair list that is passed to do_colouring :

colouring1(Type, Select, Choice0O, N, Backtracks) :-

findall(C1-C2, (neighbour(C1,C2), C1=<N,C2=<N), Neighb  ours),
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do_colouring(Type, Select, Choice, Neighbours, Countrie s,
CountryList, Backtracks),

Looking at this source and the Call stack goal, we can see thahe country pair list is constructed
from neighbour/2 calls. Let's look at the source forneighbour/2 . We can do this from the
predicate browser, by selectingneighbour/2 and pushing the Show sourcebutton. We see the
following:

neighbour / 2 in file buggy_data.map, line 2:
%neighbour(4, 3).

neighbour(4, 2).

neighbour(4, 1).

neighbour(4, 2).

neighbour(3, 1).

neighbour(3, 2).

neighbour(1, 2).

Soneigbour(4,3) was indeed missing. Another way to checlneighbour/2 , without looking at

the source, would be using the Simple Query tool. This tool isagain started from TKECL'PS®'s
Tools menu. It can be used to send simple queries to ECPS®, even while another query is
being executed (as we are here, executing theolour query). We can use this tool to check if
neigbour(4,3) or neighbour(3,4) are de ned or not:

The Simple Query Tool

To send a query, simply type it in the entry window and press rdurn, and the reply will be
sent to the reply window. In the example above, we have triedneighbour(4,3) , followed by
neighbour(3,4) , and both failed, indicating that there is no neighbour relationship de ned
between countries 3 and 4.

We can x the program by editing the Te buggy_data.map and adding the neighbour(4, 3) line
back. First, we end our current debugging session by closinthe tracer window. You can see
from the map display that the execution continues until a solution is produced. PressingDone
on the map display will return control to ECL 'PS®. Alternatively, if continuing the execution is
undesirable, press theAbort command button in the tracer, which would abort the execution.
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In TKECL 'PS®, you can usually perform these operations on an object whileghe mouse

cursor is over it:

ject.

left-click selects the object.

tor), or calling the inspector on it (e.g. on a goal in the call stack).

double (left)-click
Opens a menu which gives further option/information on the ob-

Right-click and hold

‘opens' the object. This can mean expanding it (e.g. in the ispec-

Figure 5.4: Mouse Button Operations on Objects

Once we have made the correction to the program and saved it, & compile it by pressing the
Makebutton on TKECL 'PS®. This recompiles any les that have been updated since ECIPS®

last compiled the Te.
Running the program again will show that the bug is indeed xed.

5.4 Summary

5.4.1 TKECL 'PSe® toplevel

1

1

1

! ~
I S~
1

I

1

!

Results window
Query, bindings to query, execution status of query

appears here
- most recent query in blue

- older queries in black

~ ~
N
~

Query entry window

Type in query here
History mechanism:

1. up/down arrow keys

2. press arrow box for history list

3. right-click for history list (with duplicates)

Interrupt button

Press to interrupt program execution
(Disabled if no program is running)

~

~

Make button
Press to recompile changed programs

Query status window
Displays status of last query

)

*{

Current module
Shows current module for query entry

select from list (new module must be
“New module’ option of File menu

Change module by pressing down arrow box and
created from

Output window

- most current output in blue
- old output in black
- error output in red

Output from program appears here
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Compile scratch pad  allow simple programs to be written and compiled. Equivalent to [user]
in command line ECL'PS°.

Source Te manager manage source les for this ECLPS® session.
Predicate browser view/change properties of predicates.

Delayed goals view delayed goals.

Tracer debugger for ECL PS® programs.

Inspector term inspector. Useful for viewing large terms.
Visualisation client  start a visualisation client.

Global settings view/change global ECL'PS® settings.

Statistics show statistics. Information is updated dynamically.
Simple query send simple queries to ECLPS®.

Library browser and help interface to ECL' PS® documentation.
TKECLIiPSe preference editor view/change TKECL'PS® settings.

Figure 5.5: Available Development tools

5.4.2 Predicate Browser

Predicate module

Module of predicates listed
Change by pressing arrow box

[Selected predicate properti}

__--~"| Show properties of selected predicate

“ [Non—changable property }

NP EEEE e -~ 77"| Shown grayed-out

Predicate type
Type of predicate listed
Change type by pressing arrow box

Predicate search

search for predicate in predicate list
by typing while in list window

~. Changable property
_ _ - - -~~~ 7| Shown solid. Click to change
Sa -

Show source button
Press to display source of selected
predicate (if available)

~--

S

Predicate list Selected predicat
list of predicate in selected module| Click to select predicate
of selected type
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5.

5.

4.3 Tracer

4.4 Tracer Filter

Call stack window

Shows the current call stack (current goal + ancestors),
non-current in black
- current in blue green (success) red (failure)

Call stack goal popup menu
Right-hold mouse button on a call stack goal to get
window.
- Summaries predicate (name/arity@module <priority>,
__----71 -toggle spy point for predicate
- invoked inspector on this goal
(equivalent to double clicking on goal directly)
- observe goal for change using display matrix
- force this goal to fail
- jump to this invocation
- jump to this depth
- refresh goal stack (also under Options menu)

A Tracer command buttons
Press button to execute tracer command:
- Creep: creep to next port (‘c' key)
\ -Skip: skip to exit port (‘s' key)
-Up: jump to a port of parent goal
- Leap: leap to a goal with spied point ('I' key)
- Filter: jump to next port with filter conditions
- Abort: abort execution and stop debugging

N - Nodebug: continue execution without debugging

v [Jump buttons

N | Press button to jump to port according to condition
\| (use Filter tool for combination of conditions)
- To Invoc: jump to given invocation number
- To Depth: jumpt to goal between specified depth
- To Port:  jump to specified port type

AN Trace Log window

h Shows all ports traced by debugger
>+ | Indentation indicates depth of goal
call type port in blue
exit type port in green (success)
fail type port in red (failure)

Depth and Invocation filter

stop if port within specified depth and invocation
range

Port type filter

_ - | stop if port is of selected type

(note fail type ports non-selectable)

Predicate instance filter if selected

conditions for goal instance to stop
—| - Defining module: where goal is defined
- Goal template: template for goal
- Condition: condition for stopping
- Calling module: where goal is called from

press button to jump to goal meeting all conditiorl




5.4.5 Term Inspector

5.4.6 Delayed Goals Viewer

B
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Selected subterm
left-click to select

~| double click to expand/collapse]

Popup menu for subterm
right-hold over a subterm to get men
- summary of subterm
- observe subterm for change with
display matrix

Term display window
Inspected term displayed as a tree|
navigate by expanding/collapsing
subterms

~

Text display window

selected term displayed textually
path to subterm also displayed herg

System message windo
error messages displayed here

Goal filter
select types of delayed goals shown
- traced only: show goals that can

be traced

- spied only: show goals that have
spy points

- scheduled only: show scheduled
goals.

Scheduled goals
scheduled (but not yet executed
goal shown in green

~~(Suspended goals

Delayed goal popup menu
(menu options when tracer is active)
Hold right-mouse button while over goal

- summary information for goal

- display source (if available)

- inspect goal with inspector

- observe goal for change with

display matrix

Refresh button
press button to update display
(updated at every trace line by default
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Chapter 6

Program Analysis

This chapter describes some of the tools provided by ECIPS® to analyse the runtime behaviour
of a program.

6.1 What tools are available?

ECL'PS® provides a number of di®erent tools to help the programmer undrstand their how
their program behaves at runtime.

Debugger Provides a low level view of program activity.

See chapter 5 and theDebuggingsection in the user manual for a comprehensive look at
debugging ECL PS® programs

Proler Samples the running program at regular intervals to give a statistical summay of where
the execution time is spent.

Port Proler  Collects statistics about program execution in terms of the box model of execuan.
See library(port_pro ler) or use the Port Pro le option from the tkeclipse Run menu.

Coverage Records the number of times various parts of the program are executed.

Visualisation framework See theVisualisation Tools Manual for more information
Available Program Analysis tools

This section focuses on two complementary tools
1. The pro ler

2. The coveragelibrary

6.2 Proler

The pro ling tool helps to nd hot spotsin a program that are worth optimising. It can be used
any time with any compiled Prolog code, it is not necessary touse a special compilation mode
or set any °ags. Note however that it is not available on Windows. When
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?- profile(Goal).

is called, the pro ler executes theGoal in the pro ling mode, which means that every 100th of
a second the execution is interrupted and the pro ler recordsthe currently executing procedure.
Consider the following n-queens code.

queen(Data, Out) :-
gperm(Data, Out),
safe(Out).

aperm((], [).

aperm([X|Y], [UJV]) :-
gdelete(U, X, Y, 2),
gperm(Z, V).

gdelete(A, A, L, L).
gdelete(X, A, [H|T], [AIR]) :-
gdelete(X, H, T, R).

safe([]).

safe([N|L]) :-
nodiag(L, N, 1),
safe(L).

nodiag([], _, ).
nodiag([N|L], B, D) :-
D =\= N - B,
D =\=B - N,
Dl is D + 1,
nodiag(L, B, D1).

Issuing the following query will result in the pro Ter record ing the currently executing goal 100
times a second.

?- profile(queen([1,2,3,4,5,6,7,8,9],0ut)).
goal succeeded

PROFILING STATISTICS

Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)
Total user time: 0.03s

Predicate Module %Time Time  %Cum
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gdelete /4 eclipse 50.0% 0.01s 50.0%
nodiag /3 eclipse 50.0% 0.01s 100.0%

Out =[1, 3,6, 8, 2, 4,9, 7, 5]
Yes (0.14s cpu)

From the above result we can see how the pro ler output contairs four important areas of
information:

1. The rstline of output indicates whether the speci ed goal succeeded, failed or aborted .
The profile/l  predicate itself always succeeds.

2. The line beginning Goal: shows the goal which was pro led.
3. The next line shows the time spent executing the goal.

4. Finally the predicates which were being executed when thero ler sampled, ranked in
decreasing sample count order are shown.

The problem with the results displayed above is that the samfing frequency is too low when
compared to the total user time spent executing the goal. In &ct in the above example the
pro ler was only able to take two samples before the goal termated.

The frequency at which the pro ler samples is xed, so in order b obtain more representative
results one should have an auxiliary predicate which calls e goal a number of times, and
compile and pro e a call to this auxiliary predicate. eg.

queen_100 :-
(for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9], Out)).

Note that, when compiled, the abovedo/2 loop would be exciently implemented and not cause
overhead that would distort the measurement.

See section 4.2 for more information on logical loops

?- profile(queen_100).
goal succeeded

PROFILING STATISTICS

Goal: queen_100
Total user time: 3.19s

Predicate Module %Time Time  %Cum
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nodiag /3 eclipse 52.2% 1.67s 52.2%

gdelete /4 eclipse 27.4% 0.87s 79.6%
gperm 12 eclipse 17.0% 0.54s 96.5%
safe /1 eclipse 2.8% 0.09s 99.4%
queen 12 eclipse 0.6% 0.02s 100.0%

Yes (3.33s cpu)

In the above example, the pro ler takes over three hundred sarples resulting in a more accurate
view of where the time is being spent in the program. In this irstance we can see that more than
half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for optimisation.
This is left as an exercise for the reader.

6.3 Line coverage

The line coverage library provides a means to ascertain exdly how many times individual
clauses are called during the evaluation of a query.

The library works by placing coverage countersat strategic points throughout the code being
analysed. These counters are incremented each time the ewation of a query passes them.
There are three locations in which coverage counters can baserted.

1. At the beginning of a code block.
2. Between predicate calls within a code block.

3. At the end of a code block.
Locations where coverage counters can be placed

A code block is de ned to be a conjunction of predicate calls. @. a sequence of goals separated
by commas.

As previously mentioned, by default, code coverage countsrare inserted before and after every
subgoal in the code. For instance, in the clause

p:=-qQT1r,S.

four counters would be inserted: before the call tog, betweenq and r, betweenr and s, and
after s:

p :- point(1), g, point(2), r, point(3), s, point(4).

This is the most precise form provided. The counter values daot only show whether all code
points were reached but also whether subgoals failed or abtad (in which case the counter before
a subgoal will have a higher value than the counter after it). For example, the result of running
the above code is:

p :- 43 q, 25 r, 25 s 0
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which indicates that q was called 43 times, but succeeded only 25 times, was called 25 times
and succeeded always, angd was called 25 times and never succeeded. Coverage counts ef@
are displayed in red (the nal box) because they indicate unreached code. The format of the
display is explained in the next section.

6.3.1 Compilation

In order to add the coverage counters to code, it must be comped with the ccompile/l
predicate which can be found in thecoverage library.

The predicate ccompile/l (note the initial "¢’ stands for coverage) can be used in plag of the
normal compile/l predicate to compile a Te with coverage counters.

Here we see the results of compiling thé-queens example given in the previous section.

?- coverage:.ccompile(queens).
coverage: inserted 22 coverage counters into module eclips e
foo.ecl compiled traceable 5744 bytes in 0.00 seconds

Yes (0.00s cpu)

Once compiled, predicates can be called as usual and will (bgefault) have no visible side e®ects.
Internally however, the counters will be incremented as theexecution progresses. To see this in
action, consider issuing the following query having compid the previously de ned code using
ccompile/1 .

?- queens([1,2,3,4,5,6,7,8,9], Out).

The default behaviour of the ccompile/l predicate is to place coverage counters as explained
above, however such a level of detail may be unnecessary. Ihe is interested in reachability
analysis the two argument predicateccompile/2 can take a list of name:value pairs which can
be used to control the exact manner in which coverage countsrare inserted.

Seeccompile/2 for a full list of the available °ags.

In particular by specifying the option blocks_only:on , counters will only be inserted at the
beginning and end of code blocks. Reusing the above examplhi$ would result in counters at
point(1) and point(4).

p - 43 g, r, S 0

This can be useful in tracking down unexpected failures by loking for exit counters which di®er
from entry counters, for example.

6.3.2 Results

To generate an html Te containing the coverage counter resub issue the following query.

?- coverage:result(queens).
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Figure 6.1: Results of running queens([1,2,3,4,5,6,7,8,9)
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result/O Creates results for all ‘Tes which have been compiled with cograge counters.

result/1 This predicate takes a single argument which is the name of th e to print the
coverage counters for.

result/2 The result predicate has a two argument form, the second argment de ning a
number of °ags which control (amongst other things)

2 The directory in which to create the results le. Default: coverage.
2 The format of the results Te (html or text). Default: html.

Seecoverage library and pretty _printer library for more details

Figure 6.2: Result generating commands

This will create the result Te coverage/queens.html which can be viewed using any browser.

It contains a pretty-printed form of the source, annotated with the values of the code coverage
counters as described above. An example is shown in "gure 6.1.

For extra convenience the predicateresult/0 is provided which will create results for all Tes
which have been compiled with coverage counters.

Having generated and viewed results for one run, the coveragcounters can be reset by calling

?- coverage:reset_counters.

Yes (0.00s cpu)
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Chapter 7

An Overview of the Constraint
Libraries

7.1 Introduction

In this section we shall brie°y summarize the constraint sohing libraries of ECL'PS®which will
be discussed in the rest of this tutorial.

7.2 Implementations of Domains and Constraints

7.2.1 Suspended Goals: suspend

The constraint solvers of ECL'PS® are all implemented using suspended goals. The simplest im-
plementation of any constraint is to suspend it until all its variables are suzciently instantiated,
and then test it.

The suspendsolver implements this behaviour for all the mathematical @nstraints of ECL'PS?,
>=, >,=i=,= n5, =< and <.

7.2.2 Interval Solver: ic

The standard constraint solver o®ered by most constraint prgramming systems is the nite

domain solver, which applies constraint propagation techniques dveloped in the Al community
[26]. ECL'PS® supports nite domain constraints via the ic library 1. The library implements
“nite domains of integers, together with a basic set of constaints.

In addition, ic also allowscontinuous domains(in the form of numeric intervals), and constraints
(equations and inequations) between expressions involvin variables with continuous domains.
These expressions can contain non-linear functions such @& and built-in constants such aspi.
Integrality is treated as a constraint, and it is possible to mix continuous and integral variables
in the same constraint. Specialised search techniquesilitting [25] and squashing[14]) support
the solving of problems with continuous variables.

tand the fd library which will not be addressed in this tutorial
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Most constraints are also available in rei ed form, providing a convenient way of combining
several primitive constraints.

Note that the ic library itself implements only a standard, basic set of arithmetic constraints.

Many more nite domain constraints can be de ned, which have u®s in speci ¢ applications.
The behaviour of these constraints is to prune the nite domans of their variables, in just the

same way as the standard constraints. ECLPS® o®ers several further libraries which implement
such constraints using the underlying domain of theic library.

7.2.3 Global Constraints: ic_global

One such library is ic_global It supports a variety of constraints, each of which takes asan
argument a list of nite domain variables, of unspeci ed length. Such constraints are called
\global" constraints [1]. Examples of such constraints, awilable from the ic_global library are
alldifferent/1 , maxlist/2 | occurrences/3 and sorted/2 . For more details see section 8.5
in chapter 8.

7.2.4 Scheduling Constraints:  ic_cumulative, ic _edge_ nder

There are several ECLPS® libraries implementing global constraints for scheduling applica-
tions. The constraints take a list of tasks (start times, durations and resource needs), and a
maximum resource level. They reduce the nite domains of the ask start times by reasoning
on resource bottlenecks [12]. Three ECIPS® libraries implementing scheduling constraints are
ic_cumulative, ic_edge nder and ic_edge nder3. They implement the same constraints declar-
atively, but with di®erent time complexity and strength of pr opagation. For more details see
the library documentation in the Reference Manual.

7.2.5 Finite Integer Sets: ic_sets

The ic_sets library implements constraints over the domain of nite sets of integers. The
constraints are the usual relations over sets, e.g. membdm#p, inclusion, intersection, union,
disjointness. In addition, there are constraints between sts and integers, e.g. cardinality and
weight constraints. For those, theic_setslibrary cooperates with the ic library. For more details
see chapter 10.

7.2.6 Linear Constraints: ic_eplex

eplex supports a tight integration [3] between an external linear programming (LP) / mixed
integer programming (MIP) solver (XPRESS [19] or CPLEX [10]) and ECL'PS®. Constraints
as well as variables can be handled by the external LP/MIP soler, by a propagation solver like
ic, or by both. Variable bounds are automatically passed fromic variables to the external solver.
Optimal solutions and other solution porperties can be retuned to ECL'PS® as required. Search
can be carried out either in ECL'PS® or in the external solver. For more details see chapter 16.

2 the other set solvers lib(conjunto) and lib(fd _sets) are similar but not addressed in this tutorial
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7.3 User-De ned Constraints

7.3.1 Generalised Propagation:  propia

The predicate infers takes as one argument any user-de ned predicate, and as a seabargument
a form of propagation to be applied to that predicate.

This functionality enables the user to turn any predicate into a constraint [13]. The forms of
propagation include nite domains and intervals. For more deails see chapter 15.

7.3.2 Constraint Handling Rules: ech

The user can also specify predicates using rules with guard8]. They delay until the guard is
entailed or disentailed, and then execute or terminate accalingly.

This functionality enables the user to implement constrairts in a way that is clearer than directly
using the underlying suspendlibrary. For more details see chapter 15.

7.4 Search and Optimisation Support

7.4.1 Tree Search Methods: ic_search

ECL'PS® has built-in backtracking and is therefore well suited for paforming depth- rst tree
search. With combinatorial problems, naive depth- rst searc is usually not good enough, even
in the presence of constraint propagation. It is usually neessary to apply heuristics, and if the
problems are large, one may even need to resort to incompletgearch. Theic_searchcontains a
collection of prede ned, easy-to-use search heuristics as Wels incomplete tree search strategies,
applicable to problems involving ic variables. For more details see chapter 12.

7.4.2 Optimisation:  branch _and _bound

Solvers that are based on constraint propagation are typiclly only concerned with satis ability,
i.e. with nding some or all solutions to a problems. The brand-and-bound method is a general
technique to build optimisation on top of a satis ability sol ver. The ECL'PS® branch.and_bound
library is a solver-independent implementation of the brand-and-bound method, and provides
a number of options and variants of the basic technique.

7.5 Hybridisation Support

7.5.1 Repair and Local Search: repair

The repair library allows a tentative value to be associated with any variable [27]. This tentative
value may violate constraints on the variable, in which casethe constraint is recorded in a list
of violated constraints. The repair library also supports propagation invariants [17]. Using
invariants, if a variable's tentative value is changed, the consequences of this change can be
propagated to any variables whose tentative values dependrothe changed one. The use of
tentative values in search is illustrated in chapter 13.
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7.5.2 Hybrid: probing _for _scheduling

For scheduling applications where the cost is dependent onagh start time, a combination of
solvers can be very powerful. For example, we can use nite doain propagation to reason on
resources and linear constraint solving to reason on cost [6 The probing for_schedulinglibrary

supports such a combination, via a similar user interface tdahe cumulative constraint mentioned
above in section 7.2.3. For more details see chapter 18.

7.6 Other Libraries

The solvers described above are just a few of the many libragss available in ECLiIPSe and listed
in the ECL'PSE library directory. Any ECL 'PS® user who has implemented a constraint solver
is encouraged to make it available to the user community and pblicise it via the eclipse-
users@icparc.ic.ac.uk  mailing listt Comments and suggestions on the existing libaries are
also welcome!
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Chapter 8

Getting started with Interval
Constraints

The Interval Constraints (IC) library provides a constrain t solver which works with both integer
and real interval variables. This chapter provides a generhintroduction to the library, and
then focusses on its support for integer constraints. For mee detail on IC's real variables and
constraints, please see Chapter 9.

8.1 Using the Interval Constraints Library

To use the Interval Constraints Library, load the library us ing either of:

;- lib(ic).
.- use_module(library(ic)).

Specify this at the beginning of your program.

8.2 Structure of a Constraint Program

The typical top-level structure of a constraint program is

solve(Variables) :-
read_data(Data),
setup_constraints(Data, Variables),
labeling(Variables).

where setup_constraints/2  contains the problem model. It creates the variables and thecon-
straints over the variables. This is often, but not necessaity, deterministic. The labeling/1
predicate is the search part of the program that attempts to nd solutions by trying all instan-
tiations for the variables. This search is constantly pruneal by constraint propagation.
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The above program will nd all solutions. If the best solution is wanted, a branch-and-bound
procedure can be wrapped around the search component of thergmgram:

solve(Variables) :-
read_data(Data),
setup_constraints(Data, Variables, Objective),
branch_and_bound:minimize(labeling(Variables), Objec tive).

The branch.and_boundlibrary provides generic predicates that support optimization in con-
junction with any ECL 'PS°® solver. Section 12.1.2 discusses these predicates.

8.3 Modelling

The problem modelling code must:
2 Create the variables with their initial domains
2 Setup the constraints between the variables

A simple example is the \crypt-arithmetic” puzzle, SEND+MORE = MONigYidea is to associate
a digit (0-9) with each letter so that the equation is true. The ECL'PS® code is as follows:

- lib(ic).

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],

% Assign a finite domain with each letter - S, E, N, D, M, O, R, Y -
% in the list Digits
Digits :: [0..9],

% Constraints
alldifferent(Digits),
S #\= 0,
M #\= 0,
1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y,

% Search
labeling(Digits).
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Vars :: Domain  Constrains Vars to take only integer or real values from the @main
speci ed by Domain. Vars may be a variable, a list, or a submatix (e.g. M[1..4,
3..6]); for a list or a submatrix, the domain is applied recursively so that one can
apply a domain to, for instance, a list of lists of variables. Domain can be speci ed as
a simple range Lo .. Hi, or as a list of subranges and/or indivilual elements (integer
variables only). The type of the bounds determines the type 6the variable (real or
integer). Also allowed are the (untyped) symbolic bound valesinf , +inf and -inf .

Vars $:: Domain Like ::/2 , but for declaring real variables (i.e. it never imposes ine-
grality, regardless of the types of the bounds).

Vars #:: Domain Like ::/2 , but for declaring integer variables.

reals(Vars) Declares that the variables are IC variables (like declarig Vars :: -
inf.inf ).

integers(Vars) Constrains the given variables to take integer values only.

Figure 8.1: Domain constraints

8.4 Built-in Constraints

The following section summarises the built-in constraint predicates of theic library.
The most common way to declare an IC variable is to use the:/2 predicate (or $::/2 or #::/2 )
to give it an initial domain:

?- X = -10 .. 10.
X = x{-10 .. 10}
Yes

?- X : -10.0 .. 10.0.
X = X{-10.0 .. 10.0}
Yes

?- X #:: -10 .. 10.
X = X{-10 .. 10}
Yes

?- X $:: -10 .. 10.
X = X{-10.0 .. 10.0}
Yes

?- X 2 0 .. 1.0Inf.

X = X{0 .. 1.0Inf}
Yes
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ExprX #= ExprY ExprX is equal to ExprY. ExprX and ExprY are integer expressions,
and the variables and subexpressions are constrained to bategers.

ExprX # > = ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY
are integer expressions, and the variables and subexpreess are constrained to be
integers.

ExprX #= < ExprY ExprXis less than or equal to ExprY. ExprX and ExprY are inte-
ger expressions, and the variables and subexpressions amnstrained to be integers.

ExprX # > ExprY ExprX is greater than ExprY. ExprX and ExprY are integer ex-
pressions, and the variables and subexpressions are coratred to be integers.

ExprX # < ExprY ExprX is less than ExprY. ExprX and ExprY are integer expres-
sions, and the variables and subexpressions are constraihéo be integers.

ExprX # n= ExprY ExprX is not equal to ExprY. ExprX and ExprY are integer ex-
pressions, and the variables are constrained to be integers

Figure 8.2: Integral Arithmetic constraints

?- X 2 0.0 .. 1.0Inf.
X = X{0.0 .. 1.0Inf}
Yes

2-X = [1, 4 .. 6 9, 10].
X = X{[1, 4 .. 6, 9, 10]}
Yes

Note that for ::/2 the type of the bounds de nes the type of the variable (integeror real) but that
in nities are considered type-neutral. To just declare the type of a variable without restricting
the domain at all, one can use theintegers/1 and reals/1 .

The nal way to declare that a variable is an IC variable is to just use it in an IC constraint:
this performs an implicit declaration.

The basic IC relational constraints come in two forms. The rst form is for integer-only con-
straints, and is summarised in Figure 8.2. All of these constints contain # in their name,
which indicates that all numbers appearing in them must be irtegers, and all variablesand
subexpressionswill be constrained to be integral. It is important to note th at subexpressions
are constrained to be integral, because it means, for instare, that X/2 + Y/2 #=1 and X
+Y #=2 are di®erent constraints, since the former constrains X and Yo be even.

The second form is the general form of the constraints, and isummarised in Figure 8.3. These
constraints can be used with either integer or real variable and numbers. With the exception
of integrality issues, the two versions of each constraint ee equivalent. Thus if the constants
are integers and the variables and subexpressions are inted, the two forms may be used
interchangeably.

Most of the basic constraints operate by propagating bound mformation (performing interval
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ExprX $= ExprY ExprX is equal to ExprY. ExprX and ExprY are general expressions.

ExprX $ > = ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY are
general expressions.

ExprX $= < ExprY ExprXis less than or equal to ExprY. ExprX and ExprY are gen-
eral expressions.

ExprX $ > ExprY ExprXis greater than ExprY. ExprX and ExprY are general expr es-
sions.

ExprX $ < ExprY ExprXislessthan ExprY. ExprX and ExprY are general expressons.

ExprX $ n= ExprY ExprX is not equal to ExprY. ExprX and ExprY are general ex-
pressions.

Figure 8.3: Non-Integral Arithmetic Constraints

reasoning). The exceptions are the disequality (not equalsconstraints, which perform domain
reasoning (arc consistency). An example:

2-[X, Y] 1 0 .. 10, X #>= Y + 2.

X = X{2 .. 10}

Y = Y{0 .. 8

There is 1 delayed goal.
Yes

In the above example, since the lower bound ofY is 0 and X must be at least 2 greater, the
lower bound of X has been updated to 2. Similarly, the upper bound ofY has been reduced to 8.
The delayed goal indicates that the constraint is still active: there are still some combinations
of values for X and Y which violate the constraint, so the constraint remains until it is sure that
no such violation is possible.

Note that if a domain ever becomes empty as the result of propgation (no value for the vari-
able is feasible) then the constraint must necessarily havdeen violated, and the computation
backtracks.

For a disequality constraint, no deductions can be made untithere is only one variable left, at
which point (if it is an integer variable) the variable's domain can be updated to exclude the
relevant value:

2- X 0 .. 10, X #= 3.
X = X{[0 .. 2, 4 .. 10]}
Yes

2-[X, Y] 1 0 .. 10, X - Y #= 3.
X = X{0 .. 10}
Y = Y{0 .. 10}
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There is 1 delayed goal.
Yes

2-[X, Y] = 0. 10, X - Y #=3, Y = 2.
X = X{[0 .. 4, 6 .. 10}

Y=2

Yes

IC supports a range of mathematical operators beyond the bds +/2, -/2 , */2 , etc. See the
IC chapter in the Constraint Library Manual for full details .

If one wishes to construct an expression to use in an IC consint at run time, then one
must wrap it in eval/l :

?- [X, Y] :: 0.10, Expr = X +Y, Sum #= Expr.

number expected in set_up_ic_con(7, 1, [0 * 1, 1 * Sum{-1.0In f .. 1.0Inf}, -
1* (X{0 .. 10} + Y{O .. 10})])

Abort

?- [X, Y]  0.10, Expr = X + Y, Sum #= eval(Expr).
X = X{0 .. 10}

Y = Y{0 .. 10}

Sum = Sum{0 .. 20}

Expr = X{0O .. 10} + Y{O .. 10}

There is 1 delayed goal.

Yes

Rei cation provides access to the logical truth of a constraint expressen and can be used by:

2 The ECL'PS® system to infer the truth value, re°ecting the value into a variable.

2 The programmer to enforce the constraint or its negation by gving a value to the truth
variable.

This logical truth value is a boolean variable (domain 0..1 ), where the value 1 means the
constraint is or is required to be true, and the value 0 meanste constraint is or is required to
be false.

When constraints appear in an expression context, they evailate to their rei ed truth value.
Practically, this means that the constraints are posted in apassive check but do not propagate
mode. In this mode no variable domains are modi ed but checks i@ made to determine whether
the constraint has become entailed (necessarily true) or dientailed (necessarily false).

The simplest and arguably most natural way to reify a constrant is to place it in an expression
context (i.e. on either side of a$=, #=, etc.) and assign its truth value to a variable. For example:

?- X 2 0 .. 10, Truthvalue $= (X $> 4).
TruthValue = TruthValue{[O, 1]}
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X = X{0 .. 10}
There is 1 delayed goal.
Yes

?- X 1 6 .. 10, Truthvalue $= (X $> 4).
TruthValue = 1

X = X{6 .. 10}

Yes

?- X 2 0 .. 4, TruthValue $= (X $> 4).
TruthValue = 0

X = X{0 .. 4}

Yes

All the basic relational constraint predicates also come ina three-argument form where the third
argument is the rei ed truth value, and this form can also be usd to reify a constraint directly.
For example:

?- X 1 0 .. 10, $>(X, 4, TruthValue).
X = X{0 .. 10}

TruthValue = TruthValue{[0, 1]}
There is 1 delayed goal.

Yes

As noted above the boolean truth variable corresponding to aconstraint can also be used to
enforce the constraint (or its negation):

?- X :: 0 .. 10, TruthValue $= (X $> 4), TruthValue = 1.
X = X{5 .. 10}

TruthValue = 1

Yes

?- X 1 0 .. 10, TruthValue $= (X $> 4), TruthValue = 0.
X = X{0 .. 4}

TruthValue = 0

Yes

By instantiating the value of the rei ed truth variable, the ¢ onstraint changes from beingpassive
to being active. Once actively true (or actively false) the constraint will prune domains as though
it had been posted as a simple non-rei ed constraint.

Additional information on rei"ed constraints can be found in the ECL'PS® Constraint Library
Manual that documents IC: A Hybrid Finite Domain / Real Number Interval Constraint
Solver.

IC also provides a number of connectives useful for combinig constraint expressions. These are
summarised in Figure 8.4. For example:
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and Constraint conjunction. e.g. X $> 3 and X $< 8
or Constraint disjunction. e.g. X $< 3 or X $> 8

= > Constraint implication. e.g. X $> 3 => Y $< 8

neg Constraint negation. e.g.neg X $> 3

Figure 8.4: Constraint Expression Connectives

?-[X, Y] 20 ..10, X#=Y + 6 0or X#==<Y - 6.

X = X{0 .. 10}

Y = Y{O .. 10}

There are 3 delayed goals.
Yes

?2-[X, Y] 20 .. 10, X #>=Y + 6 or X #=< Y - 6, X #>= 5,

Y = Y{0 .. 4}

X = X{6 .. 10}

There is 1 delayed goal.
Yes

In the above example, once it is known thatX #=< Y - 6cannot be true, the constraint X #>=

Y + 6is enforced.

Note that these connectives exploit constraint rei cation, and actually just reason about boolean

variables. This means that they can be used as boolean consiints as well:

?- A => B.

A = A0, 1]}

B = B{[0, 1]}
There is 1 delayed goal.
Yes

?-A=>B A=1
B=1

A=1

Yes

?-A=>B A=0.
B = B{[0, 1]}
A=0

Yes
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8.5 Global constraints

The IC constraint solver has some optional components whichprovide so-called global con-
straints. These are high-level constraints that tend to provide more global reasoning than the
constraints in the main IC library. These optional componerts are contained in theic_global ,
ic_cumulative , ic_edge_finder andic_edge_finder3 libraries. The ic_global library pro-
vides a collection of general global constraints, while thethers provide constraints for resource-
constrained scheduling.

To use these global constraints, load the relevant optionalibrary or libraries using directives in
one of these forms:

.- lib(ic_global).
.- use_module(library(ic_global)).

Specify this at the beginning of your program.

Note that some of these libraries provide alternate implematations of predicates which also
appear in other libraries. For example, the alldifferent/1 constraint is provided by both
the standard ic library and the ic_global library. This means that if you wish to use it, you
must use the relevant module quali er to specify which one youwant: ic:alldi®erent/1  or
ic_global:alldi®erent/1

See the \Additional Finite Domain Constraints" section of t he Library Manual for more
details of these libraries and a full list of the predicates hey provide.

8.5.1 Di®erent strengths of propagation

The alldifferent(List) predicate imposes the constraint on the elements otist that they
all take di®erent values. The standardalldi®erent/1 predicate from the IC library provides a
level of propagation equivalent to imposing pairwise# n=/2 constraints (though it does it more
exciently than that). This means that no propagation is performed until elements of the list
start being made ground. This is despite the fact that there may be \obvious" inferences which
could be made.

Consider as an example the case of 5 variables with domaink..4 . Clearly the 5 variables
cannot all be given di®erent values, since there are only 4 diact values available. However,
the standard alldi®erent/1  constraint cannot determine this:

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic:alldifferent(L).

X1 = X1{1 .. 4}

X2 = X2{1 .. 4}

X3 = X3{1 .. 4}

X4 = X4{1 .. 4}

X5 = X5{1 .. 4}

L = [X1{1 .. 4}, X2{1 .. 4}, X3{1 .. 4}, X4{1 .. 4}, X5{1 .. 4}]
There are 5 delayed goals.

Yes
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Consider another example where three of the variables haveainain 1..3 . Clearly, if all the
variables are to be di®erent, then no other variable can take aalue in the range 1..3 , since
each of those values must be assigned to one of the originalrie variables. Again, the standard
alldi®erent/1  constraint cannot determine this:

?- [X1, X2, X3] =1 .. 3, [X4, X5] :: 1 .. 5,
ic:alldifferent([X1, X2, X3, X4, X5]).

X1 = X1{1 .. 3}

X2 = X2{1 .. 3}

X3 = X3{1 .. 3}

X4 = X4{1 .. 5}

X5 = X5{1 .. 5}

There are 5 delayed goals.

Yes

On the other hand, ic_global 's alldi®erent/1 constraint performs some stronger, more global
reasoning, and for both of the above examples makes the apppadate inference:

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic_global:alldifferent (L).
No

?- [X1, X2, X3] = 1 .. 3, [X4, X5] = 1 .. 5,
ic_global:alldifferent([X1, X2, X3, X4, X5]).

X1 = X1{1 .. 3}

X2 = X2{1 .. 3}

X3 = X3{1 .. 3}

X4 = X4{[4, 5]}

X5 = X5{[4, 5]}

There are 2 delayed goals.

Yes

Of course, there is a trade-o® here: the stronger version of éhconstraint takes longer to perform
its propagation. Which version is best depends on the natureof the problem being solved.

Note that even stronger propagation can be achieved if deséd, by using the Propia library
(see Chapter 15).

In a similar vein, the ic_cumulative , ic_edge finder andic_edge finder3 libraries provide

increasingly strong versions of constraints such asumulative/4 , but with increasing cost to do
their propagation (linear, quadratic and cubic, respectively).

8.6 Simple User-de ned Constraints

User-de ned, or “conceptual' constraints can easily be de neds conjunctions of primitive con-
straints. For example, let us consider a set of products andhe speci cation that allows them
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to be colocated in a warehouse. This should be done in such a was to propagate possible
changes in the domains as soon as this becomes possible.

Let us assume we have a symmetric relation that de nes which psduct can be colocated with
another and that products are distinguished by numeric prodict identi ers:

colocate(100, 101).
colocate(100, 102).
colocate(101, 100).
colocate(102, 100).
colocate(103, 104).
colocate(104, 103).

Suppose we de ne a constraintcolocate_product_pair(X, Y) such that any change of the
possible values ofX or Y is propagated to the other variable. There are many ways in wich
this pairing can be de ned in ECL'PS®. They are di®erent solutions with di®erent properties,
but they yield the same results.

8.6.1 Using Rei ed Constraints

We can encode directly the relations between elements in thdomains of the two variables:

colocate_product_pair(A, B) :-
cpp(A, B),
cpp(B, A).

cpp(A, B) -
[A,B] :: [100, 101, 102, 103, 104],
A #= 100 => B :: [101, 102],
A #= 101 => B #= 100,
A #= 102 => B #= 100,
A #= 103 => B #= 104,
A #= 104 => B #= 103.

This method is quite simple and does not need any special angdis; on the other hand it
potentially creates a huge number of auxiliary constraintsand variables.
8.6.2 Using Propia

By far the simplest mechanism, that avoids this potential creation of large numbers of auxiliary
constraints and variables, is to load the Generalised Propgation library ( propia) and use arc-
consistency @c) propagation, viz:

?- colocate(X,Y) infers ac
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Additional information on propia can be found in section 15.3, section 15 and the ECPS®
Constraint Library Manual.

8.6.3 Using the element Constraint

In this case we use theelement/3 predicate, that states in a list of integers that the element
at an index is equal to a value. Every time the index or the vale is updated, the constraint is
activated and the domain of the other variable is updated acordingly.

relates(X, Xs, Y, Ys) :-
element(l, Xs, X),
element(l, Ys, Y).

We de ne a generic predicateyelates/4 , that associates the corresponding elements at a speci ¢
index of two lists, with one another. The variable | is an index into the lists, Xs and Ys, to yield
the elements at this index, in variablesX and Y.

colocate_product_pair(A, B) :-
relates(A, [100, 100, 101, 102, 103, 104],
B, [101, 102, 100, 100, 104, 103]).

The colocate_product_pair  predicate simply calls relates/4 passing a list containing the
product identi ers in the rst argument of colocate/2 as Xs and a list containing product

identi ers from the second argument ofcolocate/2 asYs.

Behind the scenes, this is exactly the implementation useddr arc-consistency propagation by
the Generalised Propagation library.

Because of the speci ¢ and excient algorithm implementing the element/3 constraint, it is

usually faster than the rst approach, using rei ed constraints.

8.7 Searching for Feasible Solutions

indomain(+DVar) This predicate instantiates the domain variable DVar to an element of its
domain; on backtracking the subsequent value is taken. It isused, for example, to nd
a value of DVar which is consistent with all currently imposed constraints. If DVar is a
ground term, it succeeds. Otherwise, if it is not a domain varable, an error is raised.

labeling(+List) The elements of thelList are instantiated using the indomain/1 predicate.

Additional information on search algorithms, heuristics and their use in ECL'PS® can be
found in chapter 12.
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8.8

Bin Packing

This section presents a worked example using nite domains tsolve a bin-packing problem.

8.8.1 Problem De nition

In this type of problem the goal is to pack a certain amount of d®erent items into the minimal
number of bins under speci ¢ constraints. Let us solve an exapie given by Andre Vellino in
the Usenet group comp.lang.prolog, June 93:

2

There are 5 types of items:
glass plastic, steel wood copper

There are three types of bins:
red, blue green

The capacity constraints imposed on the bins are:

{ red has capacity 3
{ blue has capacity 1
{ green has capacity 4

The containment constraints imposed on the bins are:

{ red can contain glass, wood, copper
{ blue can contain glass, steel, copper
{ green can contain plastic, wood, copper

The requirement constraints imposed on component types (foall bin types) are:
wood requires plastic

Certain component types cannot coexist:

{ glass and copper exclude each other
{ copper and plastic exclude each other

The following bin types have the following capacity constrants for certain components:

{ red contains at most 1 wood item
{ blue implicitly contains at most 1 wood item
{ green contains at most 2 wood items

Given the initial supply stated below, what is the minimum to tal number of bins required
to contain the components?

{ 1 glass item
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{ 2 plastic items
{ 1 steel item
{ 3 wood items

{ 2 copper items

8.8.2 Problem Model - Using Structures

In modelling this problem we need to refer to an array of quanities of glass items, plastic items,
steel items, wood items and copper items. We therefore intrduce:
A structure to hold this array:

:- local struct(contents(glass, plastic, steel, wood, cop per)).

A structure that de nes the colour for each of the bin types:

.- local struct(colour(red, blue, green)).

By de ning the bin colours as elds of a structure there is an imgicit integer value associated
with each colour. This allows the readability of the code to ke preserved by writing, for example,
red of colour rather than explicitly writing the colour's integer value ~ 1'.

And a structure that represents the bin itself, with its colour, capacity and contents:

:- local struct(bin(colour, capacity, contents:contents )).

The contents attribute of bin is itself a contents structure. The contents “eld declaration
within the bin structure using ': ' allows eld names of the contents structure to be used
as if they were eld names of thebin structure. More information on accessing nested
structures and structures with inherited "elds can be found in section 4.1 and in the
Structure Notation section of the ECL'PS® User Manual.

The predicate solve_bin/2 is the general predicate that takes an amount of components qcked
into a contents structure and returns the solution.

?- Demand = contents with
[glass:1, plastic:2, steel:1, wood:3, copper:2],
solve_bin(Demand, Bins).
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8.8.3 Handling an Unknown Number of Bins

solve_bin/2 callsbhin_setup/2 to generate a listBins. It adds redundant constraints to remove
symmetries (two solutions are considered symmetrical if tley are the same, but with the bins in
a di®erent order). Finally it labels all decision variables h the problem.

solve_bin(Demand, Bins) :-
bin_setup(Demand, Bins),
remove_symmetry(Bins),
bin_label(Bins).

The usual pattern for solving "nite domain problems is to state constraints on a set of variables,
and then label them. However, because the number of bins need is not known initially, it is
awkward to model the problem with a "xed set of variables.

One possibility is to take a xed, large enough, number of binsand to try to nd a minimum
number of non-empty bins. However, for exciency, we choose todve a sequence of problems,
each one with a - larger - "xed number of bins, until a solution is found.

The predicate bin_setup/2 , to generate a list of bins with appropriate constraints, waks as
follows. First it tries to match the (remaining) demand with zero, and use no (further) bins. If
this fails, a new bin is added to the bin list; appropriate corstraints are imposed on all the new
bin's variables; its contents are subtracted from the demaul; and the bin_setup/2 predicate
calls itself recursively:

bin_setup(Demand,[]) :-
all_zeroes(Demand).
bin_setup(Demand, [Bin | Bins]) :-
constrain_bin(Bin),
reduce_demand(Demand, Bin, RemainingDemand),
bin_setup(RemainingDemand, Bins).

all_zeroes(
contents with
[glass:0, plastic:0, wood:0, steel:0, copper:0]

)-

reduce_demand(
contents with
[glass:G, plastic:P, wood:W, steel:S, copper:C],
bin with
[glass:BG, plastic:BP, wood:BW, steel:BS, copper:BC],
contents with
[glass:RG, plastic:RP, wood:RW, steel:RS, copper:RC]

) -
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RG #= G - BG,

RP #= P - BP,
RW #= W - BW,
RS #= S - BS,
RC #= C - BC.

8.8.4 Constraints on a Single Bin

The constraints imposed on a single bin correspond exactlyd the problem statement:

constrain_bin(bin with [colour:Col, capacity:Cap, conte nts:CJ]) :-
colour_capacity_constraint(Col, Cap),
capacity_constraint(Cap, C),
contents_constraints(C),
colour_constraints(Col, C).

colour _capacity _constraint  The colour capacity constraint relates the colour of the binto
its capacity, we implement this using the relates/4 predicate (de ned in section 8.6.3):

colour_capacity_constraint(Col, Cap) :-
relates(Col, [red of colour, blue of colour, green of colour 1,
Cap, [3, 1, 4)).

capacity _constraint  The capacity constraint states the following:
2 The number of items of each kind in the bin is non-negative.
2 The sum of all the items does not exceed the capacity of the bin

2 and the bin is non-empty (an empty bin serves no purpose)

capacity_constraint(Cap, contents with [glass:G,
plastic:P,
steel:S,
wood:W,
copper:C]) :-
G#>=0, P #=0, S #= 0, W #= 0, C #= 0,
Numltems #= G + P + W + S + C,
Cap #>= Numltems,
Numitems #> 0.
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contents _constraints  The contents constraints directly enforce the restrictions on items in
the bin: wood requires paper, glass and copper exclude eachlher, and copper and plastic
exclude each other:

contents_constraints(contents with [glass:G, plastic:P , wood:W, copper:C]) :-

requires(W, P),
exclusive(G, C),
exclusive(C, P).

These constraints are expressed as logical combinations obnstraints on the number of items.
‘requires' is expressed using implication=> “Wood requires paper' is expressed in logic as If
the number of wood items is greater than zero, then the numbelof paper items is also greater
than zero"

requires(W,P) :-
W #> 0 => P #> 0.

Exclusion is expressed using disjunctionpr. "X and Y are exclusive' is expressed as "Either the
number of items of kind X is zero, or the number of items of kindY is zero':

exclusive(X,Y) :-
X #=0or Y #= 0.

colour _constraints  The colour constraint limits the number of wooden items in bins of di®er-
ent colours. Like the capacity constraint, the relation between the colour and capacity, W Cap,
is expressed using theelates/4 predicate. The number of wooden items is then constrained
not to exceed the capacity:

colour_constraints(Col, contents with wood:W) :-
relates(Col, [red of colour, blue of colour, green of colour 1,
WCap, [1, 1, 2]),
W #=< WCap.

This model arti cially introduces a capacity of blue bins for wood items (set simply at its
maximum capacity for all items).

8.8.5 Symmetry Constraints

To make sure two solutions (a solution is a list of bins) are no just di®erent permutations of
the same bins, we impose an order on the list of bins:
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remove_symmetry(Bins) :-
( fromto(Bins, [B1, B2 | Rest], [B2 | Rest], [_Last])
do
lex_ord(B1, B2)
).

We order two bins by imposing lexicographic order onto listscomputed from their colour and
contents, (recall that in de ning the bin colours as elds of a gructure we have encoded them
as integers, which allows them to be ordered):

lex_ord(bin with [colour:Coll, contents:Contsl],
bin with [colour:Col2, contents:Conts2]) :-
% Use '=.." to extract the contents of the bin as a list
Contsl =.. [_ | Vars]l],
Conts2 =.. [_ | Vars2],
lexico_le([Coll | Varsl], [Col2 | Vars2)).

8.8.6 Search

The search is done by rst choosing a colour for each bin, and tan labelling the remaining
variables.

bin_label(Bins) :-
( foreach(bin with colour:C, Bins) do indomain(C) ),
term_variables(Bins, Vars),
search(Vars, 0, first_fail, indomain, complete, []).

The remaining variables are labelled by employing the rst fal heuristic (using the search/6
predicate of theic library).

Additional information on search algorithms, heuristics and their use in ECL'PS® can be
found in section 12.

8.9 Exercises

1. A magic square is a & 3 grid containing the digits 1 through 9 exactly once, such that each
row, each column and the two diagonals sum to the same numberlb). Write a program
to nd such magic squares. (You may wish to use the \Send More Maey" example in
section 8.3 as a starting point.)

Bonus points if you can add constraints to break the symmetry so that only the one unique
solution is returned.
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2. Fill the circles in the following diagram with the numbers 1 through 19 such that the
numbers in each of the 12 lines of 3 circles (6 around the outde, 6 radiating from the
centre) sum to 23.

(—O—0

/N /N

O Q O Q
Q/O\O/O\O
\O O/O O/

N/ N/
O—0O—0

If the value of the sum is allowed to vary, which values of the am have solutions, and
which do not?

(Adapted from Puzzle 35 in Dudeney's\The Canterbury Puzzles")

3. Consider the following code:

foo(Xs, Ys) :-
(
foreach(X, Xs),
foreach(Y, Ys),
fromto(1, In, Out, 1)
do
In #= (X #< Y + Out)
).

Which constraint does this code implement? (Hint: declaraively, it is the same as one of
the constraints from ic_global , but is implemented somewhat di®erently.) How does it
work?
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Chapter 9

Working with real numbers and
variables

9.1 Real number basics

In general, real values cannot be represented exactly if the@epresentation is explicit. As a
result, they are usually approximated on computers by °oating point numbers, which have a
“nite precision. This approximation is sutcient for most purp oses; however, in some situations
it can lead to signi cant error. Worse, there is usually nothing to indicate that the nal result
has signi cant error; this can lead to completely wrong answes being accepted as correct.
One way to deal with this is to use interval arithmetic. The basic idea is that rather than
using a single °oating point value to approximate the true red value, a pair of °oating point
bounds are used which are guaranteed to enclose the true reghlue. Each arithmetic operation
is performed on the interval represented by these bounds, ahthe result rounded to ensure it
encloses the true result. The result is that any uncertainty in the nal result is made explicit:
while the true real value of the result is still not known exadly, it is guaranteed to lie somewhere
in the computed interval.

Of course, interval arithmetic is no panacea: it may be that the nal interval is too wide
to be useful. However this indicates that the problem was prbably ill-conditioned or poorly
computed: if the same computation had been performed with nomal °oating point numbers,
the nal °oating point value would probably not have been near the true real value, and there
would have been no indication that there might be a problem.

In ECL'PS?, such intervals are represented using théounded realdata type.

An example of using bounded reals to safely compute the squarroot of 2:

?- X is sqrt(breal(2)).
X = 1.4142135623730949 _ 1.4142135623730954
Yes

To see how using ordinary °oating point numbers can lead to in&curacy, try dividing 1 by 10,
and then adding it together 10 times. Using °oats the result isnot 1.0; using bounded reals the
computed interval contains 1.0 and gives an indication of hav much potential error there is:
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2 Bounded reals are written as two °oating point bounds separaed by a double un-
derscore (e.g.1.5 2.0,1.0 1.0, 3.1415926535897927__ 3.141592653589793F

2 Other numeric types can be converted to bounded reals by givig them a breal/1
wrapper, or by calling breal/2 directly

2 Bounded reals are not usually entered directly by the user; nrmally they just occur
as the results of computations

2 A bounded real represents a single real number whose valueksown to lie somewhere
between the bounds and is uncertain only because of the limid precision with which
is has been calculated

2 An arithmetic operation is only performed using bounded reds if at least one of its
arguments is a bounded real

Figure 9.1: Bounded reals

?-Yis float(l) / 10, Xis Y+ Y+ Y+ Y+Y+Y+Y+Y+Y+Y.
X = 0.99999999999999989

Y =01

Yes

?-Yisbreal(l) /10, XisY+Y+Y+Y+Y+Y+Y+Y+Y+Y.
X = 0.99999999999999978__ 1.0000000000000007

Y = 0.099999999999999992 0.1

Yes

9.2 Issues to be aware of when using bounded reals

When working with bounded reals, some of the usual rules of @hmetic no longer hold. In
particular, it is not always possible to determine whether e bounded real is larger, smaller,
or the same as another. This is because, if the intervals ovip, it is not possible to know the
relationship between the true values.

An example of this can be seen in Figure 9.2. If the true value oXis X;, then depending upon
whether the true value of Yis (say) Y1, Y2 or Y3, we haveX > Y X =:= Yor X < Y respectively.
Di®erent classes of predicate deal with the undecidable casén di®erent ways:

Arithmetic comparison (<12, =:=/2, etc.) If the comparison cannot be determined de ni -
tively, the comparison succeeds but a delayed goal is left end, indicating that the result
of the computation is contingent on the relationship actually being true. Examples:

?-X=02_03,Y=00_01 X>Y.

X =02 03
Y =00_01
Yes
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X Y

Figure 9.2: Comparing two bounded reals

2-X =02_03, Y=00_01 X<Y.
No

2-X =00_01Y=00_01 X<Y.
X = 0.0_0.1

Y =00_0.1

Delayed goals:
0.0 0.1<00_01
Yes

?2-X=Y,X=00_01 X<Y.
No

Term equality or comparison (=12, ==/2, compare/3, @ </2, etc.) These predicates con-
sider bounded reals from a purely syntactic point of view: ttey determine how the bounded
reals compare syntactically, without taking into account t heir meaning. Two bounded reals
are considered equal if and only if their bounds are syntactially the same (note that the
°oating point numbers 0.0 and -0.0 are considered to be syntadtally di®erent). A unique
ordering is also de ned between bounded reals which do not havidentical bounds; see the
documentation for compare/3 for details. This is important as it means predicates such
as sort/2 behave in a sensible fashion when they encounter limded reals (in particular,
they do not throw exceptions or leave behind large numbers ofmeaningless delayed goals)
| though one does need to be careful when comparing or sortingthings of di®erent types.
Examples:

?-X=02_03,Y

0.0_0.1, X == V.

No
?-X =00_01,Y =00_01, X == V.
X = 0.0_0.1
Y = 00_0.1

Yes

?- X =0.2_03,Y =0.0_0.1, compare(R, X, Y).
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?- X =01_30,Y =0.2_0.3, compare(R, X, Y).
R =<

X =01_30

Y =02_03

Yes

?- X =0.0_0.1, Y =0.0_0.1, compare(R, X, Y).
R ==

X =0.0_01

Y =00_01

Yes

?- sort([-5.0, 1.0__1.0], Sorted).

Sorted = [1.0__1.0, -5.0] % 1.0 1.0 > -5.0, but 1.0 1.0 @< - 5.0
Yes

Note that the potential undecidability of arithmetic compa risons has implications when writing
general code. For example, a common thing to do is test the vake of a number, with di®erent
code being executed depending on whether or not it is above aedain threshold; e.g.

(X>=0->
% Code A

% Code B

When writing code such as the above, ifX could be a bounded real, one ought to decide what
should happen if Xs bounds span the threshold value. In the above example, iK = -0.1__ 0.1
then a delayed goal-0.1 0.1 >= 0 will be left behind and Code A executed. If one does not
want the delayed goal, one can instead write:

(not X >=0 ->
% Code B

% Code A
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2 Real variables may be declared usingeals/1 , $::/2 , ::/2 (specifying non-integer
bounds) or just by using them in an IC constraint

2 Basic constraints available for real variables are$=/2 , $>=/2 , $=</2, $> /2,
$< /2 and $n=/2 , as well as their rei ed versions and the rei ed connectives

2 Real constraints also work with integer variables and a mix @ integer and real vari-
ables

2 Solutions to real constraints can be found usindocate/2 , locate/3 , locate/4 or
squash/3

Figure 9.3: Real variables and constraints

The use of not ensures that any actions performed during the test (in particular the set up of
any delayed goals) are backtracked, regardless of the outome of the test.

Finally, if one wishes Code B to be executed instead of Code Anithe case of an overlap, one
can reverse the sense of the test:

(not X <0 ->
% Code A

% Code B

9.3 IC as a solver for real variables

The IC solver is a hybrid solver which supports both real and nteger variables.
See Chapter 8 for an introduction to IC and how to use it with integer variables.

See the IC chapter in the Constraint Library Manual for a full list of the arithmetic operators
which are available for use in IC constraint expressions.

IC's real constraints perform bounds propagation in the sane way as the integer versions; in-
deed, most of the basic integer constraints are transformedhto their real counterparts, plus a
declaration of the integrality of the variables appearing in the constraint.

Note that the interval reasoning performed to propagate red bounds is the same as that used
for bounded reals; that is, the inferences made are safe, takg into account potential °oating
point errors.
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Locate solutions

\ Bounds propagation

solution

Figure 9.4: Example of using locate/2

9.4 Finding solutions of real constraints

In very simple cases, just imposing the constraints may be strient to directly compute the
(unique) solution. For example:

2-3* X $= 4.
X = 1.3333333333333333__1.3333333333333335
Yes

Other times, propagation will reduce the domains of the varables to suitably small intervals:

?-3*X+2*Y $=4, X-5*Y $= 2, X $= -100.
Y = Y{-0.11764705946382902 .. -0.1176470540212896}
X = X{1.4117647026808551 .. 1.4117647063092196}
There are 2 delayed goals.

Yes

In general though, some extra work will be needed to nd the saltions of a problem. The IC
library provides two methods for assisting with this. Which method is appropriate depends on
the nature of the solutions to be found. If it is expected that there a nite number of discrete
solutions, locate/2 and locate/3 would be good choices. If solutions are expected to lie in a
continuous region, squash/3 may be more appropriate.

Locate works by nondeterministically splitting the domains of the variables until they are nar-
rower than a speci ed precision (in either absolute or relatve terms). Consider the problem of
‘nding the points where two circles intersect (see Figure 9.4 Normal propagation does not
deduce more than the obvious bounds on the variables:
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o T ‘ Squashing solution

Bounds propagation
solution

Figure 9.5: Example of propagation using the squash algoritm

?- 4 $= X2 + Y2, 4 $= (X - 1)"2 + (Y - )2

X = X{-1.0000000000000004 .. 2.0000000000000004}
Y = Y{-1.0000000000000004 .. 2.0000000000000004}
There are 12 delayed goals.

Yes

Calling locate/2 quickly determines that there are two solutions and nds them to the desired
accuracy:

?- 4 $= X2 + Y2, 4 $= (X-1)"2 + (Y-1)"2, locate([X, Y], le-5).
X = X{-0.8228756603552696 .. -0.82287564484820042}

Y = Y{1.8228756448482002 .. 1.8228756603552694}

There are 12 delayed goals.

More

X = X{1.8228756448482004 .. 1.8228756603552696}

Y = Y{-0.82287566035526938 .. -0.82287564484820019}
There are 12 delayed goals.

Yes

Squash works by deterministically cutting o® parts of the denains of variables which it deter-

mines cannot contain any solutions. In e®ect, it is like a strager version of bounds propagation.
Consider the problem of nding the intersection of two circular discs and a hyperplane (see
Figure 9.5). Again, normal propagation does not deduce mor¢han the obvious bounds on the

variables:

2- 4 $>= XM2 + YA2, 4 $>= (X-1)"2 + (Y-1)"2, Y $>= X.
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Y = Y{-1.0000000000000004 .. 2.0000000000000004}
X = X{-1.0000000000000004 .. 2.0000000000000004}
There are 13 delayed goals.

Yes

Calling squash/3 results in the bounds being tightened (in this case the bound are tight for
the feasible region, though this is not true in general):

?2- 4 $>= XM2 + YA2, 4 $>= (X-1)"2 + (Y-1)*2, Y $>= X,
squash([X, Y], 1e-5, lin).

X = X{-1.0000000000000004 .. 1.4142135999632601}

Y = Y{-0.41421359996326 .. 2.0000000000000004}

There are 13 delayed goals.

Yes

For more details, see the IC chapter of the Library Manual or the documentation for the
individual predicates.

9.5 A larger example
Consider the following problem:

George is contemplating buying a farm which is a very strangeshape, comprising a
large triangular lake with a square "eld on each side. The areaf the lake is exactly
seven acres, and the area of each eld is an exact whole numbef acres. Given that
information, what is the smallest possible total area of thethree "elds?

A diagram of the farm is shown in Figure 9.6.

This is a problem which mixes both integer and real quantities, and as such is ideal for solving
with the IC library. A model for the problem appears below. The farm/4 predicate sets up the
constraints between the total area of the farmF and the lengths of the three sides of the lake,
A Band C

- lib(ic).

farm(F, A, B, C) :-
[A, B, C] :: 0.0 .. 1.0Inf, % The 3 sides of the lake
triangle_area(A, B, C, 7), % The lake area is 7

[F, FA, FB, FC] :: 1 .. 1.0Inf, % The square areas are integral
square_area(A, FA),

square_area(B, FB),

square_area(C, FC),

F #= FA+FB+FC,
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B

Figure 9.6: Triangular lake with adjoining square elds

FA $>= FB, FB $>= FC. % Avoid symmetric solutions

triangle_area(A, B, C, Area) :-
S $>= 0,
S $= (A+B+C)/2,
Area $= sqrt(S*(S-A)*(S-B)*(S-C)).

square_area(A, Area) :-
Area $= sqr(A).

A solution to the problem can then be found by rst instantiati ng the area of the farm, and then
using locate/2 to nd the lengths of the sides of the lakes. Instantiating the area of the farm
“rst ensures that the rst solution returned will be the minima | one, sinceindomain/1  always
chooses the smallest possible value rst:

solve(F) :-
farm(F, A, B, C), % the model
indomain(F), % ensure that solution is minimal
locate([A, B, C], 0.01).
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9.6 Exercise

1. Consider the \farm" problem in section 9.5. (Source code ray be found in farm.ecl , if
you have access to it.) Try running this program to nd the answer. Note that other,
larger solutions are available by selectingmore.

This implementation sums three integer variables A FBand FQ, and then constrains
their order to remove symmetries. Would this be a good candidte for the global constraint
ordered_sum/2? Modify the program so that it does useordered_sum/2. How does the
run time compare with the original?
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Chapter 10

The Integer Sets Library

10.1 Why Sets

The ic_setslibrary is a solver for constraints over the domain of "nite sets of integers. Modelling
with sets is useful for problems where one is not interestechi each item as a speci ¢ individual,
but in a collection of item where no speci ¢ distinction is made and thus where symmetries
among the element values need to be avoided.

10.2 Finite Sets of Integers

In the context of the ic_setslibrary, (ground) integer sets are simply sorted, duplicate-free lists
of integers e.g.

SetOfThree = [1,3,7]
EmptySet = []

Lists which contain non-integers, are unsorted or contain dplicates, are not sets in the sense of
this library.

10.3 Set Variables

Set variables are variables which can eventually take a groud integer set as their value. They
are characterized by a lower bound (the set of elements that @ de nitely in the set) and an
upper bound (the set of elements that may be in the set). A set ariable can be declared as
follows:

Setvar :: []..[1,2,3,4,5,6,7]

If the lower bound is the empty set and the upper bound is a set bconsecutive integers, one
can also declare it like

intset(SetVvar, 1, 7)

which is equivalent to the above.
The system prints set variables in a particular way, for instance:
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?Set :: ++Lwb..++Upb Set is an integer set within the given bounds

intset(?Set, +Min, +Max) Set is a set containing numbers between Min and Max

intsets(?Sets, ?N, +Min, +Max) Sets is a list of N sets containing numbers between
Min and Max

Figure 10.1: Declaring Set Variables

?- lib(ic_sets).
?- X 1 [2,3]..[1,2,3,4].
X =X{[2, 31V (] .- [2, 4]) : _308{[2 .. 4]}}

The curly brackets contain the description of the current domain of the set variable in the form

of

a & . dpoE

the lower bound of the set (values which de nitely are in theset)
the union symbol V
the set of optional values (which may or may not be in the set

a colon

. a nite domain variable indicating the admissible cardinality for the set

10.4 Constraints

The constraints that ic_sets implements are the usual relations over sets. The memberspi
(in/2, notin/2) and cardinality constraints (#/2) establi sh relationships between set variables
and integer variables:

?- X o[I.[3, 2, 3], 2 in X, 3 in X, #(X, 2).
X =12, 3]
Yes (0.01s cpu)

?- X 2.2, 2, 3, 4], 3 in X, 4 notin X.
X=X{[381V( . [1, 2]) : _2161{1 .. 3}}
Yes (0.00s cpu)

?X in ?Set The integer X is member of the integer set Set
?X notin ?Set  The integer X is not a member of the integer set Set

#(?Set, ?Card) Card is the cardinality of the integer set Set

Figure 10.2: Membership and Cardinality Constraints
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?Setl sameset ?Set2 The sets Setl and Set2 are equal

?Setl disjoint ?Set2  The integer sets Setl and Set2 are disjoint

?Setl includes ?Set2 Setl includes (is a superset) of the integer set Set2
?Setl subset ?Set2 Setl is a (non-strict) subset of the integer set Set2

intersection(?Setl, ?Set2, ?Set3) Set3 is the intersection of the integer sets Setl anc
Set?

union(?Setl, ?Set2, ?Set3) Set3 is the union of the integer sets Setl and Set2

di®erence(?Setl, ?Set2, ?Set3) Set3 is the di®erence of the integer sets Setl and Set2

[ ==Y

symdi®(?Setl, ?Set2, ?Set3) Set3 is the symmetric di®erence of the integer sets Set
and Set2

Figure 10.3: Basic Set Relations

Possible constraints between two sets are equality, inclusn/subset and disjointness:

?- X subset [1, 2, 3, 4].
X =X{{ .- [1, 2, 3, 4]) : _2139{0 .. 4}}
Yes (0.00s cpu)

?- X [.[3, 2, 3, 4], Y = [].[3, 4, 5, 6], X subset Y.
X = X{{ .- [3, 4] : _2176{0 .. 2}}

Y = Y{(] .- [3, 4, 5, 6]) : _2367{0 .. 4}}

There are 4 delayed goals.

Yes (0.00s cpu)

?-X a2l .. (1, 2 3,4], Y [3] .. [1, 2, 3, 4], X disjoint Y.
X=X{[21V @ .. [1, 4]) : _2118{1 .. 3}}

Y =Y{3B]V @ . [1, 4] : _2213{1 .. 3}}

There are 2 delayed goals.

Yes (0.00s cpu)

Possible constraints between three sets are for example ietsection, union, di®erence and sym-
metric di®erence. For example:

?2- X = [2,3] .. [1, 2, 3, 4],

Y [3, 4] .. [3, 4, 5, 6],

ic_sets : intersection(X, Y, 2).
X{[2, 3]V ([ .. [1, 4] : _2127{2 .. 4}
Y{[3, 41V (] .. [5, 6]) : _2222{2 .. 4}}
Z{31 V (0 .- [4]) : _2302{[1, 2]}}
here are 6 delayed goals.

= N < X
I
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all_disjoint(+Sets)  Sets is a list of integers sets which are all disjoint
all _union(+Sets, ?SetUnion) SetUnion is the union of all the sets in the list Sets

all _intersection(+Sets, ?Setlntersection) Setintersection is the intersection of all the
sets in the list Sets

Figure 10.4: N-ary Set Relations

Yes (0.00s cpu)

Note that we needed to qualify the intersection/3 constraint with the ic_setsmodule pre x
because of a hame con’ict with a predicate from thdists library of the same name.

Note the lack of a complement constraint: this is because thecomplement of a "nite set
is in nite and cannot be represented. Complements can be modied using an explicit
universal set and a di®erence constraint.

Finally, there are a number of n-ary constraints that apply to lists of sets: disjointness, union
and intersection. For example:

?- intsets(Sets, 5, 1, 5), all_intersection(Sets, Common)
Sets = [ 2079{(] .. [1, 2, 3, 4, 5]) : _2055{0 .. 5}}, ... ]
Common = Common{([] .. [1, 2, 3, 4, 5]) : _3083{0 .. 5}}
There are 24 delayed goals.

Yes (0.00s cpu)

In most positions where a set or set variable is expected onean also use a set expression. A
set expression is composed from ground sets (integer lists3et variables, and the following set
operators:

Setl N\ Set2 % intersection
Setl \/ Set2 % union
Setl \ Set2 % difference

When such set expressions occur, they are translated into adgliary intersection/3 , union/3
and di®erence/3 constraints, respectively.

10.5 Search Support

The insetdomain/4  predicate can be used to enumerate all ground instantiatios of a set
variable, much like indomain/1 in the nite domain case. Here is an example of the default
enumeration strategy:

?- X:[)..[1,2,3], insetdomain(X,_, , ), writeln(X), fa il.
[1, 2, 3]
[1. 2]
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[1, 3]
[1]

[2, 3]
[2]

[3]

I

Other enumeration strategies can be selected (see the Re&srce Manual on insetdomain/4).

10.6 Example

The following program computes so-called Steiner triplets.The problem is to compute triplets
of numbers between 1 and N, such that any two triplets have at nost one element in common.

;- lib(ic_sets).
:- lib(ic).
steiner(N, Sets) :-
NB is N * (N-1) // 6, % compute number of triplets
intsets(Sets, NB, 1, N), % initialise the set variables
( foreach(S,Sets) do
#(S,3) % constrain their cardinality
),

( fromto(Sets,[S1|Ss],Ss,[]) do
( foreach(S2,Ss), param(S1) do

#(S1 N S2, C), % constrain the cardinality
C #=x<1 % of pairwise intersections
)
),
label_sets(Sets). % search

label_sets([]).

label_sets([S|Ss]) :-
insetdomain(s,_, , ),
label_sets(Ss).

Running this program yields the following rst solution:
?- steiner(9,X).
X =1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],
[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],
[31 51 7]! [31 6! 8]’ [4l 7! 8]’ [51 6’ 9]] More’) (l)
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weight(?Set, ++ElementWeights, ?Weight) According to the array of element
weights, the weight of set Setl is Weight

Figure 10.5: Set Weight Constraint

10.7 Weight Constraints

Another constraint between sets and integers is the weightB constraint. It allows the association
of weights to set elements, and can help when solving problesnof the knapsack or bin packing

type. The constraint takes a set and an array of element weigts and constrains the weight of
the whole set:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5)),
Weights = [](20, 34, 9, 12, 19),
weight(Container, Weights, W).
Container = Container{([] .. [1, 2, 3, 4, 5]) : _2127{0 .. 5}}
Weights = [](20, 34, 9, 12, 19)
W = W{0 .. 94}
There is 1 delayed goal.
Yes (0.01s cpu)

By adding a capacity limit and a search primitive, we can sohe a knapsack problem:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5)]),
Weights = [](20, 34, 9, 12, 19),
weight(Container, Weights, W),

W #=< 50,
insetdomain(Container,_, , ).

Weights = [](20, 34, 9, 12, 19)

W = 41

Container = [1, 3, 4]

More (0.00s cpu)

By using the heuristic options provided by insetdomain, we @n implement a greedy heuristic,
which "nds the optimal solution (in terms of greatest weight) straight away:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5)]),
Weights = [](20, 34, 9, 12, 19),
weight(Container, Weights, W),
W #=< 50,
insetdomain(Container,decreasing,heavy_first(Weight s), ).
W = 48
Container = [1, 3, 5]
Weights = [](20, 34, 9, 12, 19)
More (0.00s cpu)
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10.8 Exercises

1. Consider the knapsack problem in section 10.7. Suppose dh the items each have an
associated pro t, namely 17, 38, 18, 10 and 5, respectively. Wch items should be included

to maximise pro t?

2. Write a predicate which, given a list of sizes of items and dist of capacities of buckets,
returns a list of (ground) sets indicating which items should go into each bucket. Obviously

each item should go into exactly one bucket.
Try it out with 5 items of sizes 20, 34, 9, 12 and 19, into 3 buckés of sizes 60, 20 and 20.
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Chapter 11

Problem Modelling

11.1 Constraint Logic Programming

One of the main ambitions of Constraint Programming is the sgaration of Modelling, Algorithms
and Search. This is best characterised by two pseudo-equatis. The rst one is paraphrased
from Kowalski [11]

Solution = Logic + Control

and states that we intend to solve a problem by giving a logic declarative description of the
problem and adding control information that enables a compuer to deduce a solution.
The second equation

Control = Reasoning + Search

is motivated by a fundamental dixculty we face when dealing with combinatorial problems:
we do not have excient algorithms for nding solutions, we haveto resort to a combination of
reasoning (via excient algorithms) and (inexcient) search.

We can consider every constraint program as an exercise in nowining the 3 ingredients:

2 Logic - The design of a declarativeModel of the problem.

2 Reasoning - The choice of cleverConstraint Propagation algorithms that reduce the need
for search.

2 Search - The choice of searchstrategies and heuristicsfor nding solutions quickly.
In this chapter we will focus on the rst issue, Problem Modelling , and how it is supported
by ECL'PS®.
11.2 Issues in Problem Modelling

A good formalism for problem modelling should ful T the following criteria:

2 Expressive power - Can we write a formal model of the real world problem?
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2 Clarity for humans - How easily can the model be written, read, understood or moded?
2 Solvability for computers - Are there good known methods to solve it?

Higher-level models are typically closer to the user and clasto the problem and therefore easier
to understand and to trust, easier to debug and to verify, andeasier to modify when customers
change their mind. On the other hand, it is not necessarily eay to see how they can be
solved, because high-level models contain high-level notisn(e.g. sets, tasks) and heterogeneous
constraints.

The constraint programming approach also addresses one ohé classical sources of error in
application development with traditional programming lan guages: the transition from aformal
description of the problem to the nal program that solves it. The question is: Can the nal
program be trusted? The Constraint (Logic) Programming solution is to

2 Keep the initial formal model as part of the nal program
2 Enhance rather than rewrite
The process of enhancing the initial formal model involvesdr example
2 Adding control annotations, e.g. algorithmic information or heuristic information.

2 Transformation: Mapping high-level (problem) constraints into low-level (solver) con-
straints, possibly exploiting multiple, redundant mappin gs.

There are many other approaches to problem modelling softwe. The following is a brief
comparison:

Formal speci cation languages (e.g. Z, VDM) More expressive power than ECLIPSe, but
not executable

Mathematical modelling languages (e.g. OPL, AMPL) Similar to ECLiPSe, but usu-
ally limited expressive power, e.g. xed set of constraints.

Mainstream programming languages (e.g. C++ plus solver library) Variables and con-
straints are "aliens" in the language. Speci cation is mixedwith procedural control.

Other CLP/high-level languages (e.g. CHIP) Most similar to ECLiPSe. Less support for
hybrid problem solving. Harder to de ne new constraints.

11.3 Modelling with CLP and ECL  'PS®

When modelling problems with constraints, the basic idea i20 set up a network of variables and
constraints. Figure 11.1 shows such a constraint network. tlcan be seen that the Constraint
Logic Programming (CLP) formulation

2 is a natural declarative description of the constraint network

2 can serve as a program to set up the constraint network
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Variables

_— ® with attributes
@ ™~ e.g. domain
/ Constraints

/ predicates involving
= _ one or more variables
- alldifferent
\ Model
= setup program:
[X1,X2,X3,X4]::1..9,
X1 #> X2,
alldifferent([X2,X3,X4]),
X1 #\= X4.

Figure 11.1: A Constraint Network

The main ECL'PS® language constructs used in modelling are

Built-in constraints
X #>Y

Abstraction
before(task(Si,Di), task(Sj,Dj)) :- Si+Di #<= S;.

Conjunction
between(X,Y,Z) :- X #< Y, Y #< Z.

Disjunction (but see below)
neighbour(X,Y) - ( X #= Y+1 ; Y #= X+1).

Iteration
not_among(X, L) :- ( foreach(Y,L),param(X) do X #\=Y ).

Recursion
not_among(X, []).
not_among(X, [Y|Ys]) :- X #= Y, not_among(X, Ys).

11.4 Same Problem - Di®erent Model

There are often many ways of modelling a problem. Consider th famous "SEND + MORE =
MONEY" example:

sendmore(Digits) :-
Digits = [S,E,N,D,M,0O,R,Y],
Digits :: [0..9],
alldifferent(Digits),
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S #= 0, M #= 0,
1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

An alternative model is based on the classical decimal addibn algorithm with carries:

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
Digits :: [0..9],
Carries = [C1,C2,C3,C4],
Carries :: [0..1],
alldifferent(Digits),

S #\= 0,
M #\= 0,
C1 #= M,

C2+S + M #= 0 + 10*C1,
C3 + E + O #= N + 10*C2,
C4 + N + R #= E + 10*C3,

D+ E #= Y + 10*C4.

Both models work ne, but obviously involve di®erent variables and constraints. Even though
high-level models reduce the need for nding sophisticated esodings of problems, nding good
models still requires substantial expertise and experiens

11.5 Rules for Modelling Code

In CLP, the declarative model is at the same time the constraint setup code. This code should
therefore be deterministic and terminating, so:

Careful with disjunctions Don't leave choice-points (alternatives for backtracking). Choices
should be deferred until search phase.

Use only simple conditionals Conditions in (...->...;...) must be true or false at mod-
elling time!

Use only structural recursion and loops Termination conditions must be know at mod-
elling time!

11.5.1 Disjunctions

Disjunctions in the model should be avoided. Assume that a nave model would contain the
following disjunction:

110



% DO NOT USE THIS IN A MODEL
no_overlap(S1,D1,52,D2) :- S1 #>= S2 + D2.
no_overlap(s1,01,52,D2) :- S2 #>= S1 + D1.

There are two basic ways of treating the disjunction:
2 Deferring the choice until the search phase by introducing adecision variable.
2 Changing the behaviour of the disjunction so it becomes a castraint (see also 14 and 15).

In the example, we can introduce a boolean variableB{0,1} which represents the choice. The
actual choice can be then be taken in search code by choosingvalue for the variable. The

model code must then be changed to observe the decision valik, either using the delay facility

of ECL'PS®:

delay no_overlap(S1,D01,S2,D2,B) if var(B).
no_overlap(S1,D1,52,D02,0) :- S1 #>= S2 + D2.
no_overlap(s1,01,52,02,1) :- S2 #>= S1 + D1.

or using an arithmetic encoding like in

no_overlap(S1,D1,52,D2,B) :-
B : 0.1,
S1 + B*1000 #>= S2 + D2,
S2 + (1-B)*1000 #>= S1 + D1.

The alternative of turning the disjunction into a proper con straint is achieved most easily using
propia’s infer-annotation (see 15). The original formulation of neghbour/2 is kept but it is used
as follows:

..., no_overlap(S1,D02,S2,D2) infers most, ...

11.5.2 Conditionals

Similar considerations apply to conditionals where the codition is not decidable at constraint
setup time. For example, suppose we want to impose a no-ovegpaconstraint only if two tasks
share the same resource. The following code is currently natafe in ECLiPSe:

nos(Resl, Res2, Startl, Durl, Start2, Dur2) :-
( Resl #= Res2 -> % WRONG!!!
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no_overlap(Startl, Durl, Start2, Dur2)

true

The reason is that (at constraint setup time) Resl and Res2 wi most likely be still uninstan-
tiated. Therefore, the condition will in general delay (rather than succeed or fail), but the
conditional construct will erroneously take this for a sucess and take the “rst alternative.

Again, this can be handled using delay

delay nos(Resl, Res2, , , , ) if nonground([Resl,Res2])
nos(Resl, Res2, Startl, Durl, Start2, Dur2) :-
( Resl == Res2 ->
no_overlap(Startl, Durl, Start2, Dur2)

true

It might also be possible to compute a boolean variable indiating the truth of the condition.
This is particularly easy when a rei ed constraint can be usedto express the condition, like in

this case:

nos(Resl, Res2, Startl, Durl, Start2, Dur2) :-
#=(Resl, Res2, Share),
cond_no_overlap(Startl, Durl, Start2, Dur2, Share).

delay cond_no_overlap(_,_,_,_,Share) if var(Share).
cond_no_overlap(Startl, Durl, Start2, Dur2, Share) :-
( Share == 1 ->
no_overlap(Startl, Durl, Start2, Dur2)

true

11.6 Symmetries

Consider the following puzzle, where numbers from 1 to 19 havto be arranged in a hexagonal
shape such that every diagonal sums up to 38:

puzzle(Pattern) :-
Pattern = [
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A,B,C,
D,E,F,G,
H,I,J,K,L,
M,N,O,P,
Q.R,S
1,
Pattern :: 1 .. 19,

% Problem constraints
alldifferent(Pattern),

A+B+C #= 38, A+D+H #= 38, H+M+Q #= 38,
D+E+F+G #= 38, B+E+I+M #= 38, D+I+N+R #= 38,
H+I+J+K+L #= 38, C+F+J+N+Q #= 38, A+E+J+0O+S #= 38,
M+N+O+P #= 38, G+K+O+R #= 38, B+F+K+P #= 38,
Q+R+S #= 38, L+P+S #= 38, C+G+L #= 38,

In this formulation, the problem has 12 solutions, but it tur ns out they are just rotated and
mirrored variants of each other. Removal of symmetries is stl an area of active research, but a
simple method is applicable in situations like this one. Onecan add constraints which require the
solution to have certain additional properties, and so exaide many of the symmetric solutions:

% Optional anti-symmetry constraints

% Forbid rotated solutions: require A to be the smallest corn er
A#< C, A#<H A#L A#S A#<Q,

% Forbid solutions mirrored on the A-S diagonal

C #< H.
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Chapter 12

Tree Search Methods

12.1 Introduction

In this chapter we will take a closer look at the principles ard alternative methods of searching
for solutions in the presence of constraints. Let us rst recd what we are talking about. We
assume we have the standard pattern of a constraint program:

solve(Data) :-
model(Data, Variables),
search(Variables),
print_solution(Variables).

The model part contains the logical model of our problem. It de nes the variables and the
constraints. Every variable has adomain of values that it can take (in this context, we only
consider domains with a nite number of values).

Once the model is set up, we go into the search phase. Search necessary since generally
the implementation of the constraints is not complete, i.e.not strong enough to logically infer
directly the solution to the problem. Also, there may be multiple solutions which have to be
located by search, e.g. in order to nd the best one. In the folbwing, we will use the following
terminology:

2 |f a variable is given a value (from its domain, of course), wecall this an assignment If
every problem variable is given a value, we call this aotal assignment

2 A total assignment is a solution if it satis es all the constraints.

2 The search spacds the set of all possible total assignments. The search spads usually
very large because it grows exponentially with the problem i&e:

SearchSpaceSize= DomainSize NUmperofV ariables
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Figure 12.1: A search space of size 16

12.1.1 Overview of Search Methods

Figure 12.1 shows a search space with N (here 16) possible &dtassignments, some of which are
solutions. Search methods now di®er in the way in which thesesaignments are visited. We can
classify search methods according to di®erent criteria:

Complete vs incomplete exploration complete search means that the search space is in-
vestigated in such a way that all solutions are guaranteed tobe found. This is necessary
when the optimal solution is needed (one has to prove that no btter solution exists).
Incomplete search may be suxcient when just some solution or aelatively good solution
is needed.

Constructive vs move-based this indicates whether the method advances by incrementail
constructing assignments (thereby reasoning about partib assignments which represent
subsets of the search space) or by moving between total assignents (usually by modifying
previously explored assignments).

Randomness some methods have a random element while others follow xed fes.

Here is a selection of search methods together with their proerties:

Method exploration assignments random
Full tree search complete constructive no
Credit search incomplete  constructive no

Bounded backtrack | incomplete constructive no
Limited discrepancy | complete constructive no

Hill climbing incomplete move-based possibly
Simulated annealing | incomplete move-based yes
Tabu search incomplete move-based possibly
Weak commitment | complete hybrid no

The constructive search methods usually organise the sedrcspace by partitioning it system-
atically. This can be done naturally with a search tree (Figure 12.2). The nodes in this tree
represent choices which partition the remaining search spze into two or more (usually disjoint)
sub-spaces. Using such a tree structure, the search space cha traversed systematically and
completely (with as little as O(N) memory requirements).

Figure 12.4 shows a sample tree search, namely a depth- rst imenplete traversal. As opposed
to that, gure 12.3 shows an example of an incomplete move-baskesearch which does not follow
a xed search space structure. Of course, it will have to take ther precautions to avoid looping
and ensure termination.
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Figure 12.2: Search space structured using a search tree

Figure 12.3: A move-based search

Figure 12.4: A tree search (depth- rst)
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A few further observations: Move-based methods are usuallynicomplete. This is not surprising
given typical sizes of search spaces. A complete explorati@f a huge search space is only possible
if large sub-spaces can be excluded a priori, and this is onlygssible with constructive methods
which allow one to reason about whole classes of similar aggiments. Moreover, a complete
search method must remember which parts of the search spaceate already been visited. This
can only be implemented with acceptable memory requiremert if there is a simple structuring
of the space that allows compact encoding of sub-spaces.

12.1.2 Optimisation and Search

Many practical problems are in fact optimisation problems, ie. we are not just interested in some
solution or all solutions, but in the best solution.

Fortunately, there is a general method to nd the optimal solution based on the ability to nd
all solutions. The branch-and-boundtechnique works as follows:

1. Find a “rst solution

2. Add a constraint requiring a better solution than the best one we have so far (e.g. require
lower cost)

3. Find a solution which satis es this new constraint. If one «ists, we have a new best
solution and we repeat step 2. If not, the last solution foundis the proven optimum.

The branch.and_bound library provides generic predicates which implement this echnique:

minimize(+Goal,-Cost) This is the simplest predicate in the branch.and_bound library: A
solution of the goal Goal is found that minimizes the value of Cost Cost should be a
variable that is a®ected, and eventually instantiated, by the execution of Goal. Usually,
Goal is the search procedure of a constraint problem andCost is the variable representing
the cost.

bb _min(+Goal, -Cost, ++Options) A more °exible version where the programmer can take
more control over the branch and bound behaviour and choosediween di®erent strategies
and parameter settings.

12.1.3 Heuristics

Since search space sizes grow exponentially with problemzs, it is not possible to explore all
assignments except for the very smallest problems. The onlway out is not to look at the whole
search space. There are only two ways to do this:

2 Prove that certain areas of the space contain no solutions. This ca be done with the
help of constraints. This is often referred to aspruning.

2 |gnore parts of the search space that are unlikely to contain solutbns (i.e. do incomplete
search), or at least postpone their exploration. This is do® by usingheuristics. A heuristic
is a particular traversal order of the search space which eXpres promising areas rst.
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In the following sections we will rst investigate the considerable degrees of freedom that are
available for heuristics within the framework of systematic tree search, which is the traditional
search method in the Constraint Logic Programming world.

Subsequently, we will turn our attention to move-based methals which in ECL'PS® can be
implemented using the facilities of therepair library.

12.2 Complete Tree Search with Heuristics

There is one form of tree search which is especially economidepth- rst, left-to-right search by
backtracking. It allows a search tree to be traversed systemtically while requiring only a stack
of maximum depth N for bookkeeping. Most other strategies oftree search (e.g. breadth- rst)
have exponential memory requirements. This unique propeft is the reason why backtracking
is a built feature of ECL'PS®. Note that the main disadvantage of the depth-rst strategy (t he
danger of going down an in nite branch) does not come into playhere because we deal with
“nite search trees.

Sometimes depth- rst search and heuristic search are treateds antonyms. This is only justi ed
when the shape of the search tree is statically xed. Our casesidi®erent: we have the freedom
of deciding on the shape of every sub-tree before we start to &verse it depth- rst. While
this does not allow for absolutely any order of visiting the leaves of the search tree, it does
provide considerable °exibility. This °exibility can be expl oited by variable and value selection
strategies.

12.2.1 Search Trees

In general, the nodes of a search tree represerthoices These choices should be mutually
exclusive and therefore partition the search space into twar more disjoint sub-spaces. In other
words, the original problem is reduced to a disjunction of sinpler sub-problems.

In the case of nite-domain problems, the most common form of chice is to choose a particular
value for a problem variable (this technique is often calledlabeling). For a boolean variable,
this means setting the variable to 0 in one branch of the sealfttree and to 1 in the other. In
ECL'PS®, this can be written as a disjunction (which is implemented by backtracking):

( X1=0 ; X1=1)

Other forms of choices are possible. If X2 is a variable that &n take integer values from 0 to 3
(assume it has been declared aX2::0..3 ), we can make a n-ary search tree node by writing

( X2=0 ; X2=1 ; X2=2 ; X2=3)
or more compactly
indomain(X2)

However, choices do not necessarily involve choosing a coete value for a variable. It is also
possible to make disjoint choices bydomain splitting, e.g.

(X2 #=< 1 ; X2 #>= 2)
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Figure 12.5: The e®ect of variable selection

or by choosing a value in one branch and excluding it in the otler:
(X2 =0;X2#=1)

In the following examples, we will mainly use simple labelilg, which means that the search tree
nodes correspond to a variable and a node's branches corresmd to the di®erent values that the
variable can take.

12.2.2 Variable Selection

Figure 12.5 shows how variable selection reshapes a searaled. If we decide to choose values
for X1 rst (at the root of the search tree) and values for X2 seond, then the search tree has
one particular shape. If we now assume a depth- rst, left-to-ridnt traversal by backtracking, this
corresponds to one particular order of visiting the leaves bthe tree: (0,0), (0,1), (0,2), (0,3),
(1,0), (1,1), (1,2), (1,3).

If we decide to choose values for X2 rst and X1 second, then théree and consequently the
order of visiting the leaves is di®erent: (0,0), (1,0), (0,1)(1,1), (0,2), (1,2), (0,3), (1,3).

While with 2 variables there are only 2 variable selection stategies, this number grows expo-
nentially with the number of variables. For 5 variables there are already 2711 = 2147483648
di®erent variable selection strategies to choose from.

Note that the example shows something else: If the domains dhe variables are di®erent, then
the variable selection can change the number of internal noes in the tree (but not the number
of leaves). To keep the number of nodes down, variables withnsall domains should be selected
rst.
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Figure 12.6: The e®ect of value selection

12.2.3 Value Selection

The other way to change the search tree is value selection,d. reordering the child nodes of a
node by choosing the values from the domain of a variable in a articular order. Figure 12.6
shows how this can change the order of visiting the leaves: (2), (1,1), (1,0), (1,3), (0,1), (0,3),
(0,0), (0,2).

By combining variable and value selection alone, a large nuiwer of di®erent heuristics can be
implemented. To give an idea of the numbers involved, table 2.7 shows the search space sizes,
the number of possible search space traversal orderings, drthe number of orderings that can
be obtained by variable and value selection (assuming domaisize 2).

12.2.4 Example

We use the famous N-Queens problem to illustrate how heuristis can be applied to backtrack
search through variable and value selection. We model the mblem with one variable per queen,
assuming that each gqueen occupies one colunm. The variableange from 1 to N and indicate
the row in which the queen is being placed. The constraints esure that no two queens occupy
the same row or diagonal:

- lib(ic).

gueens(N, Board) :-
length(Board, N),
Board :: 1..N,
( fromto(Board, [Q1|Cols], Cols, []) do
( foreach(Q2, Cols), count(Dist,1, ), param(Q1l) do
noattack(Q1, Q2, Dist)

)
).
noattack(Q1,Q2,Dist) :-
Q2 #\= Q1,

Q2 - Q1 #= Dist,
Q1 - Q2 #= Dist.
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Figure 12.7: Flexibility of Variable/Value Selection Strategies

We are looking for a rst solution to the 16-queens problem by cding

?- queens(16, Vars), % model
labeling(Vars). % search

We start naively, using the pre-de ned labeling-predicate tha comes with the ic library. It is
de ned as follows:

labeling(AllVars) :-
( foreach(Var, AllvVars) do
indomain(Var) % select value

)

The strategy here is simply to select the variables from leftto right as they occur in the list, and
they are assigned values starting from the lowest to the numecally highest they can take (this
is the de nition of indomain/1). A solution is found after 542 backtracks (see section 12.2.5
below for how to count backtracks).

A rst improvement is to employ a general-purpose variable-selection heuristic , the so
called “rst-fail principle. It requires to label the variable s with the smallest domain rst. This
reduces the branching factor at the root of the search tree ad the total number of internal
nodes. The delete/5 predicate from theic_search library implements this strategy for nite
integer domains. Using delete/5, we can rede ne our labelingoutine as follows:

.- lib(ic_search).
labeling_b(AllvVars) :-
( fromto(AllvVars, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-s elect
indomain(Var) % select value
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Indeed, for the 16-queens example, this leads to a dramatic iprovement, the rst solution
is found with only 3 backtracks now. But caution is necessary The 256-queens instance for
example solves nicely with the naive strategy, but our impravement leads to a disappointment:
the time increases dramatically! This is not uncommmon with heuristics: one has to keep in
mind that the search space is not reduced, just re-shaped. Heistics that yield good results
with some problems can be useless or counter-productive witbthers. Even di®erent instances
of the same problem can exhibit widely di®erent characterigts.

Let us try to employ a problem-speci ¢ heuristic  : Chess players know that pieces in the
middle of the board are more useful because they can attack nme elds. We could therefore
start placing queens in the middle of the board to reduce the nmber of unattacked "elds earlier.
We can achieve that simply by pre-ordering the variables suctthat the middle ones are rst in
the list:

labeling_c(Allvars) :-

middle_first(Allvars, AllVarsPreOrdered), % static var- select
( foreach(Var, AllVarsPreOrdered) do

indomain(Var) % select value
).

The implementation of middle_ rst/2 requries a bit of list manipulation and uses primitive s from
the lists-library:

- lib(lists).

middle_first(List, Ordered) :-
halve(List, Front, Back),
reverse(Front, RevFront),
splice(Back, RevFront, Ordered).

This strategy also improves things for the 16-queens instare, the rst solution requires 17
backtracks.

We can now improve things further by combining the two variable-selection strategies: When
we pre-order the variables such that the middle ones are rst, he delete/5 predicate will prefer
middle variables when several have the same domain size:

labeling_d(AllvVars) :-

middle_first(Allvars, AllVarsPreOrdered), % static var- select

( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-s elect
indomain(Var) % select value

).
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N = 8 [12]|14 |16 | 32|64 | 128| 256
labeling.a | 10 | 15| 103 | 542
labelingb | 10| 16 | 11 | 3 4 | 148
labelingc |0 |3 |22 | 17
labelingd |0 |0 |1
labelinge | 3 |3 | 38
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Figure 12.8: N-Queens with di®erent labeling strategies: Nulmer of backtracks

The result is positive: for the 16-queens instance, the numhbeof backtracks goes down to zero,
and more dixcult instances become solvable!

Actually, we have not yet implemented our intuitive heurist ics properly. We start placing queens
in the middle columns, but not on the middle rows. With our model, that can only be achieved
by changing the value selection , ie. setting the variables to values in the middle of their
domain rst. For this we can use indomain/2, a more °exible variant of indomain/1, provided
by the ic_searchlibrary. It allows us to specify that we want to start labelin g with the middle
value in the domain:

labeling_e(AllvVars) :-

middle_first(Allvars, AllVarsPreOrdered), % static var- select

( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first fail), % dynamic var-s elect
indomain(Var, middle) % select value

Surprisingly, this improvement again increases the backtack count for 16-queens again to 3.
However, when looking at a number of di®erent instances of theroblem, we can observe that
the overall behaviour has improved and the performance hasdcome more predictable than with
the initial more naive strategies. Figure 12.2.4 shows the bhaviour of the di®erent strategies
on various problem sizes.

12.2.5 Counting Backtracks

An interesting piece of information during program developgment is the number of backtracks.
It is a good measure for the quality of both constraint propagation and search heuristics. We
can instrument our labeling routine as follows:

labeling(AllVars) :-
init_backtracks,
( foreach(Var, AllVars) do
count_backtracks, % insert this before choice!
indomain(Var)
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get_backtracks(B),
printf("Solution found after %d backtracks%n", [B]).

The backtrack counter itself can be implemented by the code blow. It uses a non-logical
counter variable (backtracks) and an additional °ag (deep.fail) which ensures that backtracking
to exhausted choices does not increment the count.

.- local variable(backtracks), variable(deep_fail).

init_backtracks :-
setval(backtracks,0).

get_backtracks(B) :-
getval(backtracks,B).

count_backtracks :-
setval(deep_fail,false).
count_backtracks :-
getval(deep_fail,false), % may fail
setval(deep_fail,true),
incval(backtracks),
fail.

Note that there are other possible ways of de ning the number 6 backtracks. However, the one
suggested here has the following useful properties:

2 Shallow backtracking (an attempt to instantiate a variable which causes immediate failure
due to constraint propagation) is not counted. If constraint propagation works well, the
count is therefore zero.

2 With a perfect heuristic, the rst solution is found with zero backtracks.

2 |f there are N solutions, the best achievable value is N (one dcktrack per solution). Higher
values indicate an opportunity to improve pruning by constraints.

The search/6 predicates from the libaryic_search have this backtrack counter built-in.

12.3 Incomplete Tree Search

The library ic_search contains a °exible search routinesearch/6 , which implements several
variants of incomplete tree search.

For demonstration, we will use the N-queens problem from abos. The following use of search/6
is equivalent to labeling(Xs) and will print all 92 solution s:
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bbs(1C

Figure 12.9: Bounded-backtrack search

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, complete, []),
writeln(Xs),
fail.

[1, 5, 8, 6, 3, 7, 2, 4]

8, 4, 1, 3, 6, 2, 7, 5]
No.

12.3.1 First Solution

One of the easiest ways to do incomplete search is to simply @p after the rst solution has
been found. This is simply programmed using cut or once/1.:

?- queens(8, Xs),
once search(Xs, 0, input_order, indomain, complete, []),
writeln(Xs),
fail.

[1, 5, 8, 6, 3, 7, 2, 4]

No.

This will of course not speed up the nding of the rst solution.

12.3.2 Bounded Backtrack Search

Another way to limit the scope of backtrack search is to keep arecord of the number of back-
tracks, and curtail the search when this limit is exceeded. The bbs option of the search/6
predicate implements this:

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, bbs(20), []),

writeln(Xs),

fail.
[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]
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dbs(2, bbs(0))

Figure 12.10: Depth-bounded, combined with bounded-backtrak search

[1, 7, 4, 6, 8, 2, 5, 3]
[1, 7, 5, 8, 2, 4, 6, 3]
No.

Only the rst 4 solutions are found, the next solution would have required more backtracks than
were allowed. Note that the solutions that are found are all bcated on the left hand side of the
search tree. This often makes sense because with a good séaheuristic, the solutions tend to

be towards the left hand side. Figure 12.9 illustrates the e®x of bbs (note that the diagram

does not correspond to the queens example, it shows an uncdraned search tree with 5 binary
variables).

12.3.3 Depth Bounded Search

A simple method of limiting search is to limit the depth of the search tree. In many constraint
problems with a xed number of variables this is not very usefd, since all solutions occur at the
same depth of the tree. However, one may want to explore the #e completely up to a certain
depth and switch to an incomplete search method below this deth. The search/6 predicate
allows for instance the combination of depth-bounded searclwith bounded-backtrack search.
The following explores the rst 2 levels of the search tree comletely, and does not allow any
backtracking below this level. This gives 16 solutions, eqally distributed over the search tree:

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, dbs(2,bbs(0)), []),

writeln(Xs),

fail.
3,5 2, 8,1, 7, 4, 6]
3, 6,2 5,8, 1,7, 4]
4, 2,5, 8,6, 1, 3, 7]
[4, 7,1, 8,5, 2, 6, 3]
4, 8, 1, 3, 6, 2, 7, 5]
5, 1, 4, 6, 8, 2, 7, 3]
5, 2, 4, 6, 8, 3, 1, 7]
5,3, 1,6, 8, 2 4,7
5,7, 1, 3, 8, 6, 4, 2]
6, 4, 1, 5, 8, 2,7, 3]
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[7, 1, 3, 8, 6, 4, 2, 5]
[7, 2, 4, 1, 8, 5, 3, 6]
[7, 3, 1, 6, 8, 5, 2, 4]
8, 2, 4, 1, 7, 5, 3, 6]
8, 3, 1, 6, 2, 5, 7, 4]
8, 4, 1, 3, 6, 2, 7, 5]

No (0.18s cpu)

12.3.4 Credit Search

Credit search is a tree search method where the number of nomderministic choices is limited a
priori. This is achieved by starting the search at the tree root with a certain integral amount of
credit. This credit is split between the child nodes, their aedit between their child nodes, and
so on. A single unit of credit cannot be split any further: subtrees provided with only a single
credit unit are not allowed any nondeterministics choices,only one path though these subtrees
can be explored, i.e. only one leaf in the subtree can be vigt. Subtrees for which no credit is
left are pruned, i.e. not visited.

The following code (a replacement for labeling/1) implemens credit search. For ease of under-
standing, it is limited to boolean variables:

% Credit search (for boolean variables only)
credit_search(Credit, Xs) :-

(
foreach(X, Xs),
fromto(Credit, ParentCredit, ChildCredit, )
do
( var(X) ->
ParentCredit > 0, % possibly cut-off search here
( % Choice

X = 0, ChildCredit is (ParentCredit+1)//2

)

ChildCredit = ParentCredit

X = 1, ChildCredit is ParentCredit//2

Note that the leftmost alternative (here X=0) gets slightly more credit than the rightmost one

(here X=1) by rounding the child node's credit up rather than down. This is especially relevant
when the leftover credit is down to 1: from then on, only the l€tmost alternatives will be taken

until a leaf of the search tree is reached. The leftmost altemative should therefore be the one
favoured by the search heuristics.
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credit(16

Figure 12.11: Credit-based incomplete search

What is a reasonable amount of credit to give to a search? In amnconstrained search tree, the
credit is equivalent to the number of leaf nodes that will be reached. The number of leaf nodes
grows exponentially with the number of labelled variables,while tractable computations should
have polynomial runtimes. A good rule of thumb could therefae be to use as credit the number
of variables squared or cubed, thus enforcing polynomial mtime.

Note that this method in its pure form allows choices only clese to the root of the search tree
and disallows choices completely, below a certain tree dept This is too restrictive when the
value selection strategy is not good enough. A possible rerdg is to combine credit search with
bounded backtrack search.

The implementation of credit search in the search/6 predicde works for arbitrary domain vari-
ables: Credit is distributed by giving half to the leftmost child node, half of the remaining credit
to the second child node and so on. Any remaining credit afterthe last child node is lost. In
this implementation, credit search is always combined withanother search method which is to
be used when the credit runs out.

When we use credit search in the queens example, we get a lireil number of solutions, but
these solutions are not the leftmost ones (like with boundeebacktrack search), they are from
di®erent parts of the search tree, although biased towards th left:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, credit(20,bbs(0)), )!
writeln(Xs),
fail.

[2, 4, 6, 8, 3,1, 7, 5]

2, 6,1, 7, 4, 8, 3, 5]

[3, 5 2, 8,1, 7, 4, 6]

5, 1, 4, 6, 8, 2, 7, 3]

No.

We have used a credit limit of 20. When credit runs out, we swith to bounded backtrack search
with a limit of O backtracks.

12.3.5 Timeout

Another form of incomplete tree search is simply to use time-ats. The branch-and-bound
primitives bb_min/3,6 allow a maximal runtime to be speci ed. If a timeout occurs, the best
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lds(1

Figure 12.12: Incomplete search with LDS

solution found so far is returned instead of the proven optinum.

A general timeout is available from the library test_util . It has parameters timeout(Goal,
Seconds, TimeOutGoal). When Goal has run for more than Secondsseconds, it is aborted and
TimeOutGoal is called instead.

12.3.6 Limited Discrepancy Search

Limited discrepancy search {DS) is a search method that assumes the user has a good heuristic
for directing the search. A perfect heuristic would, of couse, not require any search. However
most heuristics are occasionally misleading. Limited Dismepancy Search follows the heuristic
on almost every decision. The\discrepancy"is a measure ofite degree to which it fails to follow
the heuristic. LDS starts searching with a discrepancy of 0 which means it follows the heuristic
exactly). Each time LDS fails to nd a solution with a given dis crepancy, the discrepancy is
increased and search restarts. In theory the search is comgtie, as eventually the discrepancy
will become large enough to admit a solution, or cover the whig search space. In practice,
however, it is only bene cial to apply LDS with small discrepancies. Subsequently, if no solution
is found, other search methods should be tried. The de nitivereference to LDS is [28]

There are di®erent possible ways of measuring discrepanciesThe one implemented in the
search/6 predicate is a variant of the original proposal. It considers the rst value selection
choice as the heuristically best value with discrepancy 0,he rst alternative has a discrepancy
of 1, the second a discrepancy of 2 and so on.

As LDS relies on a good heuristic, it only makes sense for theugens problem if we use a
good heuristic, e.g. rst-fail variable selection and indoman-middle value selection. Allowing a
discrepancy of 1 yields 4 solutions:

?- queens(8, Xs),
search(Xs, 0, first fail, indomain_middle, Ids(1), []),

writeln(Xs),

fail
4, 6, 1,5, 2, 8, 3, 7]
4, 6, 8, 3,1, 7, 5, 2]
4, 2, 7,5, 1, 8, 6, 3]
5, 3,1, 6, 8, 2, 4 7]
No.
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The reference also suggests that combining LDS with Bounde®acktrack Search BBS) yields
good behaviour. The search/6 predicate accordingly suppds the combination of LDS with BBS
and DBS. The rationale for this is that heuristic choices typically get more reliable deeper down
in the search tree.

12.4 Exercises

For exercises 1-3, start from the constraint model for the quens problem given in section 12.2.4.
It is available in the examples directory as queensc.ecl.

1. Use the search/6 predicate from the icsearch library and the standard model for the queens
problem (given below) to 'nd ONE solution to the 42-queens prodem. With a naive search
strategy this requires millions of backtracks. Using heurstics and/or incomplete search,
try to nd a solution in less than 100 backtracks!

2. How many solutions does the 9-queens problem have?

3. Solve the '8 sticky queens problem™ Assume that the quees in neighbouring columns
want to stick together as close as possible. Minimize the sunof the vertical distances
between neighbouring queens. What is the best and what is thevorst solution for this
problem?

4. For given N, create a list of length N whose members are nundrs between 1 and N
(inclusive), which are all di®erent (easy so far) and satisfythe following constraint. For
each element E of the list, its successors are divided into tw sets,

2 BiggerE: the successors which are greater than E and
2 SmallerE: the successors less than E.

(Thus no successor takes the same value as E). The cardindks of the sets BiggerE and
SmallerE di®er by at most 1.

5. A harder version of the problem is similar. For given N, crate a list of length N whose
members are numbers between 1 and some upper bound Max (stantith, say Max = N?2),
which are all di®erent (easy so far) and satisfy the followingimore complex) constraint.
For each K from 1..N, call the Kth element of the list Ek. Its successors are divided into
two sets, as before:

2 BiggerEk: the successors which are greater than or equal toke+ K and

2 SmallerEk: the successors less than or equal to Ek - K.
(Thus no successor takes a value between Ek-K+1 and Ek+K-1.) Tle cardinalities of the
sets BiggerEk and SmallerEk di®er by at most 1.

What is the smallest upper bound Max for which there is a feadile solution?
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Chapter 13

Repair and Local Search

13.1 Motivation

Constraint logic programming uses logical variables. Thismeans that when a variable is instan-
tiated, its value must satisfy all the constraints on the variable. For example if the program
includes the constraint X > = 2, then any attempt to instantiate X to a value less than 2 will
fail.

However, there are various contexts and methods in which it$ useful to associate (temporarily)
a value with a variable that does not satisfy all the constrants on the variable. Generally this
is true of repair technigues. These methods start with a complete, infeasils, assignment of
values to variables and change the values of the variables tiha feasible assignment is found.
Repair methods are useful in the case where a problem has besalved, but subsequently external
changes to the problem render the solution infeasible. Thiss the normal situation in scheduling
applications, where machines and vehicles break down, andasks are delayed.

Repair methods are also useful for solving problems which cabe broken down into quasi-
independent simpler subproblems. Solutions to the subprolems which are useful for solving
the complete problem, may not be fully compatible with each dher, or even completely feasible
with respect to the full problem.

Finally there are techniques such as con’ict minimisation whch seek solutions that minimise
infeasibility. These techniques can be treated as optimisgon algorithms, whose constraints are
wrapped into the optimisation function. However they can also be treated as repair problems,
which means that the constraints can propagate actively duimg problem solving.

13.2 Syntax

13.2.1 Setting and Getting Tentative Values

With the repair library each variable can be given atentative value. This is di®erent from
instantiating the variable. Rather the tentative value is a piece of updatable information asso-
ciated with the variable. The tentative value can be changedrepeatedly during search, not just
on backtracking. The value is set using the syntaxtent_set , and retrieved usingtent_get .

For example the following query writes rst 1 and then 2:
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Repair is used for:
2 Re-solving problems which have been modi ed

2 Combining subproblem solutions and algorithms

N

Implementing local search

N

Implementing powerful search heuristics

Figure 13.1: Uses of Repair

?

X tent_set 1,
X tent_get Tentl,
writeln(Tentl),
X tent_set 2,
X tent_get Tent2,
writeln(Tent2).

Throughout this query X remains a variable.

A tentative variable may violate constraints. The followin g query writes succeed, because
setting the tentative value to 1 does not cause a failure:

?- X $> 2,
X tent_set 1,
writeln(succeed).

13.2.2 Building and Accessing Con°ict Sets

The relation between constraints and tentative values can & maintained in two ways. The rst
method is by monitoring a constraint for con‘icts.

?- X $> 2 r_conflict myset,
X tent_set 1,
writeln(succeed).

This query also succeeds - but additionally it creates acon®ict set named myset. Because
X$ > 2 is violated by the tentative value of X, the constraint is recorded in the con°ict set.
The con’ict set written out by the following query is [X{1} $> 2] :

?- X $> 2 r_conflict myset,
X tent_set 1,

conflict_constraints(myset,Conflicts),
writeln(Conflicts).

The con’ict can be repaired by changing the tentative value of the variable which causest:
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Repair supports the following primitives:
2 tent_set/2
2 tent_get/2
2 r_conflict/2
2 conflict_constraints/2

2 tent_is/2

(and some others that are not covered in this tutorial).

Figure 13.2: Syntax

?- X $> 2 r_conflict myset,
X tent_set 1,

conflict_constraints(myset,Conflicts),
X tent_set 3,

conflict_constraints(myset,NoConflicts).

This program instantiates Conflicts to [X{1} $> 2] , but NoConflicts is instantiated to [] .

13.2.3 Propagating Con‘icts

Arithmetic equality ( =:=, $=) constraints, instead of monitoring for con’icts, can be mantained
by propagating tentative values. To do so, they must be rewriten in a functional syntax.
Consider the constraint X =:= Y+1 For propagation of tentative values, this must be rewritten

in the form X tent_is Y+1 . If the tentative value of Y is set to 1, then this will be propagated
to the tentative value of X . The following query writes out the value 2.

?- X tent_is Y+1,
Y tent_set 1,
X tent_get(TentX),
writeln(TentX).

Each time the tentative value of Y is changed, the value ofX is kept in step, so the following
writes out the value 3:

?- X tent_is Y+1,
Y tent_set 1,
Y tent_set 2,
X tent_get(TentX),
writeln(TentX).
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13.3 Repairing Con°icts

If all the constraints of a problem are monitored for con®icts, then the problem can be solved
by:

2 Finding an initial assignment of tentative values for all the problem variables
2 Finding a constraint in con®ict, and labelling a variable in t his constraint

2 Instantiating the remaining variables to their tentative v alues, when there are no more
constraints in con‘ict

Consider a satis ability problem with each clause representd by anic constraint, whose form
is illustrated by the following example: (X1 or neg X2 or X3 $= 1 This represents the clause
X1 :X2_X3.

To apply con®ict minimisation to this problem use the predicate:

2 tent_init to nd an initial solution
2 conflict_constraints and term_variables to nd a variable to label
2 set_to_tent to set the remaining variables to their tentative values

The code is as follows:

prop_sat_1(Vars) :-
Vars = [X1,X2,X3],
tent_init(Vars),
(X1 or neg X2 or X3 $= 1) r_conflict cs,
(neg X1 or neg X2 $= 1) r_conflict cs,
(X2 or neg X3 $= 1) r_conflict cs,
min_conflicts(Vars).

tent_init(List) :-
( foreach(Var,List) do Var tent_set 1 ).

min_conflicts(Vars) :-
conflict_constraints(cs,List),
( List = [] -> set_to_tent(Vars) ;

List = [Constraint|_] ->
term_variables(Constraint,[Var|_]),
guess(Var),
min_conflicts(Vars)

).

guess(0).
guess(l).
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set_to_tent(Term) :-
Term tent_get Tent,
Term = Tent.

The value choice predicateguess is naive. Since the variable occurs in a con’ict constraint it
would arguably be better to label it to another value. This would be implemented as follows:

guess(Var) :-
Var tent_get Value,
( value = 0 -> (vVar=1 ; Var=0)
; Value = 1 -> (Var=0 ; Var=1)
).

13.3.1 Combining Repair with IC Propagation

To illustrate a combination of repair with ic propagation we tackle a scheduling example. The
problem involves tasks with unknown start times, and known durations, which are related by

a variety of temporal constraints. These temporal constraints are handled, for the purposes of
this example, by ic . The temporal constraints are encoded thus:

before(TimePointl,Interval, TimePoint2) :-
TimePointl+Interval #=< TimePoint2.

TimePointl and TimePoint2 are variables (or numbers), but we assume, for this examplethat
the Interval is a number. This constraint can enforce a minimum separatia between start
times, or a maximum separation (if the Interval is negative). It can also enforce constraints
between end times, by adjusting thelnterval to account for the task durations.

Additionally we assume that certain tasks require the same esource and cannot therefore proceed
at the same time. The resource constraint is encoded thus:

noclash(Startl,Durationl1,Start2, ) :-
Start2 #>= Startl+Durationl.

noclash(Startl, ,Start2,Duration2) :-
Startl #>= Start2+Duration2.

Suppose the requirement is to complete the schedule as earbs possible. To express this we
introduce a last time point Endwhich is constrained to come after all the tasks. Ignoring the
resource constraints, the temporal constraints are easilyrandled by ic . The optimal solution is
obtained simply by posting the temporal constraints and then instantiating each start time to
the lowest value in its domain.
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To deal with the resource constraints con®ict minimisation is used. The least (i.e. optimal) value
in the domain of each variable is chosen as its tentative vala, at each node of the search tree.
To "x a constraint in con’ict, we simply invoke its nondetermis tic de nition, and ECL IPSE then
unfolds the rst clause and sends the new temporal constraintStart2 #>= Startl+Durationl

to ic . On backtracking, the second clause will be unfolded insted

After "xing a resource constraint, and posting a new temporal constraint, ic propagation takes
place, and then the tentative values are changed to the nevic lower bounds.

The code is simply this:

:- lib(ic), lib(repair), lib(branch_and_bound).
schedule(Starts,End) :-

Starts = [S1,S2,...,End],

Starts :: 0..1000,

before(S2,5,51),

before(S1,8,End),

noclash(S1,4,52,8) r_conflict resource_cons,
minimize(repair_ic(Starts),End).

repair_ic(Starts) :-
set_tent_to_min(Starts),
conflict_constraints(resource_cons,List),
(List =1 ->
set_to_tent(Starts)
; List = [Constraint|_] ->
call(Constraint),
repair_ic(Starts)

)-

set_tent_to_min(Vars) :-
( foreach(Var,Vars)
do
get_min(Var,Min),
Var tent_set Min

This code is much more robust than the traditional code for sdving the bridge scheduling
example from [26]. The code is in the examples directory lebridge_repair.pl
This algorithm uses theic solver to:

2 Enforce the consistency of the temporal constraints

2 Set the tentative values to an optimal solution (of this relaxation of the original problem)
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Repair naturally supports con®ict minimisation. This algor ithm can be combined with
other solvers, such adc , and with optimization.

Figure 13.3: Con°’ict Minimisation

This technique is called probing. The use of the eplex solver, instead ofic for probing is
described in chapter 18 below.

13.4 Introduction to Local Search

13.4.1 Changing Tentative Values

From a technical point of view, the main di®erence between tre search andocal (or move-based)
search is that tree search adds assignments while local searchanges them. During tree search
constraints get tightened when going down the tree, and thisis undone in reverse order when
backing up the tree to a parent node. This ts well with the idea of constraint propagation.

It is characteristic of local search that a move produces a sull change, but it is not clear
what e®ect this will have on the constraints. They may become mre or less satis ed. We
therefore need implementations of the constraints that moritor changes rather than propagate
instantiations.

Local search can be implemented quite naturally in ECLLPS® using the repair library. In
essence, the di®erence between implementing tree searchheitjues and local search in ECIPS®
is that, instead of instantiating variables during search, local search progresses by changing
tentative values of variables. For the satis ability example of the lag section, we can change
min_conflicts to local_search by simply replacing the guess predicate by the predicatemove

local_search(Vars) :-
conflict_constraints(cs,List),

(List =1 ->
set_to_tent(Vars)

; List = [Constraint|_] ->
term_variables(Constraint,[Var|_]),
move(Var),
local_search(Vars)

)

move(Var) :-
Var tent_get Value,
NewValue is (1-Value),
Var tent_set NewValue.

There is no guarantee that this move will reach a better assigment, sinceNewValue may violate
more constraints than the original Value.
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13.4.2 Hill Climbing

To nd a neighbour which overall increases the number of satieed constraints we could replace
local_search with the predicate hill_climb

hill_climb(Vvars) :-
conflict_constraints(cs,List),
length(List,Count),
( Count = 0 ->
set_to_tent(Vars)
; try_move(List,NewCount), NewCount < Count ->
hill_climb(Vars)

write('local optimum: ‘), writeln(Count)

).

try_move(List,NewCount) :-
select_var(List,Var),
move(Var),
conflict_constraints(cs,NewList),
length(NewList,NewCount).

select_var(List,Var) :-
member(Constraint,List),
term_variables(Constraint,Vars),
member(Var,Vars).

Some points are worth noticing:
2 Constraint satisfaction is recognised by nding that the con®ict constraint set is empty.

2 The move operation and the acceptance test are within the codition part of the if-then-
else construct. As a consequence, if the acceptance testl&a(the move does not improve
the objective) the move is automatically undone by backtradking.

The code code fortry_move is very inexcient, because it repeatedly goes through the whie list
of con®ict constraints to count the number of constraints in con®ict. The facility to propagate
tentative values supports more excient maintenance of the number constraints in con®ict. This
technique is known as maintenance oifvariants (see [17]). For the propositional satis ability ex-
ample we can maintain the number of satis ed clauses to make th hill climbing implementation
more excient.

The following program not only monitors each clause for con°ct, but it also records in a boolean
variable whether the clause is satis ed. Each tentative asginment to the variables is propagated
to the tentative value of the boolean. The sum of the booleanBSunrecords for any tentative
assignment of the propositional variables, the number of stis ed clauses. This speeds up hill
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Local search can be implemented in ECLPS® with the repair library. Invariants can be
implemented by tentative value propagation usingtent_is/2

Figure 13.4: Local Search and Invariants

climbing because, after each move, its e®ect on the number oatis ed clauses is automatically
computed by the propagation of tentative values.

prop_sat_2(Vars) :-
Vars = [X1,X2,X3],
tent_init(Vars),
clause_cons(X1 or neg X2 or X3,B1),
clause_cons(neg X1 or neg X2,B2),
clause_cons(X2 or neg X3,B3),
BSum tent_is B1+B2+B3,
hill_climb_2(Vars,BSum).

clause_cons(Clause,B) :-
Clause $= 1 r_conflict cs,
B tent_is Clause.

hill_climb_2(Vars,BSum) :-
conflict_constraints(cs,List),
BSum tent_get Satisfied,
( List=[] ->
set_to_tent(Vars)
; select_var(List,Var), move(Var), tent_get(BSum) > Sati sfied ->
hill_climb_2(Vars,BSum)

write('local optimum: '), writeln(Count)

To check whether the move is uphill, we retrieve the tentative value ofBSunbefore and after the
move is done. Remember that, since the move operator changdie tentative values of some
variable, the tent_is primitive will automatically update the BSunvariable.

This code can be made more excent by recording more invariantsas described in [27].

13.5 More Advanced Local Search Methods
In the following we discuss several examples of local searchethods. These methods have origi-

nally been developed for unconstrained problems, but they wark for certain classes of constrained
problems as well.
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The ECL'PS® code for all the examples in this section is available in the & knapsack_ls.ecl
in the doc/examples directory of your ECL'PS® installation.

13.5.1 The Knapsack Example

We will demonstrate the local search methods using the well-kown knapsack problem. The
problem is the following: given a container of a given capaty and a set of items with given
weights and pro t values, nd out which items have to be packed into the container such that
their weights do not exceed the container's capacity and thesum of their pro ts is maximal.

The model for this problem involves N boolean variables, a sigle inequality constraint to ensure
the capacity restriction, and an equality to de ne the objective function.

:- lib(ic).
.- lib(repair).
knapsack(N, Profits, Weights, Capacity, Opt) :-
length(Vars, N),
Vars :: 0..1,
Capacity #>= Weights*Vars r_conflict cap,
Profit tent_is Profits*Vars,
local_search(<extra parameters>, Vars, Profit, Opt).

The parameters mean

2 N- the number of items (integer)

2 Profits - a list of N integers (pro t per item)

2 Weights - a list of N integers (weight per item)

2 Capacity - the capacity of the knapsack (integer)

2 Opt - the optimal result (output)
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13.5.2 Search Code Schema

In the literature, e.g. in [17], local search methods are o#n characterised by the the following
nested-loop program schema:

local_search:
set starting state
while global_condition
while local_condition
select a move
if acceptable
do the move
if new optimum
remember it
endwhile
set restart state
endwhile

We give three examples of local search methods coded in EORS® that follow this schema:
random walk simulated annealingand tabu search Random walk and tabu search do not use
the full schema, as there is only a single loop with a single tnination condition.

13.5.3 Random walk

The idea of Random walk is to start from a random tentative assgnment of variables to 0
(item not in knapsack) or 1 (item in knapsack), then to remove random items (changing 1 to
0) if the knapsack's capacity is exceeded and to add random &ms (changing 0 to 1) if there is

capacity left. We do a xed number (Maxlter) of such steps and keep track of the best solution
encountered.

Each step consists of:

2 Changing the tentative value of some variable, which in turn causes the automatic recom-
putation of the con’ict constraint set and the tentative obje ctive value.

2 Checking whether the move lead to a solution and whether thissolution is better than the
best one so far.
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Here is the ECL' PS*® program. We assume that the problem has been set up as explad above.
The violation of the capacity constraint is checked by looking at the con’ict constraints. If

there are no con‘ict constraints, the constraints are all tertatively satis ed and the current

tentative values form a solution to the problem. The associ#ed pro t is obtained by looking at

the tentative value of the Pro t variable (which is being constantly updated by tent_is ).

random_walk(MaxlIter, VarArr, Profit, Opt) :-

init_tent_values(VarArr, random), % starting point

( for(_,1,Maxlter), % do Maxlter steps
fromto(0, Best, NewBest, Opt), % track the optimum
param(Profit,VarArr)

do

( conflict_constraints(cap,[]) -> % it's a solution!
Profit tent_get CurrentProfit, % what is its profit?

(

CurrentProfit > Best % new optimum?
~ printf("Found solution with profit %w%n", [CurrentProfit 1,
NewBest=CurrentProfit % yes, remember it
, NewBest=Best % no, ignore
)c’hange_random(VarArr, 0, 1) % add another item

NewBest=Best,
change_random(VarArr, 1, 0) % remove an item

The auxiliary predicate init_tent_values  sets the tentative values of all variables in the array
randomly to 0 or 1: The change_randompredicate changes a randomly selected variable with
a tentative value of 0 to 1, or vice versa. Note that we are usig an array, rather than a list
of variables, to provide more convenient random access. Theomplete code and the auxiliary
predicate de nitions can be found in the Te knapsack_lIs.ecl in the doc/examples directory
of your ECL'PS? installation.

13.5.4 Simulated Annealing

Simulated Annealing is a slightly more complex variant of local search. It follows the nested loop
schema and uses a similar move operator to the random walk exaple. The main di®erences
are in the termination conditions and in the acceptance crierion for a move. The outer loop
simulates the cooling process by reducing the temperatureariable T, the inner loop does random
moves until MaxlIter steps have been done without improvement of the objective.

The acceptance criterion is the classical one for simulate@nnealing: Uphill moves are always
accepted, downhill moves with a probability that decreaseswith the temperature. The search
routine must be invoked with appropriate start and end temperatures, they should roughly
correspond to the maximum and minimum pro t changes that a mowe can incur.
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sim_anneal(Tinit, Tend, Maxlter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
( fromto(Tinit, T, Tnext, Tend),
fromto(0, Optl, Opt4, Opt),
param(Maxlter,Profit,VarArr,Tend)
do
printf("Temperature is %d%n", [T]),
( fromto(MaxlIter, JO, J1, 0),
fromto(Optl, Opt2, Opt3, Opt4),
param(VarArr,Profit, T)

do
Profit tent_get PrevProfit,
( flip_random(VarArr), % try a move
Profit tent_get CurrentProfit,
exp((CurrentProfit-PrevProfit)/T) > frandom,
conflict_constraints(cap,[]]) % is it a solution?
->
( CurrentProfit > Opt2 -> % is it new optimum?
printf("Found solution with profit %w%n",
[CurrentProfit]),
Opt3=CurrentProfit, % accept and remember
J1=J0
; CurrentProfit > PrevProfit ->
Opt3=0pt2, J1=J0 % accept
Opt3=0pt2, J1 is JO-1 % accept
)
Opt3=0pt2, J1 is JO-1 % reject
)
)

Tnext is max(fix(0.8*T),Tend)
).

flip_random(VarArr) :-
functor(VarArr, _, N),
X is VarArrfrandom mod N + 1],
X tent_get Old,
New is 1-Old,
X tent_set New.

13.5.5 Tabu Search

Another variant of local search is tabu search. Here, a numbreof moves (usually the recent
moves) are remembered (the tabu list) to direct the search. Mves are selected by an acceptance
criterion, with a di®erent (generally stronger) acceptancecrtierion for moves in the tabu list.
Like most local search methods there are many possible vanis and concrete instances of this
basic idea. For example, how a move would be added to or remogefrom the tabu list has to
be speci ed, along with the di®erent acceptance criteria.
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Repair can be used to implement a wide variety of local searcland hybrid search tech-
niques.

Figure 13.5: Implementing Search

In the following simple example, the tabu list has a length déermined by the parameter Tabu-
Size. The local moves consist of either adding the item with the bet relative prot into the
knapsack, or removing the worst one from the knapsack. In bdt cases, the move gets rememe-
bered in the xed-size tabu list, and the complementary move isforbidden for the next TabuSize
moves.

tabu_search(TabuSize, Maxlter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
tabu_init(TabuSize, none, TabuO),
( fromto(Maxlter, 10, 11, 0),
fromto(TabuO, Tabul, Tabu2, ),
fromto(0, Optl, Opt2, Opt),
param(VarArr,Profit)

do
( try_set best(VarArr, Moveld), % try uphill move
conflict_constraints(cap,[]), % is it a solution?
tabu_add(Moveld, Tabul, Tabu2) % is it allowed?
>

Profit tent_get CurrentProfit,

( CurrentProfit > Optl -> % is it new optimum?
printf("Found solution with profit %w%n", [CurrentProfit D,
Opt2=CurrentProfit % accept and remember
Opt2=0ptl % accept

)1

11 is 10-1

( try_clear_worst(VarArr, Moveld), % try downhill move
tabu_add(Moveld, Tabul, Tabu?2) % is it allowed?

->
11 is 10-1,

Opt2=0Optl % reject
11=0, % no moves possible, stop
Opt2=0ptl % reject
)
)
).

In practice, the tabu search forms only a skeleton around whih a complex search algorithm is
built. An example of this is applying tabu search to the job-shop problem, see e.g. [18].
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13.6 Repair Exercise
Write a predicate min_conflicts(Vars,Count) that takes two arguments:
2 Vars - a list of variables, with tentative 0/1 values
2 Count - a variable, with a tentative integer value
The speci cation of min_conflicts(Vars,Count) is as follows:
1. If con®ict set cs is empty, instantiate Vars to their tentative values
2. Otherwise nd a variable, V, in a con®ict constraint
3. Instantiate Vto the value (0 or 1) that maximises the tentative value of Count

4. On backtracking instantiate V the other way.

This can be tested with the following propositional satis ability program.

cons_clause(Clause,Bool) :-
Clause =:= 1 r_conflict cs,
Bool tent_is Clause.

prop_sat(Vars,List) :-

( foreach(N,List),
foreach(Cl,Clauses),
param(Vars)

do

cl(N,Vvars,Cl)

),

init_tent_values(Vars),

( foreach(Cl,Clauses),
foreach(B,Bools)

do
cons_clause(Cl,B)

),

Count tent_is sum(Bools),

min_conflicts(Vars,Count).

init_tent_values(Vars) :-
( foreach(V,Vars) do V tent set 1).

cl(1,[X,Y,Z], (X or neg Y or Z2)).
cl(2,[X,Y,Z], (neg X or neg Y)).
cl(3,[X,Y,Z], (Y or neg 2)).
cl(4,[X,Y,Z], (X or neg Z)).
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cl(5,[X,Y,Z], (Y or 2Z)).

To test your program try the following queries:

?- prop_sat([X,Y,Z],[1,2,3]).
?- prop_sat([X,Y,Z],[1,2,3,4]).
?- prop_sat([X,Y,Z],[1,2,3,4,5]).
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Chapter 14

Implementing Constraints

This chapter describes how to use ECLPS®'s advanced control facilities for implementing con-
straints. Note that the Generalised Propagation library lib(propia) and the Constraint Handling
Rules library lib(ech) provide other, higher-level ways to implement constraints. Those are more
suited for prototyping, while this chapter introduces those low-level primitives that are actually
used in the implementation of the various ECL PS® constraint solvers.

14.1 What is a Constraint in Logic Programming?

Constraints t very naturally into the Logic Programming par adigm. Declaratively, a constraint
is just the same as any other predicate. Indeed, in ECLPS®, \constraints" are not a particular
programming language construct, constraints are just a coneptual notion.

Consider the following standard Prolog query:

?- member(X, [5,7,3,4]), X =< 4.

This will succeed with X = 3 after some search. In this example both the member/2 goal and
the inequality goal could be considered “constraints on X' lecause they both restrict the possible
values for X. Usually, however, member/2 would not be considred a\constraint" because of its
backtracking (search) behaviour:

?- member(X, [5, 7, 3, 4]).

X =5
More (0.00s cpu)
X =7

More (0.04s cpu)

Also, the standard Prolog inequality would not be considerel a\constraint”, because if invoked
on its own it will raise an error:

?- X =< 4.
instantiation fault in X =< 4

In the following, we will call a predicate a constraint only if it
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2 pehaves deterministically

2 somehow actively enforces its declarative meaning

14.2 Background: Constraint Satisfaction Problems

There is a large body of scienti ¢ work and literature about Constraint Satisfaction Problems,
or CSPs. CSPs are a restricted class of constraint problemsith the following properties

2 there is a xed set of variablesX 1;:::; X

2 every variable X; has a nite domain D; of values that the variable is allowed to take. In
general, this can be an arbitrary, unordered domain.

2 usually one considers only binary (2-variable) constraintscj (Xi; Xj). Every constraint is
simply de ned as a set of pairs of consistent values.

2 the problem is to nd a valuation (labeling) of the variables such that all the constraints
are satis ed.

The restriction to binary constraints is not really limitin g since every CSP can be transformed
into a binary CSP. However, this is often not necessary sincenany algorithms can be generalised
to n-ary constraints.

A CSP network is the graph formed by considering the variables as nodes and the constraints
as arcs between them. In such a network, several levels of csistency can be de ned:

Node consistency 8v 2 D; : ¢(v) (not very interesting). It means that all unary constraint s
are re°ected in the domains

Arc consistency 8v 2 Dj 9w 2 D; : ¢j (v;w) (most practically relevant). It means that for
every value in the domain of one variable, there is a compatile value in the domain of
the other variable in the constraint. In practice, constraints are symmetric, so the reverse
property also holds.

Path consistency 8v 2 Dj 8w 2 Dj 9u 2 Dy : G (v; U); G (u; w) (usually too expensive). One
can show that this property extends to whole paths, i.e. on ay path of constraints between
variables i and j the variables have domain values which areampatible with any domain
values for i and j.

Note that neither of these conditions is suzcient for the problem to be satis able. It is still
necessary to search for solutions. Computing networks withthese consistency levels can however
be a useful intermediate step to nding a solution to the CSP.

Consequently, a complete CSP solver needs the following dgs decisions:

2 what level of consistency do we want to employ?
2 at what time during search do we want to (re)establish this casistency?

2 what algorithm do we use to establish this consistency?

In practice, the most relevant consistency level is arc-coristency. Consequently, a number of
algorithms have been proposed for the purpose of establishy arc-consistency. The algorithms
used in ECL'PS® are mostly variants of AC-3 [15] and AC-5 [9].
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Figure 14.1: Control during Constraint Solving

14.3 Constraint Behaviours

As opposed to the theoretical CSP framework sketched in the gevious section, in ECLIPS®

we usually deal with more heterogeneous situation. We wantd allow the integration of very

di®erent constraints, and we want to achieve a separation ofanstraint propagation and search.
Therefore, we are not interested in an overall problem solvig algorithm which controls search
and constraint propagation globally for the whole problem and all constraints. We prefer to

view the constraint solving process as in gure 14.1: the seah process is controlled by an
algorithmic program, while constraint propagation is performed by data-driven agents which do
local (again algorithmic) computations on one or several costraints. Individual constraints can

then be implemented with di®erent behaviours, and freely mied within a single computation.

Constraint behaviours can essentially be characterised by

2 their triggering condition ( when are they executed)
2 the action they perform when triggered (what do they do)

Let us now look at examples of di®erent constraint behaviours

14.3.1 Consistency Check

The =<2 predicate, whose standard Prolog version raises an errowhen invoked with uninstan-
tiated variable, is also implemented by the suspend library. Both implementations have the
same declarative meaning, but thesuspend version can be considered to be a proper constraint.
It implements a passive test , i.e. it simply delays until both arguments are numbers, andthen
succeeds or fails:

?- suspend : (X =< 4).
X=X
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There is 1 delayed goal.
Yes (0.00s cpu)

?- suspend : (X =< 4), X = 2.
X =2

Yes (0.00s cpu)

?- suspend : (X =< 4), X = 5.

No (0.00s cpu)

14.3.2 Forward Checking

Often a constraint can already do useful work before all its aguments are instantiated. In
particular, this is the case when we are working with domain \ariables. Consideric's disequality
constraint #\= : Even when only one side is instantiated, it can already remee this value from
the domain of the other (still uninstantiated) side:

?-X 1.5

X #\= 3.
X = X{[1, 2, 4, 5]}
Yes (0.00s cpu)

If both sides are uninstantiated, the constraint cannot do anything useful. It therefore waits (de-
lays) until one side becomes instantiated, but then wakes u@nd acts as before. This behaviour
is sometimes called forward checking [26]:

?-[X,Y] 1.5

X #=Y. % delays
X =X{1 .. 5}
Y = Y{1 .. 5}

There is 1 delayed goal.
Yes (0.00s cpu)

?-X 1.5
X #=Y, % delays
Y = 3. % wakes
X = X{[1, 2, 4, 5]}
Y =3

Yes (0.01s cpu)

14.3.3 Domain (Arc) Consistency

For many constraints, even more eager behaviour is possihle For example, ic's inequality
constraints performs domain updates as soon as possible, even when one or both arguments
are still variables:

?2-[X, Y] 21 .5 X#UY.
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Consistency Checking  wait until all variables instantiated, then check
Forward Checking  wait until one variable left, then compute consequences

Domain (Arc) Consistency wait until a domain changes, then compute consequences
for other domains

Bounds Consistency  wait until a domain bound changes, then compute consequense
for other bounds

Figure 14.2: Typical Constraint Behaviours

X = X{1 .. 4

Y = Y{2 . 5}

There is 1 delayed goal.
Yes (0.00s cpu)

?2-[X, Y] 21 .5 X#Y, X # 2.
Y = Y{[4, 5]}

X = X{[3, 4]}

There is 1 delayed goal.

Yes (0.00s cpu)

Inconsistent values are removed form the domains as soon agsible. This behaviour corre-
sponds toarc consistency as discussed in section 14.2.

14.3.4 Bounds Consistency

Note however that not all ic constraints maintain full domain arc consistency. For perbrmance
reasons, the#= constraint only maintains bounds consistency, which is weker, as illustrated by
the following example:

2-[X, Y] 21 .5 X# Y + 1, X #\= 3.
Y = Y{1 .. 4

X = X{[2, 4, 5]}

There is 1 delayed goal.

Yes (0.00s cpu)

Here, the value 4 for Y was not removed even though it is not araonsistent (there is no value
for X which is compatible with it).

It is important to understand that this kind of propagation i ncompleteness does not a®ect
correctness: the constraint will simply detect the inconsstency later, when its arguments have
become more instantiated. In terms of the search tree, this mmans that a branch will not be
pruned as early as possible, and extra time might be spent seehing.
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14.4 Programming Basic Behaviours

As an example, we will look at creating constraint versions 6the following predicate. It de nes
a relationship between containers of type 1, 2 or 3, and theicapacity:

capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

This de nition gives the intended declarative meaning, but does not behave as a constraint:
capacity(3, C) will raise an error, and capacity(Type, 30.5)  will generate several solutions
nondeterministically. Only calls like capacity(3, 27.1)  will act correctly as a test.

14.4.1 Consistency Check

To program the passive consistency check behaviour, we need wait until both arguments of
the predicate are instantiated. This can be achieved by addig an ECL'PS* delay clause :

delay capacity(T,N) if var(T);var(N).
capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

The delay clause speci es that any call to capacity/2 will delay as long as one of the argu-
ments is a variable. When the variables become instantiatedater, execution will be resumed
automatically, and the instantiations will be checked for satisfying the constraint.

14.4.2 Forward Checking

For Forward Checking, we will assume that we have interval donain variables, as provided by
the ic library (without domain variables, there would not be much interesting propagation to
be done).

Here is one implementation of a forward checking version:

- lib(ic).
delay capacity(T, N) if var(T), var(N).
capacity(T, N) :- nonvar(N), !,
N >= 0,
(N =<500->T:[123]
; N =<180.0 -> T :: [1,2]
; N=<3500->T=1

154



capacity(1, N) :- N$>=0.0, N$=<350.0.
capacity(2, N) :- N$>=0.0, N$=<180.0.
capacity(3, N) :- N$>=0.0, N$=<50.0.

Note that the delay clause now only lets goals delay when botrguments are variables. As soon
as one is instantiated, the goal wakes up and, depending on vidh is the instantiated argument,
either the “rst, or one of the last three clauses is executed. @ne examples of the behaviour:

?- capacity(T, C).
There is 1 delayed goal.
Yes (0.00s cpu)

?- capacity(3, C).
C = C{0.0 .. 50.0}
Yes (0.00s cpu)

?- capacity(T, C), C = 100.
T = T{1, 2]}

C = 100

Yes (0.00s cpu)

A disadvantage of the above implementation is that when the pedicate wakes up, it can be
either because T was instantiated, or because C was instargted. An extra check (nonvar(N) )
is needed to distinguish the two cases. Alternatively, we cold have created two agents (delayed
goals), each one specialised for one of these cases:

capacity(T, N) :-
capacity forward(T, N),
capacity_backward(T, N).

delay capacity_forward(T, _N) if var(T).

capacity_forward(1, N) :- N$>=0.0, N$=<350.0.
capacity_forward(2, N) :- N$>=0.0, N$=<180.0.
capacity_forward(3, N) :- N$>=0.0, N$=<50.0.

delay capacity backward(_T, N) if var(N).
capacity_backward(T, N) :-

N >= 0,

(N =<500->T: [1273]

; N =<180.0 -> T :: [1,2]

; N=<3500->T=1
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Unfortunately, there is a drawback to this implementation as well: once one of the two delayed
goals has done its work, all the constraint's information ha been incorporated into the remaining
variable's domain. However, the other delayed goal is stilwaiting, and will eventually wake up
when the remaining variable gets instantiated as well, at whch time it will then do a redundant
check.

The choice between having one or several agents for a constniis a choice we will face every
time we implement a constraint.

14.5 Basic Suspension Facility

For the more complex constraint behaviours (beyond those wiiing for instantiations), we need

to employ lower-level primitives of the ECL! PS® kernel (suspensions and priorities). If we want
to add a new constraint to an existing solver, we also need to se the lower-level interface that
the particular solver provides.

Apart from the delay clauses used above, ECIPS® also provides a more powerful (though
less declarative) way of causing a goal to delay. The followig is another implementation of
the constraint checking behaviour, this time using the susgnd/3 built-in predicate to create a

delayed goal for capacity/2:

capacity(T,N) :- (var(T);var(N)), !,
suspend(capacity(T,N), 0, [T,N]->inst).
capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

14.6 A Bounds-Consistent IC constraint

To show the basic ideas, we will simply reimplement a constrit that already exists in the ic
solver, the inequality constraint. We want a constraint ge/2 that takes two ic variables (or
numbers) and constrains the rst to be greater or equal to the cond.

The behaviour should be to maintain bounds-consistency: If w have a goalge(X,Y), where
the domain of X is X{1..5} and the domain of Y is Y{3..7} , we would like the domains to
be updated such that the upper bound of Y gets reduced to 5, andhe lower bound of X gets
increased to 3. The following code achieves this:

ge(X, Y) :-
get_bounds(X, _, XH),
get_bounds(Y, YL, ),
( var(X),var(Y) ->
suspend(ge(X,Y), 0, [X->ic:max, Y->ic:min])
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suspend(Goal, Priority, Triggers) Creates Goal as a delayed goal with a given waking
priority and triggering conditions. Triggers is a list of Va riables-> Conditions terms,
specifying under which conditions the goal will be woken up.The priority speci es
with which priority the goal will be scheduled after it has been triggered. A priority
of 0 selects the default for the predicate. Otherwise, validpriorities range are from
1 (most urgent, reserved for debugging purposes) to 12 (leasirgent).

Some valid triggers:

X->inst wake when the variable becomes instantiated (most speci c)

X- > constrained wake when the variable becomes constrained somehow (mostrgral)
X->ic:min wake when the lower bound of an ic-variable changes

X->ic:max wake when the upper bound of an ic-variable changes

X->ic:hole wake an internal domain value gets removed

Figure 14.3: The Basic Suspension Facilities

true
)
X #>= YL, % impose new bounds
Y #=< XH.

We have used a single primitive from the low-level interface bthe ic library: get_bounds/3 ,
which extracts the current domain bounds from a variable. Futher, we have used the information
that the library implements trigger conditions called min and max, which cause a goal to wake
up when the lower/upper bound on anic variable changes.

Note that we suspend a new instance of thege(X,Y) goal beforewe impose the new bounds on
the variables. This is important when the constraint is to be used together with other constraints
of higher priority: imposing a bound may immediately wake and execute such a higher-priority
constraint. The higher-priority constraint may then in turn change one of the bounds that ought
to wake ge/2 again. This only works if ge/2 has already been (g-)suspended at that time.

14.7 Using a Demon

Every time the relevant variable bounds change, the delayedje/2 goal wakes up and (as long as
there are still two variables) a new, identical goal gets dedyed. To better support this situation,
ECL'PS® provides a special type of predicate, called alemon. A predicate is turned into a
demon by annotating it with a demon/1 declaration. A demon goal di®ers from a normal goal
only in its behaviour on waking. While a normal goal disappeas from the resolvent when it
is woken, the demon remains in the resolvent. Declarativelythis corresponds to an implicit
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recursive call in the body of each demon clause. Or, in other wrds, the demon goal forks into
one goal that remains in the suspended part of the resolventand an identical one that gets
scheduled for execution.

With a demon, our above example can be done more exciently. Oneomplication arises, how-
ever. Since the goal implicitly re-suspends, it now has to bexglicitly killed when it is no longer
needed. The easiest way to achieve this is to let it have a hand to itself (its “suspension’) in
one of its arguments. This can then be used to kill the suspernsn when required:

ge(X, Y) :-
suspend(ge(X,Y,MySusp), 0, [X->ic:max, Y->ic:min], MySu sp),
ge(X, Y, MySusp).

.- demon ge/3.
ge(X, Y, MySusp) :-
get_bounds(X, _, XH),
get_bounds(Y, YL, ),
( var(X),var(Y) ->
true % implicitly re-suspend
kill_suspension(MySusp)
),
X #>= YL, % impose new bounds
Y #=< XH.

We have used the new primitives suspend/4 and killsuspension/1.

14.8 Exercises

1. Implement a constraint atmost/3
atmost(+N, +List, +V)

which takes an integer N, an integer V and a list List containing integers or integer domain
variables.
Meaning: at most N elements of List have value V.

Behaviour: Fail as soon as too many list elements are instafted to value V. This requires
only basic suspension facilities, no domain information neds to be taken into account.

Tests are provided in the Te atmost.tst . You can test your constraint by loading the
library lib(test_util) and then calling test(atmost)

2. Implement a constraint o®set/3
offset(?X,+Const,?Y)
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which is declaratively like

offset(X,Const,Y) :- Y #= X+Const.
but maintains domain-arc-consistency (i.e. propagates "has", while the above de nition
only maintains bounds-consistency).

Use suspension built-ins and domain-access primitives fromhe ic_kernel module. Use
not_unify/2 to test whether a value is outside a variable's doman.

Tests are provided in the Te offset.tst . You can test your constraint by loading the
library lib(test_util) . and then calling test(offset)
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Chapter 15

Propia and CHR

15.1 Two Ways of Specifying Constraint Behaviours

There are two elegant and simple ways of building constrairg available in ECL'PS?, called
Propia and Constraint Handling Rules (or CHR's). They are themselves built using the facilities
described in chapter 14.

Consider a simplenoclash constraint requiring that two activities cannot be in progr ess at the
same time. For the sake of the example, the constraint involes two variables, the start timesS1
and S2 of the two activities, which both have duration 5. Logically this constraint states that
noclash, (S1>= S2+5 S2>= S1+5). The same logic can be expressed as two ECPS®
clauses:

noclash(S1,S2) :-
ic:(S1 $>= S2+5).

noclash(S1,S2) :-
ic:(S2 $>= S1+5).

Constraint propagation elicits information from constrai nts without leaving any choice points.
Constraint propagation behaviour can be associated with eeh of the above representations, by
CHR's and by Propia.

One way to propagate information from noclashis to wait until the domains of the start times
are reduced suzciently that only one ordering of the tasks is pssible, and then to enforce the
constraint that the second task not start until the rst is nis hed.

This behaviour can be implemented in CHR's as follows:

:- constraints noclash/2.
noclash(S1,S2) <=> ic:(S2 #< S1+5) | ic:(S1 #>= S2+5).
noclash(S1,S2) <=> ic:(S1 #< S2+5) | ic:(S2 #>= S1+5).

Consider the query:
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Propia and CHRs make it easy to turn the logical statement of aconstraint into code that
exciently enforces that constraint.

Figure 15.1: Building Constraints without Tears

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
S1 #>= 6.

In this query noclash achieves no propagation when it is initially posted with the start time

domains set t01..10 . However, after imposingS1 > = 6, the domain of S1 is reduced t06..10 .

Immediately the noclash constraint wakes, detects that the rst condition S1+5 >= S2 is
entailed, and narrows the domain ofS2 to 1..5 .

The same behaviour can be expressed in Propia, but this timehe original ECL' PS® represen-
tation of noclashas two clauses is used directly. The propagation behavioursi automatically
extracted from the two clauses by Propia when thenoclashgoal is annotated as follows:

?- [S1,S2]::1..10,
noclash(S1,S2) infers most,
S1 #>= 6.

15.2 The Role of Propia and CHR in Problem Modelling

To formulate and solve a problem in ECL'PS® the standard pattern is as follows:
1. Initialise the problem variables
2. State the constraints
3. Specify the search behaviour

Very often, however, the constraints involve logical implications or disjunctions, as in the case
of the noclash constraint above. Such constraints are most naturally fornulated in a way that
would introduce choice points during the constraint posting phase. The two ECL'PS® clauses
de ning noclash above, are a case in point.

There are two major disadvantages of introducing choice paits during constraint posting:

2 Posting and reposting constraints during search is an unnezssary and computationally
expensive overhead

2 Mixing constraint behaviour and search behaviour makes it farder to explore and optimize
the algorithm executed by the program.

Propia and CHR's support the separation of constraint setupand search behaviour, by allowing
constraints to be formulated naturally without their execu tion setting up any choice points.
The e®ect on performance is illustrated by the following smdlexample. The aim is to choose a
set of 9 products (Products , identi ed by their product number 101-109) to manufacture, with
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Propia and CHRs can be used to build clear problem models thahave no (hidden) choice
points.

Figure 15.2: Modelling without Choice Points

a limited quantity of raw materials ( Rawland Raw2, so as to achieve a prot (Profit ) of over
40. The amount of raw materials (of two kinds) needed to prodwee each product is listed in a
table, together with its prot.

product_plan(Products) :-
length(Products,9),
Rawl #=< 95,
Raw2 #=< 95,
Profit #>= 40,
sum(Products,Rawl,Raw?2,Profit),
labeling(Products).

product( 101,1,19,1). product( 102,2,17,2). product( 103 ,3,15,3).
product( 104,4,13,4). product( 105,10,8,5). product( 106 ,16,4,4).
product( 107,17,3,3). product( 108,18,2,2). product( 109 ,19,1,1).

sum(Products,Rawl,Raw2,Profit) :-
( foreach(ltem,Products),
foreach(R1,R1List),
foreach(R2,R2List),
foreach(P,PList)
do
product(ltem,R1,R2,P)
)
Rawl #= sum(R1List),
Raw2 #= sum(R2List),
Profit #= sum(PList).

The drawback of this program is that the sumconstraint calls product which chooses an item
and leaves a choice point at each call. Thus the setup of thsumconstraint leaves 9 choice
points. Try running it, and the program fails to terminate wi thin a reasonable amount of time.
Now to make the program run ezciently, we can simply annotate the call to product as a
Propia constraint making: product(ltem,R1,R2,P) infers most . This program leaves no
choice points during constraint setup, and nds a solution in a fraction of a second.

In the remainder of this chapter we show how to use Propia and ER's, give some examples,
and outline their implementation.
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15.3 Propia

Propia is an implementation of Generalised Propagationwhich is described in the paper [13].

15.3.1 How to Use Propia

In principle Propia propagates information from an annotated goal by nding all solutions to the
goal and extracting any information that is common to all the di®erent solutions. (In practice,
as we shall see later, Propia does not typically need to nd althe solutions.)
The\common"information that can be extracted depends uponwhat constraint solvers are used
when evaluating the underlying un-annotated ECL'PS® goal. To illustrate this, consider another
simple example.

p(1,3).
p(1,4).

?-  p(X,Y) infers most.

If the ic library is not loaded when this query is invoked, then the information propagated by
Propia is that X = 1. If, on the other hand, ic is loaded, then more common information is
propagated. Not only does Propia propagateX = 1 but also the domain of Y is tightened from
-inf..inf to 3..4 . (In this case the additional common information is that Y 6 0, Y 6 1,
Y 6 2 and so on for all values except 3 and 4!)

Any goal Goal in an ECL'PS® program, can be transformed into a constraint by annotating it
thus: Goal infers Parameter . Di®erent behaviours can be speci ed with di®erent parameters
viz:

2 Goal infers most
Propagates all common information produced by the loaded doers

2 Goal infers unique
Fails if there is no solution, propagates the solution if it is unique, and succeeds without
propagating further information if there is more than one sdution.

2 Goal infers consistent
Fails if there is no solution, and propagates no informationotherwise

These behaviours are nicely illustrated by the crossword d@monstration program crossword in
the examples code directory. There are 72 ways to complete thcrossword grid with words from
the accompanying directory. For nding all 72 solutions, the comparative performance of the
di®erent annotations is given in the tableComparing Annotations.

The example program also illustrates the e®ect of specifyinthe waking conditions for Propia.
By only waking a Propia constraint when it becomes instantiaed, the time to solve the cross-
word problem can be changed considerably. For example by cimging the annotation from
Goal infers most to suspend(Goal,4,Goal->inst) infers most the time needed to nd all
solutions goes down from 10 seconds to just one second.

For other problems, such as the square tiling problem in the gample directory, the fastest
version is the one usingnfers consistent . To nd the best Propia annotation it is necessary
to experiment with the current problem using realistic data sets.
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Annotation | CPU time (secs)
consistent 13.3
unigue 2.5
most 9.8
ac 0.3

Table 15.1: Comparing Annotations

15.3.2 Propia Implementation

In this section we describe how Propia works.

Outline

When a goal is annotated as a Propia constraint, eg. p(X,Y) infers most , rst the goal
p(X,Y) is in e®ect evaluated in the normal way by ECLLPS®. However Propia does not stop
at the rst solution, but continues to nd more and more solutio ns, each time combining the
information from the solutions retrieved. When all the information has been accumulated,
Propia propagates this information (either by narrowing the domains of variables in the goal, or
partially instantiating them).

Propia then suspends the goal again, until the variables bemme further constrained, at which
point it wakes, extracts information from solutions to the more constrained goal, propagates it,
and suspends again.

If Propia detects that the goal is entailed (i.e. the goal woud succeed whichever way the variables
were instantiated), then after propagation it does not susgend any more.

Most Speci ¢ Generalisation

Propia works by treating its input both as a goalto be called, and as a term which can be ma-
nipulated as data. As with any ECL'PS® goal, when executed its result is a further instantiation
of the term. For example the rst result of calling member(X,[a,b,c]) is to further instantiate
the term yielding member(a,[a,b,c]) . This instantiated term represents the (' rst) solution to
the goal.

Propia combines information from the solutions to a goal usng their most speci ¢ generalisation
(MSG). The MSG of two terms is a term that can be instantiated (in di ®erent ways) to either
of the two terms. For example p(a;f (Y)) is the MSG of p(a;f (b)) and p(a;f (c)). This is the
meaning ofgeneralisation The meaning of most speci ¢ is that any other term that generalises
the two terms, is more general than the MSG. For example, any ther term that generalises
p(a; f (b) and p(a;f (c)) can be instantiated to p(a;f (Y)). The MSG of two terms captures only

Propia extracts information from a procedure which may be dened by multiple ECL 'PS®
clauses. The information to be extracted is controlled by the Propia annotation.

Figure 15.3: Transforming Procedures to Constraints
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information that is common to both terms (because it generaises the two terms), and it captures
all the information possible in the two terms (because it is he most speci ¢ generalisation).
Some surprising information is caught by the MSG. For exampé the MSG of p(0; 0) and p(1; 1)
is p(X; X ). We can illustrate this being exploited by Propia in the following example:

% Definition of logical conjunction
conj(1,1,1).
conj(1,0,0).
conj(0,1,0).
conj(0,0,0).

conjtest(X,2) :-
conj(X,Y,Z) infers most,
X=Y.

The test succeeds, recognising thak must take the same truth value asZ. Running this in
ECL'PS® yields:

[eclipse]: conjtest(X,Z).
X=X
Z =X
Delayed goals:
conj(X, X, X) infers most
Yes (0.00s cpu)

If the ic library is loaded more information can be extracted, becaus the MSG of 0 and 1 is a
variable with domain 0..1 . Thus the result of the above example is not only to equateX and
Z but to associate with them the domain 0..1 .

The MSG of two terms depends upon what information is expresle in the MSG term. As the
above example shows, if the term can employ variable domainthe MSG is more precise.

By choosing the class of terms in which the MSG can be expresdewe can capture more or less
information in the MSG. If, for example, we allow only terms of maximum depth 1 in the class,
then MSG can only capture functor and arity. In this case the MSG of f (a;1) and f (a;2) is
simply f (_;_), even though there is more shared information at the next deth.

In fact the class of terms can be extended to a lattice, by intoducing a bottom ? and a top
>, ? is a term carrying no information; > is a term representing inconsistent information; the
meet of two terms is the result of unifying them; and their join is their MSG.

The Propia Algorithm

We can now specify the Propia algorithm more precisely. The Popia constraint is

Goal infers Parameter
2 SetOutTerm = >
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Propia computes the Most Speci ¢ Generalisation (MSG) of the set of solutions to a
procedure. It does so without, necessarily, backtracking tirough all the solutions to the
procedure. The MSG depends upon the annotation of the Propiacall.

Figure 15.4: Most Speci ¢ Generalisation

2 Repeat

{ Find a solution S to Goal which is not an instance ofOutT erm
{ Find the MSG, in the class speci ed byParameter, of OutTerm and S. Call it MSG
{ SetOutTerm := MSG

until either Goal is an instance ofOutT erm, or no such solution remains

2 Return OutTerm

When infers most is being handled, the class of terms admitted for the MSG is tle biggest
class expressible in terms of the currently loaded solversin caseic is loaded, this includes
variable domain, but otherwise it includes any ECL PS® term without variable attributes.

The algorithm supports infers consistent by admitting only the two terms > and ? in the

MSG class.infers unique is a variation of the algorithm in which the rst step OutTerm := >

is changed to nding a rst solution S to Goal and initialising OutTerm = S.

Propia's termination is dramatically improved by the check that the next solution found is not

an instance of OutT erm. In the absence of domains, there is no in nite sequence of ters that
strictly generalise each other. Moreover, if the variablesn Goal have nite domains, the same
result holds. Thus, because of this check, Propia will termhate as long as each call of5oal
terminates.

For example the Propia constraint member(Var,List) infers Parameter will always termi-

nate, if each call of member(Var,List) does, even in casemember(Var,List) has in nitely

many solutions!

15.3.3 Propia and Related Techniques

If the nite domain solver is loaded then Goal infers most prunes the variable domains so
every value is supported by values in the domains of the othewariables. If every problem
constraint was annotated this way, then Propia would enfore arc consistency.

Propia generalises traditional arc consistency in two ways Firstly it admits n-ary constraints,
and secondly it handles predicates de ned by rules, as well aground facts. In the special case
that the goal can be \unfolded" into a nite set of ground solut ions, this can be exploited by
using infers ac to make Propia run more exciently. When called with parameter infers ac ,
Propia simply nds all solutions and applies n-ary arc-consisency to the resulting tables.
Propia also generalisexonstructive disjunction. Constructive disjunction could be applied in
case the predicate was unfolded into a nite set of solutionsyhere each solution was expressed
using ic constraints (such as equations, inequations etc.). Propiacan also handle recursively
de ned predicates, likememberexampled above, which may have an in nite number of solutiors.
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154 CHR

Constraint Handling Rules were originally implemented in ECL'PS®. They are introduced in
the paper [8].

15.4.1 How to Use CHR

CHR's o®er a rule-based programming style to express constrai simpli cation and constraint
propagation. The rules all have ahead an explicit or implicit guard, and a body, and are written
either

Head <=> Guard | Body. %Simplification Rule
or
Head ==> Guard | Body. %Propagation Rule

When a constraint is posted that is an instance of the head, tle guard is checked to determine
whether the rule can re. If the guard is satis ed (i.e. CHR detects that it is entailed by the
current search state), the rule res. Unlike ECL'PS® clauses, the rules leave no choice points.
Thus if several rules share the same head and one res, the otheules are never red even after
a failure.

Normally the guards exclude each other, as in thenoclash example:

.- lib(ech).

;- constraints noclash/2.

noclash(S1,S2) <=> ic:(S2 #< S1+5) | ic:(S1 #>= S2+5).
noclash(S1,S2) <=> ic:(S1 #< S2+5) | ic:(S2 #>= S1+5).

Henceforth we will not explicitly load the ech library.
The power of guards lies in the behaviour of the rules when thg are neither entailed, nor
disentailed. Thus in the query

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
S1 #>= 6.

when the noclash constraint is initially posted, neither guard is entailed, and CHR sim-

ply postpones the handling of the constraint until further constraints are posted. As soon
as a guard becomes entailed, however, the rule res. For simptation rules, of the form

Head <=> Guard | Body the head is replaced by the body. In this example, thereforg
noclash(S1,S2) is replaced byS1 #>= S2+5

Propagation rules are useful to add constraints, instead ofeplacing them. Consider, for example,
an application to temporal reasoning. If the time T1 is before timeT 2, then we can propagate
an additional ic constraint saying T1 =<T 2:
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CHRs are guarded rules which re without leaving choice poins. A CHR rule may have
one or many goals in the head, and may take the following forms Simpli cation rule,
Propagation rule or Simpagation rule.

Figure 15.5: CHRs

:- constraints before/2.
before(T1,T2) ==> ic:(T1 $=< T2)

This rule simply posts the constraint T1 $=< T2to ic. When a propagation rule res its body
is invoked, but its head remains in the constraint store.

15.4.2 Multiple Heads

Sometimes di®erent constraints interact, and more can be deged from the combination of
constraints than can be deduced from the constraints sepataly. Consider the following query:

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
before(S1,52).

Unfortunately the ic bounds are not tight enough for the noclash rule to re. The two con-
straints can be combined so as to propagat&2, S1+5 using a two-headed CHR:

noclash(S1,S2), before(S1,S2) ==> ic:(S2 #>= S1+5).

We would prefer to write a set of rules that captured this kind of inference in a general way.
This can be achieved by writing a more complete solver foprec, and combining it with noclash .
prec(S1; D; S2) holds if the time S1 precedes the timeS2 by at least D units of time. For the
following code to work, S1 and S2 may be numbers or variables, butD must be a number.

.- constraints prec/3.

prec(S,D,S) <=> D=<0.

prec(S1,0,S2), prec(S2,0,S1) <=> S1=S2.

prec(S1,D1,S2), prec(S2,02,S3) ==> D3 is D1+D2, prec(S1,D 3,S3).
prec(S1,D1,S2) \ prec(S1,D2,S2) <=> D2=<D1 | true. % Simpag ation

noclash(S1,S2), prec(S1,D,S2) ==> D > -5 | prec(S1,5,S2).
noclash(S1,S2), prec(S2,D,S1) ==> D > -5 | prec(S2,5,S1).

Note the simpagation rule, whose head has two partsHeadl \ Head2 In a simpagation rule
Head2is replaced, but Headlis kept in the constraint store.
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15.5 A Complete Example of a CHR File

Sometimes whole sets of constraints can be combined. Consid for example, a program where
disequalities on pairs of variables are accumulated duringearch. Whenever a point is reached
where any subset of the variables are all constrained to be @ierent analldifferent constraint
can be posted on that subset, thus supporting more powerful pppagation. This can be achieved
by "nding cliquesin the graph whose nodes are variables and edges are diseqtyatonstraints.
We start our code with a declaration to load the echlibrary. The constraints are then declared,
and subsequently de ned by rules. The CHR encoding starts by gnerating a clique whenever
two variables are constrained to be di®erent.

.- lib(ech).
;- constraints neq/2.

neq(X,Y) ==>
sort([X,Y],List),
clique(List),
neq(Y,X).

Each clique is held as a sorted list to avoid any duplication.The symmetrical disequality is added
to simplify the detection of new cliques, below. Whenever a lique is found, the alldifferent
constraint is posted, and the CHRs seek to extend this cliqueo include another variable:

.- constraints clique/l.

clique(List) ==> alldifferent(List).
clique(List),neq(X,Y) ==>
in_clique(Y,List), not in_clique(X,List) |
sort([X|List],Clique),
extend_clique(X,List,Clique).

in_clique(Var,List) :-
member(El,List), El==Var, !.

The idea is to search the constraint store for a disequality letween the new variable X and
each other variable in the original cligue. This is done by reursing down the list of remaining
variables. When there are no more variables left, a new cliggl has been found.

neq(X,Y) \ extend_clique(X,[Y|Tail],Cliqgue) <=>
extend_clique(X,Tail,Clique).
extend_clique(_,[],Clique) <=>
clique(Clique).
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Finally, we add three optimisations. Don't try and nd a cliqu e that has already been found, or
“nd the same cligue twice. If the new variable is equal to a varable in the list, then don't try
any further.

cligue(Clique) \ extend_clique(_, ,Clique) <=> true.
extend_clique(_, ,Clique) \ extend_clique(_, ,Clique) <=> true.
extend_clique(Var,List,_) <=> in_clique(Var,List) | tru e.

15.5.1 CHR Implementation

CHR's are implemented using the ECL'PS® suspension and waking mechanisms. A rule is woken
if:

2 a new goal is posted, which matches one of the goals in its head
2 a goal which has already been posted earlier becomes furtharstantiated.

The rule cannot re unless the goal is more instantiated than the rule head. Thus the rule
p(a,f(Y),Y) <=> q(Y) s really a shorthand for the guarded rule:

p(A,B,C) <=> A=a, B=f(Y), C=Y | q(Y)

The guard is \satis ed" if, logically, it is entailed by the co nstraints posted already.
In practice the CHR implementation cannot always detect the entailment. The consequence is
that goals may re later than they could. For example considerthe program

;- constraints p/2.
P(X,Y) <=> ici(X $> Y) | q(X,Y).

and the goal
?- (X $ ),
pP(X,Y).

Although the guard is clearly satis ed, the CHR implementati on cannot detect this and p(X,Y)
does not re. If the programmer needs the entailment of inequéities to be detected, it is necessary
to express inequalities as CHR constraints, which propagaic constraints as illustrated in the
example prec(S1,D,S2) above.

CHRs can detect entailment via variable bounds, sg(X,0) does re in the following example:

?- ic(X $> 1),
p(X,0).
The implementation of this entailment test in ECL 'PS® is to impose the guard as a constraint,

and fail (the entailment test) as soon as any variable beconm® more constrained. A variable
becomes more constrained if:
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CHRs suspend on the variables in the rule head. On waking the BR tests if its guard is
entailed by the current constraint store. The entailment test is excient but incomplete,
and therefore rules may fail to re as early as they could in thery.

Figure 15.6: CHR Implementation

2 it becomes more instantiated
2 jts domain is tightened
2 anew goal is added to its suspension list

There are many examples of applications expressed in CHR irhe ECL' PS® distribution. They
are held as Tes in thechr subdirectory of the standard ECL'PSF® library directory lib.

15.6 Global Reasoning

Constraints in ic are handled separately and individually. More global consstency techniques
can be achieved using global constraints. Propia and CHRs mpwide alternative methods of
achieving more global consistency. Propia allows any subpblem to be treated as a single
constraint. CHRs allow any set of constraints to be handled ly a single rule. Each technique has
special strengths. Propia is good for handling complicatedogical combinations of constraints.
CHRs are good for combining sets of constraints to extract tansitive closures, and cliques.
Both are fun to implement and use!

15.7 Propia and CHR Exercise

The problem is to implement three constraints, and, or and xor in CHRs and, as a separate
exercise, in Propia. The constraints are speci ed as followsAll boolean variables have domain
f0;1g: O for 'false' and 1 for 'true'.

and(X,Y,Z) =def (X & Y) =2Z
or(X,Y,Z) =def (X or Y) =Z
xor(X,Y,Z) =def (X & -Y)or (-X&Y))=Z

Suppose your constraints are calledcons_and, cons_or and cons_xor Now write enter the
following procedure:

full_adder(11,12,13,01,02) :-
cons_xor(11,12,X1),
cons_and(11,12,Y1),
cons_xor(X1,13,01),
cons_and(13,X1,Y2),
cons_or(Y1,Y2,02).
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The problem is solved if you enter the query:
?- full_adder(11,12,0,01,1).

and get the correct answer.
Note: you are not allowed to load the ic library nor to use seach and backtracking!

173



174



Chapter 16

The Eplex Library

16.1 Introduction

The eplex library allows an external Mathematical Programming solver to be used by ECL.PS®.
It is designed to allow the external solver to be seen as anoér solver for ECL'PS®, possibly in
co-operation with the existing “native' solvers of ECL PS® such as theic solver. It is not specic
to a given external solver, with the di®erences between di®amesolvers (largely) hidden from
the user, so that the user can write the same code and it will rm on the di®erent solvers.

The exact types of problems that can be solved (and methods t@olve them) are solver depen-
dent, but currently linear programming, mixed integer programming and quadratic programming
problems can be solved.

The rest of this chapter is organised as follows: the remaingr of this introduction gives a very
brief description of Mathematical Programming, which can be skipped if the reader is familiar
with the concepts. Section 16.3 demonstrates the modellingf an MP problem, and the following
section discusses some of the more advanced features of thierdry that are useful for hybrid
techniques.

16.1.1 What is Mathematical Programming?

Mathematical Programming (MP) (also known as numerical optimisation) is the study of opti-
misation using mathematical/numerical techniques. A problem is modelled by a set of simulta-
neous equations: an objective function that is to be minimigd or maximised, subject to a set
of constraints on the problem variables, expressed as equis and inequalities.

Many subclasses of MP problems have found important practial applications. In particular, Lin-
ear Programming (LP) problems and Mixed Integer Programming (MIP) problems are perhaps
the most important. LP problems have both a linear objective function and linear constraints.
MIP problems are LP problems where some or all of the variablg are constrained to take on
only integer values.

It is beyond the scope of this chapter to cover MP in any more d&il. However, for most usages
of the eplex library, the user need not know the details of MP {it can be treated as a black-box
solver.

For more information on Mathematical Programming, you can read a textbook on the subject
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2 Linear Programming (LP) problems: linear constraints and dbjective function, con-
tinuous variables.

2 Mixed Integer Programming (MIP) problems: LP problems with some or all variables
restricted to taking integral values.

Figure 16.1: Classi cation of MP problems

such as H. P. Williams' Model Building in Mathematical Programming [29].

16.1.2 Why interface to Mathematical Programming solvers?

Much research e®ort has been devoted to developing excient wayof solving the various sub-
classes of MP problems for over 50 years. The external solh&are state-of-the-art implementa-
tions of some of these techniques. The eplex library allowshe user to model an MP problem in
ECLIiPSe, and then solve the problem using the best availabléVP tools.

In addition, the eplex library allows for the user to write pr ograms that combines MP's global
algorithmic solving techniques with the local propagation techniques of Constraint Logic Pro-
gramming.

16.1.3 Example formulation of an MP Problem

Figure 16.2 shows an example of an MP problem. It is a transpdation problem where several
plants (1-3) have varying product producing capacities that must be transported to various
clients (A-D), each requiring various amounts of the product The per-unit cost of transporting
the product to the clients also varies. The problem is to minimise the transportation cost whilst
satisfying the demands of the clients.

To formulate the problem, we de ne the amount of product transported from a plant N to a
client p as the variable Np, e.g. Al represents the cost of transporting to plantA from client 1.
There are two kinds of constraints:

2 The amount of product delivered from all the plants to a client must be equal to the client's
demand, e.qg. for client A, which can recieve products from @ints 1-3: A1+ A2+ A3 =21

2 The amount of product sent by a plant must not be more than its capacity, e.g. for plant
1, which can send products to plants A-D:A1+B1+ C1+D1- 50

The objective is to minimise the transportation cost, thus the objective function is to minimise
the combined costs of transporting the product to all 4 clierts from the 3 plants.

Putting everything together, we have the following formulation of the problem:

Objective function:

min(10A1+7A2 +200A3+8B1+5B2+10B3+5C1+5C2+8C3+9D1+3D2+7D3)
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plant capacities per-unit transportation costs client demand

Figure 16.2: An Example MP Problem

Constraints:

Al+ A2+ A3 = 21
B1+B2+B3 = 40
Ci+C2+C3 = 34
D1+D2+D3 = 10
Al+B1+Cl1+D1 - 50
A2+B2+C2+D2 - 30
A3+B3+C3+D3 - 40

16.2 How to load the library

To use the library, you must have an MP solver that eplex can ug (for example, XPRESS-MP
or CPLEX). Your ECL 'PS® should be con gured to load in a “default' solver if there is moe
than one available.

See the library manual's Eplex chapter for details for how toinstall the solver.

When con gured properly, the library can be loaded with the directive:
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An eplex instance represents a single MP problem in a module. Constraints for he
problem are posted to the module. The problem is solved with espect to an objective
function.

Figure 16.3: Eplex Instance

- lib(eplex).

This will load the library with the default external MP solve r.

You may need a valid license in order to use an external solverWith your ECL 'PS* license,
you can obtain a full OEM version of XPRESS-MP! that runs with ECL 'PS® version 5.5 and
later from ECL'PS®'s ftp site.

16.3 Modelling MP problems in ECL  'PS®

16.3.1 Eplex instance

The simplest way to model an eplex problem is through areplex instance Abstractly, it can be
viewed as a solver module that is dedicated to one MP problemMP constraints can be posted
to the instance and the problem solved with respect to an objetive function by the external
solver.

Declaratively, an eplex instance can be seen as a compoundrnsdraint consisting of all the vari-
ables and constraints of its eplex problem. Like normal congaints, di®erent eplex instances can
share variables, although the individual MP constraints in an eplex instance do not necessarily
have to be consistent with those in another.

16.3.2 Example modelling of an MP problem in ECL 'pse

The following code models (and solves) the transportation poblem of Figure 16.2, using an
eplex instance:

- lib(eplex).
- eplex_instance(prob). % a. declare an eplex instance

mainl(Cost, Vars) :-
% b. create the problem variables and set their range
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars $:: 0.0..1.0Inf),

% c. post the constraints for the problem to the eplex instanc e
prob: (Al + A2 + A3 $= 21),
prob: (B1 + B2 + B3 $= 40),

IXPRESS-MP is a product from Dash Associates Ltd. (www.dashoptimi zation.com)
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prob: (C1 + C2 + C3 $= 34),
prob: (D1 + D2 + D3 $= 10),

prob: (Al + B1 + C1 + D1 $=< 50),
prob: (A2 + B2 + C2 + D2 $=< 30),
prob: (A3 + B3 + C3 + D3 $=< 40),

+ +

% d. set up the external solver with the objective function
prob: eplex_solver_setup(min(

10*Al + 7*A2 + 200*A3 +

8*B1 + 5*B2 + 10*B3 +

5*C1 + 5*C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3)),

% End of Modelling code

prob: eplex_solve(Cost). % e. Solve problem using external solver

To use an eplex instance, it must rst be declared witheplex_instance/1 . This is usually done
with a directive, as in line a. Once declared, an eplex instance can be referred to usingsihame
like a module quali er.

We rst create the problem variables and set their range to be mn-negative, as is conventional
in MP. Note that the bounds are posted to our eplex instance, wing $::/2 .

The default bounds for variables is -1.0Inf..1.0Inf. Boundsposted to an eplex instance are
speci ¢ to that eplex instance.

Next, we set up the MP constraints for the problem by posting them to the eplex instance. The
MP constraints accepted by eplex are the arithmetic equalites and inequalities: $=/2, $=</2
and $>=/2.

The arithmetic constraints can be linear expressions on bdt sides. The restriction to linear
expressions originates from the external solver.

We need to setup the external solver with the eplex instanceso that the problem can be solved
by the external solver. This is done byeplex_solver_setup/1 , with the objective function given
as the argument, enclosed by eithemin(...) or max(...) . In this case, we are minimising.
Note that generally the setup of the solver and the posting ofthe MP constraints can be done
in any order.

Having set up the problem, we can solve it by callingeplex_solve/1 in line e.

When an instance gets solved, the external solver takes int@ccount all constraints posted to
that instance, the current variable bounds for the problem \ariables, and the objective speci ed
during setup.

In this case, there is an optimal solution of 710.0:

?- mainl(Cost, Vars).
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710.0
[A1{0.0 .. 1e+20 @ 0.0}, A2{0.0 .. 1e+20 @ 21.0}, ....]

Cost
Vars

Note that the problem variables are not instantiated by the solver. However, the “solution' values,
i.e. the values that the variable are given by the solver, areavailable in the eplex attribute. The
eplex attribute is shown asLo..Hi @ Sol where Lo is the lower bound, Hi the upper bound,
and Sol the solution value for the variable (e.g.,A2has the solution value of 21.0 in the example
above). Note also that the external solver may not allow verylarge °oats, hencele+20, this
external solver's representation of in nity, is the upper bound of the variables, even though we
speci ed 1.0Inf in our code.

One reason the problem variables are not assigned their sdion values is so that the eplex
problem can be solved again, after it has been modi ed. A prol@m can be modi ed by the
addition of more constraints, and/or changes in the bounds éthe problem variables.

16.3.3 Getting more solution information from the solver

The solution values of the problem variables can be obtainethy eplex_var_get/3 . The example
program in the previous section can be modi ed to return the sdution values:

main2(Cost, Vars) :-
% same as previous example up to line e
prob: eplex_solve(Cost), % e. Solve problem using external solver
(foreach(V, Vars) do
% f. set the problem variables to their solution values
prob: eplex var_get(V, typed_solution, V)

In line f, eplex_var_get/3 is used to obtain the solution value for a problem variable. The
second argument, set totyped_solution , speci es that we want the solution value for the
variable to be returned. Here, we instantiate the problem vaiable itself to the solution value
with the third argument:

?- main2(Cost, Vars).

710.0
[0.0, 21.0, 0.0, 16.0, 9.0, 15.0, 34.0, 0.0, 0.0, 0.0, O .0, 10.0]

Cost
Vars

Note that, in general, an MP problem can have many optimal soltions, i.e. di®erent solutions
which give the optimal value for the objective function. As a result, the above instantiations for
Vars might not be what is returned by the solver used.

16.3.4 Adding integrality constraints

In general, a problem variable is not restricted to taking integer values. However, for some
problems, there may be a requirement that some or all of the vdable values be strictly integral

180



(for example, in the previous transportation problem, it may be that only whole units of the
products can be transported; also variables may often be useto model booleans by allowing
them to take on the values of O or 1 only). This can be speci ed byposting an additional
integers/1 constraint on the variables.

Consider the example problem again, where it so happens thahe optimal value for the objective
function can be satis ed with integral values for the variables. To show the di®erences that
imposing integer constraints might make, we add the constrant that client A must receive an
equal amount of products from plants 1 and 2. Now the problem ithout the integer constraints)
can be written as:

- lib(eplex).
- eplex_instance(prob).

main3(Cost, Vars) :-
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars $:: 0.0..1.0Inf),
prob: (Al + A2 + A3 $= 21),
prob: (B1 + B2 + B3 $= 40),
prob: (C1 + C2 + C3 $= 34),
prob: (D1 + D2 + D3 $= 10),

prob: (A1 + Bl
prob: (A2 + B2
prob: (A3 + B3

+

C1 + D1 $=< 50),
C2 + D2 $=< 30),
C3 + D3 $=< 40),

+ +

prob: eplex_solver_setup(min(
10*A1 + 7*A2 + 200*A3 +
8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3)),

prob: (Al $= A2), % g. the new constraint, added after setup

% End of Modelling code

prob: eplex_solve(Cost),
(foreach(V, Vars) do

prob: eplex_var_get(V, typed_solution, V)
).

In this example, the new constraint in line g is imposed after the solver setup. In fact it can be
imposed anytime beforeeplex_solve(Cost) is called.

This problem also has an optimalCost of 710, the same as the original problem. However, the
solution values are not integral:

?- main3(Cost, Vars).
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710.0
[10.5, 10.5, 0.0, 5.5, 19.5, 15.0, 34.0, 0.0, 0.0, 0.0, 0.0, 10.0]

Cost
Vars

Now, to impose the constraints that only whole units of the products can be transported, we
modify the program as follows:

main4(Cost, Vars) :-
Vars = [Al1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars $:: 0.0..1.0Inf),
prob: integers(Vars), % h. impose the integrality constrai nt
....% Rest is the same as main3

In line h, we added theintegers/1 constraint. This imposes the integrality constraint on Vars
for the eplex instanceprob. Now, the external solver will only assign integer solutionvalues to
the variables in the list.

In fact, with the integer constraints, the problem is solved as a MIP problem rather than
an LP problem, which involves di®erent (and generally compuationally more expensive)
techniques. This di®erence is hidden from the eplex user.

Running this program, we get:

?- main4(Cost,Vars).

898.0
[10, 10, 1, 6, 20, 14, 34, 0, O, O, O, 10]

Cost
Vars

In this case, Al and A2 are now integers. In fact, notice that all the values returned are now
integers rather than °oats. This is because thetyped_solution option of eplex_var_get/3
returns the solution values taking into account if the variables have been declared as integers
for the eplex instance.

Posting an integers/1 constraint to an eplex instance only nform the external solver to treat
those variables as integers (in fact the external solver wilstill represent the variables as
°oats, but will only assign intergral solution values to them), but does not constrain the
variable itself to be of type integer.

16.4 Repeated Solving of an Eplex Problem

Part of the power of using the eplex library comes from being ble to solve an eplex problem re-
peatedly after modi cation. For example, we can solve the onginal transportation problem, add
the extra constraint, and resolve the problem. Remember th& as eplex_solve/l instantiates
its argument, we need to use a new variable for each call:
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2 Declare an eplex instance usingeplex _instance(+Instance)

2 Post the constraints ($=/2, $ >=/2, $= < /2, integers/1, $::/2 ) for the problem
to the eplex instance.

2 Setup the solver with the objective function using
Instance: eplex _solver _setup(+ObjFunc)

Figure 16.4: Modelling an MP Problem

.... % setup the constraints for the original problem as befo re
prob: (A3 + B3 + C3 + D3 =< 40),

prob: eplex_solver_setup(min(....)), % as before

prob: eplex_solve(Costl), % h. solve original problem
prob: (Al $= A2),
prob: eplex_solve(Cost2), % i. solve modified problem

Note that posted constraints behave logically: they are adeéd to an eplex instance when posted,
and removed when they are backtracked over.

In the examples so far, the solver has been invoked expliciti However, the solver can also
behave like a normal constraint, i.e. it is automatically invoked when certain conditions are met.
As an example, we implement the standard branch-and-bound métod of solving a MIP problem,

using the external solver as an LP solver only. Firstly we ouline how this can be implemented
with the facilities we have already encountered. We then sha how this can be improved usin

more advanced features olib(eplex)

With the branch-and-bound approach, a search-tree is formed, ad at each node a ‘relaxed'
version of the MIP problem is solved as an LP problem. Startirg at the root, the problem
solved is the original MIP problem, but without any of the int egrality constraints:

- eplex_instance(mip).

main5(Cost, Vars) :-
% set up variables and constraints, but no integers/1 constr aints

% assume minimise for simplicity

mip: eplex_solver_setup(min(Obj)),

mip: eplex_solve(RelaxedCost),

mip: (Cost $>= RelaxedCost), % RelaxedCost is lower bound

In general, this initial LP solution contains non-integer assignments to integer variables. The
objective value of this LP is a lower bound on the actual MIP objective value. The task of
the search is to nd integer assignments for the integer variales that optimises the objective
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Figure 16.5: Labelling a variable at a MIP tree node

function. Each node of the search-tree solves the problem wlitextra bound constraints on these

variables. At each node, a particular variable is “labelletdas shown in Figure 16.5. The integer
variable in this case has been assigned the non-integer vald 4.2. In the subsequent nodes of
the tree, we consider two alternate problems, which createswvo branches in the search. In one
problem, we impose the bound constraintX - 4, and in the other, X , 5: these are the two

nearest integer values to 4.2. In each branch, the problem isolved again as an LP problem with

its new bound for the variable:

branching(Intvars) :-

% for each integer variable X which violates the integer cons traint
mip: eplex_var_get(X, solution, XVal),

Split is floor(XVal),

% choice: branch on the two ranges for X
(mip: (X $=< Split) ; mip: (X $>= Split + 1)),
mip: eplex_solve(RelaxedCost),

...% repeat until there are no integer violations

A choice-point for the two alternative branchings is createdin the above code, the problem
is solved with one of the branchings K $=< Split ). The program then proceeds to further
labelling of the variables. The alternative branch is left to be tried on backtracking.

Eventually, if the problem has a solution, all the integer variables will be “labelled’ with integer
values, resulting in a solution to the MIP problem. However, this will generally not be optimal,
and so the program needs to backtrack into the tree to searchdr a better solution by trying
the other branches for the variables, using the existing saition value as a bound. This “branch-
and-bound' search technique is implemented irlib(branch_and_bound) .

In the code, the external solver is invoked explicitly at evey node. This however may not be nec-
essary as the imposed bound may already be satis ed. As stateat the start of this section, the

Remember that ECL'PS® provides libraries that make some programming tasks much

easier. There is no need to write your own code when you can usehat is provided by an
ECL'PS® library.

Figure 16.6: Reminder: use ECIPS? libraries!
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invocation of the solver could be done in a data-driven way, mee like a normal constraint. This is
done with eplex_solver_setup/4 : eplex_solver_setup(+Obj,-ObjVal,+Options,+Trigs) ,
a more powerful version ofeplex_solver_setup/1 for setting up a solver. TheTrigs argument
speci es a list of “trigger modes' for triggering the solver.

See the ECL'PS® reference manual for a complete description of the predicat

For our example, we add a bound constraint at each node to exade a fractional solution value
for a variable. The criterion we want to use is to invoke the sdver only if this old solution
value is excluded by the new bounds (otherwise the externaldver will solve the same problem
redundantly). This is done by specifying deviating_bounds in the trigger modes. The full code
that implements a MIP solution for the example transportati on problem is given below:

- lib(eplex).
- lib(branch_and_bound).

- eplex_instance(mip).

main6(Cost, Vars) :-
% b. create the problem variables and set their range
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
mip: (Vars :: 0.0..1.0Inf),

% c. post the constraints for the problem to the eplex instanc e
mip: (A1 + A2 + A3 $= 21),
mip: (B1 + B2 + B3 $= 40),
mip: (C1 + C2 + C3 $= 34),
mip: (D1 + D2 + D3 $= 10),

mip: (A1 + B1 + C1 + D1 $=< 50),
mip: (A2 + B2 + C2 + D2 $=< 30),
mip: (A3 + B3 + C3 + D3 $=< 40),
mip: (Al $= A2),

% j. post the objective function as a constraint
ObjFunc = 10*Al + 7*A2 + 200*A3 +

8*B1 + 5*B2 + 10*B3 +

5*C1 + 5*C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3,
mip: (ObjFunc $= Cost),

% k. this is a more flexible method for setting up a solver.

% [deviating_bounds] specifies that the external solver sh ould be
% invoked when any solution value is outside the variable bou nds
mip: eplex_solver_setup(min(ObjFunc), Cost, [], [deviat ing_bounds]),

% |. Use the branch_and_bound library to do the branch and bou nd
bb_min(( branching(Vars),
mip: eplex_get(cost, Cost)
(foreach(V, Vars) do mip: eplex_var_get(V,solution,V))
), Cost, ).
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branching(Intvars) :-
% Find a variable X which does not have an integer solution val ue
(integer_violation(Intvars, X, XVval) ->
% m. try the closer integer range first
Split is round(XVal),
(Split > Xval ->
(mip: (X $>= Split) ; mip: (X $=< Split - 1))

(mip: (X $=< Split) ; mip: (X $>= Split + 1))

)1
branching(Intvars)

% cannot find any integer violations; found a solution
true

).

% returns Var with solution value Val which violates the inte ger constraint
integer_violation([X|Xs], Var, Val) :-
mip: eplex_var_get(X, solution, RelaxedSol),
% m. we are dealing with floats here, so need some “margin' for a
% float value to be considered integer (1e-5 on either side)
(abs( RelaxedSol - round(RelaxedSol) ) >= 1le-5 ->
Var = X, Val = RelaxedSol

integer_violation(Xs, Var, Val)

The setup of the solver is done in linek, with the use of the deviating_bounds trigger mode.
There are no explicit calls to trigger the solver { it is trigg ered automatically. In addition, the
‘rst call to eplex_solve/l for an initial solution is also not required, because when tigger
modes are speci ed, then by default,eplex_solver_setup/4  will invoke the solver once the
problem is setup.

Besides thedeviating_bounds trigger condition, the other argument of interest in our use of
eplex_solver_setup/4 is the second argument, the objective value of the problem@ost in the
example): recall that this was returned previously byeplex_solve/l . Unlike in eplex_solve/l ,
the variable is not instantiated when the solver returns. Instead, one of the bands (lower bound
in the case of minimise) is updated to the optimal value, re°eting the range the objective value
can take, from suboptimal to the “best' value at optimal. The variable is therefore made a
problem variable by posting of the objective as a constraintin line j . This informs the external
solver needs to be informed that theCost variable is the objective value.

In line m the branch choice is created by the posting of the bound congint, which may trigger
the external solver. Here, we use a simple heuristic to dec&lwhich of the two branches to try
“rst: the branch with the integer range closer to the relaxed lution value. For example, in the
situation of Figure 16.5, the branch with X $=< 4is tried rst since the solution value of 4.2 is
closer to 4 than 5.

By using lib(branch_and_bound)'s bb_min/3 predicate in m there is no need to explicitly write
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2 UseInstance:eplex _solver setup(+Obj,-ObjVal,+Opts,+Trigs) to set up an
external solver state for instance Instance. Trigs speci es list of trigger conditions
to automatically trigger the external solver.

2 |nstance:eplex _var _get(+Var,+What,-Value) can be used to obtain informa-
tion for the variable Var in the eplex instance.

2 Instance:eplex _get(+ltem, -Value) can be used to retrieve information about
the eplex instance's solver state.

Figure 16.7: More advanced modelling in eplex

our own branch-and-bound routine. However, this predicate rguires the cost variable to be
instantiated, so we calleplex_get(cost, Cost) to instantiate Cost at the end of each labelling
of the variables. We also get the solution values for the vaables, so that the branch-and-bound
routine will remember it. The nal value returned in Cost (and Vars for the solution values) is
the optimal value after the branch-and-bound search, i.e. theoptimal value for the MIP problem.
Of course, in practice, we do not write our own MIP solver, but use the MIP solver provided
with the external solvers instead. These solvers are highlpptimised and tightly coupled to their
own LP solvers. The techniques of solving relaxed subprobies described here are however very
useful for combining the external solver with other solversin a hybrid fashion.

See chapter 18 for more details on hybrid techniques.

16.5 Exercise

A company produces two types of products T1 and T2, which requres the following resources
to produce each unit of the product:

Resource|| T1 | T2
Labour (hours) 9| 6
Pumps (units) 1 1
Tubing (m) || 12| 16

The amount of pro t per unit of products are:

T1 $350
T2 $300

They have the following resources available: 1566 hours ocabour, 200 pumps, and 2880 metres
of tubing.

1. Write a program to maximise the pro t for the company, using eplex as a black box solver.
Write a predicate that returns the pro t and the values for T1 a nd T2.
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. What program change is required to answer this question: Wat pro t can be achieved if
exactly 150 units of T1 are required?

. What would the pro t be if fractional numbers of refrigerat ors could be produced?

. Rewrite the program from (1) without optimize/2, using ep lex_solver_setup/1, eplex_solve/1,
and eplexvar_get/3.

. In the program from (4), remove the integrality constraints (so that eplex only sees an
LP problem). Solve the integer problem by interleaving solhing of the LP problem with a
rounding heuristic:

2 solve the continuous relaxation

2 round the solution for T1 to the nearest integer and instantiate it Initially just return
the maximum pro t value.

2 re-solve the new continuous relaxation
2 round the solution for T2 to the nearest integer and instantiate it
2 re-solve the new continuous relaxation

What is the result in terms of T1, T2 and Pro t?

. Rewrite the program from (5) using eplexsolver_setup/4 and automatic triggering of the
solver instead of explicit calls to eplexsolve/l. The solver should be triggered whenever
variables get instantiated.
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Chapter 17

The Colgen Library

This chapter provides a brief introduction to the use of the colgen library by comparing the
solution of a simple 1-dimensional cutting stock problem | in  which we wish to minimize the
waste in cutting stock boards of length| to produce speci ed numbers of boards of various
lengths|; | by LP using lib(eplex) and hybrid column generation usinglib(colgen)

17.1 The LP Model

In modeling this problem as a MILP we could choose to introdue a variablex; for each feasible
way of cutting a board of length | into boards of length |; with coexcients a;j representing the

umber of boards of lengthl; obtained from the cutting associated with x; and a constraint

jn=1 aj Xj , b specifying the number of boardsh required for each lengthl;; for realistic
problems there will frequently be very many feasible cuttings and associated variableg; and as
these must be enumerated before problem solution can begirhis approach may be impractical.
We could instead introduce for each stock board ysed a set ofaviables x;; for each demandi
indicating the cutting required, and a constraint = {2, lix;; - | ensuring the cutting is valid.
Although we do not know how many bogds will be required in theoptimal solution, we do have
an upper bound on this numberKo = = 2, dblgbl=lice and introduce the above variable sets
and constraint for Kg boards. The constraints j=°1 Xjj , b specify the number of boardsh
required for each lengthl;. Since allK o boards may not be required we introduce a variablex;
denoting whether a board is used and the constraint set



so that unused boards have zero cost in the objective functio. The complete problem formula-

tion is then:
P : minimize z =
Pk

1 0 .
subject to i1 X,
p”;r% lixij -

Xjii =1 Xij
hixj i Xij
Xi;j 2
X 2

%OA !

|Xj i IiXij
j=1 i=1
? 8i 9
0 . 8]
f0;:::;hig 8i g
f0; 1g '

where h; = bl=l;c. This problem formulation is modeled and solved in ECL'PS® as follows:

Ip_cut_stock(Lengths, Demands, StockLength, Vars, Cost) -

% eplex instance creation

eplex_instance(cut_stock),

(
foreach(Li, Lengths),
foreach(Bi, Demands),
foreach(Xijs, Xijvars),
foreach(Maxi, Bounds),
fromto(0, KiIn, KOut, KO),
param(StockLength)

do

KOut is Kin + fix(ceiling(Bi/floor(StockLength/Li))),
Maxi is fix(floor(StockLength/Li))

for(J, 1, KO),

foreach(StockLength*Xj-sum(Knapsack), Obj),
fromto(Xijvars, VOut, Vin, []),
param(Lengths, StockLength)

do
% Xj variable bounds
cut_stock:(Xj::0..1),
(
foreach(Li, Lengths),
foreach(Xij, Used),

foreach(Li*Xij, Knapsack),

foreach([Xij|VIn], VOut),
foreach(Maxi, Bounds),
param(Xj)

do
% Xij variable bounds
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cut_stock:(Xij::0..Maxi),
% Xj = 1 if cutting used
cut_stock:(Maxi*Xj-Xij >= 0)
),
% cutting knapsack constraint
cut_stock:(sum(Knapsack) =< StockLength),
% Xj = 0 if cutting unused
cut_stock:(Xj-sum(Used) =< 0)

foreach(Bi, Demands),
foreach(Xijs, Xijvars)
do
% demand constraint
cut_stock:(sum(Xijs) >= Bi)
),
% optimization call
cut_stock:minimize(min(sum(Obj)), Cost).

17.2 The Hybrid Colgen Model

The cutting stock problem can be decomposed into a master pigem in which an optimum

combination of existing cuttings is found and a subproblem h which new cuttings are generated
which could improve upon the current combination. For clarity we denote by Q the set of feasible
cuttings and index variables , 4 by the column of master problem constraint coexcientsq 2 Q

corresponding to the equivalent subproblem solution:

MP . minigize  z = ? 920 Ca. g
subjectto 00,9 . b
pa2Q.4d Lo
20,9 - Ko
. 2 001 9g2Q
. . — Pm .
SP: maximige ~ w = iz1 UiG i Cqy
subjectto 1) lig - |
g 2 fO0;:::;b=lcg i=1;:::;m

P P .
whereLo = d 2, hli=le 8[_I;Id Ko= {1, do=hl=l;ce are initial bounds on the number of stock

boards required,cqg = i = {2 lig, the subproblem objective function coezcientsu represent
the bene t obtained by producing boards of each type, and the sbproblem is simply a general
integer knapsack problem maximizing the bene t due to the boads produced by a cutting. The
problem is modeled and solved as follows:

cg_cut_stock(Lengths, Demands, StockLength, Vars, Cost) -
% column generation instance creation
colgen_instance(cut_stock),
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fromto(lds, [demand(Li)|IRest], IRest, [lower, upper]),
foreach(Li, Lengths),
foreach(Bi, Demands),
fromto(Q, [Qi|Rest], Rest, [Lower, Upper]),
foreach(Li*Qi, Knapsack),
fromto(0, LIn, LOut, L),
fromto(0, Kin, KOut, KO0),
fromto(StockLength, Cin, COut, CMax),
param(StockLength)
do
LOut is LIn + Bi*Li,
KOut is Kin + fix(ceiling(Bi/floor(StockLength/Li))),
COut is min(Li-1, Cin),
% subproblem variable bounds
Max is fix(floor(StockLength/Li)),
ic:(Qi::0..Max),
% master problem column generation constraint
% for demand i
cut_stock:identified_constraint(implicit_sum(Qi) >= B i,
demand(Li))
),
% master problem initial lower and upper bound constraints
LO is fix(ceiling(L/StockLength)),

cut_stock:identified_constraint(implicit_sum(Lower) >= L0,
lower),

cut_stock:identified_constraint(implicit_sum(Upper) =< KO,
upper),

% subproblem cost variable bounds

ic:(C::0..CMax),

% the subproblem knapsack constraint
ic:(sum(Knapsack) + C =:= StockLength),
% subproblem structure
SubProblem = sp_prob with [

cost:C,

coeff vars:Q,

aux:[]

1.
% optimization call
cut_stock:solver_setup(cutting(SubProblem, Ids), impl icit_sum(C)),
cut_stock:solve(Cost),
cut_stock:get(non_zero_vars, Vars).

where we rst create acolgen instance cut_stock , set up the variable domains of the sub-
problem and the demand constraints of the master problem, seup the initial master problem
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bound constraints and subproblem knapsack constraint, the solve and return the variables with
non-zero values in the optimal solution. The de nition of cutting cost as waste has been com-
bined with the knapsack constraint, while the bounds placedon this cost exclude cuttings with
suzcient waste to produce further boards, thus limiting the amount of search in subproblem
solution. The chosen method of subproblem solution is:

cutting(SubProblem, Ids) :-
SubProblem = sp_prob with [
cost:Cost,
coeff vars:Vars,
aux:[]

]

% sort variables in descending order of dual value
(
fromto(lds, [Id|IRest], IRest, [lower, upper]),
fromto(Vars, [Var|Rest], Rest, [1, 1]),
foreach(Dual-Var, KeyedVars),
fromto(Soln, [ld-Var|SRest], SRest, [lower-1, upper-1])
do
cut_stock:get(dual(ld), Dual)
),
sort(1, >=, KeyedVars, Sorted),
% label vars with non-negative duals to maximum values,
% vars with negative duals to minimum

(
foreach(Dual-Var, Sorted)
do
( Dual >= 0 -> label_max(Var) ; label_min(Var) )
),
% create solution structure and post to problem instance
Sol = sp_sol with [
cost:Cost,
coeff_vars:Soaln,
aux:[]
P

cut_stock:subproblem_solution(Sol).

label_max(Var) :-
get_var_bounds(Var, Lo, Hi),
( Var = Hi ;
Hil is Hi - 1,
set_var_bounds(Var, Lo, Hil),
label_max(Var) ).

label_min(Var) :-
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get_var_bounds(Var, Lo, Hi),

( Var = Lo ;
Lol is Lo + 1,
set_var_bounds(Var, Lol, Hi),
label_min(Var) ).

we rst rank the variables in order of decreasing dual value, &bel to maximize those with
non-negative dual value and minimize those with negative dulvalue, then construct a sp_sol
structure and post it to the master problem instance.
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Chapter 18

Building Hybrid Algorithms

18.1 Combining Domains and Linear Constraints

Most optimisation problems arising in industry and commerce involve di®erent subproblems that
are best addressed by di®erent algorithms and constraint seérs. In ECL'PSF it is easy to use

di®erent constraint solvers in combination. The di®erent solers may share variables and even
constraints.

We discuss reasons for combining theplex and IC solver libraries and explore ways of doing
this. The repair library plays a useful role in propagating solutions generéed by a linear solver

to other variables handled by the domain solver. We show how his works in a generic hybrid

algorithm termed probing.

18.2 Reasons for Combining Solvers

The ic solver library implements two kinds of constraints
2 "nite domain constraints
2 interval constraints

Each constraint is handled separately and individually, ard the only communication between
them is via the bounds on their shared variables.
The bene ts of the ic solvers are

1. the repeated tightening of guaranteed upper and lower bonds on the variables

2. the application of tailored algorithms to standard subproblems (encapsulated as global
constraints)

3. the implementation of a very wide class of constraints
The eplex solver library implements two kinds of constraints
2 linear numeric constraints

2 integrality constraints
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There are two main reasons for combiningeplex and ic in a hybrid algorithm

2 ic handles a wider class of constraints thareplex

2 The solvers extract di®erent kinds of information from the camstraints

Figure 18.1: Motivation

The linear constraints are handled by a very powerful solverthat enforces global consistency on
all the constraints. The integrality constraints are handled via a built-in search mechanism.
The bene ts of the eplex solvers are

1. the enforcement of global consistency for linear constiats
2. the production of an optimal solution satisfying the linear constraints

For some years researchers have sought to characterise théagses of problems for which the
di®erent solvers are best suited. Problems involving only fiear constraints are very well handled
by eplex. Problems involving disjunctions of constraints are oftenbest handled byic . Often
set covering problems are best handled byplex and scheduling problems byic . However in
general there is no method to recognise for a new problem whicsolver is best.

Luckily in ECL 'PS® there is no need to choose a speci ¢ solver for each problemnse it is
possible to apply both solvers. Moreover the solvers commuoate with each other, thus further
speeding up constraint solving. Theic solver communicates new tightened bounds to theplex
solver. These tightened bounds have typically been deduceffom non-linear constraints and
thus the linear solver bene ts from information which would not otherwise have been available
to it. On the other hand the eplex solver often detects inconsistencies which would not have
been detected by theic solvers. Moreover it returns a bound on the optimisation furction
which can be used by theic constraints. Finally the optimal solution returned by eplex to the
\relaxed" problem comprising just the linear constraints, can be used as a search heuristic that
can focus theic solver on the most promising parts of the search space.

18.3 A Simple Example

18.3.1 Problem De nition

We start with a simple example of linear constraints being pated to eplex and the other
constraints being sent toic .

The example problem involves three tasks taskl, task2, task3 and a time point timel. We
enforce the following constraints:

2 Exactly one of taskl and task2 overlaps with timel

2 Both tasks taskl and task2 precedetask3
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18.3.2 Program to Determine Satis ability

For this example we handle the rst constraint using ic , because it is not expressible as a
conjunction of linear constraints, and we handle the secondpair of linear constraints using
eplex.

Note that since we use both solvergplex andic we will explicitly module qualify all numeric
constraints to avoid ambiguity.

Each task has a start time Start and a duration Duration . We encode the (non-linear) overlap
constraint in ic thus:

.- lib(ic).
overlap(Start,Duration,Time,Bool) :-
ic: (Bool #= ((Time $>= Start) and (Time $< Start+Duration)) ).

The variable Bool takes the value 1 if the task overlaps the time point, and O otlerwise. To
enforce that only one task overlaps the time point, the assoated boolean variables must sum
to 1.

We encode the (linear) precedence constraint ireplex thus:

.- lib(eplex).
before(Start,Duration,Time) :-
eplex: (Start+Duration $=< Time).

To complete the program, we can give durations of 3 and 5 taaskl and task2, and have the
linear solver minimise the start time of task3

ic_constraints(Time,S1,52,B1,B2) :-
ic: ([S1,S2]::1..20),
overlap(S1,3,Time,Bl),
overlap(S2,5,Time,B2),
ic: (B1+B2 #= 1).

eplex_constraints(S1,52,S3) :-
before(S1,3,S3),
before(S2,5,S3).

hybrid1(Time, [S1,52,S3], End) :-
ic_constraints(Time,S1,S2,B1,B2),
eplex_constraints(S1,52,S3),
eplex:eplex_solver_setup(min(S3),End,[],5,[bounds]) ,
labeling([B1,B2,S51,S2]).
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A simple way to combine eplex and ic is to send the linear constraints toeplex and the
other constraints to ic . The optimisation primitives must also be combined.

Figure 18.2: A Simple Example

During the labeling of the boolean variables, the bounds orS1 and S2 are tightened as a result
of ic propagation, which wakes the linear solver. The linear soler derives a new lower bound
for Opt. In case this exceeds its upper bound, the search fails and bitracks.

Note that the optimisation performed by the linear solver does not respect theic constraints,

S0 a correct answer can only be guaranteed once all the varidds involved inic constraints are
instantiated.

Henceforth we will not explicitly show the loading of the ic and eplex libraries.

18.3.3 Program Performing Optimisation

When di®erent constraints are sent toic and to eplex, the optimisation built into the linear
solver must be combined with the optimisation provided by the ECL'PS® branch.and_bound
library.

The following program illustrates how to combine these optmisations:

:- lib(branch_and_bound).

hybrid2(Time, [S1,52,S3], End) :-
ic_constraints(Time,S1,52,B1,B2),
eplex_constraints(S1,52,S3),
both_opt(labeling([B1,B2,51,S2]),min(S3),End).

both_opt(Search,Obj,Cost) :-
eplex:eplex_solver_setup(Obj,Cost,[],5,[inst]),
minimize((Search,eplex_get(cost,Cost)),Cost).

18.4 Sending Constraints to Multiple Solvers

18.4.1 Syntax and Motivation

Because of the cooperation between solvers, it is often usgfto send constraints to multi-
ple solvers. A linear constraint, such asX +2 , Y, can be posted toeplex by the code
eplex: (X+2 $>= Y) . The same constraint can be posted tac by the codeic: (X+2 $>=Y) .
The constraint can be sent to both solvers by the code
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?- [ic,eplex]: (X+2 $>=Y)

By sending constraints to both solvers, where possible, wean improve search algorithms for
solving constraint problems. Through enhanced constraintreasoning at each node of the search
tree we can:

2 prune the search tree, thus improving exciency
2 render the algorithm less sensitive to search heuristics

The second advantage is a particular bene t of combining di®ent solvers, as opposed to en-
hancing the reasoning power of a single solver. See [21] an2?] for experimental results and
application examples using multiple solvers in this way.

18.4.2 Handling Booleans with Linear Constraints

The overlap constraint example above is disjunctive and therefore nonihear, and is only han-
dled by ic . However as soon as the boolean variable is labelled to 1, dag search, the constraint
becomes linear.

The cooperation between theeplex and ic solvers could therefore be improved by passing the
resulting linear constraint to eplex as soon as the boolean is labelled to 1. This could be achieved
using a constraint handling rule (see CHR) or a suspended gddsee chapter 14).

However the same improved cooperation can be achieved by a Wd&nown mathematical pro-
gramming technique (see e.g. [29]) that builds the booleanariable into a linear constraint that
can be sent toeplex even before the boolean is instantiated. This linear constint e®ectively
enforces theoverlap constraint if the boolean is instantiated to 1, but does not enforce it if the
boolean is instantiated to 0.

To achieve this we introduce suzxciently big multipliers, that when the boolean is set to 0 the
constraint is satis ed for all values within the variables' bounds This method is known as the
bigM transformation.

It is illustrated in the following encoding of pos_overlap :

pos_overlap(Start,Duration, Time,Bool) :-
Max1 is max_diff(Start, Time),
Max2 is max_diff(Time,Start+Duration),
eplex: (Time + (1-Bool)*Max1 $>= Start), % linl
eplex: (Time $< Start+Duration+(1-Bool)*Max2). % lin2

max_diff(SmallerExpr,LargerExpr,Max) :-
ic: (SmallerVar $= SmallerExpr),
ic: (LargerVar $= LargerExpr),
get_bounds(SmallerVar, ,Hi),
get_bounds(LargerVar,Lo, ),
Max is Hi-Lo.
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The linear constraints, which will enforce the overlap condtion when the variable Bool is set
to 1, are labelledlinl and lin2. If the variable Bool is instantiated to 0, then the variables (or
values) Start , Time and Duration are free to take any value in their respective domains.
Notice that pos_overlap is logically weaker than overlap because

2 it does not enforce the integrality of the boolean variable,(i.e. pos_overlap is a linear
relaxation of the disjunctive constraint), and

2 it does not enforce the negation ofoverlapin case the boolean is set to 0.

The tighter cooperation is achieved simply by adding thepos_overlap constraint to the original
encoding:

eplex_constraints_2(Time,S1,S2,S3,B1,B2) :-
before(S1,3,S3),
before(S2,5,S3),
pos_overlap(S1,3,Time,B1),
pos_overlap(S2,5,Time,B2).

18.4.3 Handling Disjunctions

The same technique, of introducing boolean variables and stciently large multipliers, can be
used to translate any disjunction of linear constraints into linear constraints (and integrality
constraints on the booleans) which can be handled beplex .

As a simple example consider a naive program to choose valuésr the elements of a nite list
(of length Length) such that each pair of values di®ers by at least 2. Thali®2 constraint on
each pair Xand Y of elements can be expressed as a disjunction ino :

diff2ic(X,Y) :-
ic: (X+2 $=<Y) or (Y+2 $=< X)).

Alternatively it can be expressed ineplex using a boolean variable:

diff2eplex(X,Y,Length,B) :-
eplex: ( X+2 + B*Length $=< Y+Length ),
eplex: ( X+Length $>= Y+2 + (1 - B) * Length )

Suppose each elemeriE of the list must take a value between 1 and Z (Length | 1), then any
attempted labelling of the elements must fail. Sending the onstraints to ic and labelling the
elements of the list is inexcient. Sending the constraints toeplex and enforcing integrality of
the booleans is more excient. Better still is to post the constaints to both ic and eplex, and
label the booleans.

See the full program in the ECL PS® examplesdirectory.
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18.4.4 A More Realistic Example

For more complex applications, sending all \linearisable"constraints to both ic and eplex is
rarely the best method. Sending too many constraints toic can result in many wakings but
little useful propagation. Sending too many constraints to eplex can cause a big growth in the
size of the constraint store, which slows down constraint seing with little improvement in the
relaxed optimum. If the extra variables are constrained to ke integer, then the (MIP) solver
may enter a deep search tree with disastrous consequences fatciency. In this example we
brie°y illustrate the point, though there is no space to include the whole program, and complete
supporting results.

Consider the problem of generating test networks for IP (internet protocol). To generate such
networks, it is necessary to assign capacities to each lineMe assume a routing algorithm that
sends each message along a \cheapest" path, where the costdspendent on the bandwidth.
Messages from a particular start to end node are divided equly amongst all cheapest paths.

Flow Quantity: Qty=6
Minimum Cost Path: MinCost = 1
Number of minimum cost paths: Count = 2
QtyP1 =3
CostP1 =1
start QtyP2=0 end
CostP2 =4
QtyP3=3
CostP3 =1
Path Flows

Given a total quantity Qty of messages, between a particular start and end node, it is wessary
to compute the quantity of messagesQtyP along each pathP between the two nodes. The
variable CostP represents the cost of this path, and the variableMinCost represents the cost of
the cheapest path. The variableCount represents the number of cheapest paths (between which
the messages were equally divided). A boolean variablBP records whether the current path is
a cheapest path, and therefore whetheQtyP is non-zero. The encoding inic is as follows:

ic: '$>="(MinCost + 1, CostP,BP), % con3
ic: (QtyP*Count $= BP*Qty) % con4

Note that it is not possible to test for equality between MinCost and CostP because they are
not integers but real number variables.

These constraints are very precise but propagate little unil the variables MinCost and CostP
have tight bounds.
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It is easy to send a constraint to more than one solver. Even dijunctive constraints can
be encoded in a form that enables them to be sent to both solvetr However for large
applications it is best to send constraints only to those solers that can extract useful
information from them. This requires experimentation.

Figure 18.3: Sending Constraints to Multiple Solvers

The challenge is to nd a combination of ic and eplex constraint handling that exciently
extract the maximum information from the constraints. Line arising con3 so it can be handled
by eplex does not help prune the search tree. Worse, it may signi cany} increase the size of
the linear constraint store and the number of integer (boolen) variables, which impacts solver
performance.

Once all the boolean variables are instantiated, the sum oQtyP for all the paths equals the total
qguantity Qty (because precisel\Count paths have a non-zerd® Qty = Qty=Count). We therefore
introduce a variable Qties constrained to be the sum of all the path quantities. If QtyList is
a list of the path quantities, we can express the constraint hus Qties $= sum(QtyList) . We
can now add a redundant constraintQty $= Qties. The above constraints are both linear and
can be handled byeplex .

In practice this encoding dramatically enhances the excieng of the test network generation.
Experimentation with this program revealed that posting th e redundant constraints to eplex
yields a much more signi cant improvement than just posting them to ic .

The full program is in the ECL'PS® examplesdirectory.

18.5 Using Values Returned from the Linear Optimum

In this section we explore ways of using the information retuned from the optimum solution
produced by the linear solver. We will cover two kinds of infamation. First we will show how
reduced costscan be used to Iter variable domains. Secondly we will show he solutions can
be used as a search heuristic. We have termed this second tetfue probing.

18.5.1 Reduced Costs

The reduced cost of a variable is a safe estimate of how much ¢éoptimum will be worsened
by changing the value of that variable. For example when minmising, suppose a variableV
takes a value ofVal at the minimum Min found by the linear solver, and its reduced cost iRC.
Then if the value of V was xed to NewVal the following holds of the new minimum NewMin:
NewMin-Min , abs(NewVal-Val)E RC. Thus if RC is 3.0 and the value ofV is changed by an
amount Di®, then the minimum increases by at least 30£ Di®.

Note that the reduced cost is not necessarily a good estimateit is often just 0:0 which gives no
information about the e®ect of changing the variable's value

Reduced cost pruning is a way of tightening the domains of vamable in case we already have a
worst case bound on the optimum (such as the previous best vak, during a branch and bound
search). The approach is described in [7].
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This reasoning allows theeplex solver to integrate tightly with the ic solver because both
solvers wake each other and communicate by tightening domas. In fact the eplex solver is
performing domain propagation, just like any ic constraint.

Let us impose reduced cost pruning for a list of variabled/ars. The variable being optimised is
Opt.

rc_prune_all(Vars,min,Opt) :-
eplex_get(cost,Curr),
( foreach(Var,Vvars),
param(Curr,Opt)
do
rc_prune(Var,min,Curr,Opt)

).

First we extract the current optimum Curr, and then we apply reduced cost pruning to each
variable in the list. This is achieved as follows:

rc_prune(Num,_, , ) :- nonvar(Num), L.
rc_prune(Var,min,Curr,Opt) :-
eplex_var_get(Var,reduced_cost,RC),
( RC=:=0.0 -> true
eplex_var_get(Var,solution,Val),
ic: ((Var-vVal)*RC+Curr $=< Opt) % cons5
).

If the variable is already instantiated, then no pruning takes place. If the reduced cost is zero,
then again no pruning takes place. Otherwise the variable ixonstrained by cons5, which pre-
vents it from changing so far that the optimum Opt exceeds its upper bound. For maximisation
problems a di®erent constraint would be imposed.

To use reduced costs it is necessary to switch on reduced casicording during the solver setup.
Reduced cost pruning can then be implemented as post goal. This is a goal that is executed
immediately after each waking of the linear solver.

Here is a toy program employing reduced cost pruning:

test(X,Y,Z,0pt) :-
ic: ([X,Y,Z]::1..10),
ic: (Opt:: 1..5),
eplex: (5*X+ 2*Y+ Z $>= 10),
eplex: (3*X+ 4*Y+5*Z $>= 12),
eplex:eplex_solver_setup(
min(X+Y+2Z),
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Opt,

[reduced_cost(yes)],

0,

[ new_constraint,inst,post(rc_prune_all([X,Y,Z],min, Opt)) ]

),
labeling([X,Y,Z]).

(Note that a more precise and robust implementation of redued cost pruning is available as an
ECL'PS® predicate reduced_cost_pruning/2 available in the eplex library.)

18.5.2 Probing

Probing is a method which, during search, posts more and moreonstraints to the linear solver
until the linear constraints are logically tighter than the original problem constraints. This
is always possible in theory, since any solution can be presely captured as a set of linear

The idea is to take the solution produced by the linear solver(which only enforces the linear
constraints of the problem), and to extend this solution to a\tentative" assignment of values
to all the problem variables. If all the constraints are satis ed by the tentative assignments,
then a solution has been found. Otherwise a violated constiiat is selected, and a new linear
constraint is posted that precludes this violation. The linear solver then wakes and generates a
new solution.

If the set of constraints become unsatis able, the system bddracks to the choice of a linear
constraint to "x a violated constraint. A di®erent linear constraint is added to preclude the
violation and the search continues.

Probing is complete and terminating if each problem constrant is equivalent to a nite disjunc-
tion of "nite conjunctions of linear constraints. The conjun ction must be nite to ensure each
branch of the search tree is nite, and the disjunction must be nite to ensure that there are
only nitely many di®erent branches at each node of the searchree.

18.5.3 Probing for Scheduling

Probing can be applied to resource-constrained schedulingrpblems, and there is an ECILPS®
library called probing for_schedulingsupporting this. The method is described in detail in the
paper [6]. In the following we brie°y discuss the implementaton of probing for scheduling.

The problem involves tasks with durations, start times and resources. Any set of linear con-
straints may be imposed on the task start times and durations Assuming each task uses a single
resource, and that there is a limited numberMaxR of resources, the resource constraints state
that only MaxR tasks can be in progress simultaneously.

The resource limit can be expressed by the sameverlap constraints used in the rst example
above. All the constraints can therefore be handled byeplex alone. However the probing
algorithm does not send the resource constraints taeplex . Instead it takes the start times
returned from the optimal eplex solution, and computes the associated resource pro le. The
resource bottleneck is the set of tasks running at the time tte pro le is at its highest.
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The probing algorithm selects two tasks at the bottleneck arl constrains them not to overlap,
by posting a before constraint (de ned in the example above) between one task andhe start
time of another.

The resource constraint is indeed expressible as a nite dignction of nite conjunctions of
before constraints, and so the algorithm is complete and terminating.

The computation of the resource pro le is performed automatcally by encoding the overlap
constraints in the repair library, thus:

repair_overlap(Start,Duration,Time,Bool) :-
B tent_is (Time>=Start and Time=<Start+Duration).

To make this work, the solutions returned from the linear soler are copied to the tentative
values of the variables. This is achieved using @ost goal as follows:

eplex_to_tent(Expr,Opt) :-
eplex_solver_setup(
Expr,
Opt,
[solution(yes)],
S5,
[ new_constraint,post(set_ans_to_tent) ]

)

set_ans_to_tent :-
eplex_get(vars,Vars),
eplex_get(typed_solution,Solution),
Vars tent_set Solution.

18.6 Other Hybridisation Forms

This module has covered a few forms of hybridisation betweeit and eplex . There are a variety
of problem decomposition techniques that support other foms of hybridisation. Three forms
which employ linear duality are Column Generation, Benders Decompositionand Lagrangian
Relaxation. All three forms have been implemented in ECL'PS® and used to solve large problems.
Often it is useful to extract several linear subproblems andapply a separate linear solver to each
one. Theeplex library o®ers facilities to support multiple linear solvers. Space does not permit
further discussion of this feature.

Cooperating solvers have been used to implement some globabnstraints, such as piecewise
linear constraints [20]. Linearisation of ic global constraints is another method of achieving
tight cooperation.
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Three kinds of information can be used
2 Reduced Costs
2 The solution (the value for each variable at the linear optimum)
2 Dual values

Reduced costs allow values to be pruned from variable domag The solution can be
checked for feasibility against the remaining constraints and even if infeasible can be used
to support search heuristics. Dual values are used in other ybridisation forms, devised

by the mathematical programming community.

Figure 18.4: Using information returned from the linear optimum

Finally many forms of hybridisation involve di®erent search techniques, as well as di®erent
solvers. For example stochastic search can be used for praolg instead of a linear solver, as
described in [27].

In conclusion, ECL'PS® provides a wonderful environment for exploring di®erent foms of hy-
bridisation.

18.7 References

The principles of hybridising linear and domain constraint solving and search are presented in
[4]. The techniques were rst described in [2]. Hybrid techngues are the topic of the CPAIOR
workshops whose proceedings are published in the Annals ofg@rations Research.

18.8 Hybrid Exercise

Build a hybrid algorithm to create lists whose elements all d®er by at least 2. Try lists of
length 3,5,7,8. To test its performance, reduce the domainshus: ic:(List::1..TwoL-2) SO
the program tries all possibilities before failing.

Use the following skeleton:

differ(Length,List) :-
length(List,Length),
TwolL is 2*Length,
ic:(List::1..TwoL-1),
alldiff(List, TwoL,Bools),
[To be completed]

alldiff(List,Length,Bools) :-
( fromto(List,[X|Rest],Rest,[]),
fromto([],BIn,BOut,Bools),
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param(Length)
do
diffeach(X,Rest,Length,BIn,BOut)

).

diffeach(X,List,Length,BIn,BOut) :-
(foreach(Y,List),
fromto(BIn,TB,[B|TB],BOut),
param(X,Length)
do
diff2(X,Y,Length,B)
).

(a) Create an IC algorithm using
diff2(X,Y,_, ) :- ic: (X+2 #=<Y) or (Y+2 #=< X)).
(b) Create an eplex algorithm using

diff2(X,Y,Max,B) :-
eplex:(B::0..1),
eplex:( X+2 + B*Max $=< Y+Max),
eplex:(X+Max $>= Y+2 + (1-B)*Max).

(c) Try and nd the best hybrid algorithm. (NB This is, unfortu nately, a trick question ;-))
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