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Chapter 1

Introduction

This tutorial provides an introduction to programming in EC LiPSe. It assumes a broad under-
standing of constrained optimisation problems, some background in mathematical logic and in
programming languages. The tutorial tries to cover most of the basic aspects of using ECLi PSe:
underlying concepts, the programming language, library functionality and interaction with the
system.
A few topics have been left out of this tutorial and are covered elsewhere: TheEmbedding
Manual explains how to embed ECLi PSe applications into other software environments, and the
Visualisation Manual describes the use of the constraint visualisation facilities. All the features
described in this tutorial are documented in more detail in the ECLi PSe User Manual, Constraint
Library Manual and in particular the Reference Manual. A methodology for developing large
scale applications with ECLi PSe is presented in the documentDeveloping Applications with
ECL i PSe by Simonis.
For an informal introduction to combinatorial optimisatio n and constraint programming see the
article Constraint Programming1 by Wallace. The most closely related books on the subject
are the textbook Programming with Constraints by Marriott and Stuckey [16] (which contains
ECL i PSe examples), and the seminal bookConstraint Satisfaction in Logic Programming [26]
by Van Hentenryck.
A small selection of textbooks on related subjects includes: Foundations of Constraint Satisfac-
tion by Tsang [24], Model Building in Mathematical Programming by Williams [29] and Prolog
Programming for Arti¯cial Intelligence by Bratko [5].

J
References to more detailed documentation are marked like this.

N
Notes that can be skipped on ¯rst reading are marked like this.

1http://www.icparc.ic.ac.uk/eclipse/reports/handbook/handbook.ht ml

1

http://www.icparc.ic.ac.uk/eclipse/reports/handbook/handbook.html
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Chapter 2

Getting started with ECL iPSe

2.1 How do I install the ECL i PSe system?

Please see the installation notes that came with ECLi PSe. For Unix/Linux systems, these are
in the ¯le README_UNIX. For Windows, they are in the ¯le README_WIN.TXT.
Please note that choices made at installation time can a®ect which options are available in the
installed system.

2.2 How do I read the online documentation?

Under Unix, use any HTML browser to open the ¯le doc/index.html in the ECL i PSe installa-
tion directory. Under Windows, select the menu entryStart/Programs/ECLiPSe/Documentation .

2.3 How do I run my ECL i PSe programs?

There are two ways of running ECLi PSe programs. The ¯rst is using tkeclipse , which provides
an interactive graphical user interface to the ECLi PSe compiler and system. The second is using
eclipse , which provides a more traditional command-line interface. We recommend you use
TkECL i PSe unless you have some reason to prefer a command-line interface.

2.4 How do I use tkeclipse ?

2.4.1 Getting started

To start TkECL i PSe, either type the command tkeclipse at an operating system command-
line prompt, or select TkECL i PSe from the program menu on Windows. This will bring up the
TkECL i PSe top-level, which is shown in Figure 2.1.
Note that help on TkECL i PSe and its component tools is available from theHelp menu in the
top-level window.
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Figure 2.1: TkECL i PSe top-level

2.4.2 Compiling a program

From the File menu, select theCompile ... option. This will bring up a ¯le selection dialog.
Select the ¯le you wish to compile, and click on theOpenbutton. This will compile the ¯le and
any others it depends on. Messages indicating which ¯les havebeen compiled and describing
any errors encountered will be displayed in the bottom portion of the TkECL i PSe window
(Output and Error Messages).
If a ¯le has been modi¯ed since it was compiled, it may be recompiled by clicking on the make
button. This recompiles any ¯les which have become out-of-date.
J

For more information on program compilation and the compiler, please seeThe Compiler
chapter in the user manual.

2.4.3 Executing a query

To execute a query, ¯rst enter it into the Query Entry text ¯eld. You will also need to specify
which module the query should be run from, by selecting the appropriate entry from the drop-
down list to the left of the Query Entry ¯eld. Normally, the default selection of eclipse will

4



be ¯ne; this will allow access to all ECLi PSe built-ins and all predicates that have not explicitly
been compiled into a di®erent module. Selecting another module for the query is only needed
if you wish to call a predicate which is not visible from the eclipse module, in which case you
need to select that module.

J
For more information about the module system, please see theModule System chapter in

the user manual.

To actually execute the query, either hit the Enter key while editing the query, or click on the
run button. TkECL i PSe maintains a history of commands entered during the session,and these
may be recalled either by using the drop-down list to the right of the Query Entry ¯eld, or by
using the up and down arrow keys while editing theQuery Entry ¯eld.
If ECL i PSe cannot ¯nd a solution to the query, it will print No in the Results section of the
TkECL i PSe window. If it ¯nds a solution and knows there are no more, it wil l print it in the
Results section, and then print Yes. If it ¯nds a solution and there may be more, it will print
the solution found as before, print More, and enable the more button. Clicking on the more
button tells ECL i PSe to try to ¯nd another solution. In all cases it also prints the t otal time
taken to execute the query.
Note that a query can be interrupted during execution by clicking on the interrupt button.

2.4.4 Editing a ¯le

If you wish to edit a ¯le (e.g. a program source ¯le), then you may do so by selecting the
Edit ... option from the File menu. This will bring up a ¯le selection dialog. Select the ¯le
you wish to edit, and click on the Openbutton.
When you have ¯nished editing the ¯le, save it. After you've saved it, if you wish to update the
version compiled into ECLi PSe (assuming it had been compiled previously), simply click onthe
makebutton.
You can change which program is used to edit your ¯le by using the TkECL i PSe Preference
Editor, available from the Tools menu. Alternatively you can use your editor seperately from
ECL i PSe.

2.4.5 Debugging a program

To help diagnose problems in ECLi PSe programs, TkECL i PSe provides the tracer. It is activated
by selecting the Tracer option from the Tools menu. The next time a goal is executed, the
tracer window will become active, allowing you to step through the program's execution and
examine the program's state as it executes. A full example isgiven in chapter 5.

2.4.6 Getting help

More detailed help than is provided here can be obtained online for all the features of TkECLi PSe.
Simply select the entry from the Help menu on TkECL i PSe's top-level window which corresponds
to the topic or tool you are interested in.
Detailed documentation about all the predicates in the ECLi PSe libraries can be obtained
through the Library Browser and Help tool. This tool allows you to browse the online help for
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the ECL i PSe libraries. On the left is a tree display of the libraries available and the predicates
they provide.

² Double clicking on a node in this tree either expands it or collapses it again.

² Clicking on an entry displays help for that entry to the right .

² Double clicking on a word in the right-hand pane searches for help entries containing that
string.

You can also enter a search string or a predicate speci¯cationmanually in the text entry box
at the top right. If there is only one match, detailed help for that predicate is displayed. If
there are multiple matches, only very brief help is displayed for each; to get detailed help, try
specifying the module and/or the arity of the predicate in the text ¯eld.
Alternatively, you can call the help/1 predicate in the query window (which contains the same
information as the HTML Reference Manual). It has two modes of operation. First, when a
fragment of a built-in name is speci¯ed, a list of short descriptions of all built-ins whose name
contains the speci¯ed string is printed. For example,

?- help(write).

will print one-line descriptions about write/1 , writeclause/2 , etc. When a unique speci¯cation
is given, the full description of the speci¯ed built-in is displayed, e.g. in

?- help(write/1).

or

?- help(ic:alldifferent/1).

2.4.7 Other tools

TkECL i PSe comes with a number of useful tools. Some have been mentionedabove, but here is
a more complete list. Note that we only provide brief descriptions here; for more details, please
see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code and have it compiled. This is useful
for quick experimentation, but not for larger examples or programs you wish to keep, since the
source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source ¯les have been compiled in the
current ECL i PSe session. You can select ¯les to edit them, or compile them individually, as well
as adding new ¯les.
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Predicate Browser

This tool allows you to browse through the modules and predicates which have been compiled
in the current session. It also lets you alter some properties of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicatesselected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allowing a spy point to be placed on the
predicate and the source code viewed.

Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation
panel can be launched which provides arrow buttons as an alternative way to navigate the tree.
Note that while the inspector window is open, interaction with other TkECL i PSe windows is dis-
allowed. This prevents the term from changing while being inspected. To continue TkECLi PSe,
the inspector window must be closed.

Global Settings

This tool allows the setting of some global °ags governing theway ECL i PSe behaves. See also
the documentation for the set °ag/2 and get °ag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usage of the ECLi PSe system, up-
dated at regular intervals. See also the documentation for the statistics/0 and statistics/2
predicates.

Preference Editor

This tool allows you to edit and set various user preferences. This include parameters for how
TkECL i PSe will start up, e.g. the amount of memory it will be able to use, and a initial
query to execute; and parameters which a®ects the appearanceof TkECL i PSe, such as the fonts
TkECL i PSe uses and which editor it launches.

2.5 How do I make things happen at compile time?

A ¯le being compiled may contain queries. These are goals preceded by either the symbol \?-"
or the symbol \:-". As soon as a query or command is encounteredin the compilation of a ¯le,
the ECL i PSe system will try to satisfy it. Thus by inserting goals in this fashion, things can be
made to happen at compile time.
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In particular, a ¯le can contain a directive to the system to compile another ¯le, and so large
programs can be split between ¯les, while still only requiring a single simple command to compile
them. When this happens, ECLi PSe interprets the pathnames of the nested compiled ¯les
relative to the directory of the parent compiled ¯le; if, for e xample, the user calls

[eclipse 1]: compile('src/pl/prog').

and the ¯le src/pl/prog.pl contains a query

:- [part1, part2].

then the system searches for the ¯lespart1.pl and part2.pl in the directory src/pl and not in
the current directory. Usually larger ECL i PSe programs have one main ¯le which contains only
commands to compile all the sub¯les. In ECLi PSe it is possible to compile this main ¯le from
any directory. (Note that if your program is large enough to warrant breaking into multiple ¯les
(let alone multiple directories), it is probably worth turn ing the constituent components into
modules.)
J

See section 4.10 for more information about modules.

2.6 How do I use ECL i PSe libraries in my programs?

A number of ¯les containing library predicates are supplied with the ECL i PSe system. They
are usually installed in an ECLi PSe library directory. These predicates are either loaded auto-
matically by ECL i PSe or may be loaded \by hand".
During the execution of an ECLi PSe program, the system may dynamically load ¯les containing
library predicates. When this happens, the user is informedby a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use module/1
predicates. E.g. to load the library called lists , use one of the following goals:

:- lib(lists)
:- use_module(library(lists))

This will load the library ¯le unless it has been already loaded. In particular, a program can
ensure that a given library is loaded when it is compiled, by including an appropriate directive
in the source, e.g.:- lib(lists).

2.7 Other tips

2.7.1 Recommended ¯le names

It is recommended programming practice to give the Prolog source programs the su±x .pl , or
.ecl if it contains ECL i PSe speci¯c code. It is not enforced by the system, but it simpli¯es
managing the source programs. Thecompile/1 predicate automatically adds the su±x to the
¯lename, so that it does not need to be speci¯ed; if the literal ¯lename can not be found, the
system tries appending each of the valid su±xes in turn and tries to ¯nd the resulting ¯lename.
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Chapter 3

Prolog Introduction

3.1 Terms and their data types

Prolog data (terms ) and programs are built from a small set of simple data-types.In this section,
we introduce these data types together with their syntax (their textual representations). For
the full syntax see the User Manual appendix on Syntax.

3.1.1 Numbers

Numbers come in several °avours. The ones that are familiar from other programming languages
are integers and °oating point numbers. Integers in ECLi PSe can be as large as ¯ts into the
machine's memory:

123 0 -27 3492374892749289174

Floating point numbers (represented as IEEE double °oats) are written as

0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECL i PSe provides two additional numeric types, rationals and bounded reals. ECLi PSe can do
arithmetic with all these numeric types.
Note that performing arithmetic requires the use of the is/2 predicate:

?- X is 3 + 4.
X = 7
Yes

If one just uses=/2 , ECL i PSe will simply construct a term corresponding to the arithmeti c
expression, and will not evaluate it:

?- X = 3 + 4.
X = 3 + 4
Yes

J
For more details on numeric types and arithmetic in general see the User Manual chapter on

Arithmetic.
J

For more information on the bounded real numeric type, see Chapter 9.
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3.1.2 Strings

Strings are a representation for arbitrary sequences of bytes and are written with double quotes:

"hello"
"I am a string!"
"string with a newline \n and a null \000 character"

Strings can be constructed and partitioned in various ways using ECLi PSe primitives.

3.1.3 Atoms

Atoms are simple symbolic constants, similar to enumeration type constants in other languages.
No special meaning is attached to them by the language. Syntactically, all words starting with
a lower case letter are atoms, sequences of symbols are atoms, and anything in single quotes is
an atom:

atom quark i486 -*- ??? 'Atom' 'an atom'

3.1.4 Lists

A list is an ordered sequence of (any number of) elements, each of which is itself a term. Lists
are delimited by square brackets ([ ] ), and elements are separated by a comma. Thus, the
following are lists:

[1,2,3]
[london, cardiff, edinburgh, belfast]
["hello", 23, [1,2,3], london]

A special case is the empty list (sometimes callednil ), which is written as

[]

A list is actually composed of head-and-tail pairs, where the head contains one list element, and
the tail is itself a list (possibly the empty list). Lists can be written as a [Head|Tail] pair, with
the head separated from the tail by the vertical bar. Thus the list [1,2,3] can be written in
any of the following equivalent ways:

[1,2,3]
[1|[2,3]]
[1|[2|[3]]]
[1|[2|[3|[]]]]

The last line shows that the list actually consists of 3[Head|Tail] pairs, where the tail of the
last pair is the empty list. The usefulness of this notation is that the tail can be a variable
(introduced below): [1|Tail] , which leaves the tail unspeci¯ed for the moment.
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3.1.5 Structures

Structures correspond to structs or records in other languages. A structure is an aggregate of a
¯xed number of components, called itsarguments. Each argument is itself a term. Moreover, a
structure always has a name (which looks like an atom). The canonical syntax for structures is

< name> (< arg> 1,...< arg> n)

Valid examples of structures are:

date(december, 25, "Christmas")
element(hydrogen, composition(1,0))
flight(london, new_york, 12.05, 17.55)

The number of arguments of a structure is called itsarity . The name and arity of a structure are
together called its functor and is often written as name/arity . The last example above therefore
has the functor flight/4 .

J
See section 4.1 for information about de¯ning structures with named ¯elds.

Operator Syntax

As a syntactic convenience, unary (1-argument) structures can also be written in pre¯x or post¯x
notation, and binary (2-argument) structures can be written in in¯x notation, if the programmer
has made an appropriate declaration (called anoperator declaration) about its functor. For
example if plus/2 were declared to be an in¯x operator, we could write:

1 plus 100

instead of

plus(1,100)

It is worth keeping in mind that the data term represented by t he two notations is the same,
we have just two ways of writing the same thing. Various logical and arithmetic functors are
automatically declared to allow operator syntax, for example +/2, not/1 etc.

Parentheses

When pre¯x, in¯x and post¯x notation is used, it is sometimes necessary to write extra paren-
theses to make clear what the structure of the written term is meant to be. For example to
write the following nested structure

+(*(3,4), 5)

we can alternatively write

3 * 4 + 5

because the star binds stronger than the plus sign. But to write the following di®erently nested
structure

11



Numbers ECL i PSehas integers, °oats, rationals and bounded reals.

Strings Character sequences in double quotes.

Atoms Symbolic constants, usually lower case or in single quotes.

Lists Lists are constructed from cells that have an arbitrary head and a tail which is
again a list.

Structures Structures have a name and a certain number (arity ) of arbitrary arguments.
This characteristic is called the functor, and written name/arity.

Figure 3.1: Summary of Data Types

*(3, +(4, 5))

in in¯x-notation, we need extra parentheses:

3 * (4 + 5)

A full table of the prede¯ned pre¯x, in¯x and post¯x operators wit h their relative precedences
can be found in the appendix of the User Manual.

3.2 Predicates, Goals and Queries

Where other programming languages have procedures and functions, Prolog and ECLi PSe have
predicates. A predicate is something that has a truth value, so it is similar to a function with
a boolean result. A predicatede¯nition simply de¯nes what is true. A predicate invocation (or
call) checks whether something is true or false. A simple exampleis the predicate integer/1 ,
which has a built-in de¯nition. It can be called to check whether something is an integer:

integer(123) is true
integer(atom) is false
integer([1,2]) is false

A predicate call like the above is also called agoal. A starting goal that the user of a program
provides is called aquery. To show queries and their results, we will from now on use the
following notation:

?- integer(123).
Yes.
?- integer(atom).
No.
?- integer([1,2]).
No.

A query can simply be typed at the eclipse prompt, or entered into the query ¯eld in a tkeclipse
window. Note that it is not necessary to enter the ?- pre¯x. On a console input, is however
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necessary to terminate the query with a full-stop (a dot followed by a newline). After executing
the query, the system will print one of the answersYes or No .

3.2.1 Conjunction and Disjunction

Goals can be combined to form conjunctions (AND) or disjunctions (OR). Because this is so
common, Prolog uses the comma for AND and the semicolon for OR. The following shows two
examples of conjunction, the ¯rst one is true because both conjuncts are true, the second is false:

?- integer(5), integer(7).
Yes.
?- integer(5), integer(hello).
No.

In contrast, a disjunction is only false if both disjuncts are false:

?- ( integer(hello) ; integer(5) ).
Yes.
?- ( integer(hello) ; integer(world) ).
No.

As in this example, it is advisable to always surround disjunctions with parentheses. While not
strictly necessary in this example, they are often requiredto clarify the structure.
In practice, when answering queries with disjunctions, thesystem will actually give a separate
Yes answer for every way in which the query can be satis¯ed (i.e. proven to be true). For
example, the following disjunction can be satis¯ed in two ways, therefore system will give two
Yes answers:

?- ( integer(5) ; integer(7) ).
Yes (0.00s cpu, solution 1, maybe more)
Yes (0.02s cpu, solution 2)

The second answer will only be given after the user has explicitely asked for more solutions.
Sometimes the system cannot decide whether an answer is the last one. In that case, asking for
more solutions may lead to an alternativeNo answer, like in the following example:

?- ( integer(5) ; integer(hello) ).
Yes (0.00s cpu, solution 1, maybe more)
No (0.02s cpu)

Of course, as long as there was at least oneYes answer, the query as a whole was true.

3.3 Uni¯cation and Logical Variables

3.3.1 Symbolic Equality

Prolog has a particularly simple idea ofequality , namely structural equality by pattern match-
ing. This means that two terms are equal if and only if they have exactly the same structure.
No evaluation of any kind is perfomed on them:
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?- 3 = 3.
Yes.
?- 3 = 4.
No.
?- hello = hello.
Yes.
?- hello = 3.
No.
?- foo(a,2) = foo(a,2).
Yes.
?- foo(a,2) = foo(b,2).
No.
?- foo(a,2) = foo(a,2,c).
No.
?- foo(3,4) = 7.
No.
?- +(3,4) = 7.
No.
?- 3 + 4 = 7.
No.

Note in particular the last two examples (which are equivalent): there is no automatic arithmetic
evaluation. The term +(3,4) is simply a data structure with t wo arguments, and therefore of
course di®erent from any number.
Note also that we have used the built-in predicate =/2, which exactly implements this idea of
equality.

3.3.2 Logical Variables

So far we have only performed tests, giving only Yes/No results. How can we compute more
interesting results? The solution is to introduce Logical Variables. It is very important to
understand that Logical Variables are variables in the mathematical sense, not in the usual
programming language sense. Logical Variables are simply placeholders for values which are not
yet known, like in mathematics. In conventional programming languages on the other hand,
variables are labels for storage locations. The important di®erence is that the value of a logical
variables is typically unknown at the beginning, and only becomes known in the course of the
computation. Once it is known, the variable is just an alias for the value, i.e. it refers to a term.
Once a value has be assigned to a logical variable, it remains̄xed and cannot be assigned a
di®erent value.
Logical Variables are written beginning with an upper-case letter or an underscore, for example

X Var Quark _123 R2D2

If the same name occurs repeatedly in the same input term (e.g. the same query or clause), it
means the same variable.
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Predicate Something that is true or false, depending on its de¯nition and its arguments.
De¯nes a relationship between its arguments.

Goal A logical formula whose truth value we want to know. A goal canbe a conjunction
or disjunction of other (sub-)goals.

Query The initial Goal given to a computation.

Uni¯cation An extension of pattern matching which can bind logical variables (place-
holders) in the matched terms to make them equal.

Clause One alternative de¯nition for when a predicate is true. A clause is logically an
implication rule.

Figure 3.2: Basic Terminology

3.3.3 Uni¯cation

With logical variables, the above equality tests become much more interesting, resulting in the
concept ofUni¯cation . Uni¯cation is an extension of the idea of pattern matching of two terms.
In addition to matching, uni¯cation also causes the binding (instantiation, aliasing) of variables
in the two terms. Uni¯cation instantiates variables such tha t the two uni¯ed terms become
equal. For example

X = 7 is true with X instantiated to 7
X = Y is true with X instantiated to Y (or vice versa)
foo(X) = foo(7) is true with X instantiated to 7
foo(X,Y) = foo(3,4) is true with X instantiated to 3 and Y to 4
foo(X,4) = foo(3,Y) is true with X instantiated to 3 and Y to 4
foo(X) = foo(Y) is true with X instantiated to Y (or vice versa )
foo(X,X) = foo(3,4) is false because there is no possible val ue for X

3.4 De¯ning Your Own Predicates

3.4.1 Comments

Since we will annotate some of our programs, we ¯rst introducethe syntax for comments. There
are two types:

Block comment The comment is enclosed between the delimiters/* and */ . Such comments
can span multiple lines, and may be conveniently used to comment out unused code.

Line comment Anything following and including ' %' in a line is taken as a comment (unless
the '%' character is part of a quoted atom or string).
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3.4.2 Clauses and Predicates

Prolog programs are built from valid Prolog data-structures. A program is a collection of
predicates, and a predicate is a collection ofclauses.
The idea of a clause is to de¯ne that something is true. The simplest form of a clause is the
fact. For example, the following two are facts:

capital(london, england).
brother(fred, jane).

Syntactically, a fact is just a structure (or an atom) termin ated by a full stop.
Generally, a clause has the form

Head :- Body.

whereHead is a structure (or atom) and Body is a Goal, possibly with conjunctions and disjunc-
tions like the query discussed above. The following is a clause

uncle(X,Z) :- brother(X,Y), parent(Y,Z).

Logically, this can be read as a reverse implication

uncle(X; Z ) Ã¡ brother(X; Y ) ^ parent(Y; Z)

or, more precisely

8X 8Z : uncle(X; Z ) Ã¡ 9 Y : brother(X; Y ) ^ parent(Y; Z)

stating that uncle(X,Z) is true if brother(X,Y) and parent( Y,Z) are true. Note that a fact is
equivalent to a clause where the body istrue :

brother(fred, jane) :- true.

One or multiple clauses with the same head functor (same nameand number of arguments)
together form the de¯nition of a predicate. Logically, multiple clauses are read as a disjunction,
i.e. they de¯ne alternative ways in which the predicate can betrue. The simplest case is a
collection of alternative facts:

parent(abe, homer).
parent(abe, herbert).
parent(homer, bart).
parent(marge, bart).
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The following de¯nes the ancestor/2 predicate by giving two alternative clauses (rules):

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z).

Remember that a clause can be read logically, with the:- taking the meaning of implication,
and the comma separating goals read as a conjunction. The logical reading for several clauses
of the same predicate is disjunction between the clauses. Sothe ¯rst ancestor rule above states
that if X is a parent of Y, then this implies that X is an ancesto r of Y. The second rule, which
speci¯es another way X can be an ancestor of Y states that if some other person, Z, is the parent
of Y, and X is an ancestor of Z, then this implies that X is also an ancestor of Y.

N
It is also important to remember that the scope of a variable name only extends over the

clause in which it is in, so any variables with the same name inthe same clause refer to
the same variable, but variables which occur in di®erent clauses are di®erent even if they
have been written with the same name.

3.5 Execution Scheme

3.5.1 Resolution

Resolution is the computation rule used by Prolog. Given a set of facts and rules as a program,
execution begins with a query, which is an initial goal that is to be resolved. The set of goals
that still have to be resolved is called theresolvent.
Consider again theancestor/2 and parent/2 predicate shown above.

ancestor(X,Y) :- parent(X,Y). % clause 1
ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z). % clause 2

parent(abe, homer). % clause 3
parent(abe, herbert). % clause 4
parent(homer, bart). % clause 5
parent(marge, bart). % clause 6

Program execution is started by issuing a query, for example

?- ancestor(X, bart).

This is our initial resolvent. The execution mechanism is now as follows: In our example, the
Prolog system would attempt to unify ancestor(X, bart) with the program's clause heads.
Both clauses of theancestor/2 predicate can unify with the goal, but the textually ¯rst clau se,
clause 1, is selected ¯rst, and successfully uni¯ed with the goal:
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1. Pick one (usually the leftmost) goal from the resolvent. If the resolvent is empty,
stop.

2. Find all clauses whose head successfully uni¯es with this goal. If there is no such
clause, go to step 6.

3. Select the ¯rst of these clause. If there are more, rememberthe remaining ones. This
is called achoice point.

4. Unify the goal with the head of the selected clause. (this may instantiate variables
both in the goal and in the clause's body).

5. Pre¯x this clause body to the resolvent and go to 1.

6. Backtrack: Reset the whole computation state to how it waswhen the most recent
choice point was created. Take the clauses remembered in this choice point and go
to 3.

Figure 3.3: Execution Algorithm

Goal (Query): ancestor(X,bart)
Selected: clause 1
Unifying: ancestor(X,bart) = ancestor(X1,Y1)
results in: X=X1, Y1=bart
New resolvent: parent(X, bart)
More choices: clause 2

The body goal of clause 1parent(X, bart) is added to the resolvent, and the system remembers
that there is an untried alternative { this is referred to as a choice-point.
In the same way,parent(X, bart) is next selected for uni¯cation. Clauses 5 and 6 are possible
matches for this goal, with clause 5 selected ¯rst. There are no body goals to add, and the
resolvent is now empty:

Goal: parent(X, bart)
Selected: clause 5
Unifying: parent(X,bart) = parent(homer,bart)
results in: X = homer
New resolvent:
More choices: clause 6, then clause 2

The execution of a program completes successfully when there is an empty resolvent. The
program has thus found the ¯rst solution to the query, in the form of instantiations to the
original Query's variables, in this caseX = homer. ECL i PSe returns this solution, and also asks
if we want more solutions:

?- ancestor(X,bart).
X = homer More? (;)
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Responding with ';' will cause ECLi PSe to try to ¯nd alternative solutions by backtracking to
the most recent choice-point, i.e. to seek an alternative toparent/2 . Any bindings done during
and after the selection of clause 5 are undone, i.e. the binding of X to homer is undone. Clause
6 is now uni¯ed with the goal parent(X,Y) , which again produces a solution:

Goal: parent(X, bart)
Selected: clause 6
Unifying: parent(X,bart) = parent(marge,bart)
results in: X = marge
New resolvent:
More choices: clause 2

If yet further solutions are needed, then ECLi PSe would again backtrack. This time, parent/2
no longer has any alternatives left to unify, so the next older choice-point, the one made for
ancestor/2 , is the one that would be considered. The computation is returned to the state it
was in just before clause 1 was selected, and clause 2 is uni¯edwith the query goal:

Goal: ancestor(X,bart)
Selected: clause 2
Unifying: ancestor(X,bart) = ancestor(X1,Y1)
results in: Y1 = bart, X1 = X
New resolvent: parent(Z1, bart), ancestor(X1, Z1)
More choices:

For the ¯rst time, there are more than one goal in the resolvent, the leftmost one, par-
ent(Z1,bart) is then selected for uni¯cation. Again, clauses 5 and 6 are candidates, and a
new choice-point is created, and clause 5 tried ¯rst.

Goal: parent(Z1, bart)
Selected: clause 5
Unifying: parent(Z1, bart) = parent(homer, bart)
results in: Z1 = homer
New resolvent: ancestor(X1, homer)
More choices: clause 6

Eventually, after a few more steps (via ¯nding the ancestor of homer), this leads to a new
solution, with abe returned as an ancestor ofbart :

?- ancestor(X,bart).
X = abe More? (;)

If yet more solutions are requested, then because only one parent for homer is given by the
program, ECLi PSe would backtrack to the only remaining choice-point, unifying clause 6 is
uni¯ed with the goal, binding Z1 to marge. However, no ancestor formarge can be found,
because no parent ofmarge is speci¯ed in the program. No more choice-points remains to be
tried, so the execution terminates.
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3.6 Partial data structures

Logical variables can occur anywhere, not only as argumentsof clause heads and goals, but
also within data structures. A data structure which contain s variables is called a partial data
structure, because it will eventually be completed by substituting the variable with an actual
data term. The most common case of a partial data structure isa list whose tail is not yet
instantiated.
Consider ¯rst an example where no partial lists occur. In the following query, a list is built
incrementally, starting from its end:

?- L1 = [], L2 = [c|L1], L3 = [b|L2], L4 = [a|L3].
L1 = []
L2 = [c]
L3 = [b, c]
L4 = [a, b, c]

Whenever a new head/tail cell is created, the tail is alreadyinstantiated to a complete list.
But is is also possible to build the list from the front. The following code, in which the goals
have been reordered, gives the same ¯nal result as the code above:

?- L4 = [a|L3], L3 = [b|L2], L2 = [c|L1], L1 = [].
L1 = []
L2 = [c]
L3 = [b, c]
L4 = [a, b, c]

However, in the course of the computation, variables get instantiated to "partial lists", i.e. lists
whose head is known, but whose tail is not. This is perfectly legal: due to the nature of the
logical variable, the tail can be ¯lled in later by instantiat ing the variable.

3.7 More control structures

3.7.1 Disjunction

Disjunction is normally speci¯ed in Prolog by di®erent clauses of a predicate, but it can also be
speci¯ed within a single clause by the use of;/2 . For example,

atomic_particle(X) :- (X = proton ; X = neutron ; X = electron) .

This is logically equivalent to:

atomic_particle(proton).
atomic_particle(neutron).
atomic_particle(electron).
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3.7.2 Conditional

Conditionals can be speci¯ed using the->/2 operator. In combination with ;/2 , a conditional
similar to `if-then-else' constructs of conventional language can be constructed:X->Y;Z, where
X, Y and Z can be one or more goals, means that ifX is true, then Y will be executed, otherwise
Z. Only the ¯rst solution of X is explored, so that on backtracking, no new solutions forX will
be tried. In addition, if X succeeds, then the `else' part,Z will never be tried. If X fails, then the
`then' part, Y, will never be tried. An example of `if-then-else' is:

max(X,Y, Max) :-
number(X), number(Y),
(X > Y -> Max = X ; Max = Y).

where Maxis the bigger of the numbersX or Y. Note the use of the brackets to make the scope
of the if-then-else clear and correct.

3.7.3 Call

One feature of Prolog is the equivalence of programs and data{ both are represented as terms.
The predicate call allows program terms (i.e. data) to be treated as goals:call(X) will cause
X to be treated as a goal and executed. Although at the time whenthe predicate is executed,
X has to be instantiated, it does not need to be instantiated (or even known) at compile time.
For example, it is possible to de¯ne disjunction (; ) as follows:

X ; Y :- call(X).
X ; Y :- call(Y).

3.7.4 All Solutions

In the pure computational model of Prolog, alternative solutions are computed one-by-one on
backtracking. Only one solution is available at any time, while previous solutions disappear on
backtracking:

?- weekday(X).
X = mo
More
X = tu
More
X = we
More
...

Sometimes it is useful to have all solution together in a list. This can be achieved by using one
of the all-solutions predicates ¯ndall/3, setof/3 or bagof/3 :
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?- findall(X, weekday(X), List).
X = X
List = [mo, tu, we, th, fr, sa, su]
Yes

J
For the di®erences between ¯ndall/3, setof/3 and bagof/3 see the ECLi PSe Reference Manual.

3.8 Using Cut

Cut (written as ! ) prunes away part of the Prolog search-space. This can be a very powerful
mechanism for improving the performance of programs, and even the suppression of unwanted
solutions. However, it can also be easily misused and over-used.
Cut does two things:

commit Disregard any later clauses for the predicate.

prune Throw away all alternative solutions to the goals to the left of the cut.

3.8.1 Commit to current clause

Consider the following encoding of the \minimum" predicate:

min(X,Y, Min) :- X <Y, Min = X.
min(X,Y, Min) :- Y=<X, Min = Y.

Whilst logically correct, the behaviour of this encoding isnon-optimal for two reasons. Consider
the goal :- min(2,3,M) . Although the ¯rst clause succeeds, correctly instantiating M to 2,
Prolog leaves an open choice point. If these clauses and goaloccur as part of a larger program
and goal, a failure might occur later, causing backtracking. Prolog would then, vainly, try to
¯nd another minimum using the second clause formin. Firstly the open choice point costs space,
and the secondly the unsuccessful evaluation of the second clause costs execution time.
To achieve the same logic, but more e±cient behaviour, the programmer can introduce acut.
For example min is typically encoded as follows:

min(X,Y, Min) :- X<Y, !, Min = X.
min(X,Y, Y).

The cut removes the unnecessary choice point and test.

3.8.2 Prune alternative solutions

A cut may occur anywhere where a goal may occur, consider the following:
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first_prime(X, P) :-
prime(X,P), !.

wherefirst_prime returns the ¯rst prime number smaller than X. In this case, it calls a predicate
prime/2 , which generates prime numbers smaller thanX, starting from the largest one. The e®ect
of the cut here is to prune away all the remaining solutions toprime(X,P) once the ¯rst one is
generated, so that on backtracking,prime(X,P) is not tried for alternative solutions. The cut
will also commit the execution to this clause forfirst_prime/2 , but as there is only one clause,
this has no visible e®ect.

3.9 Common Pitfalls

Prolog is di®erent from conventional programming languages, and a common problem is to
program Prolog like a conventional language. Here are some points to note:

² Uni¯cation is more powerful than normal case discrimination (see section 3.9.1);

² Prolog procedure calls are more powerful than conventionalprocedure calls. In particular,
backtracking is possible (see section 3.9.2);

3.9.1 Uni¯cation works both ways

One common problem is to write a predicate expecting certaininstantiation patterns for the
arguments, and then get unexpected results when the arguments do not conform to the expected
pattern. An example is the member relation, intended to check if an item Item is a member of
a list or not. This might be written as:

member(Item, [Item|_]).
member(Item, [_|List]) :- member(Item, List).

The expected usage assumes bothItem and the list are ground. In such cases, the above predicate
does indeed check ifItem occurs in the list given as a second argument. However, if either of the
arguments are not ground, then potentially unexpected behaviour might occur. Consider the
case whereItem is a variable, then the above predicate will enumerate the elements of the list
successively through backtracking. On the other hand, if any of the list elements of the list is
a variable, they would be uni¯ed with Item . Other instantiation patterns for either arguments
can produce even more complex results.
If the intended meaning is simply to check if Item is a member of a list, this can be done by:

% is_member(+Element, +List)
% check if Element is an element that occurs in a List of
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% ground elements
is_member(Item, [Element|_]) :- Item == Element.
is_member(Item, [_|List]) :- nonvar(List), is_member(It em, List).

Note the use of comments to make clear the intention of the useof the predicate. The convention
used is that `+' indicates that an argument should be instantiated (i.e. not a variable), `-' for an
argument that should be an uninstantiated variable, and '?' indicates that there is no restrictions
on the mode of the argument.

3.9.2 Unexpected backtracking

Remember that when coding in Prolog, any predicatemay be backtracked into. So correctness
in Prolog requires:

² Predicate returns the correct answer when ¯rst called.

² Predicate behaves correctly when backtracked into.

Recall that backtracking causes alternative choices to be explored, if there are any. Typically
another choice corresponds to another clause in the poredicate de¯nition, but alternative choices
may come from disjunction (see above) or built-in predicateswith multiple (alternative) solu-
tions. The programmer should make sure that a predicate willonly produce those solutions that
are wanted. Excess alternatives can be removed by coding theprogram not to produce them,
or by the cut, or the conditional.
For example, to return only the ¯rst member, in the is_member/2 example, the predicate can
be coded using the cut, as follows:

is_member(Item, [Element|_]) :- Item == Element, !.
is_member(Item, [_|List]) :- nonvar(List), is_member(It em, List).

Using conditional

Another way to remove excess choice points is the conditional:

is_member(Item, [Element|List]) :-
( Item == Element ->

true
;

nonvar(List), is_member(Item, List)
).
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3.10 Exercises

1. Consider again the \family tree" example (see Section 3.4.2). As well as the parent/2
predicate, suppose we have amale/1 predicate as follows:

male(abe).
male(homer).
male(herbert).
male(bart).

De¯ne a brother/2 predicate, expressed just in terms ofparent/2 and male/1 . Make
sure Homer is not considered his own brother.

2. Consider the following alternative de¯nition of ancestor/2 :

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).

What is wrong with this code? What happens if you use it to ¯nd out who Bart is an
ancestor of?
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Chapter 4

ECL iPSe Programming

4.1 Structure Notation

In ECL i PSe, structure ¯elds can be given names. This makes it possible towrite structures in
a more readable and maintainable way. Such structures ¯rst need to be declared by specifying
a template like:

:- local struct( book(author, title, year, publisher) ).

Structures with the functor book/4 can then be written as

book with []
book with title:'tom sawyer'
book with [title:'tom sawyer', year:1876, author:twain]

which, in canonical syntax, correspond to the following:

book(_, _, _, _)
book(_, 'tom sawyer', _, _)
book(twain, 'tom sawyer', 1876, _)

There is absolutely no semantic di®erence between the two syntactical forms. The with-syntax
with names has the advantage that

² the arguments can be written in any order

² \dummy" arguments with anonymous variables do not need to bewritten

² the arity of the structure is not implied (and can be changed by changing the declaration
and recompiling the program)

Sometimes it is necessary to refer to the numerical positionof a structure ¯eld within the
structure, e.g. in the arg/3 predicate:

arg(3, B, Y)
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When the structure has been declared as above, we can write instead:

arg(year of book, B, Y)

Declared structures help readability, and make programs easier to modify. In order not to lose
these bene¯ts, one should always use with- and of-syntax when working with them, and never
write them in canonical syntax or referring to argument positions numerically.
J

See also theupdate struct/4 built-in predicate.

4.2 Loops

To reduce the need for auxiliary recursive predicates, ECLi PSe allows the use of an iteration
construct

( IterationSpecs do Goals )

Typical applications are: Iteration over a list

?- ( foreach(X,[1,2,3]) do writeln(X) )
1
2
3
Yes (0.00s cpu)

Process all elements of one list and construct another:

?- ( foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3 ).
List = [4, 5, 6]
Yes (0.00s cpu)

Process a list to compute the sum of its elements:

?- ( foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In +X ).
Sum = 6
Yes (0.00s cpu)

Note that the variables X, Y, In and Out are local variables in the loop, while the input list and
Sum are shared with the context.
If a parameter remains constant across all loop iterations it must be speci¯ed explicitly (via
param ), for example when iterating over an array:

?- Array = [](4,3,6,7,8),
(

for(I,1,5),
fromto(0,In,Out,Sum),
param(Array)

do
Out is In + Array[I]

).

J
For details and more examples see the description of thedo/2 built-in predicate. Additional

background can be found in [23].
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fromto(First,In,Out,Last)
iterate Goals starting with In=First until Out=Last.

foreach(X,List)
iterate Goals with X ranging over all elements of List.

foreacharg(X,StructOrArray)
iterate Goals with X ranging over all arguments of StructOrA rray.

for(I,MinExpr,MaxExpr)
iterate Goals with I ranging over integers from MinExpr to Ma xExpr.

for(I,MinExpr,MaxExpr,Increment)
same as before, but Increment can be speci¯ed (it defaults to 1).

count(I,Min,Max)
iterate Goals with I ranging over integers from Min up to Max.

param(Var1,Var2,...)
for declaring variables in Goals global, ie shared with the context.

Figure 4.1: Iteration Speci¯ers for Loops

4.3 Working with Arrays of Items

For convenience, ECLi PSe has some features for facilitating working with arrays of items. Arrays
can be of any dimension, and can be declared with thedim/2 predicate:

?- dim(M,[3,4]).
M = []([](_131, _132, _133, _134),

[](_126, _127, _128, _129),
[](_121, _122, _123, _124))

yes.

dim/2 can also be used to query the dimensions of an array:

?- dim(M,[3,4]), dim(M,D).
...
D = [3, 4]
yes.

N
Note that arrays are just structures, and that the functor is not important.

To access a speci¯c element of an array in an expression, specify the index list of the desired
element, e.g.

?- M = []([](2, 3, 5),
[](1, 4, 7)), X is M[1, 2] + M[2, 3].
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² Arrays are just structures

² The functor is not important

² Declare or query array size withdim/2

² Access elements in expressions by specifying their index list (e.g. A[7] , M[2,3] )

² Indices start at 1

Figure 4.2: Array notation

X = 10
M = []([](2, 3, 5), [](1, 4, 7))
yes.

J
For further details see the Array Notation section of the User Manual.

4.4 Storing Information Across Backtracking

In pure logic programming, the complete state of a computation is reset to an earlier state on
backtracking. The all-solutions predicates introduced in section 3.7.4 provide a way to collect
solutions across backtracking.
The following section presents ECLi PSe's lower-level primitives for storing information across
failures: bags and shelves. Both bags and shelves are referred to by handle, not by name,
so they make it easy to write robust, reentrant code. Bags andshelves disappear when the
system backtracks over their creation, when the handle getsgarbage collected, or when they are
destroyed explicitly.

4.4.1 Bags

A bag is an anonymous object which can be used to store information across failures. A typical
application is the collection of alternative solutions.
A bag is an unordered collection, referred to by a handle. A bag is created using bagcreate/1,
terms can be added to a bag using bagenter/2, and the whole contents of the bag can be
retrieved using bag retrieve/2 or bag dissolve/2. A simple version of the ¯ndall/3 predicate
from section 3.7.4 can be implemented like:

simple_findall(Goal, Solutions) :-
bag_create(Bag),
(

call(Goal),
bag_enter(Bag, Goal),
fail
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;
bag_dissolve(Bag, Solutions)

).

4.4.2 Shelves

A shelf is an anonymous object which can be used to store information across failures. A typical
application is counting of solutions, keeping track of the best solution, aggregating information
across multiple solutions etc.
A shelf is an object with multiple slots whose contents survive backtracking. The content of
each slot can be set and retrieved individually, or the wholeshelf can be retrieved as a term.
Shelves are referred to by a handle.
A shelf is initialized using shelf create / 2 or shelf create / 3. Data is stored in the slots (or the
shelf as a whole) with shelfset / 3 and retrieved with shelf get / 3.
For example, here is a meta-predicate to count the number of solutions to a goal:

count_solutions(Goal, Total) :-
shelf_create(count(0), Shelf),
(

call(Goal),
shelf_get(Shelf, 1, Old),
New is Old + 1,
shelf_set(Shelf, 1, New),
fail

;
shelf_get(Shelf, 1, Total)

),
shelf_abolish(Shelf).

4.5 Input and Output

4.5.1 Printing ECL i PSe Terms

The predicates of the write-group are generic in the sense that they can print any ECL i PSe

data structure. The di®erent predicates print slightly di®erent formats. The write/1 predi-
cate is intended to be most human-readable, whilewriteq/1 is designed so that the printed
data can be read back by the predicates of the read-family. If we print the structured term
foo(3+4, [1,2], X, 'a b', "string") the results are as follows:

write: foo(3 + 4, [1, 2], X, a b, string)
writeq: foo(3 + 4, [1, 2], _102, 'a b', "string")

The write-format is the shortest, but some information is missing, e.g. that the sequencea b is
an atomic unit and that string is a string and not an atom. The writeq-format quotes items
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write(+Stream, ?Term)
write one term in a default format.

write term(+Stream, ?Term, +Options)
write one term, format options can be selected.

printf(+Stream, +Format, +ArgList)
write a string with embedded terms, according to a format string.

writeq(+Stream, ?Term), write canonical(+Stream, ?Term)
write one term so that it can be read back.

put(+Stream, +Char)
write one character.

Figure 4.3: Builtins for writing

properly, moreover, the variables are printed with unique numbers, so di®erent variables are
printed di®erently and identical ones identically.
Single characters, encoded in ascii, can be output usingput/1 , for example:

[eclipse: 1] put(97).
a
yes.

4.5.2 Reading ECL i PSe Terms

If the data to be read is in Prolog syntax, it can be read usingread(?Term) . This predicate
reads one fullstop-terminated ECLi PSeterm from stream Stream. A fullstop is de¯ned as a dot
followed by a layout character like blank space or newline. Examples:

[eclipse 4]: read(X).
123,a.

X = 123, a
yes.

[eclipse 6]: read(X).
[3,X,foo(bar),Y].

X = [3, X, foo(bar), Y]
yes.

Single characters can be input usingget/1 , which gets their ascii encoding, for example:

[eclipse: 1] get(X).
a
X=97
yes.
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read(+Stream, -Term)
read one fullstop-terminated ECLi PSeterm.

read term(+Stream, -Term, +Options)
read one fullstop-terminated ECLi PSeterm.

get(+Stream, -Char)
read one character.

read string(+Stream, +Terminator, -Length, -String)
read a string up to a certain terminator character.

read token(+Stream, -Token, -Class)
read one syntactic token (e.g. a number, an atom, a bracket, etc).

Figure 4.4: Builtins for reading

4.5.3 Formatted Output

The printf-predicate is similar to the printf-function in C, w ith some ECLi PSe-speci¯c format
extensions. Here are some examples of printing numbers:

?- printf("%d", [123]).
123
yes.
?- printf("%5d,%05d", [123,456]).

123,00456
yes.
?- printf("%6.2f", [123]).
type error in printf("%6.2f", [123])
?- printf("%6.2f", [123.4]).
123.40
yes.
?- printf("%6.2f", [12.3]).
12.30

yes.

The most important ECL i PSe-speci¯c format option is %w, which allows to print like the pred-
icates of the write-family:

?- printf("%w", [foo(3+4, [1,2], X, 'a b', "string")]).
foo(3 + 4, [1, 2], X, a b, string)

The %w format allows a number of modi¯ers in order to access allthe existing options for the
printing of ECL i PSe terms.

J
For details see thewrite term/2 and printf/2 predicates.
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I/O device How to open

tty implicit (stdin,stdout,stderr) or open/3 of a device ¯le
¯le open(FileName, Mode, Stream)

string open(string(String), Mode, Stream)
queue open(queue(String), Mode, Stream)
pipe exec/2 , exec/3 and exec group/3

socket socket/3 and accept/3
null implicit (null stream)

Figure 4.5: How to open streams onto the di®erent I/O devices

4.5.4 Streams

ECL i PSe I/O is done from and to named channels called streams. The following streams are
always opened when ECLi PSe is running: input (used by the input predicates that do not have
an explicit stream argument, e.g. read/1 ), output (used by the output predicates that do
not have an explicit stream argument, e.g.write/1 ), error (output for error messages and all
messages about exceptional states ),warning output (used by the system to output warning
messages ),log output (used by the system to output log messages, e.g. messages about garbage
collection activity ), null ( a dummy stream, output to it is discarded, on input it always gives
end of ¯le).
Data can be read from a speci¯c stream usingread(+Stream, ?Term) , and written to a
speci¯c stream using write(+Stream, ?Term) . If no particular stream is speci¯ed, input
predicates read frominput and output predicates write to output .
New streams may be opened onto various I/O devices, see ¯gure 4.5.
All types of streams are closed usingclose(+Stream) .
J

See the complete description of the stream-related built-in predicates in the Reference Manual

For network communication over sockets, there is a full set of predicates modelled after the BSD
socket interface: socket/3 , accept/3 , bind/2 , listen/2 , select/3 . See the reference manual
for details.
Output in ECL i PSe is usually bu®ered, i.e. printed text goes into a bu®er and may not immedi-
ately appear on the screen, in a ¯le, or be sent via a network connection. Use°ush(+Stream)
to empty the bu®er and write all data to the underlying device.

4.6 Matching

In ECL i PSe you can write clauses that usematching (or one-way uni¯cation) instead of head
uni¯cation. Such clauses are written with the ?- functor instead of :-. Matching has the property
that no variables in the caller will be bound. For example

p(f(a,X)) ?- writeln(X).

34



will fail for the following calls:

?- p(F).
?- p(f(A,B)).
?- p(f(A,b)).

and succeed (printing b) for

?- p(f(a,b)).

Moreover, the clause

q(X,X) ?- true.

will fail for the calls

?- q(a,b).
?- q(a,B).
?- q(A,b).
?- q(A,B).

and succeed for

?- q(a,a).
?- q(A,A).
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4.7 List processing

Lists are probably the most heavily used data structure in Prolog and ECLi PSe. Apart from uni-
¯cation/matching, the most commonly used list processing predicates are: append/3, length/2,
member/2 and sort/2. The append/3 predicate can be used to append lists or to split lists:

?- append([1, 2], [3, 4], L).
L = [1, 2, 3, 4]
Yes (0.00s cpu)
?- append(A, [3, 4], [1, 2, 3, 4]).
A = [1, 2]
More (0.00s cpu)
No (0.01s cpu)
?- append([1, 2], B, [1, 2, 3, 4]).
B = [3, 4]
Yes (0.00s cpu)

The length/2 predicate can be used to compute the length of a list or to construct a list of a
given length:

?- length([1, 2, 3, 4], N).
N = 4
Yes (0.00s cpu)
?- length(List, 4).
List = [_1693, _1695, _1697, _1699]
Yes (0.00s cpu)

The member/2 predicate can be used to check membership in a list (but memberchk/2 should
be preferred for that purpose), or to backtrack over all list members:

?- memberchk(2, [1, 2, 3]).
Yes (0.00s cpu)
?- member(X, [1, 2, 3]).
X = 1
More (0.00s cpu)
X = 2
More (0.01s cpu)
X = 3
Yes (0.01s cpu)

The sort/2 predicate can sort any list and remove duplicates:

?- sort([5, 3, 4, 3, 2], Sorted).
Sorted = [2, 3, 4, 5]
Yes (0.00s cpu)

J
For more list processing utilities, see the documentation for library(lists).
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4.8 String processing

ECL i PSe (unlike many Prolog systems) provides a string data type andthe corresponding string
manipulation predicates, e.g. string length/2, concat string/2, split string/4, substring/4, and
conversion from and to other data types, e.g. stringlist/2, atom string/2, number string/2,
term string/2.

?- string_length("hello", N).
N = 5
Yes (0.00s cpu)
?- concat_string([abc, 34, d], S).
S = "abc34d"
Yes (0.00s cpu)
?- string_list("hello", L).
L = [104, 101, 108, 108, 111]
Yes (0.00s cpu)
?- term_string(foo(3, bar), S).
S = "foo(3, bar)"
Yes (0.00s cpu)

4.9 Term processing

Apart from uni¯cation/matching, there are a number of generi c built-in predicates that work
on arbitrary data terms. The =.. predicate converts structures into lists and vice versa:

?- foo(a, b, c) =.. List.
List = [foo, a, b, c]
Yes (0.00s cpu)
?- Struct =.. [foo, a, b, c].
Struct = foo(a, b, c)
Yes (0.00s cpu)

The arg/3 predicate extracts an argument from a structure:

?- arg(2, foo(a, b, c), X).
X = b
Yes (0.00s cpu)

The functor/3 predicate extracts functor name and arity fro m a structured term, or, conversely,
creates a structured term with a given functor name and arity:

?- functor(foo(a, b, c), N, A).
N = foo
A = 3
Yes (0.00s cpu)
?- functor(F, foo, 3).
F = foo(_1696, _1697, _1698)
Yes (0.00s cpu)
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The term variables/2 predicate extracts all variables from an arbitrarily complex term:

?- term_variables(foo(X, 3, Y, X), Vars).
Vars = [Y, X]

The copy term/2 predicate creates a copy of a term with fresh variables:

?- copy_term(foo(3, X), Copy).
Copy = foo(3, _864)
Yes (0.00s cpu)

4.10 Module System

4.10.1 Overview

The ECL i PSe module system controls the visibility of predicate names, syntax settings (struc-
tures, operators, options, macros), and non-logical store names (records, global variables). Pred-
icates and syntax items can be declared local or they can be exported and imported. Store names
are always local.

4.10.2 Making a Module

A source ¯le can be turned into a module by starting it with a module directive. A simple
module is:

:- module(greeting).
:- export hello/0.

hello :-
who(X),
printf("Hello %w!%n", [X]).

who(world).
who(friend).

This is a module which contains two predicates. One of them, hello/0 is exported and can be
used by other modules. The other, who/1 is local and not accessible outside the module.

4.10.3 Using a Module

There are 3 ways to use hello/0 from another module. The ¯rst possibility is to import the
whole "greeting" module. This makes everything available that is exported from "greeting":

:- module(main).
:- import greeting.
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main :-
hello.

The second possibility is to selectively only import the hello/0 predicate:

:- module(main).
:- import hello/0 from greeting.

main :-
hello.

The third way is not to import, but to module-qualify the call t o hello/0:

:- module(main).

main :-
greeting:hello.

4.10.4 Quali¯ed Goals

The module-quali¯cation using :/2 is also used to resolve name con°icts, i.e. in the case where
a predicate of the same name is de¯ned in more than one importedmodule. In this case, none
of the con°icting predicates is imported - an attempt to call t he unquali¯ed predicate raises an
error. The solution is to qualify every reference with the module name:

:- lib(ic). % exports $>= / 2
:- lib(eplex). % exports $>= / 2

..., ic:(X $>= Y), ...

..., eplex:(X $>= Y), ...

A more unusual feature, which is however very appropriate for constraint programming, is the
possibility to call several versions of the same predicate by specifying several lookup modules:

..., [ic,eplex]:(X $>= Y), ...

which has exactly the same meaning as

..., ic:(X $>= Y), eplex:(X $>= Y), ...

Note that the modules do not have to be known at compile time, i.e. it is allowed to write code
like

after(X, Y, Solver) :-
Solver:(X $>= Y).

This is however likely to be less e±cient because it prevents compile-time optimizations.
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block(Goal, BTag, Recovery)
like call(Goal) , except that in addition a Recovery goal is set up, which
can be called by exit_block from anywhere inside the call to Goal. When
exit_block(ETag) is called, then if ETag uni¯es with a BTag from an enclosing
block , the recovery goal associated with thatblock is called, with the system im-
mediately failing back to where the block was called. In addition, ETagcan be used
to pass information to the recovery goal, ifBTagoccurs as an argument ofRecovery.

exit block(ETag)
will transfer control to the innermost enclosing block/3 whoseBTagargument uni¯es
with ETag.

Figure 4.6: Exception Handling

4.10.5 Exporting items other than Predicates

The most commonly exported items, apart from predicates, are structure and operator declara-
tions. This is done as follows:

:- module(data).
:- export struct(employee(name,age,salary)).
:- export op(500, xfx, reports_to).
...

Such declarations can only be imported by importing the whole module which exports them,
i.e. using import data. .

J
For more details see the User Manual chapter on Modules.

4.11 Exception Handling

It is sometimes necessary to exit prematurely from an executing procedure, for example because
some situation was detected which makes continuing impossible. In this situation, one wants to
return to some de¯ned state and perform some kind of recovery action. This functionality is
provided by block/3 and exit block/1. By wrapping a predicate call into block/3, any irre gular
termination can be caught and handled, e.g.

protected_main(X,Y,Z) :-
block(

main(X,Y,Z),
Problem,
printf("Execution of main/3 aborted with %w%n", [Problem] )

).
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main(X,Y,Z) :-
...,
( test(...) -> ... ; exit_block(test_failed) ),
...,

When built-in predicates raise errors, this results in the predicate being exited with the tag
abort , which can also be caught:

?- block(X is 1//0, T, true).
arithmetic exception in //(1, 0, X)
X = X
T = abort
Yes (0.00s cpu)

Note that timeouts and stack over°ows also lead to exits and can be caught this way.

4.12 Time and Memory

4.12.1 Timing

Timings are available via the built-in predicates cputime/1 nd statistics/2 To obtain the CPU
time consumption of a (succeeding) goal, use the scheme

cputime(StartTime),
my_goal,
TimeUsed is cputime-StartTime,
printf("Goal took %.2f seconds%n", [TimeUsed]).

The statistics/2 and statistics/0 commands can also be used to obtain memory usage infor-
mation. The memory areas used by ECLi PSe are:

Shared and private heap for compiled code, non-logical store ( bags and shelves, ¯ndall)
dictionary of functors, various tables and bu®ers.

Global stack for most ECL i PSe data like lists, structures, suspensions. This is likely tobe the
largest consumer of memory.

Local stack for predicate call nesting and local variables.

Control and trail stack for data needed on backtracking.

Automatic garbage collection is done on the global and trail stack, and on the dictionary.
Garbage collection parameters can be set usingset °ag/2 and an explicit collection can be
requested usinggarbage collect/0 .
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4.13 Exercises

1. Using ado loop, write a predicate which, when given a 1-d array, returnsa list containing
the elements of the array in reverse order.

2. Write a predicate transpose(Matrix, Transpose) to transpose a 2-d array.

Can you make it work backwards? (i.e. if Transpose is speci¯ed, can you make it return
a suitable Matrix ?)
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Chapter 5

A Tutorial Tour of Debugging in
TkECL iPSe

This chapter demonstrates a sample debugging session usingTkECL i PSe, showing how some
of the development tools can be used. We are by no means using all the tools or all the
functionalities of any tool, but hopefully this will give yo u a °avor of the tools so that you will
explore them on your own. You can get more information on the tools from the Help menu, and
from the popup balloons which appear when your mouse cursor stops over a feature for a few
seconds.

In the tutorial tour, we will assume that you have some knowledge of ECLi PSe. It is helpful if
you also have some knowledge of traditional Prolog debugging, although this is not necessary.

This chapter is designed for you to follow while running TkECL i PSe. To keep things simple, the
program is run with a very small data set, but it should be su±cient to see how the techniques
described can be applied to real programs.

At the end of the chapter, there is a summary of the main features of the main development
tools.

This chapter also contains many screen-shots, some of which are best viewed in colour, or in
looking at the actual screen as you follow along.

Balloon help A short description of a feature will popup in a `balloon' when the mouse
cursor stops over the feature for a few seconds.

Help ¯le Help ¯les are available for all the tools and toplevel. They provide more detailed
information on the tools, and can be obtained from theHelp menu, and by typing
Alt-h (Alt and h keys together) in the tool.

Figure 5.1: Getting Help
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5.1 The Buggy Program

The program we will be debugging is a map colouring problem. The task is to colour a `map'
of countries with four colours such that no two neighbours have the same colour. Our program
colours a map of four countries, but has a bug and can colour two neighbours the same colour.
The map is displayed graphically as shown:

Map Displays of Program

The countries are identi¯ed by numbers displayed within eachcountry. On the left, the map has
not yet been coloured. On the right, it has been coloured incorrectly by the program (countries
3 and 4 have the same colour).
This program uses code from the map colouring demo program, and is designed to use the GUI
to display a map. Most of this is not relevant to our debugging session, and although we will
see some of this code during the debugging, it is not necessary to understand it. You can think
of this debugging session as debugging someone else's code,not all of which you needs to be
understood.
The program used here is included with your ECLi PSe distribution. You should ¯nd it under
the lib_tcl directory.
The ¯nal step in this debug tutorial is to edit the buggy progra m and correct it. If you want to
do this, you should copy the distributed version of the program elsewhere so that you don't edit
the original. You need to copy the following ¯les from lib_tcl to another directory:

debugdemo.ecl mapcolour.ecl mapdebugdemo.tcl buggy_dat a.map

To load the program, start TkECL i PSe. After start up, switch the working directory to where
you have the programs { if you are using a UNIX system, and havestarted TkECL i PSe in
the directory of the programs, you are already there. Otherwise, go to the File menu of
TkECL i PSe, and select theChange directory option. Use the directory browser to ¯nd the
directory containing your programs and select it. This will change your working directory to the
selected directory.
Next, compile debugdemo.ecl. You can do this by selecting theCompile option from the File
menu (you can also compile the ¯le with the query[debugdemo] from the query entry window).
When the program is compiled, the map display window should appear, and the program is
ready to run.
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5.2 Running the Program

To start the program, the query `colour' is run: type colour into TkECL i PSe's query entry
window, followed by the return key. The program should run, colouring the map, arriving at
the incorrect solution as shown previously. The program uses the standard `generate-and-test'
method, so you will see colour °ashing in the countries as the program tries di®erent colours for
them.
The map display has two buttons: pressingMore will cause the program to ¯nd an alternate
way of colouring the map. PressingDonewill end the program and return control to ECL i PSe.
You can pressMore to get more solutions and see that the program returns more solutions that
colour countries 3 and 4 to the same colour (along with some that are correct).
PressDoneto ¯nish the execution. We will now debug this program.

5.3 Debugging the Program

First type in the query clear to clear the map to its initial state.
The main tool to debug a program is the tracer tool. The tracer is one of the development
tools, all of which can be accessed from theTools menu of TkECL i PSe. SelectTracer from the
menu as shown below, and a new window for the tracer tool should appear.

Starting the Tracer Tool

Run the query colour again. To save you from typing in the query, you can use the up-arrow
on your keyboard to step back to a previous query. Type returnwhen colour appears in the
query window again.
The tracer tool traces the execution of the program, like the traditional Prolog debugger, it
stops at `debug ports' of predicates that are executed. Currently, it is stopped at the call port
of the query colour . The buttons in the middle of the tool are for debugger commands. Try
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Figure 5.2: The Tracer Tool

pressingCreep several times, and you should observe something similar to Figure 5.2. Unlike
the traditional debugger, the execution trace is shown on two text windows: the bottom `Trace
Log' window, which shows a log of the debugger ports much as a traditional debugger does;
and the top `Call Stack' window, showing the ancestors (`call stack') of the current goal, which
is updated at each debug port. The goals are displayed with di®erent colours: blue for a call
port, green (success) for an exit port. Red (failure) for a fail port. Note that in the call stack,
the ancestor goals are displayed in black: this indicates that the goal is not `current', i.e. the
bindings shown are as they were when the goal was called, and not necessarily what they are
now. We will show how these bindings can be `refreshed' lateron.

To avoid stepping through the whole program, we will add a spy-point to a predicate that may be
causing the problem. Spy-points can be added in the traditional way, using the spy/1 predicate.
However, we can also use thepredicate browser tool: start the Predicate Browser tool from
the Tools menu of TkECL i PSe. This tool allows you to observe and change various properties
of the predicates in your program. A list of predicates are displayed on the left hand side, and a
list of properties on the right. Currently the predicate lis t is showing all the predicates de¯ned
in our program (i.e. in the eclipse module). Looking at this list, not_same_colour/3 's name
suggests that it checks that neighbouring countries do not have the same colour. Select it by
clicking on it, and now the right hand side should display the properties of this predicate:
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The Predicate Browser Tool

We can now view the source code for the predicate by clicking on the Show source button,
which opens a source display window to show the source of the selected predicate. The code for
the predicate is:

not_same_colour(Solver, C1-C2, Countries) :-
% get the colours for the countries C1 and C2
arg(C1, Countries, Colour1),
arg(C2, Countries, Colour2),
% send constraint to either the fd or ic solver
Solver: (Colour1 #\= Colour2).

The code does indeed check that the countriesC1and C2do not have the same colour.

N
For our example program, the list is not very long, but some programs may have many

predicates, and it could be di±cult to ¯nd the predicate you wan t. The predicate list has
a search facility: typing in part of the name of the predicate in the predicate list will search
for the predicate you want. You can try typing in not_same_colour / 3 to see how this
works.

The predicate browser allows us to change some of the properties of a predicate. We can add a
spy-point to the predicate by clicking on the radio button for spy :

Setting Spy Property to On

With TkECL i PSe, we can do more than just place a spy point on a predicate: we can specify
further conditions for when the tracer should stop at a spy point, using the ¯lter tool.
Start the ¯lter tool by selecting Configure filter from the Options menu of the tracer tool:
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Figure 5.3: The Tracer Filter Tool

Starting the Filter Tool from the Tracer

The ¯lter tool opens in a new window, as shown in Figure 5.3. This tool allows us to specify
a `¯lter' for the debug ports so that the tracer will only stop a t a port with the properties
speci¯ed by the tool. In our case, we want to seenot_same_colour/3 only when countries 3
and 4 are involved. This can be done with the \Predicate specīcation" facility, enabled by the
Specific predicate instance: radio button. Pressing this button will allow us to specify a
condition in Prolog syntax which will be checked at each debug port. For our purpose, we enter
the following:

Setting Conditions for Speci¯c Predicate Instances

This speci¯es that the ¯lter should stop at a not_same_colour/3 goal, when one of the countries
in the pair X-Y is country 4: the Goal template is used to specify the template the debug port
goal should match, and theCondition: can be any ECLi PSe goal, perhaps with variables from
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the Goal template , as in our case. The test is done by unifying the goal with the template,
and then executing the condition. Note that any bindings areundone after the test.
Note that we have also deselected theexit port in the ¯lter condition. You can do this by
clicking on the exit radio button. This means that the tracer does not stop at any exit port.
Press Goon the ¯lter tool to start the tracer running with the ¯lter. You can also press the
Filter command button on the tracer to do the same thing. We see that the tracer has jumped
to a not_same_colour/3 goal involving country 4 as expected. However, there is a gapin the
call stack as we skipped over the tracing of some ancestor goals. We can see these goals by
refreshing the goal stack. This can be done by pressing and holding down the right mouse
button while the mouse cursor is over a goal in the call stack,which will popup a menu for the
goal:

Popup Menu for a Goal in Tracer's Call Stack

In this case, we have opened the menu overnot_same_colour/3 , and the options are for this
goal. Various options are available, but for now we choose the Refresh goal stack option.
This will result in the following goal stack display:

Refreshed Call Stack

Notice that the colour of the goals in the goal stack are now all blue, indicating that the bindings
shown are current.
PressFilter on the tracer several times to jump to other ports involving country 4. You will
see that none of them involve countries 3 and 4. So perhaps countries 3 and 4 are not checked
by not_same_coulour/3 , i.e. 3-4 or 4-3 are never passed tonot_same_colour/3 . Looking at
the call stack, we can see that the country pair innot_same_colour/3 seem to appear as an
element in a list of country pairs, as far back ascolouring(...) . Unfortunately, the debugger
does not display the whole list. We see something like:

do_colouring(prolog, input_order, indomain, [4 - 2, 4 - 1, . ..

due to the `print depth' feature, which shortens the printin g of large terms. We can examine
the whole list by using the inspector to examine the goal. To do this, we double click on the
do_colouring(...) goal to `open' it for inspection.
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This will launch the Inspector tool on the do_colouring goal. The inspector displays the term
in a hierarchical fashion as a tree, which allows us to navigate the term. The initial display is
shown on the left panel below. We are interested in examiningthe full list. We can look at this
list by double clicking on it to expand the node, which results in the display in the right panel
below. You may need to scroll down to see the whole list:

Using the Inspector

The inspector shows that this list does not contain the pair 4-3 or 3-4 , which should be there
so that not_same_colour can check that these two countries are not assigned the same colour.
The inspector tool is modal { when it is open, the rest of TkECLi PSe is inaccessible. Close
the Inspector by clicking on its Close button, go back to the tracer, and see where the country
pair list comes from. It ¯rst appears in the ancestor goalsdo_colouring(prolog,...) , as the
next parent colouring(prolog,...) does not have this list. So the list is created in a body
goal of colouring(...) before do_colouring(...) is called. We can look at the source of
colouring(...) to see how this list is created. To do this, we can selectDisplay source
option from the popup menu for the colouring(...) goal:

Displaying Source for a Goal in the Call Stack

The code for this predicate is quite long, but for our purposes we are only interested in the
country-pair list that is passed to do_colouring :

colouring1(Type, Select, Choice0, N, Backtracks) :-
....
findall(C1-C2, (neighbour(C1,C2), C1=<N,C2=<N), Neighb ours),
....
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do_colouring(Type, Select, Choice, Neighbours, Countrie s,
CountryList, Backtracks),

....

Looking at this source and the Call stack goal, we can see thatthe country pair list is constructed
from neighbour/2 calls. Let's look at the source forneighbour/2 . We can do this from the
predicate browser, by selectingneighbour/2 and pushing the Show sourcebutton. We see the
following:

neighbour / 2 in file buggy_data.map, line 2:
%neighbour(4, 3).
neighbour(4, 2).
neighbour(4, 1).
neighbour(4, 2).
neighbour(3, 1).
neighbour(3, 2).
neighbour(1, 2).

Soneigbour(4,3) was indeed missing. Another way to checkneighbour/2 , without looking at
the source, would be using the Simple Query tool. This tool isagain started from TkECL i PSe's
Tools menu. It can be used to send simple queries to ECLi PSe, even while another query is
being executed (as we are here, executing thecolour query). We can use this tool to check if
neigbour(4,3) or neighbour(3,4) are de¯ned or not:

The Simple Query Tool

To send a query, simply type it in the entry window and press return, and the reply will be
sent to the reply window. In the example above, we have triedneighbour(4,3) , followed by
neighbour(3,4) , and both failed, indicating that there is no neighbour relationship de¯ned
between countries 3 and 4.
We can ¯x the program by editing the ¯le buggy_data.map and adding the neighbour(4, 3) line
back. First, we end our current debugging session by closingthe tracer window. You can see
from the map display that the execution continues until a solution is produced. PressingDone
on the map display will return control to ECL i PSe. Alternatively, if continuing the execution is
undesirable, press theAbort command button in the tracer, which would abort the execution.
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In TkECL i PSe, you can usually perform these operations on an object whilethe mouse
cursor is over it:

left-click selects the object.

double (left)-click `opens' the object. This can mean expanding it (e.g. in the inspec-
tor), or calling the inspector on it (e.g. on a goal in the call stack).

Right-click and hold Opens a menu which gives further option/information on the ob-
ject.

Figure 5.4: Mouse Button Operations on Objects

Once we have made the correction to the program and saved it, we compile it by pressing the
Makebutton on TkECL i PSe. This recompiles any ¯les that have been updated since ECLi PSe

last compiled the ¯le.

Running the program again will show that the bug is indeed ¯xed.

5.4 Summary

5.4.1 TkECL i PSe toplevel

Type in query here
History mechanism:
     1. up/down arrow keys
     2. press arrow box for history list

3. right-click for history list (with duplicates)

Interrupt button
Press to interrupt program execution

(Disabled if no program is running)

Query entry window

Make button
Press to recompile changed programs

Displays status of last query

Query status window

Current module
Shows current module for query entry
Change module by pressing down arrow box and
select from list (new module must be created from

`New module' option of  File menu

Output window
Output from program appears here

  - old output in black
  - most current output in blue

  - error output in red
  - warning output in orange

Results window
Query, bindings to query, execution status of query
appears here

    - older queries in black
    - most recent query in blue
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Compile scratch pad allow simple programs to be written and compiled. Equivalent to [user]
in command line ECLi PSe.

Source ¯le manager manage source ¯les for this ECLi PSe session.

Predicate browser view/change properties of predicates.

Delayed goals view delayed goals.

Tracer debugger for ECLi PSe programs.

Inspector term inspector. Useful for viewing large terms.

Visualisation client start a visualisation client.

Global settings view/change global ECLi PSe settings.

Statistics show statistics. Information is updated dynamically.

Simple query send simple queries to ECLi PSe.

Library browser and help interface to ECL i PSe documentation.

TkECLiPSe preference editor view/change TkECL i PSe settings.

Figure 5.5: Available Development tools

5.4.2 Predicate Browser

Predicate module
Module of predicates listed
Change by pressing arrow box

Selected predicate properties
Show properties of selected predicate

Non-changable property
Shown grayed-out

Predicate type
Type of predicate listed
Change type by pressing arrow box

Predicate search
search for predicate in predicate list
by typing while in list window

Shown solid. Click to change

Changable property

Show source button
Press to display source of selected
predicate (if available)

Selected predicate
Click to select predicate

Predicate list
list of predicate in selected module
of selected type
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5.4.3 Tracer

 
Shows all ports traced by debugger
Indentation indicates depth of goal

fail type port in red (failure)

call type port in blue
exit type port in green (success)

Jump buttons
Press button to jump to port according to condition
(use Filter tool for combination of conditions)

- To Invoc: jump to given invocation number
- To Depth: jumpt to goal between specified depth
- To Port:   jump to specified port type 

Tracer command buttons
Press button to execute tracer command:

- Creep: creep to next port (`c' key)
-Skip: skip to exit port (`s' key)
-Up: jump to a port of parent goal
- Leap: leap to a goal with spied point (`l' key)

- Filter: jump to next port with filter conditions
- Abort: abort execution and stop debugging
- Nodebug: continue execution without debugging

Call stack window
Shows the current call stack (current goal + ancestors)
non-current  in black

         Trace Log window

current in blue green (success) red (failure)

Call stack goal popup menu
Right-hold mouse button on a call stack goal to get
window.
   - Summaries predicate (name/arity@module <priority>)
   - toggle spy point for predicate
   - invoked inspector on this goal 
       (equivalent to double clicking on goal directly)
   - observe goal for change using display matrix
   - force this goal to fail
   - jump to this invocation
   - jump to this depth
   - refresh goal stack (also under Options menu)

5.4.4 Tracer Filter

Depth and Invocation filter
stop if port within specified depth and invocation
range

Port type filter
stop if port is of selected type
(note fail type ports non-selectable)

Stop at any predicate if selected

Stop at spied predicate if selected

Predicate instance filter if selected

   - Goal template: template for goal
   - Condition: condition for stopping

conditions for goal instance to stop
   - Defining module: where goal is defined

   - Calling module: where goal is called from

Apply filter
press button to jump to goal meeting all conditions
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5.4.5 Term Inspector

Popup menu for subterm
right-hold over a subterm to get menu
    - summary of subterm
    - observe subterm for change with
        display matrix

Selected subterm
left-click to select
double click to expand/collapse

Term display window
Inspected term displayed as a tree
navigate by expanding/collapsing
subterms

selected term displayed textually
path to subterm also displayed here

Text display window

System message window
error messages displayed here

5.4.6 Delayed Goals Viewer

Hold right-mouse button while over goal
     - summary information for goal
     - display source (if available)
     - inspect goal with inspector
     - observe goal for change with
         display matrix

Refresh button

select types of delayed goals shown:

Goal filter

 - spied only: show goals that have
     spy points
- scheduled only: show scheduled
    goals.

   - traced only: show goals that can
   be traced

Scheduled goals
scheduled (but not yet executed)
goal shown in green

Suspended goals

press button to update display

Delayed goal popup menu
(menu options when tracer is active)

(updated at every trace line by default)

55



56



Chapter 6

Program Analysis

This chapter describes some of the tools provided by ECLi PSe to analyse the runtime behaviour
of a program.

6.1 What tools are available?

ECL i PSe provides a number of di®erent tools to help the programmer understand their how
their program behaves at runtime.

Debugger Provides a low level view of program activity.
J

See chapter 5 and theDebuggingsection in the user manual for a comprehensive look at
debugging ECLi PSe programs

Pro¯ler Samples the running program at regular intervals to give a statistical summary of where
the execution time is spent.

Port Pro¯ler Collects statistics about program execution in terms of the box model of execution.
See library(port pro¯ler) or use the Port Pro¯le option from the tkeclipse Run menu.

Coverage Records the number of times various parts of the program are executed.

Visualisation framework
J

See theVisualisation Tools Manual for more information

Available Program Analysis tools

This section focuses on two complementary tools

1. The pro¯ler

2. The coveragelibrary

6.2 Pro¯ler

The pro¯ling tool helps to ¯nd hot spots in a program that are worth optimising. It can be used
any time with any compiled Prolog code, it is not necessary touse a special compilation mode
or set any °ags. Note however that it is not available on Windows. When
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?- profile(Goal).

is called, the pro¯ler executes theGoal in the pro¯ling mode, which means that every 100th of
a second the execution is interrupted and the pro¯ler recordsthe currently executing procedure.
Consider the following n-queens code.

queen(Data, Out) :-
qperm(Data, Out),
safe(Out).

qperm([], []).
qperm([X|Y], [U|V]) :-

qdelete(U, X, Y, Z),
qperm(Z, V).

qdelete(A, A, L, L).
qdelete(X, A, [H|T], [A|R]) :-

qdelete(X, H, T, R).

safe([]).
safe([N|L]) :-

nodiag(L, N, 1),
safe(L).

nodiag([], _, _).
nodiag([N|L], B, D) :-

D =\= N - B,
D =\= B - N,
D1 is D + 1,
nodiag(L, B, D1).

Issuing the following query will result in the pro¯ler record ing the currently executing goal 100
times a second.

?- profile(queen([1,2,3,4,5,6,7,8,9],Out)).
goal succeeded

PROFILING STATISTICS
--------------------

Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)
Total user time: 0.03s

Predicate Module %Time Time %Cum
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--------------------------------------------------- -----
qdelete /4 eclipse 50.0% 0.01s 50.0%
nodiag /3 eclipse 50.0% 0.01s 100.0%

Out = [1, 3, 6, 8, 2, 4, 9, 7, 5]
Yes (0.14s cpu)

From the above result we can see how the pro¯ler output contains four important areas of
information:

1. The ¯rst line of output indicates whether the speci¯ed goal succeeded , failed or aborted .
The profile/1 predicate itself always succeeds.

2. The line beginning Goal: shows the goal which was pro¯led.

3. The next line shows the time spent executing the goal.

4. Finally the predicates which were being executed when thepro¯ler sampled, ranked in
decreasing sample count order are shown.

The problem with the results displayed above is that the sampling frequency is too low when
compared to the total user time spent executing the goal. In fact in the above example the
pro¯ler was only able to take two samples before the goal terminated.
The frequency at which the pro¯ler samples is ¯xed, so in order to obtain more representative
results one should have an auxiliary predicate which calls the goal a number of times, and
compile and pro¯le a call to this auxiliary predicate. eg.

queen_100 :-
(for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9],_Out)).

Note that, when compiled, the abovedo/2 loop would be e±ciently implemented and not cause
overhead that would distort the measurement.
J

See section 4.2 for more information on logical loops

?- profile(queen_100).
goal succeeded

PROFILING STATISTICS
--------------------

Goal: queen_100
Total user time: 3.19s

Predicate Module %Time Time %Cum
--------------------------------------------------- -----
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nodiag /3 eclipse 52.2% 1.67s 52.2%
qdelete /4 eclipse 27.4% 0.87s 79.6%
qperm /2 eclipse 17.0% 0.54s 96.5%
safe /1 eclipse 2.8% 0.09s 99.4%
queen /2 eclipse 0.6% 0.02s 100.0%

Yes (3.33s cpu)

In the above example, the pro¯ler takes over three hundred samples resulting in a more accurate
view of where the time is being spent in the program. In this instance we can see that more than
half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for optimisation.
This is left as an exercise for the reader.

6.3 Line coverage

The line coverage library provides a means to ascertain exactly how many times individual
clauses are called during the evaluation of a query.
The library works by placing coverage countersat strategic points throughout the code being
analysed. These counters are incremented each time the evaluation of a query passes them.
There are three locations in which coverage counters can be inserted.

1. At the beginning of a code block.

2. Between predicate calls within a code block.

3. At the end of a code block.
Locations where coverage counters can be placed

A code block is de¯ned to be a conjunction of predicate calls. ie. a sequence of goals separated
by commas.
As previously mentioned, by default, code coverage counters are inserted before and after every
subgoal in the code. For instance, in the clause

p :- q, r, s.

four counters would be inserted: before the call toq, between q and r , between r and s, and
after s:

p :- point(1), q, point(2), r, point(3), s, point(4).

This is the most precise form provided. The counter values donot only show whether all code
points were reached but also whether subgoals failed or aborted (in which case the counter before
a subgoal will have a higher value than the counter after it). For example, the result of running
the above code is:

p :- 43 q, 25 r, 25 s 0 .
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which indicates that q was called 43 times, but succeeded only 25 times,r was called 25 times
and succeeded always, ands was called 25 times and never succeeded. Coverage counts of zero
are displayed in red (the ¯nal box) because they indicate unreached code. The format of the
display is explained in the next section.

6.3.1 Compilation

In order to add the coverage counters to code, it must be compiled with the ccompile/1
predicate which can be found in thecoverage library.
The predicate ccompile/1 (note the initial `c' stands for coverage) can be used in place of the
normal compile/1 predicate to compile a ¯le with coverage counters.
Here we see the results of compiling then-queens example given in the previous section.

?- coverage:ccompile(queens).
coverage: inserted 22 coverage counters into module eclips e
foo.ecl compiled traceable 5744 bytes in 0.00 seconds

Yes (0.00s cpu)

Once compiled, predicates can be called as usual and will (bydefault) have no visible side e®ects.
Internally however, the counters will be incremented as theexecution progresses. To see this in
action, consider issuing the following query having compiled the previously de¯ned code using
ccompile/1 .

?- queens([1,2,3,4,5,6,7,8,9], Out).

The default behaviour of the ccompile/1 predicate is to place coverage counters as explained
above, however such a level of detail may be unnecessary. If one is interested in reachability
analysis the two argument predicateccompile/2 can take a list of name:value pairs which can
be used to control the exact manner in which coverage counters are inserted.

J
Seeccompile/2 for a full list of the available °ags.

In particular by specifying the option blocks_only:on , counters will only be inserted at the
beginning and end of code blocks. Reusing the above example this would result in counters at
point(1) and point(4).

p :- 43 q, r, s 0 .

This can be useful in tracking down unexpected failures by looking for exit counters which di®er
from entry counters, for example.

6.3.2 Results

To generate an html ¯le containing the coverage counter results issue the following query.

?- coverage:result(queens).
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Figure 6.1: Results of running queens([1,2,3,4,5,6,7,8,9], )
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result/0 Creates results for all ¯les which have been compiled with coverage counters.

result/1 This predicate takes a single argument which is the name of the ¯le to print the
coverage counters for.

result/2 The result predicate has a two argument form, the second argument de¯ning a
number of °ags which control (amongst other things)

² The directory in which to create the results ¯le. Default: coverage.

² The format of the results ¯le (html or text). Default: html .

J
Seecoverage library and pretty printer library for more details

Figure 6.2: Result generating commands

This will create the result ¯le coverage/queens.html which can be viewed using any browser.
It contains a pretty-printed form of the source, annotated with the values of the code coverage
counters as described above. An example is shown in ¯gure 6.1.
For extra convenience the predicateresult/0 is provided which will create results for all ¯les
which have been compiled with coverage counters.
Having generated and viewed results for one run, the coverage counters can be reset by calling

?- coverage:reset_counters.

Yes (0.00s cpu)
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Chapter 7

An Overview of the Constraint
Libraries

7.1 Introduction

In this section we shall brie°y summarize the constraint solving libraries of ECL i PSewhich will
be discussed in the rest of this tutorial.

7.2 Implementations of Domains and Constraints

7.2.1 Suspended Goals: suspend

The constraint solvers of ECLi PSe are all implemented using suspended goals. The simplest im-
plementation of any constraint is to suspend it until all its variables are su±ciently instantiated,
and then test it.
The suspendsolver implements this behaviour for all the mathematical constraints of ECL i PSe,
> =, > , =:=, = n=, = < and < .

7.2.2 Interval Solver: ic

The standard constraint solver o®ered by most constraint programming systems is the¯nite
domain solver, which applies constraint propagation techniques developed in the AI community
[26]. ECLi PSe supports ¯nite domain constraints via the ic library 1. The library implements
¯nite domains of integers, together with a basic set of constraints.
In addition, ic also allowscontinuous domains(in the form of numeric intervals), and constraints
(equations and inequations) between expressions involving variables with continuous domains.
These expressions can contain non-linear functions such assin and built-in constants such aspi.
Integrality is treated as a constraint, and it is possible to mix continuous and integral variables
in the same constraint. Specialised search techniques (splitting [25] and squashing[14]) support
the solving of problems with continuous variables.

1and the fd library which will not be addressed in this tutorial
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Most constraints are also available in rei¯ed form, providing a convenient way of combining
several primitive constraints.
Note that the ic library itself implements only a standard, basic set of arithmetic constraints.
Many more ¯nite domain constraints can be de¯ned, which have uses in speci¯c applications.
The behaviour of these constraints is to prune the ¯nite domains of their variables, in just the
same way as the standard constraints. ECLi PSe o®ers several further libraries which implement
such constraints using the underlying domain of theic library.

7.2.3 Global Constraints: ic global

One such library is ic global. It supports a variety of constraints, each of which takes asan
argument a list of ¯nite domain variables, of unspeci¯ed length. Such constraints are called
\global" constraints [1]. Examples of such constraints, available from the ic global library are
alldifferent/1 , maxlist/2 , occurrences/3 and sorted/2 . For more details see section 8.5
in chapter 8.

7.2.4 Scheduling Constraints: ic cumulative, ic edge ¯nder

There are several ECLi PSe libraries implementing global constraints for scheduling applica-
tions. The constraints take a list of tasks (start times, durations and resource needs), and a
maximum resource level. They reduce the ¯nite domains of the task start times by reasoning
on resource bottlenecks [12]. Three ECLi PSe libraries implementing scheduling constraints are
ic cumulative, ic edge¯nder and ic edge¯nder3 . They implement the same constraints declar-
atively, but with di®erent time complexity and strength of pr opagation. For more details see
the library documentation in the Reference Manual.

7.2.5 Finite Integer Sets: ic sets

The ic sets library implements constraints over the domain of ¯nite sets of integers2. The
constraints are the usual relations over sets, e.g. membership, inclusion, intersection, union,
disjointness. In addition, there are constraints between sets and integers, e.g. cardinality and
weight constraints. For those, the ic setslibrary cooperates with the ic library. For more details
see chapter 10.

7.2.6 Linear Constraints: ic eplex

eplex supports a tight integration [3] between an external linear programming (LP) / mixed
integer programming (MIP) solver (XPRESS [19] or CPLEX [10]) and ECL i PSe. Constraints
as well as variables can be handled by the external LP/MIP solver, by a propagation solver like
ic, or by both. Variable bounds are automatically passed fromic variables to the external solver.
Optimal solutions and other solution porperties can be returned to ECL i PSe as required. Search
can be carried out either in ECLi PSe or in the external solver. For more details see chapter 16.

2 the other set solvers lib(conjunto) and lib(fd sets) are similar but not addressed in this tutorial
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7.3 User-De¯ned Constraints

7.3.1 Generalised Propagation: propia

The predicate infers takes as one argument any user-de¯ned predicate, and as a second argument
a form of propagation to be applied to that predicate.
This functionality enables the user to turn any predicate into a constraint [13]. The forms of
propagation include ¯nite domains and intervals. For more details see chapter 15.

7.3.2 Constraint Handling Rules: ech

The user can also specify predicates using rules with guards[8]. They delay until the guard is
entailed or disentailed, and then execute or terminate accordingly.
This functionality enables the user to implement constraints in a way that is clearer than directly
using the underlying suspendlibrary. For more details see chapter 15.

7.4 Search and Optimisation Support

7.4.1 Tree Search Methods: ic search

ECL i PSe has built-in backtracking and is therefore well suited for performing depth-¯rst tree
search. With combinatorial problems, naive depth-¯rst search is usually not good enough, even
in the presence of constraint propagation. It is usually necessary to apply heuristics, and if the
problems are large, one may even need to resort to incompletesearch. Theic searchcontains a
collection of prede¯ned, easy-to-use search heuristics as well as incomplete tree search strategies,
applicable to problems involving ic variables. For more details see chapter 12.

7.4.2 Optimisation: branch and bound

Solvers that are based on constraint propagation are typically only concerned with satis¯ability,
i.e. with ¯nding some or all solutions to a problems. The branch-and-bound method is a general
technique to build optimisation on top of a satis¯ability sol ver. The ECL i PSe branch and bound
library is a solver-independent implementation of the branch-and-bound method, and provides
a number of options and variants of the basic technique.

7.5 Hybridisation Support

7.5.1 Repair and Local Search: repair

The repair library allows a tentative value to be associated with any variable [27]. This tentative
value may violate constraints on the variable, in which casethe constraint is recorded in a list
of violated constraints. The repair library also supports propagation invariants [17]. Using
invariants, if a variable's tentative value is changed, the consequences of this change can be
propagated to any variables whose tentative values depend on the changed one. The use of
tentative values in search is illustrated in chapter 13.
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7.5.2 Hybrid: probing for scheduling

For scheduling applications where the cost is dependent on each start time, a combination of
solvers can be very powerful. For example, we can use ¯nite domain propagation to reason on
resources and linear constraint solving to reason on cost [6]. The probing for schedulinglibrary
supports such a combination, via a similar user interface tothe cumulative constraint mentioned
above in section 7.2.3. For more details see chapter 18.

7.6 Other Libraries

The solvers described above are just a few of the many libraries available in ECLiPSe and listed
in the ECL i PSe library directory. Any ECL i PSe user who has implemented a constraint solver
is encouraged to make it available to the user community and publicise it via the eclipse-
users@icparc.ic.ac.uk mailing list! Comments and suggestions on the existing libraries are
also welcome!
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Chapter 8

Getting started with Interval
Constraints

The Interval Constraints (IC) library provides a constrain t solver which works with both integer
and real interval variables. This chapter provides a general introduction to the library, and
then focusses on its support for integer constraints. For more detail on IC's real variables and
constraints, please see Chapter 9.

8.1 Using the Interval Constraints Library

To use the Interval Constraints Library, load the library us ing either of:

:- lib(ic).
:- use_module(library(ic)).

Specify this at the beginning of your program.

8.2 Structure of a Constraint Program

The typical top-level structure of a constraint program is

solve(Variables) :-
read_data(Data),
setup_constraints(Data, Variables),
labeling(Variables).

where setup_constraints/2 contains the problem model. It creates the variables and thecon-
straints over the variables. This is often, but not necessarily, deterministic. The labeling/1
predicate is the search part of the program that attempts to ¯nd solutions by trying all instan-
tiations for the variables. This search is constantly pruned by constraint propagation.
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The above program will ¯nd all solutions. If the best solution is wanted, a branch-and-bound
procedure can be wrapped around the search component of the program:

solve(Variables) :-
read_data(Data),
setup_constraints(Data, Variables, Objective),
branch_and_bound:minimize(labeling(Variables), Objec tive).

J
The branch and bound library provides generic predicates that support optimization in con-

junction with any ECL i PSe solver. Section 12.1.2 discusses these predicates.

8.3 Modelling

The problem modelling code must:

² Create the variables with their initial domains

² Setup the constraints between the variables

A simple example is the \crypt-arithmetic" puzzle, SEND+MORE = MONEY. The idea is to associate
a digit (0-9) with each letter so that the equation is true. The ECL i PSe code is as follows:

:- lib(ic).

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],

% Assign a finite domain with each letter - S, E, N, D, M, O, R, Y -
% in the list Digits

Digits :: [0..9],

% Constraints
alldifferent(Digits),
S #\= 0,
M #\= 0,

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y,

% Search
labeling(Digits).
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Vars :: Domain Constrains Vars to take only integer or real values from the domain
speci¯ed by Domain. Vars may be a variable, a list, or a submatrix (e.g. M[1..4,
3..6]); for a list or a submatrix, the domain is applied recursively so that one can
apply a domain to, for instance, a list of lists of variables.Domain can be speci¯ed as
a simple range Lo .. Hi, or as a list of subranges and/or individual elements (integer
variables only). The type of the bounds determines the type of the variable (real or
integer). Also allowed are the (untyped) symbolic bound valuesinf , +inf and -inf .

Vars $:: Domain Like ::/2 , but for declaring real variables (i.e. it never imposes inte-
grality, regardless of the types of the bounds).

Vars #:: Domain Like ::/2 , but for declaring integer variables.

reals(Vars) Declares that the variables are IC variables (like declaring Vars :: -
inf..inf ).

integers(Vars) Constrains the given variables to take integer values only.

Figure 8.1: Domain constraints

8.4 Built-in Constraints

The following section summarises the built-in constraint predicates of theic library.
The most common way to declare an IC variable is to use the::/2 predicate (or $::/2 or #::/2 )
to give it an initial domain:

?- X :: -10 .. 10.
X = X{-10 .. 10}
Yes

?- X :: -10.0 .. 10.0.
X = X{-10.0 .. 10.0}
Yes

?- X #:: -10 .. 10.
X = X{-10 .. 10}
Yes

?- X $:: -10 .. 10.
X = X{-10.0 .. 10.0}
Yes

?- X :: 0 .. 1.0Inf.
X = X{0 .. 1.0Inf}
Yes
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ExprX #= ExprY ExprX is equal to ExprY. ExprX and ExprY are integer expressions,
and the variables and subexpressions are constrained to be integers.

ExprX # > = ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY
are integer expressions, and the variables and subexpressions are constrained to be
integers.

ExprX #= < ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are inte-
ger expressions, and the variables and subexpressions are constrained to be integers.

ExprX # > ExprY ExprX is greater than ExprY. ExprX and ExprY are integer ex-
pressions, and the variables and subexpressions are constrained to be integers.

ExprX # < ExprY ExprX is less than ExprY. ExprX and ExprY are integer expres-
sions, and the variables and subexpressions are constrained to be integers.

ExprX # n= ExprY ExprX is not equal to ExprY. ExprX and ExprY are integer ex-
pressions, and the variables are constrained to be integers.

Figure 8.2: Integral Arithmetic constraints

?- X :: 0.0 .. 1.0Inf.
X = X{0.0 .. 1.0Inf}
Yes

?- X :: [1, 4 .. 6, 9, 10].
X = X{[1, 4 .. 6, 9, 10]}
Yes

Note that for ::/2 the type of the bounds de¯nes the type of the variable (integeror real) but that
in¯nities are considered type-neutral. To just declare the type of a variable without restricting
the domain at all, one can use theintegers/1 and reals/1 .
The ¯nal way to declare that a variable is an IC variable is to ju st use it in an IC constraint:
this performs an implicit declaration.
The basic IC relational constraints come in two forms. The ¯rst form is for integer-only con-
straints, and is summarised in Figure 8.2. All of these constraints contain # in their name,
which indicates that all numbers appearing in them must be integers, and all variablesand
subexpressionswill be constrained to be integral. It is important to note th at subexpressions
are constrained to be integral, because it means, for instance, that X/2 + Y/2 #= 1 and X
+ Y #= 2 are di®erent constraints, since the former constrains X and Yto be even.
The second form is the general form of the constraints, and issummarised in Figure 8.3. These
constraints can be used with either integer or real variables and numbers. With the exception
of integrality issues, the two versions of each constraint are equivalent. Thus if the constants
are integers and the variables and subexpressions are integral, the two forms may be used
interchangeably.
Most of the basic constraints operate by propagating bound information (performing interval
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ExprX $= ExprY ExprX is equal to ExprY. ExprX and ExprY are general expressions.

ExprX $ > = ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY are
general expressions.

ExprX $= < ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are gen-
eral expressions.

ExprX $ > ExprY ExprX is greater than ExprY. ExprX and ExprY are general expr es-
sions.

ExprX $ < ExprY ExprX is less than ExprY. ExprX and ExprY are general expressions.

ExprX $ n= ExprY ExprX is not equal to ExprY. ExprX and ExprY are general ex-
pressions.

Figure 8.3: Non-Integral Arithmetic Constraints

reasoning). The exceptions are the disequality (not equals) constraints, which perform domain
reasoning (arc consistency). An example:

?- [X, Y] :: 0 .. 10, X #>= Y + 2.
X = X{2 .. 10}
Y = Y{0 .. 8}
There is 1 delayed goal.
Yes

In the above example, since the lower bound ofY is 0 and X must be at least 2 greater, the
lower bound of X has been updated to 2. Similarly, the upper bound ofY has been reduced to 8.
The delayed goal indicates that the constraint is still active: there are still some combinations
of values forX and Y which violate the constraint, so the constraint remains until it is sure that
no such violation is possible.
Note that if a domain ever becomes empty as the result of propagation (no value for the vari-
able is feasible) then the constraint must necessarily havebeen violated, and the computation
backtracks.
For a disequality constraint, no deductions can be made until there is only one variable left, at
which point (if it is an integer variable) the variable's dom ain can be updated to exclude the
relevant value:

?- X :: 0 .. 10, X #\= 3.
X = X{[0 .. 2, 4 .. 10]}
Yes

?- [X, Y] :: 0 .. 10, X - Y #\= 3.
X = X{0 .. 10}
Y = Y{0 .. 10}
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There is 1 delayed goal.
Yes

?- [X, Y] :: 0 .. 10, X - Y #\= 3, Y = 2.
X = X{[0 .. 4, 6 .. 10]}
Y = 2
Yes

J
IC supports a range of mathematical operators beyond the basic +/2 , -/2 , */2 , etc. See the

IC chapter in the Constraint Library Manual for full details .

N
If one wishes to construct an expression to use in an IC constraint at run time, then one

must wrap it in eval/1 :

?- [X, Y] :: 0..10, Expr = X + Y, Sum #= Expr.
number expected in set_up_ic_con(7, 1, [0 * 1, 1 * Sum{-1.0In f .. 1.0Inf}, -
1 * (X{0 .. 10} + Y{0 .. 10})])
Abort

?- [X, Y] :: 0..10, Expr = X + Y, Sum #= eval(Expr).
X = X{0 .. 10}
Y = Y{0 .. 10}
Sum = Sum{0 .. 20}
Expr = X{0 .. 10} + Y{0 .. 10}
There is 1 delayed goal.
Yes

Rei¯cation provides access to the logical truth of a constraint expression and can be used by:

² The ECL i PSe system to infer the truth value, re°ecting the value into a var iable.

² The programmer to enforce the constraint or its negation by giving a value to the truth
variable.

This logical truth value is a boolean variable (domain 0..1 ), where the value 1 means the
constraint is or is required to be true, and the value 0 means the constraint is or is required to
be false.
When constraints appear in an expression context, they evaluate to their rei¯ed truth value.
Practically, this means that the constraints are posted in apassive check but do not propagate
mode. In this mode no variable domains are modi¯ed but checks are made to determine whether
the constraint has become entailed (necessarily true) or disentailed (necessarily false).
The simplest and arguably most natural way to reify a constraint is to place it in an expression
context (i.e. on either side of a$=, #=, etc.) and assign its truth value to a variable. For example:

?- X :: 0 .. 10, TruthValue $= (X $> 4).
TruthValue = TruthValue{[0, 1]}
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X = X{0 .. 10}
There is 1 delayed goal.
Yes

?- X :: 6 .. 10, TruthValue $= (X $> 4).
TruthValue = 1
X = X{6 .. 10}
Yes

?- X :: 0 .. 4, TruthValue $= (X $> 4).
TruthValue = 0
X = X{0 .. 4}
Yes

All the basic relational constraint predicates also come ina three-argument form where the third
argument is the rei¯ed truth value, and this form can also be used to reify a constraint directly.
For example:

?- X :: 0 .. 10, $>(X, 4, TruthValue).
X = X{0 .. 10}
TruthValue = TruthValue{[0, 1]}
There is 1 delayed goal.
Yes

As noted above the boolean truth variable corresponding to aconstraint can also be used to
enforce the constraint (or its negation):

?- X :: 0 .. 10, TruthValue $= (X $> 4), TruthValue = 1.
X = X{5 .. 10}
TruthValue = 1
Yes

?- X :: 0 .. 10, TruthValue $= (X $> 4), TruthValue = 0.
X = X{0 .. 4}
TruthValue = 0
Yes

By instantiating the value of the rei¯ed truth variable, the c onstraint changes from beingpassive
to being active. Once actively true (or actively false) the constraint will prune domains as though
it had been posted as a simple non-rei¯ed constraint.

J
Additional information on rei¯ed constraints can be found in the ECL i PSe Constraint Library

Manual that documents IC: A Hybrid Finite Domain / Real Number Interval Constraint
Solver.

IC also provides a number of connectives useful for combining constraint expressions. These are
summarised in Figure 8.4. For example:

75



and Constraint conjunction. e.g. X $> 3 and X $< 8

or Constraint disjunction. e.g. X $< 3 or X $> 8

= > Constraint implication. e.g. X $> 3 => Y $< 8

neg Constraint negation. e.g. neg X $> 3

Figure 8.4: Constraint Expression Connectives

?- [X, Y] :: 0 .. 10, X #>= Y + 6 or X #=< Y - 6.
X = X{0 .. 10}
Y = Y{0 .. 10}
There are 3 delayed goals.
Yes

?- [X, Y] :: 0 .. 10, X #>= Y + 6 or X #=< Y - 6, X #>= 5.
Y = Y{0 .. 4}
X = X{6 .. 10}
There is 1 delayed goal.
Yes

In the above example, once it is known thatX #=< Y - 6cannot be true, the constraint X #>=
Y + 6is enforced.

Note that these connectives exploit constraint rei¯cation, and actually just reason about boolean
variables. This means that they can be used as boolean constraints as well:

?- A => B.
A = A{[0, 1]}
B = B{[0, 1]}
There is 1 delayed goal.
Yes

?- A => B, A = 1.
B = 1
A = 1
Yes

?- A => B, A = 0.
B = B{[0, 1]}
A = 0
Yes
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8.5 Global constraints

The IC constraint solver has some optional components whichprovide so-called global con-
straints. These are high-level constraints that tend to provide more global reasoning than the
constraints in the main IC library. These optional components are contained in the ic_global ,
ic_cumulative , ic_edge_finder and ic_edge_finder3 libraries. The ic_global library pro-
vides a collection of general global constraints, while theothers provide constraints for resource-
constrained scheduling.
To use these global constraints, load the relevant optionallibrary or libraries using directives in
one of these forms:

:- lib(ic_global).
:- use_module(library(ic_global)).

Specify this at the beginning of your program.
Note that some of these libraries provide alternate implementations of predicates which also
appear in other libraries. For example, the alldifferent/1 constraint is provided by both
the standard ic library and the ic_global library. This means that if you wish to use it, you
must use the relevant module quali¯er to specify which one youwant: ic:alldi®erent/1 or
ic global:alldi®erent/1 .

J
See the \Additional Finite Domain Constraints" section of t he Library Manual for more

details of these libraries and a full list of the predicates they provide.

8.5.1 Di®erent strengths of propagation

The alldifferent(List) predicate imposes the constraint on the elements ofList that they
all take di®erent values. The standardalldi®erent/1 predicate from the IC library provides a
level of propagation equivalent to imposing pairwise# n=/2 constraints (though it does it more
e±ciently than that). This means that no propagation is perfo rmed until elements of the list
start being made ground. This is despite the fact that there may be \obvious" inferences which
could be made.
Consider as an example the case of 5 variables with domains1..4 . Clearly the 5 variables
cannot all be given di®erent values, since there are only 4 distinct values available. However,
the standard alldi®erent/1 constraint cannot determine this:

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic:alldifferent(L).
X1 = X1{1 .. 4}
X2 = X2{1 .. 4}
X3 = X3{1 .. 4}
X4 = X4{1 .. 4}
X5 = X5{1 .. 4}
L = [X1{1 .. 4}, X2{1 .. 4}, X3{1 .. 4}, X4{1 .. 4}, X5{1 .. 4}]
There are 5 delayed goals.
Yes
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Consider another example where three of the variables have domain 1..3 . Clearly, if all the
variables are to be di®erent, then no other variable can take avalue in the range 1..3 , since
each of those values must be assigned to one of the original three variables. Again, the standard
alldi®erent/1 constraint cannot determine this:

?- [X1, X2, X3] :: 1 .. 3, [X4, X5] :: 1 .. 5,
ic:alldifferent([X1, X2, X3, X4, X5]).

X1 = X1{1 .. 3}
X2 = X2{1 .. 3}
X3 = X3{1 .. 3}
X4 = X4{1 .. 5}
X5 = X5{1 .. 5}
There are 5 delayed goals.
Yes

On the other hand, ic_global 's alldi®erent/1 constraint performs some stronger, more global
reasoning, and for both of the above examples makes the appropriate inference:

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic_global:alldifferent (L).
No

?- [X1, X2, X3] :: 1 .. 3, [X4, X5] :: 1 .. 5,
ic_global:alldifferent([X1, X2, X3, X4, X5]).

X1 = X1{1 .. 3}
X2 = X2{1 .. 3}
X3 = X3{1 .. 3}
X4 = X4{[4, 5]}
X5 = X5{[4, 5]}
There are 2 delayed goals.
Yes

Of course, there is a trade-o® here: the stronger version of the constraint takes longer to perform
its propagation. Which version is best depends on the natureof the problem being solved.

J
Note that even stronger propagation can be achieved if desired, by using the Propia library

(see Chapter 15).

In a similar vein, the ic_cumulative , ic_edge_finder and ic_edge_finder3 libraries provide
increasingly strong versions of constraints such ascumulative/4 , but with increasing cost to do
their propagation (linear, quadratic and cubic, respectively).

8.6 Simple User-de¯ned Constraints

User-de¯ned, or `conceptual' constraints can easily be de¯nedas conjunctions of primitive con-
straints. For example, let us consider a set of products and the speci¯cation that allows them
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to be colocated in a warehouse. This should be done in such a way as to propagate possible
changes in the domains as soon as this becomes possible.
Let us assume we have a symmetric relation that de¯nes which product can be colocated with
another and that products are distinguished by numeric product identi¯ers:

colocate(100, 101).
colocate(100, 102).
colocate(101, 100).
colocate(102, 100).
colocate(103, 104).
colocate(104, 103).

Suppose we de¯ne a constraintcolocate_product_pair(X, Y) such that any change of the
possible values ofX or Y is propagated to the other variable. There are many ways in which
this pairing can be de¯ned in ECLi PSe. They are di®erent solutions with di®erent properties,
but they yield the same results.

8.6.1 Using Rei¯ed Constraints

We can encode directly the relations between elements in thedomains of the two variables:

colocate_product_pair(A, B) :-
cpp(A, B),
cpp(B, A).

cpp(A, B) :-
[A,B] :: [100, 101, 102, 103, 104],
A #= 100 => B :: [101, 102],
A #= 101 => B #= 100,
A #= 102 => B #= 100,
A #= 103 => B #= 104,
A #= 104 => B #= 103.

This method is quite simple and does not need any special analysis; on the other hand it
potentially creates a huge number of auxiliary constraintsand variables.

8.6.2 Using Propia

By far the simplest mechanism, that avoids this potential creation of large numbers of auxiliary
constraints and variables, is to load the Generalised Propagation library ( propia) and use arc-
consistency (ac) propagation, viz:

?- colocate(X,Y) infers ac
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J
Additional information on propia can be found in section 15.3, section 15 and the ECLi PSe

Constraint Library Manual.

8.6.3 Using the element Constraint

In this case we use theelement/3 predicate, that states in a list of integers that the element
at an index is equal to a value. Every time the index or the value is updated, the constraint is
activated and the domain of the other variable is updated accordingly.

relates(X, Xs, Y, Ys) :-
element(I, Xs, X),
element(I, Ys, Y).

We de¯ne a generic predicate,relates/4 , that associates the corresponding elements at a speci¯c
index of two lists, with one another. The variable I is an index into the lists, Xs and Ys, to yield
the elements at this index, in variablesX and Y.

colocate_product_pair(A, B) :-
relates(A, [100, 100, 101, 102, 103, 104],

B, [101, 102, 100, 100, 104, 103]).

The colocate_product_pair predicate simply calls relates/4 passing a list containing the
product identi¯ers in the ¯rst argument of colocate/2 as Xs and a list containing product
identi¯ers from the second argument ofcolocate/2 as Ys.
Behind the scenes, this is exactly the implementation used for arc-consistency propagation by
the Generalised Propagation library.
Because of the speci¯c and e±cient algorithm implementing the element/3 constraint, it is
usually faster than the ¯rst approach, using rei¯ed constraints.

8.7 Searching for Feasible Solutions

indomain(+DVar) This predicate instantiates the domain variable DVar to an element of its
domain; on backtracking the subsequent value is taken. It isused, for example, to ¯nd
a value of DVar which is consistent with all currently imposed constraints. If DVar is a
ground term, it succeeds. Otherwise, if it is not a domain variable, an error is raised.

labeling(+List) The elements of theList are instantiated using the indomain/1 predicate.

J
Additional information on search algorithms, heuristics and their use in ECLi PSe can be

found in chapter 12.
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8.8 Bin Packing

This section presents a worked example using ¯nite domains tosolve a bin-packing problem.

8.8.1 Problem De¯nition

In this type of problem the goal is to pack a certain amount of di®erent items into the minimal
number of bins under speci¯c constraints. Let us solve an example given by Andre Vellino in
the Usenet group comp.lang.prolog, June 93:

² There are 5 types of items:

glass, plastic, steel, wood, copper

² There are three types of bins:

red, blue, green

² The capacity constraints imposed on the bins are:

{ red has capacity 3

{ blue has capacity 1

{ green has capacity 4

² The containment constraints imposed on the bins are:

{ red can contain glass, wood, copper

{ blue can contain glass, steel, copper

{ green can contain plastic, wood, copper

² The requirement constraints imposed on component types (for all bin types) are:

wood requires plastic

² Certain component types cannot coexist:

{ glass and copper exclude each other

{ copper and plastic exclude each other

² The following bin types have the following capacity constraints for certain components:

{ red contains at most 1 wood item

{ blue implicitly contains at most 1 wood item

{ green contains at most 2 wood items

² Given the initial supply stated below, what is the minimum to tal number of bins required
to contain the components?

{ 1 glass item
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{ 2 plastic items

{ 1 steel item

{ 3 wood items

{ 2 copper items

8.8.2 Problem Model - Using Structures

In modelling this problem we need to refer to an array of quantities of glass items, plastic items,
steel items, wood items and copper items. We therefore introduce:
A structure to hold this array:

:- local struct(contents(glass, plastic, steel, wood, cop per)).

A structure that de¯nes the colour for each of the bin types:

:- local struct(colour(red, blue, green)).

By de¯ning the bin colours as ¯elds of a structure there is an implicit integer value associated
with each colour. This allows the readability of the code to be preserved by writing, for example,
red of colour rather than explicitly writing the colour's integer value ` 1'.
And a structure that represents the bin itself, with its colo ur, capacity and contents:

:- local struct(bin(colour, capacity, contents:contents )).

N
The contents attribute of bin is itself a contents structure. The contents ¯eld declaration

within the bin structure using ': ' allows ¯eld names of the contents structure to be used
as if they were ¯eld names of thebin structure. More information on accessing nested
structures and structures with inherited ¯elds can be found in section 4.1 and in the
Structure Notation section of the ECLi PSe User Manual.

The predicate solve_bin/2 is the general predicate that takes an amount of components packed
into a contents structure and returns the solution.

?- Demand = contents with
[glass:1, plastic:2, steel:1, wood:3, copper:2],

solve_bin(Demand, Bins).
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8.8.3 Handling an Unknown Number of Bins

solve_bin/2 calls bin_setup/2 to generate a listBins. It adds redundant constraints to remove
symmetries (two solutions are considered symmetrical if they are the same, but with the bins in
a di®erent order). Finally it labels all decision variables in the problem.

solve_bin(Demand, Bins) :-
bin_setup(Demand, Bins),
remove_symmetry(Bins),
bin_label(Bins).

The usual pattern for solving ¯nite domain problems is to state constraints on a set of variables,
and then label them. However, because the number of bins needed is not known initially, it is
awkward to model the problem with a ¯xed set of variables.
One possibility is to take a ¯xed, large enough, number of binsand to try to ¯nd a minimum
number of non-empty bins. However, for e±ciency, we choose to solve a sequence of problems,
each one with a - larger - ¯xed number of bins, until a solution is found.
The predicate bin_setup/2 , to generate a list of bins with appropriate constraints, works as
follows. First it tries to match the (remaining) demand with zero, and use no (further) bins. If
this fails, a new bin is added to the bin list; appropriate constraints are imposed on all the new
bin's variables; its contents are subtracted from the demand; and the bin_setup/2 predicate
calls itself recursively:

bin_setup(Demand,[]) :-
all_zeroes(Demand).

bin_setup(Demand, [Bin | Bins]) :-
constrain_bin(Bin),
reduce_demand(Demand, Bin, RemainingDemand),
bin_setup(RemainingDemand, Bins).

all_zeroes(
contents with

[glass:0, plastic:0, wood:0, steel:0, copper:0]
).

reduce_demand(
contents with

[glass:G, plastic:P, wood:W, steel:S, copper:C],
bin with

[glass:BG, plastic:BP, wood:BW, steel:BS, copper:BC],
contents with

[glass:RG, plastic:RP, wood:RW, steel:RS, copper:RC]
) :-
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RG #= G - BG,
RP #= P - BP,
RW #= W - BW,
RS #= S - BS,
RC #= C - BC.

8.8.4 Constraints on a Single Bin

The constraints imposed on a single bin correspond exactly to the problem statement:

constrain_bin(bin with [colour:Col, capacity:Cap, conte nts:C]) :-
colour_capacity_constraint(Col, Cap),
capacity_constraint(Cap, C),
contents_constraints(C),
colour_constraints(Col, C).

colour capacity constraint The colour capacity constraint relates the colour of the bin to
its capacity, we implement this using the relates/4 predicate (de¯ned in section 8.6.3):

colour_capacity_constraint(Col, Cap) :-
relates(Col, [red of colour, blue of colour, green of colour ],

Cap, [3, 1, 4]).

capacity constraint The capacity constraint states the following:

² The number of items of each kind in the bin is non-negative.

² The sum of all the items does not exceed the capacity of the bin.

² and the bin is non-empty (an empty bin serves no purpose)

capacity_constraint(Cap, contents with [glass:G,
plastic:P,
steel:S,
wood:W,
copper:C]) :-

G #>= 0, P #>= 0, S #>= 0, W #>= 0, C #>= 0,
NumItems #= G + P + W + S + C,
Cap #>= NumItems,
NumItems #> 0.
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contents constraints The contents constraints directly enforce the restrictions on items in
the bin: wood requires paper, glass and copper exclude each other, and copper and plastic
exclude each other:

contents_constraints(contents with [glass:G, plastic:P , wood:W, copper:C]) :-

requires(W, P),
exclusive(G, C),
exclusive(C, P).

These constraints are expressed as logical combinations ofconstraints on the number of items.
`requires' is expressed using implication,=>. `Wood requires paper' is expressed in logic as `If
the number of wood items is greater than zero, then the numberof paper items is also greater
than zero':

requires(W,P) :-
W #> 0 => P #> 0.

Exclusion is expressed using disjunction,or . `X and Y are exclusive' is expressed as `Either the
number of items of kind X is zero, or the number of items of kindY is zero':

exclusive(X,Y) :-
X #= 0 or Y #= 0.

colour constraints The colour constraint limits the number of wooden items in bins of di®er-
ent colours. Like the capacity constraint, the relation between the colour and capacity,WCap,
is expressed using therelates/4 predicate. The number of wooden items is then constrained
not to exceed the capacity:

colour_constraints(Col, contents with wood:W) :-
relates(Col, [red of colour, blue of colour, green of colour ],

WCap, [1, 1, 2]),
W #=< WCap.

This model arti¯cially introduces a capacity of blue bins for wood items (set simply at its
maximum capacity for all items).

8.8.5 Symmetry Constraints

To make sure two solutions (a solution is a list of bins) are not just di®erent permutations of
the same bins, we impose an order on the list of bins:
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remove_symmetry(Bins) :-
( fromto(Bins, [B1, B2 | Rest], [B2 | Rest], [_Last])
do

lex_ord(B1, B2)
).

We order two bins by imposing lexicographic order onto listscomputed from their colour and
contents, (recall that in de¯ning the bin colours as ¯elds of a structure we have encoded them
as integers, which allows them to be ordered):

lex_ord(bin with [colour:Col1, contents:Conts1],
bin with [colour:Col2, contents:Conts2]) :-
% Use `=..' to extract the contents of the bin as a list
Conts1 =.. [_ | Vars1],
Conts2 =.. [_ | Vars2],
lexico_le([Col1 | Vars1], [Col2 | Vars2]).

8.8.6 Search

The search is done by ¯rst choosing a colour for each bin, and then labelling the remaining
variables.

bin_label(Bins) :-
( foreach(bin with colour:C, Bins) do indomain(C) ),
term_variables(Bins, Vars),
search(Vars, 0, first_fail, indomain, complete, []).

The remaining variables are labelled by employing the ¯rst fail heuristic (using the search/6
predicate of the ic library).
J

Additional information on search algorithms, heuristics and their use in ECLi PSe can be
found in section 12.

8.9 Exercises

1. A magic square is a 3£ 3 grid containing the digits 1 through 9 exactly once, such that each
row, each column and the two diagonals sum to the same number (15). Write a program
to ¯nd such magic squares. (You may wish to use the \Send More Money" example in
section 8.3 as a starting point.)

Bonus points if you can add constraints to break the symmetry, so that only the one unique
solution is returned.
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2. Fill the circles in the following diagram with the numbers 1 through 19 such that the
numbers in each of the 12 lines of 3 circles (6 around the outside, 6 radiating from the
centre) sum to 23.

If the value of the sum is allowed to vary, which values of the sum have solutions, and
which do not?

(Adapted from Puzzle 35 in Dudeney's \The Canterbury Puzzles".)

3. Consider the following code:

foo(Xs, Ys) :-
(

foreach(X, Xs),
foreach(Y, Ys),
fromto(1, In, Out, 1)

do
In #= (X #< Y + Out)

).

Which constraint does this code implement? (Hint: declaratively, it is the same as one of
the constraints from ic_global , but is implemented somewhat di®erently.) How does it
work?
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Chapter 9

Working with real numbers and
variables

9.1 Real number basics

In general, real values cannot be represented exactly if therepresentation is explicit. As a
result, they are usually approximated on computers by °oating point numbers, which have a
¯nite precision. This approximation is su±cient for most purp oses; however, in some situations
it can lead to signi¯cant error. Worse, there is usually nothing to indicate that the ¯nal result
has signi¯cant error; this can lead to completely wrong answers being accepted as correct.
One way to deal with this is to use interval arithmetic . The basic idea is that rather than
using a single °oating point value to approximate the true real value, a pair of °oating point
bounds are used which are guaranteed to enclose the true realvalue. Each arithmetic operation
is performed on the interval represented by these bounds, and the result rounded to ensure it
encloses the true result. The result is that any uncertainty in the ¯nal result is made explicit:
while the true real value of the result is still not known exactly, it is guaranteed to lie somewhere
in the computed interval.
Of course, interval arithmetic is no panacea: it may be that the ¯nal interval is too wide
to be useful. However this indicates that the problem was probably ill-conditioned or poorly
computed: if the same computation had been performed with normal °oating point numbers,
the ¯nal °oating point value would probably not have been near the true real value, and there
would have been no indication that there might be a problem.
In ECL i PSe, such intervals are represented using thebounded realdata type.
An example of using bounded reals to safely compute the square root of 2:

?- X is sqrt(breal(2)).
X = 1.4142135623730949__1.4142135623730954
Yes

To see how using ordinary °oating point numbers can lead to inaccuracy, try dividing 1 by 10,
and then adding it together 10 times. Using °oats the result isnot 1.0; using bounded reals the
computed interval contains 1.0 and gives an indication of how much potential error there is:
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² Bounded reals are written as two °oating point bounds separated by a double un-
derscore (e.g.1.5__2.0 , 1.0__1.0 , 3.1415926535897927__3.1415926535897936)

² Other numeric types can be converted to bounded reals by giving them a breal/1
wrapper, or by calling breal/2 directly

² Bounded reals are not usually entered directly by the user; normally they just occur
as the results of computations

² A bounded real represents a single real number whose value isknown to lie somewhere
between the bounds and is uncertain only because of the limited precision with which
is has been calculated

² An arithmetic operation is only performed using bounded reals if at least one of its
arguments is a bounded real

Figure 9.1: Bounded reals

?- Y is float(1) / 10, X is Y + Y + Y + Y + Y + Y + Y + Y + Y + Y.
X = 0.99999999999999989
Y = 0.1
Yes
?- Y is breal(1) / 10, X is Y + Y + Y + Y + Y + Y + Y + Y + Y + Y.
X = 0.99999999999999978__1.0000000000000007
Y = 0.099999999999999992__0.1
Yes

9.2 Issues to be aware of when using bounded reals

When working with bounded reals, some of the usual rules of arithmetic no longer hold. In
particular, it is not always possible to determine whether one bounded real is larger, smaller,
or the same as another. This is because, if the intervals overlap, it is not possible to know the
relationship between the true values.
An example of this can be seen in Figure 9.2. If the true value of X is X1, then depending upon
whether the true value of Y is (say) Y1, Y2 or Y3, we haveX > Y, X =:= Yor X < Y, respectively.
Di®erent classes of predicate deal with the undecidable cases in di®erent ways:

Arithmetic comparison (< /2, =:=/2, etc.) If the comparison cannot be determined de¯ni -
tively, the comparison succeeds but a delayed goal is left behind, indicating that the result
of the computation is contingent on the relationship actually being true. Examples:

?- X = 0.2__0.3, Y = 0.0__0.1, X > Y.
X = 0.2__0.3
Y = 0.0__0.1
Yes

90



X Y

Y
Y

Y

X

1

2

3

1

Figure 9.2: Comparing two bounded reals

?- X = 0.2__0.3, Y = 0.0__0.1, X < Y.
No

?- X = 0.0__0.1, Y = 0.0__0.1, X < Y.
X = 0.0__0.1
Y = 0.0__0.1
Delayed goals:

0.0__0.1 < 0.0__0.1
Yes

?- X = Y, X = 0.0__0.1, X < Y.
No

Term equality or comparison (=/2, ==/2, compare/3, @ < /2, etc.) These predicates con-
sider bounded reals from a purely syntactic point of view: they determine how the bounded
reals compare syntactically, without taking into account t heir meaning. Two bounded reals
are considered equal if and only if their bounds are syntactically the same (note that the
°oating point numbers 0.0 and -0.0 are considered to be syntactically di®erent). A unique
ordering is also de¯ned between bounded reals which do not have identical bounds; see the
documentation for compare/3 for details. This is important as it means predicates such
as sort/2 behave in a sensible fashion when they encounter bounded reals (in particular,
they do not throw exceptions or leave behind large numbers ofmeaningless delayed goals)
| though one does need to be careful when comparing or sortingthings of di®erent types.
Examples:

?- X = 0.2__0.3, Y = 0.0__0.1, X == Y.
No

?- X = 0.0__0.1, Y = 0.0__0.1, X == Y.
X = 0.0__0.1
Y = 0.0__0.1
Yes

?- X = 0.2__0.3, Y = 0.0__0.1, compare(R, X, Y).
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R = >
X = 0.2__0.3
Y = 0.0__0.1
Yes

?- X = 0.1__3.0, Y = 0.2__0.3, compare(R, X, Y).
R = <
X = 0.1__3.0
Y = 0.2__0.3
Yes

?- X = 0.0__0.1, Y = 0.0__0.1, compare(R, X, Y).
R = =
X = 0.0__0.1
Y = 0.0__0.1
Yes

?- sort([-5.0, 1.0__1.0], Sorted).
Sorted = [1.0__1.0, -5.0] % 1.0__1.0 > -5.0, but 1.0__1.0 @< - 5.0
Yes

Note that the potential undecidability of arithmetic compa risons has implications when writing
general code. For example, a common thing to do is test the value of a number, with di®erent
code being executed depending on whether or not it is above a certain threshold; e.g.

( X >= 0 ->
% Code A

;
% Code B

)

When writing code such as the above, ifX could be a bounded real, one ought to decide what
should happen if X's bounds span the threshold value. In the above example, ifX = -0.1__0.1
then a delayed goal-0.1__0.1 >= 0 will be left behind and Code A executed. If one does not
want the delayed goal, one can instead write:

( not X >= 0 ->
% Code B

;
% Code A

)
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² Real variables may be declared usingreals/1 , $::/2 , ::/2 (specifying non-integer
bounds) or just by using them in an IC constraint

² Basic constraints available for real variables are$=/2 , $> =/2 , $= < /2 , $> /2 ,
$< /2 and $n=/2 , as well as their rei¯ed versions and the rei¯ed connectives

² Real constraints also work with integer variables and a mix of integer and real vari-
ables

² Solutions to real constraints can be found usinglocate/2 , locate/3 , locate/4 or
squash/3

Figure 9.3: Real variables and constraints

The use of not ensures that any actions performed during the test (in particular the set up of
any delayed goals) are backtracked, regardless of the outcome of the test.
Finally, if one wishes Code B to be executed instead of Code A in the case of an overlap, one
can reverse the sense of the test:

( not X < 0 ->
% Code A

;
% Code B

)

9.3 IC as a solver for real variables

The IC solver is a hybrid solver which supports both real and integer variables.

J
See Chapter 8 for an introduction to IC and how to use it with integer variables.

J
See the IC chapter in the Constraint Library Manual for a full list of the arithmetic operators

which are available for use in IC constraint expressions.

IC's real constraints perform bounds propagation in the same way as the integer versions; in-
deed, most of the basic integer constraints are transformedinto their real counterparts, plus a
declaration of the integrality of the variables appearing in the constraint.
Note that the interval reasoning performed to propagate real bounds is the same as that used
for bounded reals; that is, the inferences made are safe, taking into account potential °oating
point errors.
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Figure 9.4: Example of using locate/2

9.4 Finding solutions of real constraints

In very simple cases, just imposing the constraints may be su±cient to directly compute the
(unique) solution. For example:

?- 3 * X $= 4.
X = 1.3333333333333333__1.3333333333333335
Yes

Other times, propagation will reduce the domains of the variables to suitably small intervals:

?- 3 * X + 2 * Y $= 4, X - 5 * Y $= 2, X $>= -100.
Y = Y{-0.11764705946382902 .. -0.1176470540212896}
X = X{1.4117647026808551 .. 1.4117647063092196}
There are 2 delayed goals.
Yes

In general though, some extra work will be needed to ¯nd the solutions of a problem. The IC
library provides two methods for assisting with this. Which method is appropriate depends on
the nature of the solutions to be found. If it is expected that there a ¯nite number of discrete
solutions, locate/2 and locate/3 would be good choices. If solutions are expected to lie in a
continuous region,squash/3 may be more appropriate.
Locate works by nondeterministically splitting the domains of the variables until they are nar-
rower than a speci¯ed precision (in either absolute or relative terms). Consider the problem of
¯nding the points where two circles intersect (see Figure 9.4). Normal propagation does not
deduce more than the obvious bounds on the variables:
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Figure 9.5: Example of propagation using the squash algorithm

?- 4 $= X^2 + Y^2, 4 $= (X - 1)^2 + (Y - 1)^2.
X = X{-1.0000000000000004 .. 2.0000000000000004}
Y = Y{-1.0000000000000004 .. 2.0000000000000004}
There are 12 delayed goals.
Yes

Calling locate/2 quickly determines that there are two solutions and ¯nds them to the desired
accuracy:

?- 4 $= X^2 + Y^2, 4 $= (X-1)^2 + (Y-1)^2, locate([X, Y], 1e-5).
X = X{-0.8228756603552696 .. -0.82287564484820042}
Y = Y{1.8228756448482002 .. 1.8228756603552694}
There are 12 delayed goals.
More

X = X{1.8228756448482004 .. 1.8228756603552696}
Y = Y{-0.82287566035526938 .. -0.82287564484820019}
There are 12 delayed goals.
Yes

Squash works by deterministically cutting o® parts of the domains of variables which it deter-
mines cannot contain any solutions. In e®ect, it is like a stronger version of bounds propagation.
Consider the problem of ¯nding the intersection of two circular discs and a hyperplane (see
Figure 9.5). Again, normal propagation does not deduce morethan the obvious bounds on the
variables:

?- 4 $>= X^2 + Y^2, 4 $>= (X-1)^2 + (Y-1)^2, Y $>= X.
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Y = Y{-1.0000000000000004 .. 2.0000000000000004}
X = X{-1.0000000000000004 .. 2.0000000000000004}
There are 13 delayed goals.
Yes

Calling squash/3 results in the bounds being tightened (in this case the bounds are tight for
the feasible region, though this is not true in general):

?- 4 $>= X^2 + Y^2, 4 $>= (X-1)^2 + (Y-1)^2, Y $>= X,
squash([X, Y], 1e-5, lin).

X = X{-1.0000000000000004 .. 1.4142135999632601}
Y = Y{-0.41421359996326 .. 2.0000000000000004}
There are 13 delayed goals.
Yes

J
For more details, see the IC chapter of the Library Manual or the documentation for the

individual predicates.

9.5 A larger example

Consider the following problem:

George is contemplating buying a farm which is a very strangeshape, comprising a
large triangular lake with a square ¯eld on each side. The areaof the lake is exactly
seven acres, and the area of each ¯eld is an exact whole number of acres. Given that
information, what is the smallest possible total area of thethree ¯elds?

A diagram of the farm is shown in Figure 9.6.
This is a problem which mixes both integer and real quantities, and as such is ideal for solving
with the IC library. A model for the problem appears below. The farm/4 predicate sets up the
constraints between the total area of the farmF and the lengths of the three sides of the lake,
A, B and C.

:- lib(ic).

farm(F, A, B, C) :-
[A, B, C] :: 0.0 .. 1.0Inf, % The 3 sides of the lake
triangle_area(A, B, C, 7), % The lake area is 7

[F, FA, FB, FC] :: 1 .. 1.0Inf, % The square areas are integral
square_area(A, FA),
square_area(B, FB),
square_area(C, FC),
F #= FA+FB+FC,
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Figure 9.6: Triangular lake with adjoining square ¯elds

FA $>= FB, FB $>= FC. % Avoid symmetric solutions

triangle_area(A, B, C, Area) :-
S $>= 0,
S $= (A+B+C)/2,
Area $= sqrt(S*(S-A)*(S-B)*(S-C)).

square_area(A, Area) :-
Area $= sqr(A).

A solution to the problem can then be found by ¯rst instantiati ng the area of the farm, and then
using locate/2 to ¯nd the lengths of the sides of the lakes. Instantiating the area of the farm
¯rst ensures that the ¯rst solution returned will be the minima l one, sinceindomain/1 always
chooses the smallest possible value ¯rst:

solve(F) :-
farm(F, A, B, C), % the model
indomain(F), % ensure that solution is minimal
locate([A, B, C], 0.01).
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9.6 Exercise

1. Consider the \farm" problem in section 9.5. (Source code may be found in farm.ecl , if
you have access to it.) Try running this program to ¯nd the answer. Note that other,
larger solutions are available by selectingmore.

This implementation sums three integer variables (FA, FB and FC), and then constrains
their order to remove symmetries. Would this be a good candidate for the global constraint
ordered_sum/2? Modify the program so that it does useordered_sum/2. How does the
run time compare with the original?
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Chapter 10

The Integer Sets Library

10.1 Why Sets

The ic setslibrary is a solver for constraints over the domain of ¯nite sets of integers. Modelling
with sets is useful for problems where one is not interested in each item as a speci¯c individual,
but in a collection of item where no speci¯c distinction is made and thus where symmetries
among the element values need to be avoided.

10.2 Finite Sets of Integers

In the context of the ic sets library, (ground) integer sets are simply sorted, duplicate-free lists
of integers e.g.

SetOfThree = [1,3,7]
EmptySet = []

Lists which contain non-integers, are unsorted or contain duplicates, are not sets in the sense of
this library.

10.3 Set Variables

Set variables are variables which can eventually take a ground integer set as their value. They
are characterized by a lower bound (the set of elements that are de¯nitely in the set) and an
upper bound (the set of elements that may be in the set). A set variable can be declared as
follows:

SetVar :: []..[1,2,3,4,5,6,7]

If the lower bound is the empty set and the upper bound is a set of consecutive integers, one
can also declare it like

intset(SetVar, 1, 7)

which is equivalent to the above.
The system prints set variables in a particular way, for instance:
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?Set :: ++Lwb..++Upb Set is an integer set within the given bounds

intset(?Set, +Min, +Max) Set is a set containing numbers between Min and Max

intsets(?Sets, ?N, +Min, +Max) Sets is a list of N sets containing numbers between
Min and Max

Figure 10.1: Declaring Set Variables

?- lib(ic_sets).
?- X :: [2,3]..[1,2,3,4].
X = X{[2, 3] \/ ([] .. [1, 4]) : _308{[2 .. 4]}}

The curly brackets contain the description of the current domain of the set variable in the form
of

1. the lower bound of the set (values which de¯nitely are in theset)

2. the union symbol \/

3. the set of optional values (which may or may not be in the set)

4. a colon

5. a ¯nite domain variable indicating the admissible cardinality for the set

10.4 Constraints

The constraints that ic sets implements are the usual relations over sets. The membership
(in/2, notin/2) and cardinality constraints (#/2) establi sh relationships between set variables
and integer variables:

?- X ::[]..[1, 2, 3], 2 in X, 3 in X, #(X, 2).
X = [2, 3]
Yes (0.01s cpu)

?- X :: []..[1, 2, 3, 4], 3 in X, 4 notin X.
X = X{[3] \/ ([] .. [1, 2]) : _2161{1 .. 3}}
Yes (0.00s cpu)

?X in ?Set The integer X is member of the integer set Set

?X notin ?Set The integer X is not a member of the integer set Set

#(?Set, ?Card) Card is the cardinality of the integer set Set

Figure 10.2: Membership and Cardinality Constraints
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?Set1 sameset ?Set2 The sets Set1 and Set2 are equal

?Set1 disjoint ?Set2 The integer sets Set1 and Set2 are disjoint

?Set1 includes ?Set2 Set1 includes (is a superset) of the integer set Set2

?Set1 subset ?Set2 Set1 is a (non-strict) subset of the integer set Set2

intersection(?Set1, ?Set2, ?Set3) Set3 is the intersection of the integer sets Set1 and
Set2

union(?Set1, ?Set2, ?Set3) Set3 is the union of the integer sets Set1 and Set2

di®erence(?Set1, ?Set2, ?Set3) Set3 is the di®erence of the integer sets Set1 and Set2

symdi®(?Set1, ?Set2, ?Set3) Set3 is the symmetric di®erence of the integer sets Set1
and Set2

Figure 10.3: Basic Set Relations

Possible constraints between two sets are equality, inclusion/subset and disjointness:

?- X subset [1, 2, 3, 4].
X = X{([] .. [1, 2, 3, 4]) : _2139{0 .. 4}}
Yes (0.00s cpu)

?- X :: []..[1, 2, 3, 4], Y :: []..[3, 4, 5, 6], X subset Y.
X = X{([] .. [3, 4]) : _2176{0 .. 2}}
Y = Y{([] .. [3, 4, 5, 6]) : _2367{0 .. 4}}
There are 4 delayed goals.
Yes (0.00s cpu)

?- X :: [2] .. [1, 2, 3, 4], Y :: [3] .. [1, 2, 3, 4], X disjoint Y.
X = X{[2] \/ ([] .. [1, 4]) : _2118{1 .. 3}}
Y = Y{[3] \/ ([] .. [1, 4]) : _2213{1 .. 3}}
There are 2 delayed goals.
Yes (0.00s cpu)

Possible constraints between three sets are for example intersection, union, di®erence and sym-
metric di®erence. For example:

?- X :: [2, 3] .. [1, 2, 3, 4],
Y :: [3, 4] .. [3, 4, 5, 6],
ic_sets : intersection(X, Y, Z).

X = X{[2, 3] \/ ([] .. [1, 4]) : _2127{2 .. 4}}
Y = Y{[3, 4] \/ ([] .. [5, 6]) : _2222{2 .. 4}}
Z = Z{[3] \/ ([] .. [4]) : _2302{[1, 2]}}
There are 6 delayed goals.
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all disjoint(+Sets) Sets is a list of integers sets which are all disjoint

all union(+Sets, ?SetUnion) SetUnion is the union of all the sets in the list Sets

all intersection(+Sets, ?SetIntersection) SetIntersection is the intersection of all the
sets in the list Sets

Figure 10.4: N-ary Set Relations

Yes (0.00s cpu)

N
Note that we needed to qualify the intersection/3 constraint with the ic setsmodule pre¯x

because of a name con°ict with a predicate from thelists library of the same name.

N
Note the lack of a complement constraint: this is because thecomplement of a ¯nite set

is in¯nite and cannot be represented. Complements can be modelled using an explicit
universal set and a di®erence constraint.

Finally, there are a number of n-ary constraints that apply to lists of sets: disjointness, union
and intersection. For example:

?- intsets(Sets, 5, 1, 5), all_intersection(Sets, Common) .
Sets = [_2079{([] .. [1, 2, 3, 4, 5]) : _2055{0 .. 5}}, ... ]
Common = Common{([] .. [1, 2, 3, 4, 5]) : _3083{0 .. 5}}
There are 24 delayed goals.
Yes (0.00s cpu)

In most positions where a set or set variable is expected one can also use a set expression. A
set expression is composed from ground sets (integer lists), set variables, and the following set
operators:

Set1 /\ Set2 % intersection
Set1 \/ Set2 % union
Set1 \ Set2 % difference

When such set expressions occur, they are translated into auxiliary intersection/3 , union/3
and di®erence/3 constraints, respectively.

10.5 Search Support

The insetdomain/4 predicate can be used to enumerate all ground instantiations of a set
variable, much like indomain/1 in the ¯nite domain case. Here is an example of the default
enumeration strategy:

?- X::[]..[1,2,3], insetdomain(X,_,_,_), writeln(X), fa il.
[1, 2, 3]
[1, 2]
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[1, 3]
[1]
[2, 3]
[2]
[3]
[]

Other enumeration strategies can be selected (see the Reference Manual on insetdomain/4).

10.6 Example

The following program computes so-called Steiner triplets.The problem is to compute triplets
of numbers between 1 and N, such that any two triplets have at most one element in common.

:- lib(ic_sets).
:- lib(ic).

steiner(N, Sets) :-
NB is N * (N-1) // 6, % compute number of triplets
intsets(Sets, NB, 1, N), % initialise the set variables
( foreach(S,Sets) do

#(S,3) % constrain their cardinality
),
( fromto(Sets,[S1|Ss],Ss,[]) do

( foreach(S2,Ss), param(S1) do
#(S1 /\ S2, C), % constrain the cardinality
C #=< 1 % of pairwise intersections

)
),
label_sets(Sets). % search

label_sets([]).
label_sets([S|Ss]) :-

insetdomain(S,_,_,_),
label_sets(Ss).

Running this program yields the following ¯rst solution:

?- steiner(9,X).

X = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],
[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],
[3, 5, 7], [3, 6, 8], [4, 7, 8], [5, 6, 9]] More? (;)
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weight(?Set, ++ElementWeights, ?Weight) According to the array of element
weights, the weight of set Set1 is Weight

Figure 10.5: Set Weight Constraint

10.7 Weight Constraints

Another constraint between sets and integers is the weight/3 constraint. It allows the association
of weights to set elements, and can help when solving problems of the knapsack or bin packing
type. The constraint takes a set and an array of element weights and constrains the weight of
the whole set:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),
Weights = [](20, 34, 9, 12, 19),
weight(Container, Weights, W).

Container = Container{([] .. [1, 2, 3, 4, 5]) : _2127{0 .. 5}}
Weights = [](20, 34, 9, 12, 19)
W = W{0 .. 94}
There is 1 delayed goal.
Yes (0.01s cpu)

By adding a capacity limit and a search primitive, we can solve a knapsack problem:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),
Weights = [](20, 34, 9, 12, 19),
weight(Container, Weights, W),
W #=< 50,
insetdomain(Container,_,_,_).

Weights = [](20, 34, 9, 12, 19)
W = 41
Container = [1, 3, 4]
More (0.00s cpu)

By using the heuristic options provided by insetdomain, we can implement a greedy heuristic,
which ¯nds the optimal solution (in terms of greatest weight) straight away:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),
Weights = [](20, 34, 9, 12, 19),
weight(Container, Weights, W),
W #=< 50,
insetdomain(Container,decreasing,heavy_first(Weight s),_).

W = 48
Container = [1, 3, 5]
Weights = [](20, 34, 9, 12, 19)
More (0.00s cpu)
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10.8 Exercises

1. Consider the knapsack problem in section 10.7. Suppose that the items each have an
associated pro¯t, namely 17, 38, 18, 10 and 5, respectively. Which items should be included
to maximise pro¯t?

2. Write a predicate which, given a list of sizes of items and alist of capacities of buckets,
returns a list of (ground) sets indicating which items should go into each bucket. Obviously
each item should go into exactly one bucket.

Try it out with 5 items of sizes 20, 34, 9, 12 and 19, into 3 buckets of sizes 60, 20 and 20.
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Chapter 11

Problem Modelling

11.1 Constraint Logic Programming

One of the main ambitions of Constraint Programming is the separation of Modelling, Algorithms
and Search. This is best characterised by two pseudo-equations. The ¯rst one is paraphrased
from Kowalski [11]

Solution = Logic + Control

and states that we intend to solve a problem by giving a logical, declarative description of the
problem and adding control information that enables a computer to deduce a solution.
The second equation

Control = Reasoning + Search

is motivated by a fundamental di±culty we face when dealing with combinatorial problems:
we do not have e±cient algorithms for ¯nding solutions, we have to resort to a combination of
reasoning (via e±cient algorithms) and (ine±cient) search.
We can consider every constraint program as an exercise in combining the 3 ingredients:

² Logic - The design of a declarativeModel of the problem.

² Reasoning - The choice of cleverConstraint Propagation algorithms that reduce the need
for search.

² Search - The choice of searchstrategies and heuristicsfor ¯nding solutions quickly.

In this chapter we will focus on the ¯rst issue, Problem Modelling , and how it is supported
by ECL i PSe.

11.2 Issues in Problem Modelling

A good formalism for problem modelling should ful¯l the following criteria:

² Expressive power - Can we write a formal model of the real world problem?
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² Clarity for humans - How easily can the model be written, read, understood or modi¯ed?

² Solvability for computers - Are there good known methods to solve it?

Higher-level models are typically closer to the user and close to the problem and therefore easier
to understand and to trust, easier to debug and to verify, andeasier to modify when customers
change their mind. On the other hand, it is not necessarily easy to see how they can be
solved, because high-level models contain high-level notions (e.g. sets, tasks) and heterogeneous
constraints.
The constraint programming approach also addresses one of the classical sources of error in
application development with traditional programming lan guages: the transition from aformal
description of the problem to the ¯nal program that solves it. The question is: Can the ¯nal
program be trusted? The Constraint (Logic) Programming solution is to

² Keep the initial formal model as part of the ¯nal program

² Enhance rather than rewrite

The process of enhancing the initial formal model involves for example

² Adding control annotations, e.g. algorithmic information or heuristic information.

² Transformation: Mapping high-level (problem) constraints into low-level (solver) con-
straints, possibly exploiting multiple, redundant mappin gs.

There are many other approaches to problem modelling software. The following is a brief
comparison:

Formal speci¯cation languages (e.g. Z, VDM) More expressive power than ECLiPSe, but
not executable

Mathematical modelling languages (e.g. OPL, AMPL) Similar to ECLiPSe, but usu-
ally limited expressive power, e.g. ¯xed set of constraints.

Mainstream programming languages (e.g. C++ plus solver library) Variables and con-
straints are "aliens" in the language. Speci¯cation is mixedwith procedural control.

Other CLP/high-level languages (e.g. CHIP) Most similar to ECLiPSe. Less support for
hybrid problem solving. Harder to de¯ne new constraints.

11.3 Modelling with CLP and ECL i PSe

When modelling problems with constraints, the basic idea isto set up a network of variables and
constraints. Figure 11.1 shows such a constraint network. It can be seen that the Constraint
Logic Programming (CLP) formulation

² is a natural declarative description of the constraint network

² can serve as a program to set up the constraint network
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alldifferent#\=

X3{1..9}

Constraints

#>

X2{1.9}

predicates involving
one or more variables

e.g. domain
with attributes

Variables

Model
= setup program:
[X1,X2,X3,X4]::1..9,
X1 #> X2,
alldifferent([X2,X3,X4]),
X1 #\= X4.

X4{1..9}

X1{1..9}

Figure 11.1: A Constraint Network

The main ECL i PSe language constructs used in modelling are

Built-in constraints
X #> Y

Abstraction
before(task(Si,Di), task(Sj,Dj)) :- Si+Di #<= Sj.

Conjunction
between(X,Y,Z) :- X #< Y, Y #< Z.

Disjunction (but see below)
neighbour(X,Y) :- ( X #= Y+1 ; Y #= X+1 ).

Iteration
not_among(X, L) :- ( foreach(Y,L),param(X) do X #\= Y ).

Recursion
not_among(X, []).
not_among(X, [Y|Ys]) :- X #\= Y, not_among(X, Ys).

11.4 Same Problem - Di®erent Model

There are often many ways of modelling a problem. Consider the famous "SEND + MORE =
MONEY" example:

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
Digits :: [0..9],
alldifferent(Digits),
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S #\= 0, M #\= 0,
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

An alternative model is based on the classical decimal addition algorithm with carries:

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
Digits :: [0..9],
Carries = [C1,C2,C3,C4],
Carries :: [0..1],
alldifferent(Digits),
S #\= 0,
M #\= 0,
C1 #= M,
C2 + S + M #= O + 10*C1,
C3 + E + O #= N + 10*C2,
C4 + N + R #= E + 10*C3,

D + E #= Y + 10*C4.

Both models work ¯ne, but obviously involve di®erent variables and constraints. Even though
high-level models reduce the need for ¯nding sophisticated encodings of problems, ¯nding good
models still requires substantial expertise and experience.

11.5 Rules for Modelling Code

In CLP, the declarative model is at the same time the constraint setup code. This code should
therefore be deterministic and terminating, so:

Careful with disjunctions Don't leave choice-points (alternatives for backtracking). Choices
should be deferred until search phase.

Use only simple conditionals Conditions in (...->...;...) must be true or false at mod-
elling time!

Use only structural recursion and loops Termination conditions must be know at mod-
elling time!

11.5.1 Disjunctions

Disjunctions in the model should be avoided. Assume that a naive model would contain the
following disjunction:

110



% DO NOT USE THIS IN A MODEL
no_overlap(S1,D1,S2,D2) :- S1 #>= S2 + D2.
no_overlap(S1,D1,S2,D2) :- S2 #>= S1 + D1.

There are two basic ways of treating the disjunction:

² Deferring the choice until the search phase by introducing adecision variable.

² Changing the behaviour of the disjunction so it becomes a constraint (see also 14 and 15).

In the example, we can introduce a boolean variableB{0,1} which represents the choice. The
actual choice can be then be taken in search code by choosing avalue for the variable. The
model code must then be changed to observe the decision variable, either using the delay facility
of ECL i PSe:

delay no_overlap(S1,D1,S2,D2,B) if var(B).
no_overlap(S1,D1,S2,D2,0) :- S1 #>= S2 + D2.
no_overlap(S1,D1,S2,D2,1) :- S2 #>= S1 + D1.

or using an arithmetic encoding like in

no_overlap(S1,D1,S2,D2,B) :-
B :: 0..1,
S1 + B*1000 #>= S2 + D2,
S2 + (1-B)*1000 #>= S1 + D1.

The alternative of turning the disjunction into a proper con straint is achieved most easily using
propia's infer-annotation (see 15). The original formulation of neighbour/2 is kept but it is used
as follows:

..., no_overlap(S1,D2,S2,D2) infers most, ...

11.5.2 Conditionals

Similar considerations apply to conditionals where the condition is not decidable at constraint
setup time. For example, suppose we want to impose a no-overlap constraint only if two tasks
share the same resource. The following code is currently notsafe in ECLiPSe:

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-
( Res1 #= Res2 -> % WRONG!!!
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no_overlap(Start1, Dur1, Start2, Dur2)
;

true
)

The reason is that (at constraint setup time) Res1 and Res2 will most likely be still uninstan-
tiated. Therefore, the condition will in general delay (rather than succeed or fail), but the
conditional construct will erroneously take this for a success and take the ¯rst alternative.
Again, this can be handled using delay

delay nos(Res1, Res2, _, _, _, _) if nonground([Res1,Res2]) .
nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-

( Res1 == Res2 ->
no_overlap(Start1, Dur1, Start2, Dur2)

;
true

).

It might also be possible to compute a boolean variable indicating the truth of the condition.
This is particularly easy when a rei¯ed constraint can be usedto express the condition, like in
this case:

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-
#=(Res1, Res2, Share),
cond_no_overlap(Start1, Dur1, Start2, Dur2, Share).

delay cond_no_overlap(_,_,_,_,Share) if var(Share).
cond_no_overlap(Start1, Dur1, Start2, Dur2, Share) :-

( Share == 1 ->
no_overlap(Start1, Dur1, Start2, Dur2)

;
true

).

11.6 Symmetries

Consider the following puzzle, where numbers from 1 to 19 have to be arranged in a hexagonal
shape such that every diagonal sums up to 38:

puzzle(Pattern) :-
Pattern = [
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A,B,C,
D,E,F,G,

H,I,J,K,L,
M,N,O,P,
Q,R,S

],
Pattern :: 1 .. 19,

% Problem constraints
alldifferent(Pattern),

A+B+C #= 38, A+D+H #= 38, H+M+Q #= 38,
D+E+F+G #= 38, B+E+I+M #= 38, D+I+N+R #= 38,

H+I+J+K+L #= 38, C+F+J+N+Q #= 38, A+E+J+O+S #= 38,
M+N+O+P #= 38, G+K+O+R #= 38, B+F+K+P #= 38,
Q+R+S #= 38, L+P+S #= 38, C+G+L #= 38,

...

In this formulation, the problem has 12 solutions, but it tur ns out they are just rotated and
mirrored variants of each other. Removal of symmetries is still an area of active research, but a
simple method is applicable in situations like this one. Onecan add constraints which require the
solution to have certain additional properties, and so exclude many of the symmetric solutions:

...,
% Optional anti-symmetry constraints
% Forbid rotated solutions: require A to be the smallest corn er
A #< C, A #< H, A #< L, A #< S, A #< Q,
% Forbid solutions mirrored on the A-S diagonal
C #< H.
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Chapter 12

Tree Search Methods

12.1 Introduction

In this chapter we will take a closer look at the principles and alternative methods of searching
for solutions in the presence of constraints. Let us ¯rst recall what we are talking about. We
assume we have the standard pattern of a constraint program:

solve(Data) :-
model(Data, Variables),
search(Variables),
print_solution(Variables).

The model part contains the logical model of our problem. It de¯nes the variables and the
constraints. Every variable has adomain of values that it can take (in this context, we only
consider domains with a ¯nite number of values).
Once the model is set up, we go into the search phase. Search isnecessary since generally
the implementation of the constraints is not complete, i.e.not strong enough to logically infer
directly the solution to the problem. Also, there may be mult iple solutions which have to be
located by search, e.g. in order to ¯nd the best one. In the following, we will use the following
terminology:

² If a variable is given a value (from its domain, of course), wecall this an assignment. If
every problem variable is given a value, we call this atotal assignment.

² A total assignment is a solution if it satis¯es all the constraints.

² The search spaceis the set of all possible total assignments. The search space is usually
very large because it grows exponentially with the problem size:

SearchSpaceSize= DomainSize NumberOfV ariables
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Figure 12.1: A search space of size 16

12.1.1 Overview of Search Methods

Figure 12.1 shows a search space with N (here 16) possible total assignments, some of which are
solutions. Search methods now di®er in the way in which these assignments are visited. We can
classify search methods according to di®erent criteria:

Complete vs incomplete exploration complete search means that the search space is in-
vestigated in such a way that all solutions are guaranteed tobe found. This is necessary
when the optimal solution is needed (one has to prove that no better solution exists).
Incomplete search may be su±cient when just some solution or arelatively good solution
is needed.

Constructive vs move-based this indicates whether the method advances by incrementally
constructing assignments (thereby reasoning about partial assignments which represent
subsets of the search space) or by moving between total assignments (usually by modifying
previously explored assignments).

Randomness some methods have a random element while others follow ¯xed rules.

Here is a selection of search methods together with their properties:

Method exploration assignments random
Full tree search complete constructive no
Credit search incomplete constructive no
Bounded backtrack incomplete constructive no
Limited discrepancy complete constructive no
Hill climbing incomplete move-based possibly
Simulated annealing incomplete move-based yes
Tabu search incomplete move-based possibly
Weak commitment complete hybrid no

The constructive search methods usually organise the search space by partitioning it system-
atically. This can be done naturally with a search tree (Figure 12.2). The nodes in this tree
represent choices which partition the remaining search space into two or more (usually disjoint)
sub-spaces. Using such a tree structure, the search space canbe traversed systematically and
completely (with as little as O(N) memory requirements).
Figure 12.4 shows a sample tree search, namely a depth-¯rst incomplete traversal. As opposed
to that, ¯gure 12.3 shows an example of an incomplete move-based search which does not follow
a ¯xed search space structure. Of course, it will have to take other precautions to avoid looping
and ensure termination.

116



Figure 12.2: Search space structured using a search tree

Figure 12.3: A move-based search

Figure 12.4: A tree search (depth-¯rst)

117



A few further observations: Move-based methods are usually incomplete. This is not surprising
given typical sizes of search spaces. A complete exploration of a huge search space is only possible
if large sub-spaces can be excluded a priori, and this is only possible with constructive methods
which allow one to reason about whole classes of similar assignments. Moreover, a complete
search method must remember which parts of the search space have already been visited. This
can only be implemented with acceptable memory requirements if there is a simple structuring
of the space that allows compact encoding of sub-spaces.

12.1.2 Optimisation and Search

Many practical problems are in fact optimisation problems, ie. we are not just interested in some
solution or all solutions, but in the best solution.
Fortunately, there is a general method to ¯nd the optimal solution based on the ability to ¯nd
all solutions. The branch-and-boundtechnique works as follows:

1. Find a ¯rst solution

2. Add a constraint requiring a better solution than the best one we have so far (e.g. require
lower cost)

3. Find a solution which satis¯es this new constraint. If one exists, we have a new best
solution and we repeat step 2. If not, the last solution foundis the proven optimum.

The branch and bound library provides generic predicates which implement this technique:

minimize(+Goal,-Cost) This is the simplest predicate in the branch and bound library: A
solution of the goal Goal is found that minimizes the value of Cost. Cost should be a
variable that is a®ected, and eventually instantiated, by the execution ofGoal. Usually,
Goal is the search procedure of a constraint problem andCost is the variable representing
the cost.

bb min(+Goal, -Cost, ++Options) A more °exible version where the programmer can take
more control over the branch and bound behaviour and choose between di®erent strategies
and parameter settings.

12.1.3 Heuristics

Since search space sizes grow exponentially with problem size, it is not possible to explore all
assignments except for the very smallest problems. The onlyway out is not to look at the whole
search space. There are only two ways to do this:

² Prove that certain areas of the space contain no solutions. This can be done with the
help of constraints. This is often referred to aspruning.

² Ignore parts of the search space that are unlikely to contain solutions (i.e. do incomplete
search), or at least postpone their exploration. This is done by usingheuristics. A heuristic
is a particular traversal order of the search space which explores promising areas ¯rst.
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In the following sections we will ¯rst investigate the considerable degrees of freedom that are
available for heuristics within the framework of systematic tree search, which is the traditional
search method in the Constraint Logic Programming world.
Subsequently, we will turn our attention to move-based methods which in ECLi PSe can be
implemented using the facilities of therepair library.

12.2 Complete Tree Search with Heuristics

There is one form of tree search which is especially economic: depth-¯rst, left-to-right search by
backtracking. It allows a search tree to be traversed systematically while requiring only a stack
of maximum depth N for bookkeeping. Most other strategies oftree search (e.g. breadth-¯rst)
have exponential memory requirements. This unique property is the reason why backtracking
is a built feature of ECL i PSe. Note that the main disadvantage of the depth-¯rst strategy (t he
danger of going down an in¯nite branch) does not come into playhere because we deal with
¯nite search trees.
Sometimes depth-¯rst search and heuristic search are treatedas antonyms. This is only justi¯ed
when the shape of the search tree is statically ¯xed. Our case is di®erent: we have the freedom
of deciding on the shape of every sub-tree before we start to traverse it depth-¯rst. While
this does not allow for absolutely any order of visiting the leaves of the search tree, it does
provide considerable °exibility. This °exibility can be expl oited by variable and value selection
strategies.

12.2.1 Search Trees

In general, the nodes of a search tree representchoices. These choices should be mutually
exclusive and therefore partition the search space into twoor more disjoint sub-spaces. In other
words, the original problem is reduced to a disjunction of simpler sub-problems.
In the case of ¯nite-domain problems, the most common form of choice is to choose a particular
value for a problem variable (this technique is often calledlabeling). For a boolean variable,
this means setting the variable to 0 in one branch of the search tree and to 1 in the other. In
ECL i PSe, this can be written as a disjunction (which is implemented by backtracking):

( X1=0 ; X1=1 )

Other forms of choices are possible. If X2 is a variable that can take integer values from 0 to 3
(assume it has been declared asX2::0..3 ), we can make a n-ary search tree node by writing

( X2=0 ; X2=1 ; X2=2 ; X2=3 )

or more compactly

indomain(X2)

However, choices do not necessarily involve choosing a concrete value for a variable. It is also
possible to make disjoint choices bydomain splitting, e.g.

( X2 #=< 1 ; X2 #>= 2 )
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Figure 12.5: The e®ect of variable selection

or by choosing a value in one branch and excluding it in the other:

( X2 = 0 ; X2 #>= 1 )

In the following examples, we will mainly use simple labeling, which means that the search tree
nodes correspond to a variable and a node's branches correspond to the di®erent values that the
variable can take.

12.2.2 Variable Selection

Figure 12.5 shows how variable selection reshapes a search tree. If we decide to choose values
for X1 ¯rst (at the root of the search tree) and values for X2 second, then the search tree has
one particular shape. If we now assume a depth-¯rst, left-to-right traversal by backtracking, this
corresponds to one particular order of visiting the leaves of the tree: (0,0), (0,1), (0,2), (0,3),
(1,0), (1,1), (1,2), (1,3).
If we decide to choose values for X2 ¯rst and X1 second, then thetree and consequently the
order of visiting the leaves is di®erent: (0,0), (1,0), (0,1), (1,1), (0,2), (1,2), (0,3), (1,3).
While with 2 variables there are only 2 variable selection strategies, this number grows expo-
nentially with the number of variables. For 5 variables there are already 22

5 ¡ 1 = 2147483648
di®erent variable selection strategies to choose from.
Note that the example shows something else: If the domains ofthe variables are di®erent, then
the variable selection can change the number of internal nodes in the tree (but not the number
of leaves). To keep the number of nodes down, variables with small domains should be selected
¯rst.
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Figure 12.6: The e®ect of value selection

12.2.3 Value Selection

The other way to change the search tree is value selection, i.e. reordering the child nodes of a
node by choosing the values from the domain of a variable in a particular order. Figure 12.6
shows how this can change the order of visiting the leaves: (1,2), (1,1), (1,0), (1,3), (0,1), (0,3),
(0,0), (0,2).
By combining variable and value selection alone, a large number of di®erent heuristics can be
implemented. To give an idea of the numbers involved, table 12.7 shows the search space sizes,
the number of possible search space traversal orderings, and the number of orderings that can
be obtained by variable and value selection (assuming domain size 2).

12.2.4 Example

We use the famous N-Queens problem to illustrate how heuristics can be applied to backtrack
search through variable and value selection. We model the problem with one variable per queen,
assuming that each queen occupies one colunm. The variablesrange from 1 to N and indicate
the row in which the queen is being placed. The constraints ensure that no two queens occupy
the same row or diagonal:

:- lib(ic).

queens(N, Board) :-
length(Board, N),
Board :: 1..N,
( fromto(Board, [Q1|Cols], Cols, []) do

( foreach(Q2, Cols), count(Dist,1,_), param(Q1) do
noattack(Q1, Q2, Dist)

)
).

noattack(Q1,Q2,Dist) :-
Q2 #\= Q1,
Q2 - Q1 #\= Dist,
Q1 - Q2 #\= Dist.
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Variables Search space Visiting orders Selection Strategies
1 2 2 2
2 4 24 16
3 8 40320 336
4 16 2:1 ¤ 1013 1:8 ¤ 107

5 32 2:6 ¤ 1035 3:5 ¤ 1015

n 2n 2n ! 22n ¡ 1 Q n¡ 1
i =0 (n ¡ 1)2i

Figure 12.7: Flexibility of Variable/Value Selection Stra tegies

We are looking for a ¯rst solution to the 16-queens problem by calling

?- queens(16, Vars), % model
labeling(Vars). % search

We start naively, using the pre-de¯ned labeling-predicate that comes with the ic library. It is
de¯ned as follows:

labeling(AllVars) :-
( foreach(Var, AllVars) do

indomain(Var) % select value
).

The strategy here is simply to select the variables from leftto right as they occur in the list, and
they are assigned values starting from the lowest to the numerically highest they can take (this
is the de¯nition of indomain/1). A solution is found after 542 backtracks (see section 12.2.5
below for how to count backtracks).
A ¯rst improvement is to employ a general-purpose variable-selection heuristic , the so
called ¯rst-fail principle. It requires to label the variable s with the smallest domain ¯rst. This
reduces the branching factor at the root of the search tree and the total number of internal
nodes. The delete/5 predicate from theic search library implements this strategy for ¯nite
integer domains. Using delete/5, we can rede¯ne our labeling-routine as follows:

:- lib(ic_search).
labeling_b(AllVars) :-

( fromto(AllVars, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-s elect
indomain(Var) % select value

).

122



Indeed, for the 16-queens example, this leads to a dramatic improvement, the ¯rst solution
is found with only 3 backtracks now. But caution is necessary: The 256-queens instance for
example solves nicely with the naive strategy, but our improvement leads to a disappointment:
the time increases dramatically! This is not uncommmon with heuristics: one has to keep in
mind that the search space is not reduced, just re-shaped. Heuristics that yield good results
with some problems can be useless or counter-productive withothers. Even di®erent instances
of the same problem can exhibit widely di®erent characteristics.
Let us try to employ a problem-speci¯c heuristic : Chess players know that pieces in the
middle of the board are more useful because they can attack more ¯elds. We could therefore
start placing queens in the middle of the board to reduce the number of unattacked ¯elds earlier.
We can achieve that simply by pre-ordering the variables suchthat the middle ones are ¯rst in
the list:

labeling_c(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var- select
( foreach(Var, AllVarsPreOrdered) do

indomain(Var) % select value
).

The implementation of middle ¯rst/2 requries a bit of list manipulation and uses primitive s from
the lists-library:

:- lib(lists).

middle_first(List, Ordered) :-
halve(List, Front, Back),
reverse(Front, RevFront),
splice(Back, RevFront, Ordered).

This strategy also improves things for the 16-queens instance, the ¯rst solution requires 17
backtracks.
We can now improve things further by combining the two variable-selection strategies: When
we pre-order the variables such that the middle ones are ¯rst, the delete/5 predicate will prefer
middle variables when several have the same domain size:

labeling_d(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var- select
( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-s elect
indomain(Var) % select value

).

123



N = 8 12 14 16 32 64 128 256
labeling a 10 15 103 542
labeling b 10 16 11 3 4 148
labeling c 0 3 22 17
labeling d 0 0 1 0 1 1
labeling e 3 3 38 3 7 1 0 0

Figure 12.8: N-Queens with di®erent labeling strategies: Number of backtracks

The result is positive: for the 16-queens instance, the number of backtracks goes down to zero,
and more di±cult instances become solvable!
Actually, we have not yet implemented our intuitive heurist ics properly. We start placing queens
in the middle columns, but not on the middle rows. With our model, that can only be achieved
by changing the value selection , ie. setting the variables to values in the middle of their
domain ¯rst. For this we can use indomain/2, a more °exible variant of indomain/1, provided
by the ic search library. It allows us to specify that we want to start labelin g with the middle
value in the domain:

labeling_e(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var- select
( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-s elect
indomain(Var, middle) % select value

).

Surprisingly, this improvement again increases the backtrack count for 16-queens again to 3.
However, when looking at a number of di®erent instances of theproblem, we can observe that
the overall behaviour has improved and the performance has become more predictable than with
the initial more naive strategies. Figure 12.2.4 shows the behaviour of the di®erent strategies
on various problem sizes.

12.2.5 Counting Backtracks

An interesting piece of information during program development is the number of backtracks.
It is a good measure for the quality of both constraint propagation and search heuristics. We
can instrument our labeling routine as follows:

labeling(AllVars) :-
init_backtracks,
( foreach(Var, AllVars) do

count_backtracks, % insert this before choice!
indomain(Var)

),
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get_backtracks(B),
printf("Solution found after %d backtracks%n", [B]).

The backtrack counter itself can be implemented by the code below. It uses a non-logical
counter variable (backtracks) and an additional °ag (deep fail) which ensures that backtracking
to exhausted choices does not increment the count.

:- local variable(backtracks), variable(deep_fail).

init_backtracks :-
setval(backtracks,0).

get_backtracks(B) :-
getval(backtracks,B).

count_backtracks :-
setval(deep_fail,false).

count_backtracks :-
getval(deep_fail,false), % may fail
setval(deep_fail,true),
incval(backtracks),
fail.

Note that there are other possible ways of de¯ning the number of backtracks. However, the one
suggested here has the following useful properties:

² Shallow backtracking (an attempt to instantiate a variable which causes immediate failure
due to constraint propagation) is not counted. If constraint propagation works well, the
count is therefore zero.

² With a perfect heuristic, the ¯rst solution is found with zero backtracks.

² If there are N solutions, the best achievable value is N (one backtrack per solution). Higher
values indicate an opportunity to improve pruning by constraints.

The search/6 predicates from the libary ic_search have this backtrack counter built-in.

12.3 Incomplete Tree Search

The library ic_search contains a °exible search routinesearch/6 , which implements several
variants of incomplete tree search.
For demonstration, we will use the N-queens problem from above. The following use of search/6
is equivalent to labeling(Xs) and will print all 92 solution s:
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bbs(10)

Figure 12.9: Bounded-backtrack search

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, complete, []),
writeln(Xs),
fail.

[1, 5, 8, 6, 3, 7, 2, 4]
...
[8, 4, 1, 3, 6, 2, 7, 5]
No.

12.3.1 First Solution

One of the easiest ways to do incomplete search is to simply stop after the ¯rst solution has
been found. This is simply programmed using cut or once/1:

?- queens(8, Xs),
once search(Xs, 0, input_order, indomain, complete, []),
writeln(Xs),
fail.

[1, 5, 8, 6, 3, 7, 2, 4]
No.

This will of course not speed up the ¯nding of the ¯rst solution.

12.3.2 Bounded Backtrack Search

Another way to limit the scope of backtrack search is to keep arecord of the number of back-
tracks, and curtail the search when this limit is exceeded. The bbs option of the search/6
predicate implements this:

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, bbs(20), []),
writeln(Xs),
fail.

[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]
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dbs(2, bbs(0))

Figure 12.10: Depth-bounded, combined with bounded-backtrack search

[1, 7, 4, 6, 8, 2, 5, 3]
[1, 7, 5, 8, 2, 4, 6, 3]
No.

Only the ¯rst 4 solutions are found, the next solution would have required more backtracks than
were allowed. Note that the solutions that are found are all located on the left hand side of the
search tree. This often makes sense because with a good search heuristic, the solutions tend to
be towards the left hand side. Figure 12.9 illustrates the e®ect of bbs (note that the diagram
does not correspond to the queens example, it shows an unconstrained search tree with 5 binary
variables).

12.3.3 Depth Bounded Search

A simple method of limiting search is to limit the depth of the search tree. In many constraint
problems with a ¯xed number of variables this is not very useful, since all solutions occur at the
same depth of the tree. However, one may want to explore the tree completely up to a certain
depth and switch to an incomplete search method below this depth. The search/6 predicate
allows for instance the combination of depth-bounded searchwith bounded-backtrack search.
The following explores the ¯rst 2 levels of the search tree completely, and does not allow any
backtracking below this level. This gives 16 solutions, equally distributed over the search tree:

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, dbs(2,bbs(0)), []),
writeln(Xs),
fail.

[3, 5, 2, 8, 1, 7, 4, 6]
[3, 6, 2, 5, 8, 1, 7, 4]
[4, 2, 5, 8, 6, 1, 3, 7]
[4, 7, 1, 8, 5, 2, 6, 3]
[4, 8, 1, 3, 6, 2, 7, 5]
[5, 1, 4, 6, 8, 2, 7, 3]
[5, 2, 4, 6, 8, 3, 1, 7]
[5, 3, 1, 6, 8, 2, 4, 7]
[5, 7, 1, 3, 8, 6, 4, 2]
[6, 4, 1, 5, 8, 2, 7, 3]
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[7, 1, 3, 8, 6, 4, 2, 5]
[7, 2, 4, 1, 8, 5, 3, 6]
[7, 3, 1, 6, 8, 5, 2, 4]
[8, 2, 4, 1, 7, 5, 3, 6]
[8, 3, 1, 6, 2, 5, 7, 4]
[8, 4, 1, 3, 6, 2, 7, 5]
No (0.18s cpu)

12.3.4 Credit Search

Credit search is a tree search method where the number of nondeterministic choices is limited a
priori. This is achieved by starting the search at the tree root with a certain integral amount of
credit. This credit is split between the child nodes, their credit between their child nodes, and
so on. A single unit of credit cannot be split any further: subtrees provided with only a single
credit unit are not allowed any nondeterministics choices,only one path though these subtrees
can be explored, i.e. only one leaf in the subtree can be visited. Subtrees for which no credit is
left are pruned, i.e. not visited.
The following code (a replacement for labeling/1) implements credit search. For ease of under-
standing, it is limited to boolean variables:

% Credit search (for boolean variables only)
credit_search(Credit, Xs) :-

(
foreach(X, Xs),
fromto(Credit, ParentCredit, ChildCredit, _)

do
( var(X) ->

ParentCredit > 0, % possibly cut-off search here
( % Choice

X = 0, ChildCredit is (ParentCredit+1)//2
;

X = 1, ChildCredit is ParentCredit//2
)

;
ChildCredit = ParentCredit

)
).

Note that the leftmost alternative (here X=0) gets slightly more credit than the rightmost one
(here X=1) by rounding the child node's credit up rather than down. This is especially relevant
when the leftover credit is down to 1: from then on, only the leftmost alternatives will be taken
until a leaf of the search tree is reached. The leftmost alternative should therefore be the one
favoured by the search heuristics.
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credit(16)

Figure 12.11: Credit-based incomplete search

What is a reasonable amount of credit to give to a search? In anunconstrained search tree, the
credit is equivalent to the number of leaf nodes that will be reached. The number of leaf nodes
grows exponentially with the number of labelled variables,while tractable computations should
have polynomial runtimes. A good rule of thumb could therefore be to use as credit the number
of variables squared or cubed, thus enforcing polynomial runtime.
Note that this method in its pure form allows choices only close to the root of the search tree
and disallows choices completely, below a certain tree depth. This is too restrictive when the
value selection strategy is not good enough. A possible remedy is to combine credit search with
bounded backtrack search.
The implementation of credit search in the search/6 predicate works for arbitrary domain vari-
ables: Credit is distributed by giving half to the leftmost child node, half of the remaining credit
to the second child node and so on. Any remaining credit afterthe last child node is lost. In
this implementation, credit search is always combined withanother search method which is to
be used when the credit runs out.
When we use credit search in the queens example, we get a limited number of solutions, but
these solutions are not the leftmost ones (like with bounded-backtrack search), they are from
di®erent parts of the search tree, although biased towards the left:

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, credit(20,bbs(0)), []),
writeln(Xs),
fail.

[2, 4, 6, 8, 3, 1, 7, 5]
[2, 6, 1, 7, 4, 8, 3, 5]
[3, 5, 2, 8, 1, 7, 4, 6]
[5, 1, 4, 6, 8, 2, 7, 3]
No.

We have used a credit limit of 20. When credit runs out, we switch to bounded backtrack search
with a limit of 0 backtracks.

12.3.5 Timeout

Another form of incomplete tree search is simply to use time-outs. The branch-and-bound
primitives bb_min/3,6 allow a maximal runtime to be speci¯ed. If a timeout occurs, the best
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lds(1)

Figure 12.12: Incomplete search with LDS

solution found so far is returned instead of the proven optimum.
A general timeout is available from the library test_util . It has parameters timeout(Goal,
Seconds, TimeOutGoal). When Goal has run for more than Secondsseconds, it is aborted and
TimeOutGoal is called instead.

12.3.6 Limited Discrepancy Search

Limited discrepancy search (LDS) is a search method that assumes the user has a good heuristic
for directing the search. A perfect heuristic would, of course, not require any search. However
most heuristics are occasionally misleading. Limited Discrepancy Search follows the heuristic
on almost every decision. The \discrepancy" is a measure of the degree to which it fails to follow
the heuristic. LDS starts searching with a discrepancy of 0 (which means it follows the heuristic
exactly). Each time LDS fails to ¯nd a solution with a given dis crepancy, the discrepancy is
increased and search restarts. In theory the search is complete, as eventually the discrepancy
will become large enough to admit a solution, or cover the whole search space. In practice,
however, it is only bene¯cial to apply LDS with small discrepancies. Subsequently, if no solution
is found, other search methods should be tried. The de¯nitivereference to LDS is [28]
There are di®erent possible ways of measuring discrepancies. The one implemented in the
search/6 predicate is a variant of the original proposal. It considers the ¯rst value selection
choice as the heuristically best value with discrepancy 0, the ¯rst alternative has a discrepancy
of 1, the second a discrepancy of 2 and so on.
As LDS relies on a good heuristic, it only makes sense for the queens problem if we use a
good heuristic, e.g. ¯rst-fail variable selection and indomain-middle value selection. Allowing a
discrepancy of 1 yields 4 solutions:

?- queens(8, Xs),
search(Xs, 0, first_fail, indomain_middle, lds(1), []),
writeln(Xs),
fail.

[4, 6, 1, 5, 2, 8, 3, 7]
[4, 6, 8, 3, 1, 7, 5, 2]
[4, 2, 7, 5, 1, 8, 6, 3]
[5, 3, 1, 6, 8, 2, 4, 7]
No.
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The reference also suggests that combining LDS with BoundedBacktrack Search (BBS) yields
good behaviour. The search/6 predicate accordingly supports the combination of LDS with BBS
and DBS. The rationale for this is that heuristic choices typically get more reliable deeper down
in the search tree.

12.4 Exercises

For exercises 1-3, start from the constraint model for the queens problem given in section 12.2.4.
It is available in the examples directory as queensic.ecl.

1. Use the search/6 predicate from the icsearch library and the standard model for the queens
problem (given below) to ¯nd ONE solution to the 42-queens problem. With a naive search
strategy this requires millions of backtracks. Using heuristics and/or incomplete search,
try to ¯nd a solution in less than 100 backtracks!

2. How many solutions does the 9-queens problem have?

3. Solve the "8 sticky queens problem": Assume that the queens in neighbouring columns
want to stick together as close as possible. Minimize the sumof the vertical distances
between neighbouring queens. What is the best and what is theworst solution for this
problem?

4. For given N, create a list of length N whose members are numbers between 1 and N
(inclusive), which are all di®erent (easy so far) and satisfythe following constraint. For
each element E of the list, its successors are divided into two sets,

² BiggerE: the successors which are greater than E and

² SmallerE: the successors less than E.

(Thus no successor takes the same value as E). The cardinalities of the sets BiggerE and
SmallerE di®er by at most 1.

5. A harder version of the problem is similar. For given N, create a list of length N whose
members are numbers between 1 and some upper bound Max (startwith, say Max = N 2),
which are all di®erent (easy so far) and satisfy the following(more complex) constraint.
For each K from 1..N, call the Kth element of the list Ek. Its successors are divided into
two sets, as before:

² BiggerEk: the successors which are greater than or equal to Ek + K and

² SmallerEk: the successors less than or equal to Ek - K.

(Thus no successor takes a value between Ek-K+1 and Ek+K-1.) The cardinalities of the
sets BiggerEk and SmallerEk di®er by at most 1.

What is the smallest upper bound Max for which there is a feasible solution?
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Chapter 13

Repair and Local Search

13.1 Motivation

Constraint logic programming uses logical variables. Thismeans that when a variable is instan-
tiated, its value must satisfy all the constraints on the variable. For example if the program
includes the constraint X > = 2, then any attempt to instantiate X to a value less than 2 will
fail.
However, there are various contexts and methods in which it is useful to associate (temporarily)
a value with a variable that does not satisfy all the constraints on the variable. Generally this
is true of repair techniques. These methods start with a complete, infeasible, assignment of
values to variables and change the values of the variables until a feasible assignment is found.
Repair methods are useful in the case where a problem has beensolved, but subsequently external
changes to the problem render the solution infeasible. Thisis the normal situation in scheduling
applications, where machines and vehicles break down, and tasks are delayed.
Repair methods are also useful for solving problems which can be broken down into quasi-
independent simpler subproblems. Solutions to the subproblems which are useful for solving
the complete problem, may not be fully compatible with each other, or even completely feasible
with respect to the full problem.
Finally there are techniques such as con°ict minimisation which seek solutions that minimise
infeasibility. These techniques can be treated as optimisation algorithms, whose constraints are
wrapped into the optimisation function. However they can also be treated as repair problems,
which means that the constraints can propagate actively during problem solving.

13.2 Syntax

13.2.1 Setting and Getting Tentative Values

With the repair library each variable can be given atentative value. This is di®erent from
instantiating the variable. Rather the tentative value is a piece of updatable information asso-
ciated with the variable. The tentative value can be changedrepeatedly during search, not just
on backtracking. The value is set using the syntaxtent_set , and retrieved using tent_get .
For example the following query writes ¯rst 1 and then 2:
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Repair is used for:

² Re-solving problems which have been modi¯ed

² Combining subproblem solutions and algorithms

² Implementing local search

² Implementing powerful search heuristics

Figure 13.1: Uses of Repair

?- X tent_set 1,
X tent_get Tent1,
writeln(Tent1),
X tent_set 2,
X tent_get Tent2,
writeln(Tent2).

Throughout this query X remains a variable.
A tentative variable may violate constraints. The followin g query writes succeed, because
setting the tentative value to 1 does not cause a failure:

?- X $> 2,
X tent_set 1,
writeln(succeed).

13.2.2 Building and Accessing Con°ict Sets

The relation between constraints and tentative values can be maintained in two ways. The ¯rst
method is by monitoring a constraint for con°icts.

?- X $> 2 r_conflict myset,
X tent_set 1,
writeln(succeed).

This query also succeeds - but additionally it creates acon°ict set named myset. Because
X $ > 2 is violated by the tentative value of X , the constraint is recorded in the con°ict set.
The con°ict set written out by the following query is [X{1} $> 2] :

?- X $> 2 r_conflict myset,
X tent_set 1,
conflict_constraints(myset,Conflicts),
writeln(Conflicts).

The con°ict can be repaired by changing the tentative value of the variable which causesit:
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Repair supports the following primitives:

² tent_set/2

² tent_get/2

² r_conflict/2

² conflict_constraints/2

² tent_is/2

(and some others that are not covered in this tutorial).

Figure 13.2: Syntax

?- X $> 2 r_conflict myset,
X tent_set 1,
conflict_constraints(myset,Conflicts),
X tent_set 3,
conflict_constraints(myset,NoConflicts).

This program instantiates Conflicts to [X{1} $> 2] , but NoConflicts is instantiated to [] .

13.2.3 Propagating Con°icts

Arithmetic equality ( =:= , $=) constraints, instead of monitoring for con°icts, can be maintained
by propagating tentative values. To do so, they must be rewritten in a functional syntax.
Consider the constraint X =:= Y+1. For propagation of tentative values, this must be rewritten
in the form X tent_is Y+1 . If the tentative value of Y is set to 1, then this will be propagated
to the tentative value of X . The following query writes out the value 2.

?- X tent_is Y+1,
Y tent_set 1,
X tent_get(TentX),
writeln(TentX).

Each time the tentative value of Y is changed, the value ofX is kept in step, so the following
writes out the value 3:

?- X tent_is Y+1,
Y tent_set 1,
Y tent_set 2,
X tent_get(TentX),
writeln(TentX).
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13.3 Repairing Con°icts

If all the constraints of a problem are monitored for con°icts, then the problem can be solved
by:

² Finding an initial assignment of tentative values for all th e problem variables

² Finding a constraint in con°ict, and labelling a variable in t his constraint

² Instantiating the remaining variables to their tentative v alues, when there are no more
constraints in con°ict

Consider a satis¯ability problem with each clause represented by an ic constraint, whose form
is illustrated by the following example: (X1 or neg X2 or X3 $= 1. This represents the clause
X 1 _ : X 2 _ X 3.
To apply con°ict minimisation to this problem use the predicate:

² tent_init to ¯nd an initial solution

² conflict_constraints and term_variables to ¯nd a variable to label

² set_to_tent to set the remaining variables to their tentative values

The code is as follows:

prop_sat_1(Vars) :-
Vars = [X1,X2,X3],
tent_init(Vars),
(X1 or neg X2 or X3 $= 1) r_conflict cs,
(neg X1 or neg X2 $= 1) r_conflict cs,
(X2 or neg X3 $= 1) r_conflict cs,
min_conflicts(Vars).

tent_init(List) :-
( foreach(Var,List) do Var tent_set 1 ).

min_conflicts(Vars) :-
conflict_constraints(cs,List),
( List = [] -> set_to_tent(Vars) ;

List = [Constraint|_] ->
term_variables(Constraint,[Var|_]),
guess(Var),
min_conflicts(Vars)

).

guess(0).
guess(1).

136



set_to_tent(Term) :-
Term tent_get Tent,
Term = Tent.

The value choice predicateguess is naive. Since the variable occurs in a con°ict constraint it
would arguably be better to label it to another value. This would be implemented as follows:

guess(Var) :-
Var tent_get Value,
( Value = 0 -> (Var=1 ; Var=0)
; Value = 1 -> (Var=0 ; Var=1)
).

13.3.1 Combining Repair with IC Propagation

To illustrate a combination of repair with ic propagation we tackle a scheduling example. The
problem involves tasks with unknown start times, and known durations, which are related by
a variety of temporal constraints. These temporal constraints are handled, for the purposes of
this example, by ic . The temporal constraints are encoded thus:

before(TimePoint1,Interval,TimePoint2) :-
TimePoint1+Interval #=< TimePoint2.

TimePoint1 and TimePoint2 are variables (or numbers), but we assume, for this example,that
the Interval is a number. This constraint can enforce a minimum separation between start
times, or a maximum separation (if the Interval is negative). It can also enforce constraints
between end times, by adjusting theInterval to account for the task durations.
Additionally we assume that certain tasks require the same resource and cannot therefore proceed
at the same time. The resource constraint is encoded thus:

noclash(Start1,Duration1,Start2,_) :-
Start2 #>= Start1+Duration1.

noclash(Start1,_,Start2,Duration2) :-
Start1 #>= Start2+Duration2.

Suppose the requirement is to complete the schedule as earlyas possible. To express this we
introduce a last time point End which is constrained to come after all the tasks. Ignoring the
resource constraints, the temporal constraints are easilyhandled by ic . The optimal solution is
obtained simply by posting the temporal constraints and then instantiating each start time to
the lowest value in its domain.
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To deal with the resource constraints con°ict minimisation is used. The least (i.e. optimal) value
in the domain of each variable is chosen as its tentative value, at each node of the search tree.
To ¯x a constraint in con°ict, we simply invoke its nondetermis tic de¯nition, and ECL i PSe then
unfolds the ¯rst clause and sends the new temporal constraintStart2 #>= Start1+Duration1
to ic . On backtracking, the second clause will be unfolded instead.
After ¯xing a resource constraint, and posting a new temporal constraint, ic propagation takes
place, and then the tentative values are changed to the newic lower bounds.
The code is simply this:

:- lib(ic), lib(repair), lib(branch_and_bound).
schedule(Starts,End) :-

Starts = [S1,S2,...,End],
Starts :: 0..1000,
before(S2,5,S1),
before(S1,8,End),
...
noclash(S1,4,S2,8) r_conflict resource_cons,
...
minimize(repair_ic(Starts),End).

repair_ic(Starts) :-
set_tent_to_min(Starts),
conflict_constraints(resource_cons,List),
( List = [] ->

set_to_tent(Starts)
; List = [Constraint|_] ->

call(Constraint),
repair_ic(Starts)

).

set_tent_to_min(Vars) :-
( foreach(Var,Vars)
do

get_min(Var,Min),
Var tent_set Min

).

This code is much more robust than the traditional code for solving the bridge scheduling
example from [26]. The code is in the examples directory ¯lebridge_repair.pl .
This algorithm uses the ic solver to:

² Enforce the consistency of the temporal constraints

² Set the tentative values to an optimal solution (of this relaxation of the original problem)
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Repair naturally supports con°ict minimisation. This algor ithm can be combined with
other solvers, such asic , and with optimization.

Figure 13.3: Con°ict Minimisation

This technique is called probing. The use of the eplex solver, instead of ic for probing is
described in chapter 18 below.

13.4 Introduction to Local Search

13.4.1 Changing Tentative Values

From a technical point of view, the main di®erence between tree search andlocal (or move-based)
search is that tree search adds assignments while local search changes them. During tree search
constraints get tightened when going down the tree, and thisis undone in reverse order when
backing up the tree to a parent node. This ¯ts well with the idea of constraint propagation.
It is characteristic of local search that a move produces a small change, but it is not clear
what e®ect this will have on the constraints. They may become more or less satis¯ed. We
therefore need implementations of the constraints that monitor changes rather than propagate
instantiations.
Local search can be implemented quite naturally in ECLi PSe using the repair library. In
essence, the di®erence between implementing tree search techniques and local search in ECLi PSe

is that, instead of instantiating variables during search, local search progresses by changing
tentative values of variables. For the satis¯ability example of the last section, we can change
min_conflicts to local_search by simply replacing the guess predicate by the predicatemove:

local_search(Vars) :-
conflict_constraints(cs,List),
( List = [] ->

set_to_tent(Vars)
; List = [Constraint|_] ->

term_variables(Constraint,[Var|_]),
move(Var),
local_search(Vars)

).

move(Var) :-
Var tent_get Value,
NewValue is (1-Value),
Var tent_set NewValue.

There is no guarantee that this move will reach a better assignment, sinceNewValuemay violate
more constraints than the original Value.
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13.4.2 Hill Climbing

To ¯nd a neighbour which overall increases the number of satis̄ed constraints we could replace
local_search with the predicate hill_climb :

hill_climb(Vars) :-
conflict_constraints(cs,List),
length(List,Count),
( Count = 0 ->

set_to_tent(Vars)
; try_move(List,NewCount), NewCount < Count ->

hill_climb(Vars)
;

write('local optimum: '), writeln(Count)
).

try_move(List,NewCount) :-
select_var(List,Var),
move(Var),
conflict_constraints(cs,NewList),
length(NewList,NewCount).

select_var(List,Var) :-
member(Constraint,List),
term_variables(Constraint,Vars),
member(Var,Vars).

Some points are worth noticing:

² Constraint satisfaction is recognised by ¯nding that the con°ict constraint set is empty.

² The move operation and the acceptance test are within the condition part of the if-then-
else construct. As a consequence, if the acceptance test fails (the move does not improve
the objective) the move is automatically undone by backtracking.

The code code fortry_move is very ine±cient, because it repeatedly goes through the whole list
of con°ict constraints to count the number of constraints in con°ict. The facility to propagate
tentative values supports more e±cient maintenance of the number constraints in con°ict. This
technique is known as maintenance ofinvariants (see [17]). For the propositional satis¯ability ex-
ample we can maintain the number of satis¯ed clauses to make the hill climbing implementation
more e±cient.
The following program not only monitors each clause for con°ict, but it also records in a boolean
variable whether the clause is satis¯ed. Each tentative assignment to the variables is propagated
to the tentative value of the boolean. The sum of the booleanBSumrecords for any tentative
assignment of the propositional variables, the number of satis¯ed clauses. This speeds up hill
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Local search can be implemented in ECLi PSe with the repair library. Invariants can be
implemented by tentative value propagation using tent_is/2 .

Figure 13.4: Local Search and Invariants

climbing because, after each move, its e®ect on the number of satis¯ed clauses is automatically
computed by the propagation of tentative values.

prop_sat_2(Vars) :-
Vars = [X1,X2,X3],
tent_init(Vars),
clause_cons(X1 or neg X2 or X3,B1),
clause_cons(neg X1 or neg X2,B2),
clause_cons(X2 or neg X3,B3),
BSum tent_is B1+B2+B3,
hill_climb_2(Vars,BSum).

clause_cons(Clause,B) :-
Clause $= 1 r_conflict cs,
B tent_is Clause.

hill_climb_2(Vars,BSum) :-
conflict_constraints(cs,List),
BSum tent_get Satisfied,
( List=[] ->

set_to_tent(Vars)
; select_var(List,Var), move(Var), tent_get(BSum) > Sati sfied ->

hill_climb_2(Vars,BSum)
;

write('local optimum: '), writeln(Count)
).

To check whether the move is uphill, we retrieve the tentative value ofBSumbefore and after the
move is done. Remember that, since the move operator changesthe tentative values of some
variable, the tent_is primitive will automatically update the BSumvariable.
This code can be made more e±cent by recording more invariants, as described in [27].

13.5 More Advanced Local Search Methods

In the following we discuss several examples of local searchmethods. These methods have origi-
nally been developed for unconstrained problems, but they work for certain classes of constrained
problems as well.
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The ECL i PSe code for all the examples in this section is available in the ¯le knapsack_ls.ecl
in the doc/examples directory of your ECL i PSe installation.

13.5.1 The Knapsack Example

We will demonstrate the local search methods using the well-known knapsack problem. The
problem is the following: given a container of a given capacity and a set of items with given
weights and pro¯t values, ¯nd out which items have to be packed into the container such that
their weights do not exceed the container's capacity and thesum of their pro¯ts is maximal.

The model for this problem involves N boolean variables, a single inequality constraint to ensure
the capacity restriction, and an equality to de¯ne the objective function.

:- lib(ic).
:- lib(repair).
knapsack(N, Profits, Weights, Capacity, Opt) :-

length(Vars, N),
Vars :: 0..1,
Capacity #>= Weights*Vars r_conflict cap,
Profit tent_is Profits*Vars,
local_search(<extra parameters>, Vars, Profit, Opt).

The parameters mean

² N- the number of items (integer)

² Profits - a list of N integers (pro¯t per item)

² Weights - a list of N integers (weight per item)

² Capacity - the capacity of the knapsack (integer)

² Opt - the optimal result (output)
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13.5.2 Search Code Schema

In the literature, e.g. in [17], local search methods are often characterised by the the following
nested-loop program schema:

local_search:
set starting state
while global_condition

while local_condition
select a move
if acceptable

do the move
if new optimum

remember it
endwhile
set restart state

endwhile

We give three examples of local search methods coded in ECLi PSe that follow this schema:
random walk, simulated annealingand tabu search. Random walk and tabu search do not use
the full schema, as there is only a single loop with a single termination condition.

13.5.3 Random walk

The idea of Random walk is to start from a random tentative assignment of variables to 0
(item not in knapsack) or 1 (item in knapsack), then to remove random items (changing 1 to
0) if the knapsack's capacity is exceeded and to add random items (changing 0 to 1) if there is
capacity left. We do a ¯xed number (MaxIter) of such steps and keep track of the best solution
encountered.

Each step consists of:

² Changing the tentative value of some variable, which in turn causes the automatic recom-
putation of the con°ict constraint set and the tentative obje ctive value.

² Checking whether the move lead to a solution and whether thissolution is better than the
best one so far.

143



Here is the ECLi PSe program. We assume that the problem has been set up as explained above.
The violation of the capacity constraint is checked by looking at the con°ict constraints. If
there are no con°ict constraints, the constraints are all tentatively satis¯ed and the current
tentative values form a solution to the problem. The associated pro¯t is obtained by looking at
the tentative value of the Pro¯t variable (which is being constantly updated by tent_is ).

random_walk(MaxIter, VarArr, Profit, Opt) :-
init_tent_values(VarArr, random), % starting point
( for(_,1,MaxIter), % do MaxIter steps

fromto(0, Best, NewBest, Opt), % track the optimum
param(Profit,VarArr)

do
( conflict_constraints(cap,[]) -> % it's a solution!

Profit tent_get CurrentProfit, % what is its profit?
(

CurrentProfit > Best % new optimum?
->

printf("Found solution with profit %w%n", [CurrentProfit ]),
NewBest=CurrentProfit % yes, remember it

;
NewBest=Best % no, ignore

),
change_random(VarArr, 0, 1) % add another item

;
NewBest=Best,
change_random(VarArr, 1, 0) % remove an item

)
).

The auxiliary predicate init_tent_values sets the tentative values of all variables in the array
randomly to 0 or 1: The change_randompredicate changes a randomly selected variable with
a tentative value of 0 to 1, or vice versa. Note that we are using an array, rather than a list
of variables, to provide more convenient random access. Thecomplete code and the auxiliary
predicate de¯nitions can be found in the ¯le knapsack_ls.ecl in the doc/examples directory
of your ECL i PSe installation.

13.5.4 Simulated Annealing

Simulated Annealing is a slightly more complex variant of local search. It follows the nested loop
schema and uses a similar move operator to the random walk example. The main di®erences
are in the termination conditions and in the acceptance criterion for a move. The outer loop
simulates the cooling process by reducing the temperature variable T, the inner loop does random
moves until MaxIter steps have been done without improvement of the objective.
The acceptance criterion is the classical one for simulatedannealing: Uphill moves are always
accepted, downhill moves with a probability that decreaseswith the temperature. The search
routine must be invoked with appropriate start and end temperatures, they should roughly
correspond to the maximum and minimum pro¯t changes that a move can incur.
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sim_anneal(Tinit, Tend, MaxIter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
( fromto(Tinit, T, Tnext, Tend),

fromto(0, Opt1, Opt4, Opt),
param(MaxIter,Profit,VarArr,Tend)

do
printf("Temperature is %d%n", [T]),
( fromto(MaxIter, J0, J1, 0),

fromto(Opt1, Opt2, Opt3, Opt4),
param(VarArr,Profit,T)

do
Profit tent_get PrevProfit,
( flip_random(VarArr), % try a move

Profit tent_get CurrentProfit,
exp((CurrentProfit-PrevProfit)/T) > frandom,
conflict_constraints(cap,[]) % is it a solution?

->
( CurrentProfit > Opt2 -> % is it new optimum?

printf("Found solution with profit %w%n",
[CurrentProfit]),

Opt3=CurrentProfit, % accept and remember
J1=J0

; CurrentProfit > PrevProfit ->
Opt3=Opt2, J1=J0 % accept

;
Opt3=Opt2, J1 is J0-1 % accept

)
;

Opt3=Opt2, J1 is J0-1 % reject
)

),
Tnext is max(fix(0.8*T),Tend)

).

flip_random(VarArr) :-
functor(VarArr, _, N),
X is VarArr[random mod N + 1],
X tent_get Old,
New is 1-Old,
X tent_set New.

13.5.5 Tabu Search

Another variant of local search is tabu search. Here, a number of moves (usually the recent
moves) are remembered (the tabu list) to direct the search. Moves are selected by an acceptance
criterion, with a di®erent (generally stronger) acceptancecrtierion for moves in the tabu list.
Like most local search methods there are many possible variants and concrete instances of this
basic idea. For example, how a move would be added to or removed from the tabu list has to
be speci¯ed, along with the di®erent acceptance criteria.
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Repair can be used to implement a wide variety of local searchand hybrid search tech-
niques.

Figure 13.5: Implementing Search

In the following simple example, the tabu list has a length determined by the parameter Tabu-
Size . The local moves consist of either adding the item with the best relative pro¯t into the
knapsack, or removing the worst one from the knapsack. In both cases, the move gets rememe-
bered in the ¯xed-size tabu list, and the complementary move isforbidden for the next TabuSize
moves.

tabu_search(TabuSize, MaxIter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
tabu_init(TabuSize, none, Tabu0),
( fromto(MaxIter, I0, I1, 0),

fromto(Tabu0, Tabu1, Tabu2, _),
fromto(0, Opt1, Opt2, Opt),
param(VarArr,Profit)

do
( try_set_best(VarArr, MoveId), % try uphill move

conflict_constraints(cap,[]), % is it a solution?
tabu_add(MoveId, Tabu1, Tabu2) % is it allowed?

->
Profit tent_get CurrentProfit,
( CurrentProfit > Opt1 -> % is it new optimum?

printf("Found solution with profit %w%n", [CurrentProfit ]),
Opt2=CurrentProfit % accept and remember

;
Opt2=Opt1 % accept

),
I1 is I0-1

;
( try_clear_worst(VarArr, MoveId), % try downhill move

tabu_add(MoveId, Tabu1, Tabu2) % is it allowed?
->

I1 is I0-1,
Opt2=Opt1 % reject

;
I1=0, % no moves possible, stop
Opt2=Opt1 % reject

)
)

).

In practice, the tabu search forms only a skeleton around which a complex search algorithm is
built. An example of this is applying tabu search to the job-shop problem, see e.g. [18].
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13.6 Repair Exercise

Write a predicate min_conflicts(Vars,Count) that takes two arguments:

² Vars - a list of variables, with tentative 0/1 values

² Count - a variable, with a tentative integer value

The speci¯cation of min_conflicts(Vars,Count) is as follows:

1. If con°ict set cs is empty, instantiate Vars to their tentative values

2. Otherwise ¯nd a variable, V, in a con°ict constraint

3. Instantiate V to the value (0 or 1) that maximises the tentative value of Count

4. On backtracking instantiate V the other way.

This can be tested with the following propositional satis¯ability program.

cons_clause(Clause,Bool) :-
Clause =:= 1 r_conflict cs,
Bool tent_is Clause.

prop_sat(Vars,List) :-
( foreach(N,List),

foreach(Cl,Clauses),
param(Vars)

do
cl(N,Vars,Cl)

),
init_tent_values(Vars),
( foreach(Cl,Clauses),

foreach(B,Bools)
do

cons_clause(Cl,B)
),
Count tent_is sum(Bools),
min_conflicts(Vars,Count).

init_tent_values(Vars) :-
( foreach(V,Vars) do V tent_set 1).

cl(1,[X,Y,Z], (X or neg Y or Z)).
cl(2,[X,Y,Z], (neg X or neg Y)).
cl(3,[X,Y,Z], (Y or neg Z)).
cl(4,[X,Y,Z], (X or neg Z)).
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cl(5,[X,Y,Z], (Y or Z)).

To test your program try the following queries:

?- prop_sat([X,Y,Z],[1,2,3]).
?- prop_sat([X,Y,Z],[1,2,3,4]).
?- prop_sat([X,Y,Z],[1,2,3,4,5]).
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Chapter 14

Implementing Constraints

This chapter describes how to use ECLi PSe's advanced control facilities for implementing con-
straints. Note that the Generalised Propagation library li b(propia) and the Constraint Handling
Rules library lib(ech) provide other, higher-level ways to implement constraints. Those are more
suited for prototyping, while this chapter introduces those low-level primitives that are actually
used in the implementation of the various ECLi PSe constraint solvers.

14.1 What is a Constraint in Logic Programming?

Constraints ¯t very naturally into the Logic Programming par adigm. Declaratively, a constraint
is just the same as any other predicate. Indeed, in ECLi PSe, \constraints" are not a particular
programming language construct, constraints are just a conceptual notion.
Consider the following standard Prolog query:

?- member(X, [5,7,3,4]), X =< 4.

This will succeed with X = 3 after some search. In this example, both the member/2 goal and
the inequality goal could be considered `constraints on X' because they both restrict the possible
values for X. Usually, however, member/2 would not be considered a \constraint" because of its
backtracking (search) behaviour:

?- member(X, [5, 7, 3, 4]).
X = 5
More (0.00s cpu)
X = 7
More (0.04s cpu)

Also, the standard Prolog inequality would not be considered a \constraint", because if invoked
on its own it will raise an error:

?- X =< 4.
instantiation fault in X =< 4

In the following, we will call a predicate a constraint only if it
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² behaves deterministically

² somehow actively enforces its declarative meaning

14.2 Background: Constraint Satisfaction Problems

There is a large body of scienti¯c work and literature about Constraint Satisfaction Problems,
or CSPs. CSPs are a restricted class of constraint problems with the following properties

² there is a ¯xed set of variablesX 1; :::; X n

² every variable X i has a ¯nite domain D i of values that the variable is allowed to take. In
general, this can be an arbitrary, unordered domain.

² usually one considers only binary (2-variable) constraintscij (X i ; X j ). Every constraint is
simply de¯ned as a set of pairs of consistent values.

² the problem is to ¯nd a valuation (labeling) of the variables such that all the constraints
are satis¯ed.

The restriction to binary constraints is not really limitin g since every CSP can be transformed
into a binary CSP. However, this is often not necessary sincemany algorithms can be generalised
to n-ary constraints.
A CSP network is the graph formed by considering the variables as nodes and the constraints
as arcs between them. In such a network, several levels of consistency can be de¯ned:

Node consistency 8v 2 D i : ci (v) (not very interesting). It means that all unary constraint s
are re°ected in the domains

Arc consistency 8v 2 D i 9w 2 D j : cij (v; w) (most practically relevant). It means that for
every value in the domain of one variable, there is a compatible value in the domain of
the other variable in the constraint. In practice, constraints are symmetric, so the reverse
property also holds.

Path consistency 8v 2 D i 8w 2 D j 9u 2 Dk : cik (v; u); ckj (u; w) (usually too expensive). One
can show that this property extends to whole paths, i.e. on any path of constraints between
variables i and j the variables have domain values which are compatible with any domain
values for i and j.

Note that neither of these conditions is su±cient for the problem to be satis¯able. It is still
necessary to search for solutions. Computing networks withthese consistency levels can however
be a useful intermediate step to ¯nding a solution to the CSP.
Consequently, a complete CSP solver needs the following design decisions:

² what level of consistency do we want to employ?

² at what time during search do we want to (re)establish this consistency?

² what algorithm do we use to establish this consistency?

In practice, the most relevant consistency level is arc-consistency. Consequently, a number of
algorithms have been proposed for the purpose of establishing arc-consistency. The algorithms
used in ECLi PSe are mostly variants of AC-3 [15] and AC-5 [9].
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Program-driven
Search/heuristics

Data-driven
Propagation

Program-driven
Search/heuristics

Figure 14.1: Control during Constraint Solving

14.3 Constraint Behaviours

As opposed to the theoretical CSP framework sketched in the previous section, in ECLi PSe

we usually deal with more heterogeneous situation. We want to allow the integration of very
di®erent constraints, and we want to achieve a separation of constraint propagation and search.
Therefore, we are not interested in an overall problem solving algorithm which controls search
and constraint propagation globally for the whole problem and all constraints. We prefer to
view the constraint solving process as in ¯gure 14.1: the search process is controlled by an
algorithmic program, while constraint propagation is performed by data-driven agents which do
local (again algorithmic) computations on one or several constraints. Individual constraints can
then be implemented with di®erent behaviours, and freely mixed within a single computation.
Constraint behaviours can essentially be characterised by

² their triggering condition ( when are they executed)

² the action they perform when triggered (what do they do)

Let us now look at examples of di®erent constraint behaviours.

14.3.1 Consistency Check

The =</2 predicate, whose standard Prolog version raises an errorwhen invoked with uninstan-
tiated variable, is also implemented by the suspend library. Both implementations have the
same declarative meaning, but thesuspend version can be considered to be a proper constraint.
It implements a passive test , i.e. it simply delays until both arguments are numbers, andthen
succeeds or fails:

?- suspend : (X =< 4).
X = X
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There is 1 delayed goal.
Yes (0.00s cpu)

?- suspend : (X =< 4), X = 2.
X = 2
Yes (0.00s cpu)

?- suspend : (X =< 4), X = 5.
No (0.00s cpu)

14.3.2 Forward Checking

Often a constraint can already do useful work before all its arguments are instantiated. In
particular, this is the case when we are working with domain variables. Consideric 's disequality
constraint #\= : Even when only one side is instantiated, it can already remove this value from
the domain of the other (still uninstantiated) side:

?- X :: 1 .. 5,
X #\= 3.

X = X{[1, 2, 4, 5]}
Yes (0.00s cpu)

If both sides are uninstantiated, the constraint cannot do anything useful. It therefore waits (de-
lays) until one side becomes instantiated, but then wakes upand acts as before. This behaviour
is sometimes called forward checking [26]:

?- [X,Y] :: 1 .. 5,
X #\= Y. % delays

X = X{1 .. 5}
Y = Y{1 .. 5}
There is 1 delayed goal.
Yes (0.00s cpu)

?- X :: 1 .. 5,
X #\= Y, % delays
Y = 3. % wakes

X = X{[1, 2, 4, 5]}
Y = 3
Yes (0.01s cpu)

14.3.3 Domain (Arc) Consistency

For many constraints, even more eager behaviour is possible. For example, ic 's inequality
constraints performs domain updates as soon as possible, even when one or both arguments
are still variables:

?- [X, Y] :: 1 .. 5, X #< Y.
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Consistency Checking wait until all variables instantiated, then check

Forward Checking wait until one variable left, then compute consequences

Domain (Arc) Consistency wait until a domain changes, then compute consequences
for other domains

Bounds Consistency wait until a domain bound changes, then compute consequences
for other bounds

Figure 14.2: Typical Constraint Behaviours

X = X{1 .. 4}
Y = Y{2 .. 5}
There is 1 delayed goal.
Yes (0.00s cpu)

?- [X, Y] :: 1 .. 5, X #< Y, X #> 2.
Y = Y{[4, 5]}
X = X{[3, 4]}
There is 1 delayed goal.
Yes (0.00s cpu)

Inconsistent values are removed form the domains as soon as possible. This behaviour corre-
sponds toarc consistency as discussed in section 14.2.

14.3.4 Bounds Consistency

Note however that not all ic constraints maintain full domain arc consistency. For performance
reasons, the#= constraint only maintains bounds consistency, which is weaker, as illustrated by
the following example:

?- [X, Y] :: 1 .. 5, X #= Y + 1, X #\= 3.
Y = Y{1 .. 4}
X = X{[2, 4, 5]}
There is 1 delayed goal.
Yes (0.00s cpu)

Here, the value 4 for Y was not removed even though it is not arcconsistent (there is no value
for X which is compatible with it).
It is important to understand that this kind of propagation i ncompleteness does not a®ect
correctness: the constraint will simply detect the inconsistency later, when its arguments have
become more instantiated. In terms of the search tree, this means that a branch will not be
pruned as early as possible, and extra time might be spent searching.
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14.4 Programming Basic Behaviours

As an example, we will look at creating constraint versions of the following predicate. It de¯nes
a relationship between containers of type 1, 2 or 3, and theircapacity:

capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

This de¯nition gives the intended declarative meaning, but does not behave as a constraint:
capacity(3, C) will raise an error, and capacity(Type, 30.5) will generate several solutions
nondeterministically. Only calls like capacity(3, 27.1) will act correctly as a test.

14.4.1 Consistency Check

To program the passive consistency check behaviour, we needto wait until both arguments of
the predicate are instantiated. This can be achieved by adding an ECLi PSe delay clause :

delay capacity(T,N) if var(T);var(N).
capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

The delay clause speci¯es that any call to capacity/2 will delay as long as one of the argu-
ments is a variable. When the variables become instantiatedlater, execution will be resumed
automatically, and the instantiations will be checked for satisfying the constraint.

14.4.2 Forward Checking

For Forward Checking, we will assume that we have interval domain variables, as provided by
the ic library (without domain variables, there would not be much i nteresting propagation to
be done).
Here is one implementation of a forward checking version:

:- lib(ic).
delay capacity(T, N) if var(T), var(N).
capacity(T, N) :- nonvar(N), !,

N >= 0,
( N =< 50.0 -> T :: [1,2,3]
; N =< 180.0 -> T :: [1,2]
; N =< 350.0 -> T = 1
; fail
).
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capacity(1, N) :- N$>=0.0, N$=<350.0.
capacity(2, N) :- N$>=0.0, N$=<180.0.
capacity(3, N) :- N$>=0.0, N$=<50.0.

Note that the delay clause now only lets goals delay when botharguments are variables. As soon
as one is instantiated, the goal wakes up and, depending on which is the instantiated argument,
either the ¯rst, or one of the last three clauses is executed. Some examples of the behaviour:

?- capacity(T, C).
There is 1 delayed goal.
Yes (0.00s cpu)

?- capacity(3, C).
C = C{0.0 .. 50.0}
Yes (0.00s cpu)

?- capacity(T, C), C = 100.
T = T{[1, 2]}
C = 100
Yes (0.00s cpu)

A disadvantage of the above implementation is that when the predicate wakes up, it can be
either because T was instantiated, or because C was instantiated. An extra check (nonvar(N) )
is needed to distinguish the two cases. Alternatively, we could have created two agents (delayed
goals), each one specialised for one of these cases:

capacity(T, N) :-
capacity_forward(T, N),
capacity_backward(T, N).

delay capacity_forward(T, _N) if var(T).
capacity_forward(1, N) :- N$>=0.0, N$=<350.0.
capacity_forward(2, N) :- N$>=0.0, N$=<180.0.
capacity_forward(3, N) :- N$>=0.0, N$=<50.0.

delay capacity_backward(_T, N) if var(N).
capacity_backward(T, N) :-

N >= 0,
( N =< 50.0 -> T :: [1,2,3]
; N =< 180.0 -> T :: [1,2]
; N =< 350.0 -> T = 1
; fail
).
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Unfortunately, there is a drawback to this implementation as well: once one of the two delayed
goals has done its work, all the constraint's information has been incorporated into the remaining
variable's domain. However, the other delayed goal is stillwaiting, and will eventually wake up
when the remaining variable gets instantiated as well, at which time it will then do a redundant
check.
The choice between having one or several agents for a constraint is a choice we will face every
time we implement a constraint.

14.5 Basic Suspension Facility

For the more complex constraint behaviours (beyond those waiting for instantiations), we need
to employ lower-level primitives of the ECLi PSe kernel (suspensions and priorities). If we want
to add a new constraint to an existing solver, we also need to use the lower-level interface that
the particular solver provides.
Apart from the delay clauses used above, ECLi PSe also provides a more powerful (though
less declarative) way of causing a goal to delay. The following is another implementation of
the constraint checking behaviour, this time using the suspend/3 built-in predicate to create a
delayed goal for capacity/2:

capacity(T,N) :- (var(T);var(N)), !,
suspend(capacity(T,N), 0, [T,N]->inst).

capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

14.6 A Bounds-Consistent IC constraint

To show the basic ideas, we will simply reimplement a constraint that already exists in the ic
solver, the inequality constraint. We want a constraint ge/2 that takes two ic variables (or
numbers) and constrains the ¯rst to be greater or equal to the second.
The behaviour should be to maintain bounds-consistency: If we have a goalge(X,Y) , where
the domain of X is X{1..5} and the domain of Y is Y{3..7} , we would like the domains to
be updated such that the upper bound of Y gets reduced to 5, andthe lower bound of X gets
increased to 3. The following code achieves this:

ge(X, Y) :-
get_bounds(X, _, XH),
get_bounds(Y, YL, _),
( var(X),var(Y) ->

suspend(ge(X,Y), 0, [X->ic:max, Y->ic:min])
;
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suspend(Goal, Priority, Triggers) Creates Goal as a delayed goal with a given waking
priority and triggering conditions. Triggers is a list of Va riables-> Conditions terms,
specifying under which conditions the goal will be woken up.The priority speci¯es
with which priority the goal will be scheduled after it has been triggered. A priority
of 0 selects the default for the predicate. Otherwise, validpriorities range are from
1 (most urgent, reserved for debugging purposes) to 12 (least urgent).

Some valid triggers:

X- > inst wake when the variable becomes instantiated (most speci¯c)

X- > constrained wake when the variable becomes constrained somehow (most general)

X- > ic:min wake when the lower bound of an ic-variable changes

X- > ic:max wake when the upper bound of an ic-variable changes

X- > ic:hole wake an internal domain value gets removed

Figure 14.3: The Basic Suspension Facilities

true
),
X #>= YL, % impose new bounds
Y #=< XH.

We have used a single primitive from the low-level interface of the ic library: get bounds/3 ,
which extracts the current domain bounds from a variable. Further, we have used the information
that the library implements trigger conditions called min and max , which cause a goal to wake
up when the lower/upper bound on an ic variable changes.
Note that we suspend a new instance of thege(X,Y) goal beforewe impose the new bounds on
the variables. This is important when the constraint is to be used together with other constraints
of higher priority: imposing a bound may immediately wake and execute such a higher-priority
constraint. The higher-priority constraint may then in turn change one of the bounds that ought
to wake ge/2 again. This only works if ge/2 has already been (re-)suspended at that time.

14.7 Using a Demon

Every time the relevant variable bounds change, the delayedge/2 goal wakes up and (as long as
there are still two variables) a new, identical goal gets delayed. To better support this situation,
ECL i PSe provides a special type of predicate, called ademon . A predicate is turned into a
demon by annotating it with a demon/1 declaration. A demon goal di®ers from a normal goal
only in its behaviour on waking. While a normal goal disappears from the resolvent when it
is woken, the demon remains in the resolvent. Declaratively, this corresponds to an implicit
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recursive call in the body of each demon clause. Or, in other words, the demon goal forks into
one goal that remains in the suspended part of the resolvent,and an identical one that gets
scheduled for execution.
With a demon, our above example can be done more e±ciently. Onecomplication arises, how-
ever. Since the goal implicitly re-suspends, it now has to be explicitly killed when it is no longer
needed. The easiest way to achieve this is to let it have a handle to itself (its `suspension') in
one of its arguments. This can then be used to kill the suspension when required:

ge(X, Y) :-
suspend(ge(X,Y,MySusp), 0, [X->ic:max, Y->ic:min], MySu sp),
ge(X, Y, MySusp).

:- demon ge/3.
ge(X, Y, MySusp) :-

get_bounds(X, _, XH),
get_bounds(Y, YL, _),
( var(X),var(Y) ->

true % implicitly re-suspend
;

kill_suspension(MySusp)
),
X #>= YL, % impose new bounds
Y #=< XH.

We have used the new primitives suspend/4 and killsuspension/1.

14.8 Exercises

1. Implement a constraint atmost/3

atmost(+N, +List, +V)

which takes an integer N, an integer V and a list List containing integers or integer domain
variables.

Meaning: at most N elements of List have value V.

Behaviour: Fail as soon as too many list elements are instantiated to value V. This requires
only basic suspension facilities, no domain information needs to be taken into account.

Tests are provided in the ¯le atmost.tst . You can test your constraint by loading the
library lib(test_util) and then calling test(atmost) .

2. Implement a constraint o®set/3

offset(?X,+Const,?Y)
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which is declaratively like

offset(X,Const,Y) :- Y #= X+Const.

but maintains domain-arc-consistency (i.e. propagates "holes", while the above de¯nition
only maintains bounds-consistency).

Use suspension built-ins and domain-access primitives from the ic kernel module. Use
not unify/2 to test whether a value is outside a variable's domain.

Tests are provided in the ¯le offset.tst . You can test your constraint by loading the
library lib(test_util) . and then calling test(offset) .
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Chapter 15

Propia and CHR

15.1 Two Ways of Specifying Constraint Behaviours

There are two elegant and simple ways of building constraints available in ECLi PSe, called
Propia and Constraint Handling Rules (or CHR's). They are themselves built using the facilities
described in chapter 14.
Consider a simplenoclashconstraint requiring that two activities cannot be in progr ess at the
same time. For the sake of the example, the constraint involves two variables, the start timesS1
and S2 of the two activities, which both have duration 5. Logically this constraint states that
noclash, (S1 > = S2 + 5 _ S2 > = S1 + 5). The same logic can be expressed as two ECLi PSe

clauses:

noclash(S1,S2) :-
ic:(S1 $>= S2+5).

noclash(S1,S2) :-
ic:(S2 $>= S1+5).

Constraint propagation elicits information from constrai nts without leaving any choice points.
Constraint propagation behaviour can be associated with each of the above representations, by
CHR's and by Propia.
One way to propagate information from noclash is to wait until the domains of the start times
are reduced su±ciently that only one ordering of the tasks is possible, and then to enforce the
constraint that the second task not start until the ¯rst is ¯nis hed.
This behaviour can be implemented in CHR's as follows:

:- constraints noclash/2.
noclash(S1,S2) <=> ic:(S2 #< S1+5) | ic:(S1 #>= S2+5).
noclash(S1,S2) <=> ic:(S1 #< S2+5) | ic:(S2 #>= S1+5).

Consider the query:
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Propia and CHRs make it easy to turn the logical statement of aconstraint into code that
e±ciently enforces that constraint.

Figure 15.1: Building Constraints without Tears

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
S1 #>= 6.

In this query noclash achieves no propagation when it is initially posted with the start time
domains set to1..10 . However, after imposingS1 > = 6, the domain of S1 is reduced to6..10 .
Immediately the noclash constraint wakes, detects that the ¯rst condition S1 + 5 > = S2 is
entailed, and narrows the domain ofS2 to 1..5 .
The same behaviour can be expressed in Propia, but this time the original ECLi PSe represen-
tation of noclash as two clauses is used directly. The propagation behaviour is automatically
extracted from the two clauses by Propia when thenoclashgoal is annotated as follows:

?- [S1,S2]::1..10,
noclash(S1,S2) infers most,
S1 #>= 6.

15.2 The Role of Propia and CHR in Problem Modelling

To formulate and solve a problem in ECLi PSe the standard pattern is as follows:

1. Initialise the problem variables

2. State the constraints

3. Specify the search behaviour

Very often, however, the constraints involve logical implications or disjunctions, as in the case
of the noclashconstraint above. Such constraints are most naturally formulated in a way that
would introduce choice points during the constraint posting phase. The two ECLi PSe clauses
de¯ning noclash, above, are a case in point.
There are two major disadvantages of introducing choice points during constraint posting:

² Posting and reposting constraints during search is an unnecessary and computationally
expensive overhead

² Mixing constraint behaviour and search behaviour makes it harder to explore and optimize
the algorithm executed by the program.

Propia and CHR's support the separation of constraint setupand search behaviour, by allowing
constraints to be formulated naturally without their execu tion setting up any choice points.
The e®ect on performance is illustrated by the following small example. The aim is to choose a
set of 9 products (Products , identi¯ed by their product number 101-109) to manufacture, with
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Propia and CHRs can be used to build clear problem models thathave no (hidden) choice
points.

Figure 15.2: Modelling without Choice Points

a limited quantity of raw materials ( Raw1and Raw2), so as to achieve a pro¯t (Profit ) of over
40. The amount of raw materials (of two kinds) needed to produce each product is listed in a
table, together with its pro¯t.

product_plan(Products) :-
length(Products,9),
Raw1 #=< 95,
Raw2 #=< 95,
Profit #>= 40,
sum(Products,Raw1,Raw2,Profit),
labeling(Products).

product( 101,1,19,1). product( 102,2,17,2). product( 103 ,3,15,3).
product( 104,4,13,4). product( 105,10,8,5). product( 106 ,16,4,4).
product( 107,17,3,3). product( 108,18,2,2). product( 109 ,19,1,1).

sum(Products,Raw1,Raw2,Profit) :-
( foreach(Item,Products),

foreach(R1,R1List),
foreach(R2,R2List),
foreach(P,PList)

do
product(Item,R1,R2,P)

),
Raw1 #= sum(R1List),
Raw2 #= sum(R2List),
Profit #= sum(PList).

The drawback of this program is that the sumconstraint calls product which chooses an item
and leaves a choice point at each call. Thus the setup of thesumconstraint leaves 9 choice
points. Try running it, and the program fails to terminate wi thin a reasonable amount of time.
Now to make the program run e±ciently, we can simply annotate the call to product as a
Propia constraint making: product(Item,R1,R2,P) infers most . This program leaves no
choice points during constraint setup, and ¯nds a solution in a fraction of a second.
In the remainder of this chapter we show how to use Propia and CHR's, give some examples,
and outline their implementation.
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15.3 Propia

Propia is an implementation of Generalised Propagationwhich is described in the paper [13].

15.3.1 How to Use Propia

In principle Propia propagates information from an annotated goal by ¯nding all solutions to the
goal and extracting any information that is common to all the di®erent solutions. (In practice,
as we shall see later, Propia does not typically need to ¯nd allthe solutions.)
The \common" information that can be extracted depends uponwhat constraint solvers are used
when evaluating the underlying un-annotated ECLi PSe goal. To illustrate this, consider another
simple example.

p(1,3).
p(1,4).

?- p(X,Y) infers most.

If the ic library is not loaded when this query is invoked, then the information propagated by
Propia is that X = 1. If, on the other hand, ic is loaded, then more common information is
propagated. Not only does Propia propagateX = 1 but also the domain of Y is tightened from
-inf..inf to 3..4 . (In this case the additional common information is that Y 6= 0, Y 6= 1,
Y 6= 2 and so on for all values except 3 and 4!)
Any goal Goal in an ECL i PSe program, can be transformed into a constraint by annotating it
thus: Goal infers Parameter . Di®erent behaviours can be speci¯ed with di®erent parameters,
viz:

² Goal infers most
Propagates all common information produced by the loaded solvers

² Goal infers unique
Fails if there is no solution, propagates the solution if it is unique, and succeeds without
propagating further information if there is more than one solution.

² Goal infers consistent
Fails if there is no solution, and propagates no informationotherwise

These behaviours are nicely illustrated by the crossword demonstration program crossword in
the examples code directory. There are 72 ways to complete the crossword grid with words from
the accompanying directory. For ¯nding all 72 solutions, the comparative performance of the
di®erent annotations is given in the tableComparing Annotations.
The example program also illustrates the e®ect of specifyingthe waking conditions for Propia.
By only waking a Propia constraint when it becomes instantiated, the time to solve the cross-
word problem can be changed considerably. For example by changing the annotation from
Goal infers most to suspend(Goal,4,Goal->inst) infers most the time needed to ¯nd all
solutions goes down from 10 seconds to just one second.
For other problems, such as the square tiling problem in the example directory, the fastest
version is the one usinginfers consistent . To ¯nd the best Propia annotation it is necessary
to experiment with the current problem using realistic data sets.
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Annotation CPU time (secs)
consistent 13.3

unique 2.5
most 9.8

ac 0.3

Table 15.1: Comparing Annotations

15.3.2 Propia Implementation

In this section we describe how Propia works.

Outline

When a goal is annotated as a Propia constraint, eg. p(X,Y) infers most , ¯rst the goal
p(X,Y) is in e®ect evaluated in the normal way by ECLi PSe. However Propia does not stop
at the ¯rst solution, but continues to ¯nd more and more solutio ns, each time combining the
information from the solutions retrieved. When all the information has been accumulated,
Propia propagates this information (either by narrowing th e domains of variables in the goal, or
partially instantiating them).
Propia then suspends the goal again, until the variables become further constrained, at which
point it wakes, extracts information from solutions to the more constrained goal, propagates it,
and suspends again.
If Propia detects that the goal is entailed (i.e. the goal would succeed whichever way the variables
were instantiated), then after propagation it does not suspend any more.

Most Speci¯c Generalisation

Propia works by treating its input both as a goal to be called, and as a term which can be ma-
nipulated as data. As with any ECL i PSe goal, when executed its result is a further instantiation
of the term. For example the ¯rst result of calling member(X,[a,b,c]) is to further instantiate
the term yielding member(a,[a,b,c]) . This instantiated term represents the (¯rst) solution to
the goal.
Propia combines information from the solutions to a goal using their most speci¯c generalisation
(MSG). The MSG of two terms is a term that can be instantiated (in di ®erent ways) to either
of the two terms. For example p(a; f (Y )) is the MSG of p(a; f (b)) and p(a; f (c)). This is the
meaning ofgeneralisation. The meaning ofmost speci¯c is that any other term that generalises
the two terms, is more general than the MSG. For example, any other term that generalises
p(a; f (b) and p(a; f (c)) can be instantiated to p(a; f (Y )). The MSG of two terms captures only

Propia extracts information from a procedure which may be dēned by multiple ECL i PSe

clauses. The information to be extracted is controlled by the Propia annotation.

Figure 15.3: Transforming Procedures to Constraints
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information that is common to both terms (because it generalises the two terms), and it captures
all the information possible in the two terms (because it is the most speci¯c generalisation).
Some surprising information is caught by the MSG. For example the MSG of p(0; 0) and p(1; 1)
is p(X; X ). We can illustrate this being exploited by Propia in the fol lowing example:

% Definition of logical conjunction
conj(1,1,1).
conj(1,0,0).
conj(0,1,0).
conj(0,0,0).

conjtest(X,Z) :-
conj(X,Y,Z) infers most,
X=Y.

The test succeeds, recognising thatX must take the same truth value asZ . Running this in
ECL i PSe yields:

[eclipse]: conjtest(X,Z).
X = X
Z = X
Delayed goals:

conj(X, X, X) infers most
Yes (0.00s cpu)

If the ic library is loaded more information can be extracted, because the MSG of 0 and 1 is a
variable with domain 0..1 . Thus the result of the above example is not only to equateX and
Z but to associate with them the domain 0..1 .
The MSG of two terms depends upon what information is expressible in the MSG term. As the
above example shows, if the term can employ variable domainsthe MSG is more precise.
By choosing the class of terms in which the MSG can be expressed, we can capture more or less
information in the MSG. If, for example, we allow only terms of maximum depth 1 in the class,
then MSG can only capture functor and arity. In this case the MSG of f (a; 1) and f (a; 2) is
simply f ( ; ), even though there is more shared information at the next depth.
In fact the class of terms can be extended to a lattice, by introducing a bottom ? and a top
> . ? is a term carrying no information; > is a term representing inconsistent information; the
meet of two terms is the result of unifying them; and their join is their MSG.

The Propia Algorithm

We can now specify the Propia algorithm more precisely. The Propia constraint is

Goal infers Parameter

² Set OutTerm := >
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Propia computes the Most Speci¯c Generalisation (MSG) of the set of solutions to a
procedure. It does so without, necessarily, backtracking through all the solutions to the
procedure. The MSG depends upon the annotation of the Propiacall.

Figure 15.4: Most Speci¯c Generalisation

² Repeat

{ Find a solution S to Goal which is not an instance ofOutTerm

{ Find the MSG, in the class speci¯ed byParameter, of OutTerm and S. Call it MSG

{ Set OutTerm := MSG

until either Goal is an instance ofOutTerm, or no such solution remains

² Return OutTerm

When infers most is being handled, the class of terms admitted for the MSG is the biggest
class expressible in terms of the currently loaded solvers.In case ic is loaded, this includes
variable domain, but otherwise it includes any ECLi PSe term without variable attributes.
The algorithm supports infers consistent by admitting only the two terms > and ? in the
MSG class. infers unique is a variation of the algorithm in which the ¯rst step OutTerm := >
is changed to ¯nding a ¯rst solution S to Goal and initialising OutTerm := S.
Propia's termination is dramatically improved by the check that the next solution found is not
an instance ofOutTerm. In the absence of domains, there is no in¯nite sequence of terms that
strictly generalise each other. Moreover, if the variablesin Goal have ¯nite domains, the same
result holds. Thus, because of this check, Propia will terminate as long as each call ofGoal
terminates.
For example the Propia constraint member(Var,List) infers Parameter will always termi-
nate, if each call of member(Var,List) does, even in casemember(Var,List) has in¯nitely
many solutions!

15.3.3 Propia and Related Techniques

If the ¯nite domain solver is loaded then Goal infers most prunes the variable domains so
every value is supported by values in the domains of the othervariables. If every problem
constraint was annotated this way, then Propia would enforce arc consistency.
Propia generalises traditional arc consistency in two ways. Firstly it admits n-ary constraints,
and secondly it handles predicates de¯ned by rules, as well asground facts. In the special case
that the goal can be \unfolded" into a ¯nite set of ground solut ions, this can be exploited by
using infers ac to make Propia run more e±ciently. When called with parameter infers ac ,
Propia simply ¯nds all solutions and applies n-ary arc-consistency to the resulting tables.
Propia also generalisesconstructive disjunction. Constructive disjunction could be applied in
case the predicate was unfolded into a ¯nite set of solutions,where each solution was expressed
using ic constraints (such as equations, inequations etc.). Propiacan also handle recursively
de¯ned predicates, likemember, exampled above, which may have an in¯nite number of solutions.

167



15.4 CHR

Constraint Handling Rules were originally implemented in ECL i PSe. They are introduced in
the paper [8].

15.4.1 How to Use CHR

CHR's o®er a rule-based programming style to express constraint simpli¯cation and constraint
propagation. The rules all have ahead, an explicit or implicit guard, and a body, and are written
either

Head <=> Guard | Body. %Simplification Rule

or

Head ==> Guard | Body. %Propagation Rule

When a constraint is posted that is an instance of the head, the guard is checked to determine
whether the rule can ¯re. If the guard is satis¯ed (i.e. CHR detects that it is entailed by the
current search state), the rule ¯res . Unlike ECL i PSe clauses, the rules leave no choice points.
Thus if several rules share the same head and one ¯res, the other rules are never ¯red even after
a failure.
Normally the guards exclude each other, as in thenoclash example:

:- lib(ech).
:- constraints noclash/2.
noclash(S1,S2) <=> ic:(S2 #< S1+5) | ic:(S1 #>= S2+5).
noclash(S1,S2) <=> ic:(S1 #< S2+5) | ic:(S2 #>= S1+5).

Henceforth we will not explicitly load the ech library.
The power of guards lies in the behaviour of the rules when they are neither entailed, nor
disentailed. Thus in the query

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
S1 #>= 6.

when the noclash constraint is initially posted, neither guard is entailed, and CHR sim-
ply postpones the handling of the constraint until further constraints are posted. As soon
as a guard becomes entailed, however, the rule ¯res. For simpli¯cation rules, of the form
Head <=> Guard | Body, the head is replaced by the body. In this example, therefore,
noclash(S1,S2) is replaced byS1 #>= S2+5.
Propagation rules are useful to add constraints, instead ofreplacing them. Consider, for example,
an application to temporal reasoning. If the time T1 is before timeT2, then we can propagate
an additional ic constraint saying T1 =< T 2:
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CHRs are guarded rules which ¯re without leaving choice points. A CHR rule may have
one or many goals in the head, and may take the following forms: Simpli¯cation rule,
Propagation rule or Simpagation rule.

Figure 15.5: CHRs

:- constraints before/2.
before(T1,T2) ==> ic:(T1 $=< T2)

This rule simply posts the constraint T1 $=< T2to ic. When a propagation rule ¯res its body
is invoked, but its head remains in the constraint store.

15.4.2 Multiple Heads

Sometimes di®erent constraints interact, and more can be deduced from the combination of
constraints than can be deduced from the constraints separately. Consider the following query:

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
before(S1,S2).

Unfortunately the ic bounds are not tight enough for the noclash rule to ¯re. The two con-
straints can be combined so as to propagateS2 ¸ S1 + 5 using a two-headed CHR:

noclash(S1,S2), before(S1,S2) ==> ic:(S2 #>= S1+5).

We would prefer to write a set of rules that captured this kind of inference in a general way.
This can be achieved by writing a more complete solver forprec , and combining it with noclash .
prec(S1; D; S2) holds if the time S1 precedes the timeS2 by at least D units of time. For the
following code to work, S1 and S2 may be numbers or variables, butD must be a number.

:- constraints prec/3.
prec(S,D,S) <=> D=<0.
prec(S1,0,S2), prec(S2,0,S1) <=> S1=S2.
prec(S1,D1,S2), prec(S2,D2,S3) ==> D3 is D1+D2, prec(S1,D 3,S3).
prec(S1,D1,S2) \ prec(S1,D2,S2) <=> D2=<D1 | true. % Simpag ation

noclash(S1,S2), prec(S1,D,S2) ==> D > -5 | prec(S1,5,S2).
noclash(S1,S2), prec(S2,D,S1) ==> D > -5 | prec(S2,5,S1).

Note the simpagation rule, whose head has two partsHead1 \ Head2. In a simpagation rule
Head2is replaced, but Head1is kept in the constraint store.
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15.5 A Complete Example of a CHR File

Sometimes whole sets of constraints can be combined. Consider, for example, a program where
disequalities on pairs of variables are accumulated duringsearch. Whenever a point is reached
where any subset of the variables are all constrained to be di®erent analldifferent constraint
can be posted on that subset, thus supporting more powerful propagation. This can be achieved
by ¯nding cliquesin the graph whose nodes are variables and edges are disequality constraints.
We start our code with a declaration to load the ech library. The constraints are then declared,
and subsequently de¯ned by rules. The CHR encoding starts by generating a clique whenever
two variables are constrained to be di®erent.

:- lib(ech).
:- constraints neq/2.

neq(X,Y) ==>
sort([X,Y],List),
clique(List),
neq(Y,X).

Each clique is held as a sorted list to avoid any duplication.The symmetrical disequality is added
to simplify the detection of new cliques, below. Whenever a clique is found, the alldifferent
constraint is posted, and the CHRs seek to extend this cliqueto include another variable:

:- constraints clique/1.

clique(List) ==> alldifferent(List).
clique(List),neq(X,Y) ==>

in_clique(Y,List), not in_clique(X,List) |
sort([X|List],Clique),
extend_clique(X,List,Clique).

in_clique(Var,List) :-
member(El,List), El==Var, !.

The idea is to search the constraint store for a disequality between the new variableX and
each other variable in the original clique. This is done by recursing down the list of remaining
variables. When there are no more variables left, a new clique has been found.

neq(X,Y) \ extend_clique(X,[Y|Tail],Clique) <=>
extend_clique(X,Tail,Clique).

extend_clique(_,[],Clique) <=>
clique(Clique).
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Finally, we add three optimisations. Don't try and ¯nd a cliqu e that has already been found, or
¯nd the same clique twice. If the new variable is equal to a variable in the list, then don't try
any further.

clique(Clique) \ extend_clique(_,_,Clique) <=> true.
extend_clique(_,_,Clique) \ extend_clique(_,_,Clique) <=> true.
extend_clique(Var,List,_) <=> in_clique(Var,List) | tru e.

15.5.1 CHR Implementation

CHR's are implemented using the ECLi PSe suspension and waking mechanisms. A rule is woken
if:

² a new goal is posted, which matches one of the goals in its head

² a goal which has already been posted earlier becomes furtherinstantiated.

The rule cannot ¯re unless the goal is more instantiated than the rule head. Thus the rule
p(a,f(Y),Y) <=> q(Y) is really a shorthand for the guarded rule:

p(A,B,C) <=> A=a, B=f(Y), C=Y | q(Y)

The guard is \satis¯ed" if, logically, it is entailed by the co nstraints posted already.
In practice the CHR implementation cannot always detect the entailment. The consequence is
that goals may ¯re later than they could. For example consider the program

:- constraints p/2.
p(X,Y) <=> ic:(X $> Y) | q(X,Y).

and the goal

?- ic:(X $> Y),
p(X,Y).

Although the guard is clearly satis¯ed, the CHR implementati on cannot detect this andp(X,Y)
does not ¯re. If the programmer needs the entailment of inequalities to be detected, it is necessary
to express inequalities as CHR constraints, which propagate ic constraints as illustrated in the
exampleprec(S1,D,S2) above.
CHRs can detect entailment via variable bounds, sop(X,0) does ¯re in the following example:

?- ic:(X $> 1),
p(X,0).

The implementation of this entailment test in ECL i PSe is to impose the guard as a constraint,
and fail (the entailment test) as soon as any variable becomes more constrained. A variable
becomes more constrained if:

171



CHRs suspend on the variables in the rule head. On waking the CHR tests if its guard is
entailed by the current constraint store. The entailment test is e±cient but incomplete,
and therefore rules may fail to ¯re as early as they could in theory.

Figure 15.6: CHR Implementation

² it becomes more instantiated

² its domain is tightened

² a new goal is added to its suspension list

There are many examples of applications expressed in CHR in the ECLi PSe distribution. They
are held as ¯les in thechr subdirectory of the standard ECLi PSe library directory lib.

15.6 Global Reasoning

Constraints in ic are handled separately and individually. More global consistency techniques
can be achieved using global constraints. Propia and CHRs provide alternative methods of
achieving more global consistency. Propia allows any subproblem to be treated as a single
constraint. CHRs allow any set of constraints to be handled by a single rule. Each technique has
special strengths. Propia is good for handling complicatedlogical combinations of constraints.
CHRs are good for combining sets of constraints to extract transitive closures, and cliques.
Both are fun to implement and use!

15.7 Propia and CHR Exercise

The problem is to implement three constraints, and, or and xor in CHRs and, as a separate
exercise, in Propia. The constraints are speci¯ed as follows: All boolean variables have domain
f 0; 1g: 0 for 'false' and 1 for 'true'.

and(X,Y,Z) =def (X & Y) = Z
or(X,Y,Z) =def (X or Y) = Z
xor(X,Y,Z) =def ((X & -Y) or (-X & Y)) = Z

Suppose your constraints are calledcons_and, cons_or and cons_xor Now write enter the
following procedure:

full_adder(I1,I2,I3,O1,O2) :-
cons_xor(I1,I2,X1),
cons_and(I1,I2,Y1),
cons_xor(X1,I3,O1),
cons_and(I3,X1,Y2),
cons_or(Y1,Y2,O2).
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The problem is solved if you enter the query:

?- full_adder(I1,I2,0,O1,1).

and get the correct answer.
Note: you are not allowed to load the ic library nor to use search and backtracking!
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Chapter 16

The Eplex Library

16.1 Introduction

The eplex library allows an external Mathematical Programming solver to be used by ECLi PSe.
It is designed to allow the external solver to be seen as another solver for ECLi PSe, possibly in
co-operation with the existing `native' solvers of ECLi PSe such as theic solver. It is not speci¯c
to a given external solver, with the di®erences between di®erent solvers (largely) hidden from
the user, so that the user can write the same code and it will run on the di®erent solvers.
The exact types of problems that can be solved (and methods tosolve them) are solver depen-
dent, but currently linear programming, mixed integer programming and quadratic programming
problems can be solved.
The rest of this chapter is organised as follows: the remainder of this introduction gives a very
brief description of Mathematical Programming, which can be skipped if the reader is familiar
with the concepts. Section 16.3 demonstrates the modellingof an MP problem, and the following
section discusses some of the more advanced features of the library that are useful for hybrid
techniques.

16.1.1 What is Mathematical Programming?

Mathematical Programming (MP) (also known as numerical optimisation) is the study of opti-
misation using mathematical/numerical techniques. A problem is modelled by a set of simulta-
neous equations: an objective function that is to be minimised or maximised, subject to a set
of constraints on the problem variables, expressed as equalities and inequalities.
Many subclasses of MP problems have found important practical applications. In particular, Lin-
ear Programming (LP) problems and Mixed Integer Programming (MIP) problems are perhaps
the most important. LP problems have both a linear objective function and linear constraints.
MIP problems are LP problems where some or all of the variables are constrained to take on
only integer values.
It is beyond the scope of this chapter to cover MP in any more detail. However, for most usages
of the eplex library, the user need not know the details of MP { it can be treated as a black-box
solver.

J
For more information on Mathematical Programming, you can read a textbook on the subject
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² Linear Programming (LP) problems: linear constraints and objective function, con-
tinuous variables.

² Mixed Integer Programming (MIP) problems: LP problems with some or all variables
restricted to taking integral values.

Figure 16.1: Classi¯cation of MP problems

such as H. P. Williams' Model Building in Mathematical Programming [29].

16.1.2 Why interface to Mathematical Programming solvers?

Much research e®ort has been devoted to developing e±cient ways of solving the various sub-
classes of MP problems for over 50 years. The external solvers are state-of-the-art implementa-
tions of some of these techniques. The eplex library allows the user to model an MP problem in
ECLiPSe, and then solve the problem using the best availableMP tools.
In addition, the eplex library allows for the user to write pr ograms that combines MP's global
algorithmic solving techniques with the local propagation techniques of Constraint Logic Pro-
gramming.

16.1.3 Example formulation of an MP Problem

Figure 16.2 shows an example of an MP problem. It is a transportation problem where several
plants (1-3) have varying product producing capacities that must be transported to various
clients (A-D), each requiring various amounts of the product. The per-unit cost of transporting
the product to the clients also varies. The problem is to minimise the transportation cost whilst
satisfying the demands of the clients.
To formulate the problem, we de¯ne the amount of product transported from a plant N to a
client p as the variableNp, e.g. A1 represents the cost of transporting to plantA from client 1.
There are two kinds of constraints:

² The amount of product delivered from all the plants to a client must be equal to the client's
demand, e.g. for client A, which can recieve products from plants 1-3: A1 + A2 + A3 = 21

² The amount of product sent by a plant must not be more than its capacity, e.g. for plant
1, which can send products to plants A-D:A1 + B 1 + C1 + D1 · 50

The objective is to minimise the transportation cost, thus the objective function is to minimise
the combined costs of transporting the product to all 4 clients from the 3 plants.
Putting everything together, we have the following formulation of the problem:
Objective function:

min(10A1 + 7A2 + 200A3 + 8B 1 + 5B 2 + 10B 3 + 5C1 + 5C2 + 8C3 + 9D1 + 3D2 + 7D3)
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Figure 16.2: An Example MP Problem

Constraints:

A1 + A2 + A3 = 21

B 1 + B 2 + B 3 = 40

C1 + C2 + C3 = 34

D1 + D2 + D3 = 10

A1 + B 1 + C1 + D1 · 50

A2 + B 2 + C2 + D2 · 30

A3 + B 3 + C3 + D3 · 40

16.2 How to load the library

To use the library, you must have an MP solver that eplex can use (for example, XPRESS-MP
or CPLEX). Your ECL i PSe should be con¯gured to load in a `default' solver if there is more
than one available.

J
See the library manual's Eplex chapter for details for how toinstall the solver.

When con¯gured properly, the library can be loaded with the directive:

177



An eplex instance represents a single MP problem in a module. Constraints for the
problem are posted to the module. The problem is solved with respect to an objective
function.

Figure 16.3: Eplex Instance

:- lib(eplex).

This will load the library with the default external MP solve r.
You may need a valid license in order to use an external solver. With your ECL i PSe license,
you can obtain a full OEM version of XPRESS-MP1 that runs with ECL i PSe version 5.5 and
later from ECL i PSe's ftp site.

16.3 Modelling MP problems in ECL i PSe

16.3.1 Eplex instance

The simplest way to model an eplex problem is through aneplex instance. Abstractly, it can be
viewed as a solver module that is dedicated to one MP problem.MP constraints can be posted
to the instance and the problem solved with respect to an objective function by the external
solver.
Declaratively, an eplex instance can be seen as a compound constraint consisting of all the vari-
ables and constraints of its eplex problem. Like normal constraints, di®erent eplex instances can
share variables, although the individual MP constraints in an eplex instance do not necessarily
have to be consistent with those in another.

16.3.2 Example modelling of an MP problem in ECL i PSe

The following code models (and solves) the transportation problem of Figure 16.2, using an
eplex instance:

:- lib(eplex).

:- eplex_instance(prob). % a. declare an eplex instance

main1(Cost, Vars) :-
% b. create the problem variables and set their range
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars $:: 0.0..1.0Inf),

% c. post the constraints for the problem to the eplex instanc e
prob: (A1 + A2 + A3 $= 21),
prob: (B1 + B2 + B3 $= 40),

1XPRESS-MP is a product from Dash Associates Ltd. (www.dashoptimi zation.com)
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prob: (C1 + C2 + C3 $= 34),
prob: (D1 + D2 + D3 $= 10),

prob: (A1 + B1 + C1 + D1 $=< 50),
prob: (A2 + B2 + C2 + D2 $=< 30),
prob: (A3 + B3 + C3 + D3 $=< 40),

% d. set up the external solver with the objective function
prob: eplex_solver_setup(min(

10*A1 + 7*A2 + 200*A3 +
8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3)),

%------------------------------- End of Modelling code

prob: eplex_solve(Cost). % e. Solve problem using external solver

To use an eplex instance, it must ¯rst be declared witheplex_instance/1 . This is usually done
with a directive, as in line a. Once declared, an eplex instance can be referred to using its name
like a module quali¯er.
We ¯rst create the problem variables and set their range to be non-negative, as is conventional
in MP. Note that the bounds are posted to our eplex instance, using $::/2 .
N

The default bounds for variables is -1.0Inf..1.0Inf. Boundsposted to an eplex instance are
speci¯c to that eplex instance.

Next, we set up the MP constraints for the problem by posting them to the eplex instance. The
MP constraints accepted by eplex are the arithmetic equalities and inequalities: $=/2 , $=</2
and $>=/2.
N

The arithmetic constraints can be linear expressions on both sides. The restriction to linear
expressions originates from the external solver.

We need to setup the external solver with the eplex instance,so that the problem can be solved
by the external solver. This is done byeplex_solver_setup/1 , with the objective function given
as the argument, enclosed by eithermin(...) or max(...) . In this case, we are minimising.
Note that generally the setup of the solver and the posting ofthe MP constraints can be done
in any order.
Having set up the problem, we can solve it by callingeplex_solve/1 in line e.
When an instance gets solved, the external solver takes intoaccount all constraints posted to
that instance, the current variable bounds for the problem variables, and the objective speci¯ed
during setup.
In this case, there is an optimal solution of 710.0:

?- main1(Cost, Vars).
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Cost = 710.0
Vars = [A1{0.0 .. 1e+20 @ 0.0}, A2{0.0 .. 1e+20 @ 21.0}, ....]

Note that the problem variables are not instantiated by the solver. However, the `solution' values,
i.e. the values that the variable are given by the solver, areavailable in the eplex attribute. The
eplex attribute is shown as Lo..Hi @ Sol where Lo is the lower bound, Hi the upper bound,
and Sol the solution value for the variable (e.g.,A2has the solution value of 21.0 in the example
above). Note also that the external solver may not allow very large °oats, hence1e+20, this
external solver's representation of in¯nity, is the upper bound of the variables, even though we
speci¯ed 1.0Inf in our code.
One reason the problem variables are not assigned their solution values is so that the eplex
problem can be solved again, after it has been modi¯ed. A problem can be modi¯ed by the
addition of more constraints, and/or changes in the bounds of the problem variables.

16.3.3 Getting more solution information from the solver

The solution values of the problem variables can be obtainedby eplex_var_get/3 . The example
program in the previous section can be modi¯ed to return the solution values:

main2(Cost, Vars) :-
.... % same as previous example up to line e
prob: eplex_solve(Cost), % e. Solve problem using external solver
(foreach(V, Vars) do

% f. set the problem variables to their solution values
prob: eplex_var_get(V, typed_solution, V)

).

In line f , eplex_var_get/3 is used to obtain the solution value for a problem variable. The
second argument, set totyped_solution , speci¯es that we want the solution value for the
variable to be returned. Here, we instantiate the problem variable itself to the solution value
with the third argument:

?- main2(Cost, Vars).

Cost = 710.0
Vars = [0.0, 21.0, 0.0, 16.0, 9.0, 15.0, 34.0, 0.0, 0.0, 0.0, 0 .0, 10.0]

Note that, in general, an MP problem can have many optimal solutions, i.e. di®erent solutions
which give the optimal value for the objective function. As a result, the above instantiations for
Vars might not be what is returned by the solver used.

16.3.4 Adding integrality constraints

In general, a problem variable is not restricted to taking integer values. However, for some
problems, there may be a requirement that some or all of the variable values be strictly integral
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(for example, in the previous transportation problem, it may be that only whole units of the
products can be transported; also variables may often be used to model booleans by allowing
them to take on the values of 0 or 1 only). This can be speci¯ed byposting an additional
integers/1 constraint on the variables.
Consider the example problem again, where it so happens thatthe optimal value for the objective
function can be satis¯ed with integral values for the variables. To show the di®erences that
imposing integer constraints might make, we add the constraint that client A must receive an
equal amount of products from plants 1 and 2. Now the problem (without the integer constraints)
can be written as:

:- lib(eplex).

:- eplex_instance(prob).

main3(Cost, Vars) :-
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars $:: 0.0..1.0Inf),
prob: (A1 + A2 + A3 $= 21),
prob: (B1 + B2 + B3 $= 40),
prob: (C1 + C2 + C3 $= 34),
prob: (D1 + D2 + D3 $= 10),

prob: (A1 + B1 + C1 + D1 $=< 50),
prob: (A2 + B2 + C2 + D2 $=< 30),
prob: (A3 + B3 + C3 + D3 $=< 40),

prob: eplex_solver_setup(min(
10*A1 + 7*A2 + 200*A3 +
8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3)),

prob: (A1 $= A2), % g. the new constraint, added after setup

%------------------------------- End of Modelling code

prob: eplex_solve(Cost),
(foreach(V, Vars) do

prob: eplex_var_get(V, typed_solution, V)
).

In this example, the new constraint in line g is imposed after the solver setup. In fact it can be
imposed anytime beforeeplex_solve(Cost) is called.
This problem also has an optimalCost of 710, the same as the original problem. However, the
solution values are not integral:

?- main3(Cost, Vars).
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Cost = 710.0
Vars = [10.5, 10.5, 0.0, 5.5, 19.5, 15.0, 34.0, 0.0, 0.0, 0.0, 0.0, 10.0]

Now, to impose the constraints that only whole units of the products can be transported, we
modify the program as follows:

main4(Cost, Vars) :-
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars $:: 0.0..1.0Inf),
prob: integers(Vars), % h. impose the integrality constrai nt
....% Rest is the same as main3

In line h, we added theintegers/1 constraint. This imposes the integrality constraint on Vars
for the eplex instanceprob. Now, the external solver will only assign integer solutionvalues to
the variables in the list.
N

In fact, with the integer constraints, the problem is solved as a MIP problem rather than
an LP problem, which involves di®erent (and generally computationally more expensive)
techniques. This di®erence is hidden from the eplex user.

Running this program, we get:

?- main4(Cost,Vars).

Cost = 898.0
Vars = [10, 10, 1, 6, 20, 14, 34, 0, 0, 0, 0, 10]

In this case, A1 and A2 are now integers. In fact, notice that all the values returned are now
integers rather than °oats. This is because thetyped_solution option of eplex_var_get/3
returns the solution values taking into account if the variables have been declared as integers
for the eplex instance.
N

Posting an integers/1 constraint to an eplex instance only inform the external solver to treat
those variables as integers (in fact the external solver will still represent the variables as
°oats, but will only assign intergral solution values to them), but does not constrain the
variable itself to be of type integer.

16.4 Repeated Solving of an Eplex Problem

Part of the power of using the eplex library comes from being able to solve an eplex problem re-
peatedly after modi¯cation. For example, we can solve the original transportation problem, add
the extra constraint, and resolve the problem. Remember that as eplex_solve/1 instantiates
its argument, we need to use a new variable for each call:
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² Declare an eplex instance usingeplex instance(+Instance) .

² Post the constraints ($=/2, $ > =/2, $= < /2, integers/1, $::/2 ) for the problem
to the eplex instance.

² Setup the solver with the objective function using
Instance: eplex solver setup(+ObjFunc) .

Figure 16.4: Modelling an MP Problem

.... % setup the constraints for the original problem as befo re
prob: (A3 + B3 + C3 + D3 =< 40),

prob: eplex_solver_setup(min(....)), % as before

prob: eplex_solve(Cost1), % h. solve original problem
prob: (A1 $= A2),
prob: eplex_solve(Cost2), % i. solve modified problem
.....

Note that posted constraints behave logically: they are added to an eplex instance when posted,
and removed when they are backtracked over.
In the examples so far, the solver has been invoked explicitly. However, the solver can also
behave like a normal constraint, i.e. it is automatically invoked when certain conditions are met.
As an example, we implement the standard branch-and-bound method of solving a MIP problem,
using the external solver as an LP solver only. Firstly we outline how this can be implemented
with the facilities we have already encountered. We then show how this can be improved usin
more advanced features oflib(eplex) .
With the branch-and-bound approach, a search-tree is formed, and at each node a `relaxed'
version of the MIP problem is solved as an LP problem. Starting at the root, the problem
solved is the original MIP problem, but without any of the int egrality constraints:

:- eplex_instance(mip).

main5(Cost, Vars) :-
% set up variables and constraints, but no integers/1 constr aints
....
% assume minimise for simplicity
mip: eplex_solver_setup(min(Obj)),
mip: eplex_solve(RelaxedCost),
mip: (Cost $>= RelaxedCost), % RelaxedCost is lower bound

In general, this initial LP solution contains non-integer assignments to integer variables. The
objective value of this LP is a lower bound on the actual MIP objective value. The task of
the search is to ¯nd integer assignments for the integer variables that optimises the objective
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X = 4.2

4.2
54

X >= 5X =< 4

Figure 16.5: Labelling a variable at a MIP tree node

function. Each node of the search-tree solves the problem with extra bound constraints on these
variables. At each node, a particular variable is `labelled' as shown in Figure 16.5. The integer
variable in this case has been assigned the non-integer valueof 4.2. In the subsequent nodes of
the tree, we consider two alternate problems, which createstwo branches in the search. In one
problem, we impose the bound constraintX · 4, and in the other, X ¸ 5: these are the two
nearest integer values to 4.2. In each branch, the problem issolved again as an LP problem with
its new bound for the variable:

branching(IntVars) :-
....
% for each integer variable X which violates the integer cons traint
mip: eplex_var_get(X, solution, XVal),
...
Split is floor(XVal),
% choice: branch on the two ranges for X
(mip: (X $=< Split) ; mip: (X $>= Split + 1)),
mip: eplex_solve(RelaxedCost),
...% repeat until there are no integer violations

A choice-point for the two alternative branchings is created in the above code, the problem
is solved with one of the branchings (X $=< Split ). The program then proceeds to further
labelling of the variables. The alternative branch is left to be tried on backtracking.
Eventually, if the problem has a solution, all the integer variables will be `labelled' with integer
values, resulting in a solution to the MIP problem. However, this will generally not be optimal,
and so the program needs to backtrack into the tree to search for a better solution by trying
the other branches for the variables, using the existing solution value as a bound. This `branch-
and-bound' search technique is implemented inlib(branch_and_bound) .
In the code, the external solver is invoked explicitly at every node. This however may not be nec-
essary as the imposed bound may already be satis¯ed. As statedat the start of this section, the

Remember that ECLi PSe provides libraries that make some programming tasks much
easier. There is no need to write your own code when you can usewhat is provided by an
ECL i PSe library.

Figure 16.6: Reminder: use ECLi PSe libraries!
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invocation of the solver could be done in a data-driven way, more like a normal constraint. This is
done with eplex_solver_setup/4 : eplex_solver_setup(+Obj,-ObjVal,+Options,+Trigs) ,
a more powerful version ofeplex_solver_setup/1 for setting up a solver. TheTrigs argument
speci¯es a list of `trigger modes' for triggering the solver.
J

See the ECLi PSe reference manual for a complete description of the predicate.

For our example, we add a bound constraint at each node to exclude a fractional solution value
for a variable. The criterion we want to use is to invoke the solver only if this old solution
value is excluded by the new bounds (otherwise the external solver will solve the same problem
redundantly). This is done by specifyingdeviating_bounds in the trigger modes. The full code
that implements a MIP solution for the example transportati on problem is given below:

:- lib(eplex).
:- lib(branch_and_bound).

:- eplex_instance(mip).

main6(Cost, Vars) :-
% b. create the problem variables and set their range
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
mip: (Vars :: 0.0..1.0Inf),

% c. post the constraints for the problem to the eplex instanc e
mip: (A1 + A2 + A3 $= 21),
mip: (B1 + B2 + B3 $= 40),
mip: (C1 + C2 + C3 $= 34),
mip: (D1 + D2 + D3 $= 10),

mip: (A1 + B1 + C1 + D1 $=< 50),
mip: (A2 + B2 + C2 + D2 $=< 30),
mip: (A3 + B3 + C3 + D3 $=< 40),
mip: (A1 $= A2),

% j. post the objective function as a constraint
ObjFunc = 10*A1 + 7*A2 + 200*A3 +

8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3,

mip: (ObjFunc $= Cost),

% k. this is a more flexible method for setting up a solver.
% [deviating_bounds] specifies that the external solver sh ould be
% invoked when any solution value is outside the variable bou nds
mip: eplex_solver_setup(min(ObjFunc), Cost, [], [deviat ing_bounds]),

% l. Use the branch_and_bound library to do the branch and bou nd
bb_min(( branching(Vars),

mip: eplex_get(cost, Cost)
(foreach(V, Vars) do mip: eplex_var_get(V,solution,V))

), Cost, _).
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branching(IntVars) :-
% Find a variable X which does not have an integer solution val ue
(integer_violation(IntVars, X, XVal) ->

% m. try the closer integer range first
Split is round(XVal),
(Split > XVal ->

(mip: (X $>= Split) ; mip: (X $=< Split - 1))
;

(mip: (X $=< Split) ; mip: (X $>= Split + 1))
),
branching(IntVars)

;
% cannot find any integer violations; found a solution
true

).

% returns Var with solution value Val which violates the inte ger constraint
integer_violation([X|Xs], Var, Val) :-

mip: eplex_var_get(X, solution, RelaxedSol),
% m. we are dealing with floats here, so need some `margin' for a
% float value to be considered integer (1e-5 on either side)
(abs( RelaxedSol - round(RelaxedSol) ) >= 1e-5 ->

Var = X, Val = RelaxedSol
;

integer_violation(Xs, Var, Val)
).

The setup of the solver is done in linek, with the use of the deviating_bounds trigger mode.
There are no explicit calls to trigger the solver { it is trigg ered automatically. In addition, the
¯rst call to eplex_solve/1 for an initial solution is also not required, because when trigger
modes are speci¯ed, then by default,eplex_solver_setup/4 will invoke the solver once the
problem is setup.
Besides thedeviating_bounds trigger condition, the other argument of interest in our use of
eplex_solver_setup/4 is the second argument, the objective value of the problem (Cost in the
example): recall that this was returned previously byeplex_solve/1 . Unlike in eplex_solve/1 ,
the variable is not instantiated when the solver returns. Instead, one of the bounds (lower bound
in the case of minimise) is updated to the optimal value, re°ecting the range the objective value
can take, from suboptimal to the `best' value at optimal. The variable is therefore made a
problem variable by posting of the objective as a constraintin line j . This informs the external
solver needs to be informed that theCost variable is the objective value.
In line m, the branch choice is created by the posting of the bound constraint, which may trigger
the external solver. Here, we use a simple heuristic to decide which of the two branches to try
¯rst: the branch with the integer range closer to the relaxed solution value. For example, in the
situation of Figure 16.5, the branch with X $=< 4is tried ¯rst since the solution value of 4.2 is
closer to 4 than 5.
By using lib(branch and bound)'s bb_min/3 predicate in m, there is no need to explicitly write
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² Use Instance:eplex solver setup(+Obj,-ObjVal,+Opts,+Trigs) to set up an
external solver state for instance Instance. Trigs speci¯esa list of trigger conditions
to automatically trigger the external solver.

² Instance:eplex var get(+Var,+What,-Value) can be used to obtain informa-
tion for the variable Var in the eplex instance.

² Instance:eplex get(+Item, -Value) can be used to retrieve information about
the eplex instance's solver state.

Figure 16.7: More advanced modelling in eplex

our own branch-and-bound routine. However, this predicate requires the cost variable to be
instantiated, so we calleplex_get(cost, Cost) to instantiate Cost at the end of each labelling
of the variables. We also get the solution values for the variables, so that the branch-and-bound
routine will remember it. The ¯nal value returned in Cost (and Vars for the solution values) is
the optimal value after the branch-and-bound search, i.e. theoptimal value for the MIP problem.
Of course, in practice, we do not write our own MIP solver, but use the MIP solver provided
with the external solvers instead. These solvers are highlyoptimised and tightly coupled to their
own LP solvers. The techniques of solving relaxed subproblems described here are however very
useful for combining the external solver with other solversin a hybrid fashion.
J

See chapter 18 for more details on hybrid techniques.

16.5 Exercise

A company produces two types of products T1 and T2, which requires the following resources
to produce each unit of the product:

Resource T1 T2
Labour (hours) 9 6
Pumps (units) 1 1

Tubing (m) 12 16

The amount of pro¯t per unit of products are:

T1 $350

T2 $300

They have the following resources available: 1566 hours of labour, 200 pumps, and 2880 metres
of tubing.

1. Write a program to maximise the pro¯t for the company, using eplex as a black box solver.
Write a predicate that returns the pro¯t and the values for T1 a nd T2.
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2. What program change is required to answer this question: What pro¯t can be achieved if
exactly 150 units of T1 are required?

3. What would the pro¯t be if fractional numbers of refrigerat ors could be produced?

4. Rewrite the program from (1) without optimize/2, using ep lex solver setup/1, eplex solve/1,
and eplex var get/3.

5. In the program from (4), remove the integrality constraints (so that eplex only sees an
LP problem). Solve the integer problem by interleaving solving of the LP problem with a
rounding heuristic:

² solve the continuous relaxation

² round the solution for T1 to the nearest integer and instantiate it Initially just return
the maximum pro¯t value.

² re-solve the new continuous relaxation

² round the solution for T2 to the nearest integer and instantiate it

² re-solve the new continuous relaxation

What is the result in terms of T1, T2 and Pro¯t?

6. Rewrite the program from (5) using eplex solver setup/4 and automatic triggering of the
solver instead of explicit calls to eplexsolve/1. The solver should be triggered whenever
variables get instantiated.
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Chapter 17

The Colgen Library

This chapter provides a brief introduction to the use of the colgen library by comparing the
solution of a simple 1-dimensional cutting stock problem | in which we wish to minimize the
waste in cutting stock boards of length l to produce speci¯ed numbers of boards of various
lengths l i | by LP using lib(eplex) and hybrid column generation usinglib(colgen) .

17.1 The LP Model

In modeling this problem as a MILP we could choose to introduce a variablex j for each feasible
way of cutting a board of length l into boards of length l i with coe±cients aij representing the
number of boards of length l i obtained from the cutting associated with x j and a constraint
P n

j =1 aij x j ¸ bi specifying the number of boardsbi required for each length l i ; for realistic
problems there will frequently be very many feasible cuttings and associated variablesx j and as
these must be enumerated before problem solution can begin this approach may be impractical.
We could instead introduce for each stock board used a set of variables x i;j for each demandi
indicating the cutting required, and a constraint

P m
i =1 l i x i;j · l ensuring the cutting is valid.

Although we do not know how many boards will be required in theoptimal solution, we do have
an upper bound on this number K 0 =

P m
i =1 dbi =bl=l i ce and introduce the above variable sets

and constraint for K 0 boards. The constraints
P K 0

j =1 x ij ¸ bi specify the number of boardsbi

required for each lengthl i . Since all K 0 boards may not be required we introduce a variablex j

denoting whether a board is used and the constraint set

x j = 1 ·
P m

i =1 x i;j

bl=l i cx j ¸ x i;j 8i
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so that unused boards have zero cost in the objective function. The complete problem formula-
tion is then:

P : minimize z =
K 0X

j =1

Ã

lx j ¡
mX

i =1

l i x ij

!

subject to
P K 0

j =1 x ij ¸ bi 8i
P m

i =1 l i x i;j

x j ¡
P m

i =1 x i;j

hi x j ¡ x i;j

x i;j

x j

·
·
¸
2
2

l
0
0
f 0; : : : ; hi g

)

8i

f 0; 1g

9
>>>>>=

>>>>>;

8j

where hi = bl=l i c. This problem formulation is modeled and solved in ECLi PSe as follows:

lp_cut_stock(Lengths, Demands, StockLength, Vars, Cost) :-
% eplex instance creation
eplex_instance(cut_stock),
(

foreach(Li, Lengths),
foreach(Bi, Demands),
foreach(Xijs, XijVars),
foreach(Maxi, Bounds),
fromto(0, KIn, KOut, K0),
param(StockLength)

do
KOut is KIn + fix(ceiling(Bi/floor(StockLength/Li))),
Maxi is fix(floor(StockLength/Li))

),
(

for(J, 1, K0),
foreach(StockLength*Xj-sum(Knapsack), Obj),
fromto(XijVars, VOut, VIn, []),
param(Lengths, StockLength)

do
% Xj variable bounds
cut_stock:(Xj::0..1),
(

foreach(Li, Lengths),
foreach(Xij, Used),
foreach(Li*Xij, Knapsack),
foreach([Xij|VIn], VOut),
foreach(Maxi, Bounds),
param(Xj)

do
% Xij variable bounds
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cut_stock:(Xij::0..Maxi),
% Xj = 1 if cutting used
cut_stock:(Maxi*Xj-Xij >= 0)

),
% cutting knapsack constraint
cut_stock:(sum(Knapsack) =< StockLength),
% Xj = 0 if cutting unused
cut_stock:(Xj-sum(Used) =< 0)

),
(

foreach(Bi, Demands),
foreach(Xijs, XijVars)

do
% demand constraint
cut_stock:(sum(Xijs) >= Bi)

),
% optimization call
cut_stock:minimize(min(sum(Obj)), Cost).

17.2 The Hybrid Colgen Model

The cutting stock problem can be decomposed into a master problem in which an optimum
combination of existing cuttings is found and a subproblem in which new cuttings are generated
which could improve upon the current combination. For clarity we denote byQ the set of feasible
cuttings and index variables ¸ q by the column of master problem constraint coe±cientsq 2 Q
corresponding to the equivalent subproblem solution:

MP : minimize z =
P

q2 Q cq ¸ q

subject to
P

q2 Q q¸ q ¸ b
P

q2 Q ¸ q ¸ L 0P
q2 Q ¸ q · K 0

¸ q 2 0; 1 q 2 Q

SP : maximize w =
P m

i =1 ui qi ¡ cq

subject to
P m

i =1 l i qi · l
qi 2 f 0; : : : ; bl=l i cg i = 1 ; : : : ; m

where L 0 = d
P m

i =1 bi l i =le and K 0 =
P m

i =1 dbi =bl=l i ce are initial bounds on the number of stock
boards required, cq = l ¡

P m
i =1 l i qi , the subproblem objective function coe±cients u represent

the bene¯t obtained by producing boards of each type, and the subproblem is simply a general
integer knapsack problem maximizing the bene¯t due to the boards produced by a cutting. The
problem is modeled and solved as follows:

cg_cut_stock(Lengths, Demands, StockLength, Vars, Cost) :-
% column generation instance creation
colgen_instance(cut_stock),
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(
fromto(Ids, [demand(Li)|IRest], IRest, [lower, upper]),
foreach(Li, Lengths),
foreach(Bi, Demands),
fromto(Q, [Qi|Rest], Rest, [Lower, Upper]),
foreach(Li*Qi, Knapsack),
fromto(0, LIn, LOut, L),
fromto(0, KIn, KOut, K0),
fromto(StockLength, CIn, COut, CMax),
param(StockLength)

do
LOut is LIn + Bi*Li,
KOut is KIn + fix(ceiling(Bi/floor(StockLength/Li))),
COut is min(Li-1, CIn),
% subproblem variable bounds
Max is fix(floor(StockLength/Li)),
ic:(Qi::0..Max),
% master problem column generation constraint
% for demand i
cut_stock:identified_constraint(implicit_sum(Qi) >= B i,

demand(Li))
),
% master problem initial lower and upper bound constraints
L0 is fix(ceiling(L/StockLength)),
cut_stock:identified_constraint(implicit_sum(Lower) >= L0,

lower),
cut_stock:identified_constraint(implicit_sum(Upper) =< K0,

upper),
% subproblem cost variable bounds
ic:(C::0..CMax),
% the subproblem knapsack constraint
ic:(sum(Knapsack) + C =:= StockLength),
% subproblem structure
SubProblem = sp_prob with [

cost:C,
coeff_vars:Q,
aux:[]

],
% optimization call
cut_stock:solver_setup(cutting(SubProblem, Ids), impl icit_sum(C)),
cut_stock:solve(Cost),
cut_stock:get(non_zero_vars, Vars).

where we ¯rst create a colgen instance cut_stock , set up the variable domains of the sub-
problem and the demand constraints of the master problem, set up the initial master problem
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bound constraints and subproblem knapsack constraint, then solve and return the variables with
non-zero values in the optimal solution. The de¯nition of cutt ing cost as waste has been com-
bined with the knapsack constraint, while the bounds placedon this cost exclude cuttings with
su±cient waste to produce further boards, thus limiting the amount of search in subproblem
solution. The chosen method of subproblem solution is:

cutting(SubProblem, Ids) :-
SubProblem = sp_prob with [

cost:Cost,
coeff_vars:Vars,
aux:[]

],
% sort variables in descending order of dual value
(

fromto(Ids, [Id|IRest], IRest, [lower, upper]),
fromto(Vars, [Var|Rest], Rest, [1, 1]),
foreach(Dual-Var, KeyedVars),
fromto(Soln, [Id-Var|SRest], SRest, [lower-1, upper-1])

do
cut_stock:get(dual(Id), Dual)

),
sort(1, >=, KeyedVars, Sorted),
% label vars with non-negative duals to maximum values,
% vars with negative duals to minimum
(

foreach(Dual-Var, Sorted)
do

( Dual >= 0 -> label_max(Var) ; label_min(Var) )
),
% create solution structure and post to problem instance
Sol = sp_sol with [

cost:Cost,
coeff_vars:Soln,
aux:[]

],
cut_stock:subproblem_solution(Sol).

label_max(Var) :-
get_var_bounds(Var, Lo, Hi),
( Var = Hi ;

Hi1 is Hi - 1,
set_var_bounds(Var, Lo, Hi1),
label_max(Var) ).

label_min(Var) :-
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get_var_bounds(Var, Lo, Hi),
( Var = Lo ;

Lo1 is Lo + 1,
set_var_bounds(Var, Lo1, Hi),
label_min(Var) ).

we ¯rst rank the variables in order of decreasing dual value, label to maximize those with
non-negative dual value and minimize those with negative dual value, then construct a sp_sol
structure and post it to the master problem instance.
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Chapter 18

Building Hybrid Algorithms

18.1 Combining Domains and Linear Constraints

Most optimisation problems arising in industry and commerce involve di®erent subproblems that
are best addressed by di®erent algorithms and constraint solvers. In ECLi PSe it is easy to use
di®erent constraint solvers in combination. The di®erent solvers may share variables and even
constraints.
We discuss reasons for combining theeplex and IC solver libraries and explore ways of doing
this. The repair library plays a useful role in propagating solutions generated by a linear solver
to other variables handled by the domain solver. We show how this works in a generic hybrid
algorithm termed probing.

18.2 Reasons for Combining Solvers

The ic solver library implements two kinds of constraints

² ¯nite domain constraints

² interval constraints

Each constraint is handled separately and individually, and the only communication between
them is via the bounds on their shared variables.
The bene¯ts of the ic solvers are

1. the repeated tightening of guaranteed upper and lower bounds on the variables

2. the application of tailored algorithms to standard subproblems (encapsulated as global
constraints)

3. the implementation of a very wide class of constraints

The eplex solver library implements two kinds of constraints

² linear numeric constraints

² integrality constraints
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There are two main reasons for combiningeplex and ic in a hybrid algorithm

² ic handles a wider class of constraints thaneplex

² The solvers extract di®erent kinds of information from the constraints

Figure 18.1: Motivation

The linear constraints are handled by a very powerful solverthat enforcesglobalconsistency on
all the constraints. The integrality constraints are handled via a built-in search mechanism.
The bene¯ts of the eplex solvers are

1. the enforcement of global consistency for linear constraints

2. the production of an optimal solution satisfying the linear constraints

For some years researchers have sought to characterise the classes of problems for which the
di®erent solvers are best suited. Problems involving only linear constraints are very well handled
by eplex . Problems involving disjunctions of constraints are oftenbest handled by ic . Often
set covering problems are best handled byeplex and scheduling problems byic . However in
general there is no method to recognise for a new problem which solver is best.
Luckily in ECL i PSe there is no need to choose a speci¯c solver for each problem, since it is
possible to apply both solvers. Moreover the solvers communicate with each other, thus further
speeding up constraint solving. Theic solver communicates new tightened bounds to theeplex
solver. These tightened bounds have typically been deducedfrom non-linear constraints and
thus the linear solver bene¯ts from information which would not otherwise have been available
to it. On the other hand the eplex solver often detects inconsistencies which would not have
been detected by theic solvers. Moreover it returns a bound on the optimisation function
which can be used by theic constraints. Finally the optimal solution returned by eplex to the
\relaxed" problem comprising just the linear constraints, can be used as a search heuristic that
can focus theic solver on the most promising parts of the search space.

18.3 A Simple Example

18.3.1 Problem De¯nition

We start with a simple example of linear constraints being posted to eplex and the other
constraints being sent to ic .
The example problem involves three tasks (task1, task2, task3) and a time point time1. We
enforce the following constraints:

² Exactly one of task1 and task2 overlaps with time1

² Both tasks task1 and task2 precedetask3
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18.3.2 Program to Determine Satis¯ability

For this example we handle the ¯rst constraint using ic , because it is not expressible as a
conjunction of linear constraints, and we handle the secondpair of linear constraints using
eplex .

N
Note that since we use both solverseplex and ic we will explicitly module qualify all numeric

constraints to avoid ambiguity.

Each task has a start time Start and a duration Duration . We encode the (non-linear) overlap
constraint in ic thus:

:- lib(ic).
overlap(Start,Duration,Time,Bool) :-

ic: (Bool #= ((Time $>= Start) and (Time $< Start+Duration)) ).

The variable Bool takes the value 1 if the task overlaps the time point, and 0 otherwise. To
enforce that only one task overlaps the time point, the associated boolean variables must sum
to 1.
We encode the (linear) precedence constraint ineplex thus:

:- lib(eplex).
before(Start,Duration,Time) :-

eplex: (Start+Duration $=< Time).

To complete the program, we can give durations of 3 and 5 totask1 and task2, and have the
linear solver minimise the start time of task3:

ic_constraints(Time,S1,S2,B1,B2) :-
ic: ([S1,S2]::1..20),
overlap(S1,3,Time,B1),
overlap(S2,5,Time,B2),
ic: (B1+B2 #= 1).

eplex_constraints(S1,S2,S3) :-
before(S1,3,S3),
before(S2,5,S3).

hybrid1(Time, [S1,S2,S3], End) :-
ic_constraints(Time,S1,S2,B1,B2),
eplex_constraints(S1,S2,S3),
eplex:eplex_solver_setup(min(S3),End,[],5,[bounds]) ,
labeling([B1,B2,S1,S2]).
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A simple way to combine eplex and ic is to send the linear constraints toeplex and the
other constraints to ic . The optimisation primitives must also be combined.

Figure 18.2: A Simple Example

During the labeling of the boolean variables, the bounds onS1 and S2 are tightened as a result
of ic propagation, which wakes the linear solver. The linear solver derives a new lower bound
for Opt. In case this exceeds its upper bound, the search fails and backtracks.
Note that the optimisation performed by the linear solver does not respect theic constraints,
so a correct answer can only be guaranteed once all the variables involved in ic constraints are
instantiated.
Henceforth we will not explicitly show the loading of the ic and eplex libraries.

18.3.3 Program Performing Optimisation

When di®erent constraints are sent toic and to eplex , the optimisation built into the linear
solver must be combined with the optimisation provided by the ECLi PSe branch and bound
library.
The following program illustrates how to combine these optimisations:

:- lib(branch_and_bound).

hybrid2(Time, [S1,S2,S3], End) :-
ic_constraints(Time,S1,S2,B1,B2),
eplex_constraints(S1,S2,S3),
both_opt(labeling([B1,B2,S1,S2]),min(S3),End).

both_opt(Search,Obj,Cost) :-
eplex:eplex_solver_setup(Obj,Cost,[],5,[inst]),
minimize((Search,eplex_get(cost,Cost)),Cost).

18.4 Sending Constraints to Multiple Solvers

18.4.1 Syntax and Motivation

Because of the cooperation between solvers, it is often useful to send constraints to multi-
ple solvers. A linear constraint, such asX + 2 ¸ Y , can be posted toeplex by the code
eplex: (X+2 $>= Y) . The same constraint can be posted toic by the codeic: (X+2 $>= Y) .
The constraint can be sent to both solvers by the code
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?- [ic,eplex]: (X+2 $>= Y)

By sending constraints to both solvers, where possible, we can improve search algorithms for
solving constraint problems. Through enhanced constraintreasoning at each node of the search
tree we can:

² prune the search tree, thus improving e±ciency

² render the algorithm less sensitive to search heuristics

The second advantage is a particular bene¯t of combining di®erent solvers, as opposed to en-
hancing the reasoning power of a single solver. See [21] and [22] for experimental results and
application examples using multiple solvers in this way.

18.4.2 Handling Booleans with Linear Constraints

The overlap constraint example above is disjunctive and therefore non-linear, and is only han-
dled by ic . However as soon as the boolean variable is labelled to 1, during search, the constraint
becomes linear.
The cooperation between theeplex and ic solvers could therefore be improved by passing the
resulting linear constraint to eplex as soon as the boolean is labelled to 1. This could be achieved
using a constraint handling rule (see CHR) or a suspended goal (see chapter 14).
However the same improved cooperation can be achieved by a well known mathematical pro-
gramming technique (see e.g. [29]) that builds the boolean variable into a linear constraint that
can be sent toeplex even before the boolean is instantiated. This linear constraint e®ectively
enforces theoverlap constraint if the boolean is instantiated to 1, but does not enforce it if the
boolean is instantiated to 0.
To achieve this we introduce su±ciently big multipliers, tha t when the boolean is set to 0 the
constraint is satis¯ed for all values within the variables' bounds. This method is known as the
bigM transformation.
It is illustrated in the following encoding of pos_overlap :

pos_overlap(Start,Duration,Time,Bool) :-
Max1 is max_diff(Start,Time),
Max2 is max_diff(Time,Start+Duration),
eplex: (Time + (1-Bool)*Max1 $>= Start), % lin1
eplex: (Time $< Start+Duration+(1-Bool)*Max2). % lin2

max_diff(SmallerExpr,LargerExpr,Max) :-
ic: (SmallerVar $= SmallerExpr),
ic: (LargerVar $= LargerExpr),
get_bounds(SmallerVar,_,Hi),
get_bounds(LargerVar,Lo,_),
Max is Hi-Lo.
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The linear constraints, which will enforce the overlap condition when the variable Bool is set
to 1, are labelled lin1 and lin2. If the variable Bool is instantiated to 0, then the variables (or
values) Start , Time and Duration are free to take any value in their respective domains.
Notice that pos_overlap is logically weaker than overlap because

² it does not enforce the integrality of the boolean variable,(i.e. pos_overlap is a linear
relaxation of the disjunctive constraint), and

² it does not enforce the negation ofoverlap in case the boolean is set to 0.

The tighter cooperation is achieved simply by adding thepos_overlap constraint to the original
encoding:

eplex_constraints_2(Time,S1,S2,S3,B1,B2) :-
before(S1,3,S3),
before(S2,5,S3),
pos_overlap(S1,3,Time,B1),
pos_overlap(S2,5,Time,B2).

18.4.3 Handling Disjunctions

The same technique, of introducing boolean variables and su±ciently large multipliers, can be
used to translate any disjunction of linear constraints into linear constraints (and integrality
constraints on the booleans) which can be handled byeplex .
As a simple example consider a naive program to choose valuesfor the elements of a ¯nite list
(of length Length) such that each pair of values di®ers by at least 2. Thedi®2 constraint on
each pair X and Y of elements can be expressed as a disjunction inic :

diff2ic(X,Y) :-
ic: ((X+2 $=< Y) or (Y+2 $=< X)).

Alternatively it can be expressed in eplex using a boolean variable:

diff2eplex(X,Y,Length,B) :-
eplex: ( X+2 + B*Length $=< Y+Length ),
eplex: ( X+Length $>= Y+2 + (1 - B) * Length )

Suppose each elementE of the list must take a value between 1 and 2¤ (Length ¡ 1), then any
attempted labelling of the elements must fail. Sending the constraints to ic and labelling the
elements of the list is ine±cient. Sending the constraints toeplex and enforcing integrality of
the booleans is more e±cient. Better still is to post the constraints to both ic and eplex , and
label the booleans.
See the full program in the ECLi PSe examplesdirectory.
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18.4.4 A More Realistic Example

For more complex applications, sending all \linearisable"constraints to both ic and eplex is
rarely the best method. Sending too many constraints toic can result in many wakings but
little useful propagation. Sending too many constraints to eplex can cause a big growth in the
size of the constraint store, which slows down constraint solving with little improvement in the
relaxed optimum. If the extra variables are constrained to be integer, then the (MIP) solver
may enter a deep search tree with disastrous consequences for e±ciency. In this example we
brie°y illustrate the point, though there is no space to include the whole program, and complete
supporting results.
Consider the problem of generating test networks for IP (internet protocol). To generate such
networks, it is necessary to assign capacities to each line.We assume a routing algorithm that
sends each message along a \cheapest" path, where the cost isdependent on the bandwidth.
Messages from a particular start to end node are divided equally amongst all cheapest paths.

QtyP2 = 0
CostP2 = 4

CostP1 = 1

QtyP1 = 3

QtyP3 = 3

CostP3 = 1

Flow Quantity:                               Qty = 6
Minimum Cost Path:                      MinCost = 1
Number of minimum cost paths:   Count = 2

start end

Path Flows

Given a total quantity Qty of messages, between a particular start and end node, it is necessary
to compute the quantity of messagesQtyP along each path P between the two nodes. The
variable CostP represents the cost of this path, and the variableMinCost represents the cost of
the cheapest path. The variableCount represents the number of cheapest paths (between which
the messages were equally divided). A boolean variableBP records whether the current path is
a cheapest path, and therefore whetherQtyP is non-zero. The encoding inic is as follows:

ic: '$>='(MinCost + 1, CostP,BP), % con3
ic: (QtyP*Count $= BP*Qty) % con4

Note that it is not possible to test for equality between MinCost and CostP because they are
not integers but real number variables.
These constraints are very precise but propagate little until the variables MinCost and CostP
have tight bounds.
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It is easy to send a constraint to more than one solver. Even disjunctive constraints can
be encoded in a form that enables them to be sent to both solvers. However for large
applications it is best to send constraints only to those solvers that can extract useful
information from them. This requires experimentation.

Figure 18.3: Sending Constraints to Multiple Solvers

The challenge is to ¯nd a combination of ic and eplex constraint handling that e±ciently
extract the maximum information from the constraints. Line arising con3 so it can be handled
by eplex does not help prune the search tree. Worse, it may signi¯cantly increase the size of
the linear constraint store and the number of integer (boolean) variables, which impacts solver
performance.
Once all the boolean variables are instantiated, the sum ofQtyP for all the paths equals the total
quantity Qty (because preciselyCount paths have a non-zeroPQty = Qty=Count). We therefore
introduce a variable Qties constrained to be the sum of all the path quantities. If QtyList is
a list of the path quantities, we can express the constraint thus Qties $= sum(QtyList) . We
can now add a redundant constraintQty $= Qties . The above constraints are both linear and
can be handled byeplex .
In practice this encoding dramatically enhances the e±ciency of the test network generation.
Experimentation with this program revealed that posting th e redundant constraints to eplex
yields a much more signi¯cant improvement than just posting them to ic .
The full program is in the ECL i PSe examplesdirectory.

18.5 Using Values Returned from the Linear Optimum

In this section we explore ways of using the information returned from the optimum solution
produced by the linear solver. We will cover two kinds of information. First we will show how
reduced costscan be used to ¯lter variable domains. Secondly we will show how solutions can
be used as a search heuristic. We have termed this second technique probing.

18.5.1 Reduced Costs

The reduced cost of a variable is a safe estimate of how much the optimum will be worsened
by changing the value of that variable. For example when minimising, suppose a variableV
takes a value ofVal at the minimum Min found by the linear solver, and its reduced cost isRC.
Then if the value of V was ¯xed to NewVal the following holds of the new minimum NewMin:
NewMin-Min ¸ abs(NewVal-Val)£ RC. Thus if RC is 3:0 and the value of V is changed by an
amount Di®, then the minimum increases by at least 3:0£ Di®.
Note that the reduced cost is not necessarily a good estimate: it is often just 0 :0 which gives no
information about the e®ect of changing the variable's value.
Reduced cost pruning is a way of tightening the domains of variable in case we already have a
worst case bound on the optimum (such as the previous best value, during a branch and bound
search). The approach is described in [7].
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This reasoning allows the eplex solver to integrate tightly with the ic solver because both
solvers wake each other and communicate by tightening domains. In fact the eplex solver is
performing domain propagation, just like any ic constraint.
Let us impose reduced cost pruning for a list of variablesVars. The variable being optimised is
Opt.

rc_prune_all(Vars,min,Opt) :-
eplex_get(cost,Curr),
( foreach(Var,Vars),

param(Curr,Opt)
do

rc_prune(Var,min,Curr,Opt)
).

First we extract the current optimum Curr , and then we apply reduced cost pruning to each
variable in the list. This is achieved as follows:

rc_prune(Num,_,_,_) :- nonvar(Num), !.
rc_prune(Var,min,Curr,Opt) :-

eplex_var_get(Var,reduced_cost,RC),
( RC=:=0.0 -> true
;

eplex_var_get(Var,solution,Val),
ic: ((Var-Val)*RC+Curr $=< Opt) % cons5

).

If the variable is already instantiated, then no pruning takes place. If the reduced cost is zero,
then again no pruning takes place. Otherwise the variable isconstrained by cons5, which pre-
vents it from changing so far that the optimum Opt exceeds its upper bound. For maximisation
problems a di®erent constraint would be imposed.
To use reduced costs it is necessary to switch on reduced costrecording during the solver setup.
Reduced cost pruning can then be implemented as apost goal. This is a goal that is executed
immediately after each waking of the linear solver.
Here is a toy program employing reduced cost pruning:

test(X,Y,Z,Opt) :-
ic: ([X,Y,Z]::1..10),
ic: (Opt:: 1..5),
eplex: (5*X+ 2*Y+ Z $>= 10),
eplex: (3*X+ 4*Y+5*Z $>= 12),
eplex:eplex_solver_setup(

min(X+Y+Z),
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Opt,
[reduced_cost(yes)],
0,
[ new_constraint,inst,post(rc_prune_all([X,Y,Z],min, Opt)) ]

),
labeling([X,Y,Z]).

(Note that a more precise and robust implementation of reduced cost pruning is available as an
ECL i PSe predicate reduced_cost_pruning/2 available in the eplex library.)

18.5.2 Probing

Probing is a method which, during search, posts more and moreconstraints to the linear solver
until the linear constraints are logically tighter than the original problem constraints. This
is always possible in theory, since any solution can be precisely captured as a set of linear
constraints, viz: X 1 = val 1; X 2 = val 2; : : : ; X n = val n
The idea is to take the solution produced by the linear solver(which only enforces the linear
constraints of the problem), and to extend this solution to a \tentative" assignment of values
to all the problem variables. If all the constraints are satis¯ed by the tentative assignments,
then a solution has been found. Otherwise a violated constraint is selected, and a new linear
constraint is posted that precludes this violation. The linear solver then wakes and generates a
new solution.
If the set of constraints become unsatis¯able, the system backtracks to the choice of a linear
constraint to ¯x a violated constraint. A di®erent linear constraint is added to preclude the
violation and the search continues.
Probing is complete and terminating if each problem constraint is equivalent to a ¯nite disjunc-
tion of ¯nite conjunctions of linear constraints. The conjun ction must be ¯nite to ensure each
branch of the search tree is ¯nite, and the disjunction must be ¯nite to ensure that there are
only ¯nitely many di®erent branches at each node of the search tree.

18.5.3 Probing for Scheduling

Probing can be applied to resource-constrained scheduling problems, and there is an ECLi PSe

library called probing for schedulingsupporting this. The method is described in detail in the
paper [6]. In the following we brie°y discuss the implementation of probing for scheduling.
The problem involves tasks with durations, start times and resources. Any set of linear con-
straints may be imposed on the task start times and durations. Assuming each task uses a single
resource, and that there is a limited numberMaxR of resources, the resource constraints state
that only MaxR tasks can be in progress simultaneously.
The resource limit can be expressed by the sameoverlap constraints used in the ¯rst example
above. All the constraints can therefore be handled byeplex alone. However the probing
algorithm does not send the resource constraints toeplex . Instead it takes the start times
returned from the optimal eplex solution, and computes the associated resource pro¯le. The
resource bottleneck is the set of tasks running at the time the pro¯le is at its highest.
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The probing algorithm selects two tasks at the bottleneck and constrains them not to overlap,
by posting a before constraint (de¯ned in the example above) between one task andthe start
time of another.
The resource constraint is indeed expressible as a ¯nite disjunction of ¯nite conjunctions of
before constraints, and so the algorithm is complete and terminating.
The computation of the resource pro¯le is performed automatically by encoding the overlap
constraints in the repair library, thus:

repair_overlap(Start,Duration,Time,Bool) :-
B tent_is (Time>=Start and Time=<Start+Duration).

To make this work, the solutions returned from the linear solver are copied to the tentative
values of the variables. This is achieved using apost goal as follows:

eplex_to_tent(Expr,Opt) :-
eplex_solver_setup(

Expr,
Opt,
[solution(yes)],
5,
[ new_constraint,post(set_ans_to_tent) ]

).

set_ans_to_tent :-
eplex_get(vars,Vars),
eplex_get(typed_solution,Solution),
Vars tent_set Solution.

18.6 Other Hybridisation Forms

This module has covered a few forms of hybridisation betweenic and eplex . There are a variety
of problem decomposition techniques that support other forms of hybridisation. Three forms
which employ linear duality are Column Generation, Benders Decompositionand Lagrangian
Relaxation. All three forms have been implemented in ECLi PSe and used to solve large problems.
Often it is useful to extract several linear subproblems andapply a separate linear solver to each
one. Theeplex library o®ers facilities to support multiple linear solvers. Space does not permit
further discussion of this feature.
Cooperating solvers have been used to implement some globalconstraints, such as piecewise
linear constraints [20]. Linearisation of ic global constraints is another method of achieving
tight cooperation.
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Three kinds of information can be used

² Reduced Costs

² The solution (the value for each variable at the linear optimum)

² Dual values

Reduced costs allow values to be pruned from variable domains. The solution can be
checked for feasibility against the remaining constraints, and even if infeasible can be used
to support search heuristics. Dual values are used in other hybridisation forms, devised
by the mathematical programming community.

Figure 18.4: Using information returned from the linear optimum

Finally many forms of hybridisation involve di®erent search techniques, as well as di®erent
solvers. For example stochastic search can be used for probing instead of a linear solver, as
described in [27].
In conclusion, ECLi PSe provides a wonderful environment for exploring di®erent forms of hy-
bridisation.

18.7 References

The principles of hybridising linear and domain constraint solving and search are presented in
[4]. The techniques were ¯rst described in [2]. Hybrid techniques are the topic of the CPAIOR
workshops whose proceedings are published in the Annals of Operations Research.

18.8 Hybrid Exercise

Build a hybrid algorithm to create lists whose elements all di®er by at least 2. Try lists of
length 3,5,7,8. To test its performance, reduce the domainsthus: ic:(List::1..TwoL-2) so
the program tries all possibilities before failing.
Use the following skeleton:

differ(Length,List) :-
length(List,Length),
TwoL is 2*Length,
ic:(List::1..TwoL-1),
alldiff(List,TwoL,Bools),
[To be completed]

alldiff(List,Length,Bools) :-
( fromto(List,[X|Rest],Rest,[]),

fromto([],BIn,BOut,Bools),
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param(Length)
do

diffeach(X,Rest,Length,BIn,BOut)
).

diffeach(X,List,Length,BIn,BOut) :-
(foreach(Y,List),
fromto(BIn,TB,[B|TB],BOut),
param(X,Length)

do
diff2(X,Y,Length,B)

).

(a) Create an IC algorithm using

diff2(X,Y,_,_) :- ic: ((X+2 #=< Y) or (Y+2 #=< X)).

(b) Create an eplex algorithm using

diff2(X,Y,Max,B) :-
eplex:(B::0..1),
eplex:( X+2 + B*Max $=< Y+Max),
eplex:(X+Max $>= Y+2 + (1-B)*Max).

(c) Try and ¯nd the best hybrid algorithm. (NB This is, unfortu nately, a trick question ;-))
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