
Garbage Colle
tion for Prologbased on Twin CellsJoa
him S
himpfEuropean Computer Industry Resear
h Centre (ECRC)Arabellastra�e 17, D-8000 M�un
hen 81, FRGO
tober 9, 1990Abstra
tA garbage 
olle
tion algorithm for a WAM-based Prolog system is presented. It usesa 
lassi
al mark-and-
ompa
t approa
h, but requires less passes through the data areasthan previous algorithms. It is appli
able when the smallest garbage-
olle
table entityo

upies an amount of spa
e whi
h is suÆ
ient to store two pointers plus 2 bits with ea
hpointer. This 
olle
tor has been implemented in the SEPIA Prolog system.1 Introdu
tionIn state-of-the-art LISP systems, the method of 
hoi
e for garbage 
olle
tion is 
opying,whi
h has superseded the mark-and-
ompa
t approa
h. Unfortunately, 
opying 
olle
torsusually 
hange the order of memory 
ells whi
h makes them diÆ
ult to use for Prolog.The main resons are:� The Prolog terms are allo
ated in a sta
k like fashion in order to be able to pop thissta
k on failure (This spa
e re
lamation on failure makes it even possible to writememory-intensive Prolog programs that don't need garbage 
olle
tion at all).� In WAM-based Prolog implementations, 
ompound obje
ts 
onsist of a sequen
e ofsimple obje
ts that are adja
ent in memory. A spe
ial (typed) pointer referen
es thebeginning of the 
ompound obje
t. However, the 
omponents 
an also be referen
edindependently, whi
h requires spe
ial treatment to prevent a 
opying 
olle
tor fromtaking apart the 
ompound obje
t.Many re
ent Prolog garbage 
olle
tors ([1℄, [2℄) therefore use a mark-and-
ompa
ts
heme. This 
an be given a 
ertain amount of in
rementality by 
onsidering segments ofthe 
opy sta
k, de�ned by 
hoi
epoints. For 
ompiled Prolog this was �rst suggested by[6℄. The other important feature of this 
lass of Prolog garbage 
olle
tors is that they takethe reset information (available on the trail sta
k) into a

ount. This is known as virtualba
ktra
king [3℄ or early reset of variables [1℄. This te
hnique improves the pre
ision of themarking phase in determining those obje
ts that have to be preserved for ba
ktra
king.Re
ently, Touati [7℄ has proposed a s
heme for exploiting 
opying where possible, i.e.in deterministi
 exe
ution sequen
es. However, a 
ompa
ting algorithm is still needed asa fall ba
k method.
1



Figure 1: Representation of Prolog data
Figure 2: Non-standard data types: a string and a spe
ial variable2 PreliminariesOur garbage 
olle
tion algorithm assumes a WAM-like abstra
t ma
hine [8℄. All datais represented in tagged form. The important assumption we make is that the smallestindependently 
olle
table data item o

upies an amount of spa
e whi
h is suÆ
ient tostore two pointers plus 2 bits with ea
h pointer. We will 
all su
h an elementary dataitem a twin 
ell. Before we dis
uss the bene�t of twin 
ells for garbage 
olle
tion, weshortly re
all their more obvious advantages.Many 
urrent Prolog implementations pa
k a Prolog obje
t into a single 32-bit 
ell(we will refer to this as the unit-
ell model). It involves stealing some of the 32 bitsto represent the tags. The size of the value part is then restri
ted a

ordingly. Su
h as
heme has several drawba
ks. In parti
ular, the representation of Prolog values (likeintegers, 
oats and pointers) is in
ompatible with the one in 
ommonly used stati
allytyped languages (su
h as C).As opposed to that, in the SEPIA [4℄ system, the basi
 Prolog obje
t is in fa
t rep-resented as a twin 
ell. It 
onsists of two 32-bit words, the �rst holding the value, these
ond holding the tag. The standard Prolog data types are 
onveniently represented inthis form (�gure 1) and new types 
an be easily added. Obviously, the spa
e 
onsumptionis higher, on the other hand tagging and untagging overhead is saved during exe
ution.For various extensions of the basi
 system, we allow bigger obje
ts to be stored on theglobal sta
k (the heap in terms of [8℄). These obje
ts have a size of (2+n) 32-bit words.One example is the string data type, for whi
h an arbitrary sequen
e of 
hara
ters has tobe stored (�gure 2, left hand side). It 
onsists of a twin 
ell followed by the number ofunit 
ells ne
essary to store the string proper.An even more important example of 
omplex obje
ts are spe
ial variables. While astandard variable is simply represented as a self referen
e with an appropriate tag, spe
ialvariables may have atta
hed information of various sizes. Due to the size of the atta
hedinformation, spe
ial variables 
an only be stored on the global sta
k.This 
exibility is a problem for the garbage 
olle
tion algorithm des
ribed in [1℄), sin
ethe global sta
k 
an no longer be traversed from top to bottom (unless the obje
ts are



tagged at both ends).It was said above that it must be possible to store 2 additional bits together with apointer. This is easily possible on byte-addressing ma
hines, when an addressing granu-larity of 32 bits is used in the Prolog system. Then the two least signi�
ant pointer bitsare meaningless and 
an be used to store the additional information.3 The AlgorithmThe basi
 stru
ture of our 
olle
tor is similar to the one that has been used su

essfullyin [6℄, [1℄ and [2℄:� It is a 
ompa
ting 
olle
tor� It is in
remental, based on 
hoi
epoint segments� It performs early reset of variablesSin
e these features have been des
ribed in the works 
ited above, we will 
on
entratehere upon how the availability of the twin 
ells 
an be exploited to improve the algorithmsmentioned previously.We will therefore ignore the details of virtual ba
ktra
king and just assume that wehave a known set of Prolog obje
ts that 
an serve as the root set for determining a

es-sibility of obje
ts in the sta
k segment that we are going to garbage 
olle
t (
alled the
olle
tion segment).To a

ount for the in
rementality we assume that there is an abstra
t ma
hine registerGCB whi
h denotes the youngest 
hoi
epoint that has already existed during the last
olle
tion. This 
hoi
epoint virtually separates all sta
ks into an old and a new part, Thepart of the global sta
k newer than this 
hoi
epoint is the 
olle
tion segment that the
olle
tor works on (�gure 3).We will also assume a split-sta
k variant of the WAM, i.e. 
hoi
epoint and environmentsta
k are separated, but this does not a�e
t the algorithms in any way.3.1 Calling the 
olle
torThe garbage 
olle
tor has to be 
alled in a well-de�ned state of the abstra
t ma
hine.To guarantee this, the abstra
t ma
hine is always in a state that resembles the stateimmediately after a Call instru
tion (i.e. just before entering a predi
ate). In this statethe ma
hine's arguments registers hold a known number of valid arguments. This numberis given as a parameter to the garbage 
olle
tor. Note that this is a situation where thema
hine 
ould 
reate a 
hoi
epoint in normal exe
ution. Following a suggestion of [2℄, we
reate su
h a 
hoi
epoint before starting the a
tual garbage 
olle
tion. This has the e�e
tof storing the 
urrent ma
hine state (its registers) in memory lo
ations, whi
h makes thesubsequent algorithms more uniform be
ause no spe
ial handling for the 
urrent stateis needed (as is in [1℄). After the 
olle
tion, the updated registers (argument registers,global and trail sta
k pointers) are restored from this 
hoi
epoint, and the 
hoi
epoint ispopped. The asso
iated overhead is negligible.The top level pro
edure of the 
olle
tor looks like this:
olle
t_sta
ks(arity){ save the ma
hine registers in a new 
hoi
epoint;mark a

essible obje
ts inside the 
olle
tion segment and buildrelo
ation 
hains;
ompa
t the global sta
k, on the fly updating pointers tothe relo
ated obje
ts;
ompa
t the trail and update trail pointers in 
hoi
epoints;



Figure 3: Overview of the sta
k areas (
olle
tion segment hat
hed, roots grey)restore the new ma
hine state from the 
hoi
epoint and pop it;}3.2 Mark&Link PhaseThe marking phase 
onsists of �nding all a

essible obje
ts in the 
olle
tion segment.These obje
ts 
an be referen
ed from:1. arguments saved in 
hoi
epoints2. permanent variables stored in environments newer than GCB3. permanent variables stored in environments older than GCB4. global sta
k 
ells older than GCBThis is the root set from where our marking phase starts. Figure 3 gives an overview ofthe sta
k areas. The roots are displayed in grey, the 
olle
tion segment is hat
hed.The Mark&Link phase does two jobs. It 
an be done in one or two passes (
f. se
tion 5):1. marking the a

essible obje
ts2. building relo
ation 
hainsFor marking, we reserve one bit in the tag 
ell of every obje
t inside the 
olle
tion segment,
alled the MARK bit. This bit is used by the 
ompa
tion phase to tell garbage from non-garbage. Before and after a garbage 
olle
tion, all these bits are zero.The purpose of relo
ation 
hains is to be able to update pointers to data obje
ts whi
hare moved during 
ompa
tion. All 
ells 
ontaining a pointer to a 
ertain obje
t in the
olle
tion area are linked into a 
hain starting at this target obje
t (
f. �gure 4). The
hain pointer of 
ourse overwrites at least a part of the original target obje
t, so this hasto be moved elsewhere. The only pla
e that is available is the last 
ell of the relo
ation
hain. It originally 
ontained a pointer, and 
an now be used to preserve the overwrittenpart of the target obje
t.This is the point where the twin 
ells be
ome essential. In a unit-
ell system, it is notpossible to build all relo
ation 
hains at on
e. This is be
ause an obje
t 
an not be thehead of its own relo
ation 
hain and at the same time be a member of its target's 
hain.Morris' algorithm [5℄ solves this problem by doing two passes over the 
olle
tion segment,in opposite dire
tions.In the twin-
ell model, this restri
tion does not exist. There we 
an use the following
onvention:



Figure 4: Building a relo
ation 
hain� the tag 
ell of an obje
t is used to store the head of the obje
ts's relo
ation 
hain,linking all referen
es to this obje
t.� the value 
ell may be the member of another 
hain, starting from the tag 
ell ofthe obje
t it originally pointed to. When the value was a 
onstant rather than apointer, it remains un
hanged.Figure 4 shows a situation with two referen
es to a simple target obje
t (left hand side). Atthe end of the Mark&Link phase there is a relo
ation 
hain starting from the target's tagand 
onne
ting all value 
ells whi
h previously held a pointer to the target. The last 
ellof the relo
ation 
hain preserves the original tag of the target. Obviously, it is ne
essaryto have an indi
ator to distinguish a tag from a relo
ation link. This is a

omplished byreserving a se
ond bit, the LINK bit. When set, the 
ell holds a relo
ation link, whenreset (the default) it holds a tag.After the marking phase the situation is as follows:� The rea
hable obje
ts in the 
olle
tion segment have their tag's MARK bit set.� The tag's LINK bit is set if moving the obje
t requires updating referen
es. In this
ase the tag 
ell holds a relo
ation 
hain.We end up with 4 possible bit 
ombinations, having the following meaning:MARK LINK meaning0 0 garbage obje
t0 1 referen
ed garbage obje
t, tag 
ell holds relo
ation 
hain1 0 useful obje
t, but not dire
tly referen
ed1 1 referen
ed obje
t, tag 
ell holds relo
ation 
hainThe se
ond 
ombination may not seem useful. It is needed for the global sta
k pointersthat are saved in 
hoi
epoints. They may referen
e garbage 
ells, but have to be updatedwhen the sta
k is 
ompa
ted.3.3 Compa
t&Update PhaseWhat is left for the 
ompa
tion phase is to move the marked obje
ts to the bottom end ofthe 
olle
tion segment, keeping their order, but removing gaps of unused spa
e betweenthem. Additionally, all referen
es to the relo
ated obje
ts have to be updated and themarking bits must be reset.The 
olle
tor des
ribed in [1℄ uses a two-pass algorithm based on [5℄, 
omprising a top-down and a bottom-up pass through the 
olle
tion segment. Our algorithm is di�erent inthat everything is done in a single bottom-up pass through the 
olle
tion segment. Thisis possible as we have already built the relo
ation 
hains during the marking phase.Note that this not only has the advantage of saving a pass, but it also eliminates theneed for a top-down traversal of the global sta
k. As mentioned above, Prolog extensions



Figure 5: Updating a referen
e from the root set

Figure 6: Updating a pointer down the global sta
koften require arbitrary-sized obje
ts on the global sta
k. These obje
ts are only taggedat their lower end, making it at least diÆ
ult to traverse the sta
k in the opposite way.Figure 5 shows the pro
ess of marking, moving and updating an obje
t referen
edfrom outside the global sta
k. Figure 6 shows the very similar 
ase of a pointer internalto the 
olle
tion segment where the target is older than the referen
e.Pointers going from the 
olle
tion segment to the 
olle
tion segment in upward dire
-tion have to be handled di�erently. The reason is that we update the pointers at the sametime as we move the target obje
t. But in this 
ase the referen
e is moved before thetarget is moved, whi
h would destroy the relo
ation 
hain. The solution is to delay thebuilding of the relo
ation link until after the referen
e has been moved to its new lo
ation.This means that we have to 
he
k for this 
ondition in the marking phase, and if it holds,we only set the MARK bit in the target tag without repla
ing the tag by a link. In theCompa
t&Update phase, the link is 
reated after the referen
e has been moved. Whenthe target is moved later on, the referen
e 
an be updated in its proper pla
e. The pro
essis shown in �gure 7.4 AnalysisBeing a 
ompa
ting method, the 
omplexity of the presented algorithm is proportional tothe size of the whole 
olle
ted area (i.e. garbage + non-garbage), while 
opying algorithmsdepend only on the amount of non-garbage. However, we will show that it 
onsiderablyredu
es the 
onstant fa
tors involved.For a realisti
 
omparison, we 
onsider an algorithm that is as 
lose as possible toours, but based on the unit-
ell model. It is therefore similar to the one in [1℄, but using



Figure 7: Updating an upward pointer in the global sta
kstandard re
ursive marking:1. traverse all rea
hable obje
ts and set mark bits in the 
olle
tion segment2. traverse root set and insert root pointers into relo
ation 
hains, resetting mark bitsin environments3. s
an the global sta
k top-down, insert upward pointers into relo
ation 
hains andupdate the partial 
hains when passing the target4. s
an the global sta
k bottom-up, insert down-pointers into relo
ation 
hains andupdate them when rea
hing the target. Move non-garbage obje
ts down the sta
k.We �rst 
onsider the e�ort for marking and updating referen
es in terms of memorya

esses. Let Rp be the number of root 
ells that hold pointers into the 
olle
tion seg-ment, Rs the number of other root 
ells, Sp the number of non-garbage pointers fromthe 
olle
tion segment into the 
olle
tion segment, and A the number of arguments ofnon-garbage stru
tures. For the unit-
ell model we get� 2Rs read + 2Rs writes for marking/unmarking in the two root s
ans� 4Rp reads + 4Rp writes for marking, unmarking, linking and updating pointers fromthe root set into the 
olle
tion segment� 3Sp reads + 4Sp writes for marking, linking and updating internal pointers in the
olle
tion segment� A reads + A writes for marking argumentsFor 
ompa
ting let S be the number of surviving global sta
k obje
ts and G be the numberof garbage obje
ts. Then we need� 2S reads + S writes for s
anning and moving the obje
ts� 2G reads to test and skip the garbage obje
tsThis results in a total ofunitr = 2Rs + 4Rp + 3Sp +A+ 2S + 2Gunitw = 2Rs + 4Rp + 4Sp +A+ SFor the twin-
ell model the analysis is similar. Note that, as above, we are 
ountingread/write a

esses for single 
ells, while the total data o

upies twi
e the spa
e that isneeded by the unit-
ell model.� 2Rs read + 2Rs writes for marking/unmarking the root tags� 5Rp reads + 5Rp writes for marking, unmarking, linking and updating pointers fromthe root set into the 
olle
tion segment



Ben
hmark #
oll. Rs Rp Sp S GBoyer 17 766 1074 39071 1061184 681352Browse 1 1627 721 2972 45440 20096Edf 3 1821 3067 10203 137808 59040Spreadsheet 1 935 145 278 5840 59712Plm Compiler 4 238 218 6638 89080 149960Toesp 4 103 84 97 2168 260920Tp 21 9881 13045 24975 581896 839768Chat 1 31 35 1923 35160 30376Theorem Prover 8 2661 1445 3798 72336 449328Figure 8: Root, Pointer, Survivor and Garbage Cells� 3Sp reads + 3Sp writes for marking, linking and updating internal pointers in the
olle
tion segment� A reads + A writes for marking the tags of arguments� 2S reads + 2S writes for moving tag and value of the useful obje
ts� G reads to test the tag and skip garbage obje
tsThis results in a total oftwinr = 2Rs + 5Rp + 3Sp +A+ 2S +G = unitr +Rp �Gtwinw = 2Rs + 5Rp + 3Sp +A+ 2S = unitw +Rp � Sp + SFigure 8 gives the parameters for a number of nontrivial ben
hmark programs1. It turnsout that, despite the fa
t that all data areas are twi
e as large in the twin-
ell model, thegarbage 
olle
tor is not ne
essarily slower than its 
ounterpart in the unit-
ell model. Themost important reason being that there is only one a

ess to every garbage obje
t, whilethe unit-
ell algorithm does two (thus 
ompromising its advantage of having only half-sizeobje
ts). For all ben
hmarks given, the twin 
ell algorithm needs less read a

esses.On the other hand, moving the useful obje
ts requires two 
onse
utive writes for thetwin 
ell, but only a single one for the unit 
ell. Writing 
onse
utive memory lo
ations,however, is usually implemented eÆ
iently in modern hardware, thus redu
ing its negativeimpa
t. In summary, for the ben
hmarks with more than about 50 per
ent garbage ratio,the twin 
ell algorithm does less memory a

esses (read and write) than the unit 
ellalgorithm.5 Virtual Ba
ktra
kingThe marking phase as des
ribed in [1℄ needs two passes through the root set. This isbe
ause environment 
ells are marked in the �rst, and unmarked in the se
ond pass. Notethat these marks are not really essential sin
e no garbage is 
olle
ted in the environmentsta
k. Their use is solely1. to 
ontrol the environment traversal algorithm by marking the already visited 
ells2. to enable early reset of environment variablesThe �rst use 
an be avoided by employing a di�erent traversal algorithm, that automati-
ally keeps tra
k of the visited parts of environments.1The garbage 
olle
tor was triggered whenever 64 kBytes of global sta
k were used up



Ben
hmark Virtual Ba
ktra
kingnone global only fullBoyer 681352 681352 0 % 681352 0 %Browse 20096 20096 0 % 20192 +0.5 %Edf 59024 59040 +0.0 % 64928 +10.0 %Spreadsheet 59712 59712 0 % 64096 +7.3 %Plm Compiler 149960 149960 0 % 152720 +1.8 %Toesp 260920 260920 0 % 260920 0 %Tp 828888 839768 +1.3 % 861512 +3.9 %Chat 30376 30376 0 % 30376 0 %Theorem Prover 449024 449328 +0.0 % 451136 +0.5 %Figure 9: E�e
t of virtual ba
ktra
king on the number of 
olle
ted bytesWhen one de
ides to drop early reset of environment variables, then no marking needsto be done in the environment sta
k and the two passes 
an be 
ollapsed into a single one.The 
omplexity of the twin 
ell algorithm is redu
ed totwin0r = Rs + 3Rp + 3Sp +A+ 2S +Gtwin0w = 3Rp + 3Sp +A+ 2SThis will speed up the marking pro
ess, but will redu
e the amount of 
olle
ted garbagefor some programs.To get an idea of how mu
h is lost by this simpli�
ation, we have measured ourben
hmarks with three di�erent variants of the garbage 
olle
tor (�gure 9). The �rst onedoes no virtual ba
ktra
king at all, the se
ond one uses the simpli�ed algorithm (i.e. onlyvariables on the global sta
k 
an be early reset) and the third one performs full virtualba
ktra
king. Unfortunately, it seems that it is more important to do early resetting onenvironment variables than on global sta
k variables, whi
h favors the full variant. Onthe other hand, for many programs virtual ba
ktra
king does not have any e�e
t at all,and the se
ond pass through the roots is done in vain.6 A
knowledgementI would like to thank Mi
ha Meier for many fruitful dis
ussions. Thanks are also due toAlexander Herold and Emmanuel van Rossum for reading and 
ommenting earlier versionsof this paper.



Referen
es [1℄ K.Appleby, M.Carlsson, S.Haridi, D.SahlinGarbage Colle
tion for Prolog Based on WAMSICS Resear
h Report R86009B, 1986[2℄ J.BarklundA Garbage Colle
tion Algorithm for Tri
iaUPMAIL Te
hni
al Report 37B, De
ember 1987[3℄ Y.Bekkers, B.Canet, O.Ridoux, L.UngaroMALI: A Memory with a Real-Time Garbage Colle
tor for Imple-menting Logi
 Programming LanguagesPro
. 3rd Symposium on Logi
 Programming, 1986[4℄ M.Meier, A.Aggoun, D.Chan, P.Dufresne,R.Enders, D.Henry de Villeneuve, A.Herold,P.Kay, B.Perez, E.v.Rossum, J.S
himpfSEPIA - An Extendible Prolog SystemPro
. of the XI. World Computer Congress'89 IFIP, San Fran
is
o[5℄ F.L.MorrisA Time- and Spa
e-EÆ
ient Garbage Compa
tion AlgorithmCACM. Vol.21 No.8, pp.662-665[6℄ E. Pittomvils, M.Bruynooghe, Y.D. WillemsTowards a Real Time Garbage Colle
tor for PrologPro
. Symposium on Logi
 Programming, 1985, pp. 185-198[7℄ H.TouatiA Prolog Garbage Colle
tor for AquariusReport No. UCB/CSD 88/443, August 1988, University of Califor-nia, Berkeley[8℄ David H. D. WarrenAn Abstra
t Prolog Instru
tion SetTe
hni
al Report tn309, SRI, O
tober, 1983


