
Garbage Colletion for Prologbased on Twin CellsJoahim ShimpfEuropean Computer Industry Researh Centre (ECRC)Arabellastra�e 17, D-8000 M�unhen 81, FRGOtober 9, 1990AbstratA garbage olletion algorithm for a WAM-based Prolog system is presented. It usesa lassial mark-and-ompat approah, but requires less passes through the data areasthan previous algorithms. It is appliable when the smallest garbage-olletable entityoupies an amount of spae whih is suÆient to store two pointers plus 2 bits with eahpointer. This olletor has been implemented in the SEPIA Prolog system.1 IntrodutionIn state-of-the-art LISP systems, the method of hoie for garbage olletion is opying,whih has superseded the mark-and-ompat approah. Unfortunately, opying olletorsusually hange the order of memory ells whih makes them diÆult to use for Prolog.The main resons are:� The Prolog terms are alloated in a stak like fashion in order to be able to pop thisstak on failure (This spae relamation on failure makes it even possible to writememory-intensive Prolog programs that don't need garbage olletion at all).� In WAM-based Prolog implementations, ompound objets onsist of a sequene ofsimple objets that are adjaent in memory. A speial (typed) pointer referenes thebeginning of the ompound objet. However, the omponents an also be referenedindependently, whih requires speial treatment to prevent a opying olletor fromtaking apart the ompound objet.Many reent Prolog garbage olletors ([1℄, [2℄) therefore use a mark-and-ompatsheme. This an be given a ertain amount of inrementality by onsidering segments ofthe opy stak, de�ned by hoiepoints. For ompiled Prolog this was �rst suggested by[6℄. The other important feature of this lass of Prolog garbage olletors is that they takethe reset information (available on the trail stak) into aount. This is known as virtualbaktraking [3℄ or early reset of variables [1℄. This tehnique improves the preision of themarking phase in determining those objets that have to be preserved for baktraking.Reently, Touati [7℄ has proposed a sheme for exploiting opying where possible, i.e.in deterministi exeution sequenes. However, a ompating algorithm is still needed asa fall bak method.
1



Figure 1: Representation of Prolog data
Figure 2: Non-standard data types: a string and a speial variable2 PreliminariesOur garbage olletion algorithm assumes a WAM-like abstrat mahine [8℄. All datais represented in tagged form. The important assumption we make is that the smallestindependently olletable data item oupies an amount of spae whih is suÆient tostore two pointers plus 2 bits with eah pointer. We will all suh an elementary dataitem a twin ell. Before we disuss the bene�t of twin ells for garbage olletion, weshortly reall their more obvious advantages.Many urrent Prolog implementations pak a Prolog objet into a single 32-bit ell(we will refer to this as the unit-ell model). It involves stealing some of the 32 bitsto represent the tags. The size of the value part is then restrited aordingly. Suh asheme has several drawbaks. In partiular, the representation of Prolog values (likeintegers, oats and pointers) is inompatible with the one in ommonly used statiallytyped languages (suh as C).As opposed to that, in the SEPIA [4℄ system, the basi Prolog objet is in fat rep-resented as a twin ell. It onsists of two 32-bit words, the �rst holding the value, theseond holding the tag. The standard Prolog data types are onveniently represented inthis form (�gure 1) and new types an be easily added. Obviously, the spae onsumptionis higher, on the other hand tagging and untagging overhead is saved during exeution.For various extensions of the basi system, we allow bigger objets to be stored on theglobal stak (the heap in terms of [8℄). These objets have a size of (2+n) 32-bit words.One example is the string data type, for whih an arbitrary sequene of haraters has tobe stored (�gure 2, left hand side). It onsists of a twin ell followed by the number ofunit ells neessary to store the string proper.An even more important example of omplex objets are speial variables. While astandard variable is simply represented as a self referene with an appropriate tag, speialvariables may have attahed information of various sizes. Due to the size of the attahedinformation, speial variables an only be stored on the global stak.This exibility is a problem for the garbage olletion algorithm desribed in [1℄), sinethe global stak an no longer be traversed from top to bottom (unless the objets are



tagged at both ends).It was said above that it must be possible to store 2 additional bits together with apointer. This is easily possible on byte-addressing mahines, when an addressing granu-larity of 32 bits is used in the Prolog system. Then the two least signi�ant pointer bitsare meaningless and an be used to store the additional information.3 The AlgorithmThe basi struture of our olletor is similar to the one that has been used suessfullyin [6℄, [1℄ and [2℄:� It is a ompating olletor� It is inremental, based on hoiepoint segments� It performs early reset of variablesSine these features have been desribed in the works ited above, we will onentratehere upon how the availability of the twin ells an be exploited to improve the algorithmsmentioned previously.We will therefore ignore the details of virtual baktraking and just assume that wehave a known set of Prolog objets that an serve as the root set for determining aes-sibility of objets in the stak segment that we are going to garbage ollet (alled theolletion segment).To aount for the inrementality we assume that there is an abstrat mahine registerGCB whih denotes the youngest hoiepoint that has already existed during the lastolletion. This hoiepoint virtually separates all staks into an old and a new part, Thepart of the global stak newer than this hoiepoint is the olletion segment that theolletor works on (�gure 3).We will also assume a split-stak variant of the WAM, i.e. hoiepoint and environmentstak are separated, but this does not a�et the algorithms in any way.3.1 Calling the olletorThe garbage olletor has to be alled in a well-de�ned state of the abstrat mahine.To guarantee this, the abstrat mahine is always in a state that resembles the stateimmediately after a Call instrution (i.e. just before entering a prediate). In this statethe mahine's arguments registers hold a known number of valid arguments. This numberis given as a parameter to the garbage olletor. Note that this is a situation where themahine ould reate a hoiepoint in normal exeution. Following a suggestion of [2℄, wereate suh a hoiepoint before starting the atual garbage olletion. This has the e�etof storing the urrent mahine state (its registers) in memory loations, whih makes thesubsequent algorithms more uniform beause no speial handling for the urrent stateis needed (as is in [1℄). After the olletion, the updated registers (argument registers,global and trail stak pointers) are restored from this hoiepoint, and the hoiepoint ispopped. The assoiated overhead is negligible.The top level proedure of the olletor looks like this:ollet_staks(arity){ save the mahine registers in a new hoiepoint;mark aessible objets inside the olletion segment and buildreloation hains;ompat the global stak, on the fly updating pointers tothe reloated objets;ompat the trail and update trail pointers in hoiepoints;



Figure 3: Overview of the stak areas (olletion segment hathed, roots grey)restore the new mahine state from the hoiepoint and pop it;}3.2 Mark&Link PhaseThe marking phase onsists of �nding all aessible objets in the olletion segment.These objets an be referened from:1. arguments saved in hoiepoints2. permanent variables stored in environments newer than GCB3. permanent variables stored in environments older than GCB4. global stak ells older than GCBThis is the root set from where our marking phase starts. Figure 3 gives an overview ofthe stak areas. The roots are displayed in grey, the olletion segment is hathed.The Mark&Link phase does two jobs. It an be done in one or two passes (f. setion 5):1. marking the aessible objets2. building reloation hainsFor marking, we reserve one bit in the tag ell of every objet inside the olletion segment,alled the MARK bit. This bit is used by the ompation phase to tell garbage from non-garbage. Before and after a garbage olletion, all these bits are zero.The purpose of reloation hains is to be able to update pointers to data objets whihare moved during ompation. All ells ontaining a pointer to a ertain objet in theolletion area are linked into a hain starting at this target objet (f. �gure 4). Thehain pointer of ourse overwrites at least a part of the original target objet, so this hasto be moved elsewhere. The only plae that is available is the last ell of the reloationhain. It originally ontained a pointer, and an now be used to preserve the overwrittenpart of the target objet.This is the point where the twin ells beome essential. In a unit-ell system, it is notpossible to build all reloation hains at one. This is beause an objet an not be thehead of its own reloation hain and at the same time be a member of its target's hain.Morris' algorithm [5℄ solves this problem by doing two passes over the olletion segment,in opposite diretions.In the twin-ell model, this restrition does not exist. There we an use the followingonvention:



Figure 4: Building a reloation hain� the tag ell of an objet is used to store the head of the objets's reloation hain,linking all referenes to this objet.� the value ell may be the member of another hain, starting from the tag ell ofthe objet it originally pointed to. When the value was a onstant rather than apointer, it remains unhanged.Figure 4 shows a situation with two referenes to a simple target objet (left hand side). Atthe end of the Mark&Link phase there is a reloation hain starting from the target's tagand onneting all value ells whih previously held a pointer to the target. The last ellof the reloation hain preserves the original tag of the target. Obviously, it is neessaryto have an indiator to distinguish a tag from a reloation link. This is aomplished byreserving a seond bit, the LINK bit. When set, the ell holds a reloation link, whenreset (the default) it holds a tag.After the marking phase the situation is as follows:� The reahable objets in the olletion segment have their tag's MARK bit set.� The tag's LINK bit is set if moving the objet requires updating referenes. In thisase the tag ell holds a reloation hain.We end up with 4 possible bit ombinations, having the following meaning:MARK LINK meaning0 0 garbage objet0 1 referened garbage objet, tag ell holds reloation hain1 0 useful objet, but not diretly referened1 1 referened objet, tag ell holds reloation hainThe seond ombination may not seem useful. It is needed for the global stak pointersthat are saved in hoiepoints. They may referene garbage ells, but have to be updatedwhen the stak is ompated.3.3 Compat&Update PhaseWhat is left for the ompation phase is to move the marked objets to the bottom end ofthe olletion segment, keeping their order, but removing gaps of unused spae betweenthem. Additionally, all referenes to the reloated objets have to be updated and themarking bits must be reset.The olletor desribed in [1℄ uses a two-pass algorithm based on [5℄, omprising a top-down and a bottom-up pass through the olletion segment. Our algorithm is di�erent inthat everything is done in a single bottom-up pass through the olletion segment. Thisis possible as we have already built the reloation hains during the marking phase.Note that this not only has the advantage of saving a pass, but it also eliminates theneed for a top-down traversal of the global stak. As mentioned above, Prolog extensions



Figure 5: Updating a referene from the root set

Figure 6: Updating a pointer down the global stakoften require arbitrary-sized objets on the global stak. These objets are only taggedat their lower end, making it at least diÆult to traverse the stak in the opposite way.Figure 5 shows the proess of marking, moving and updating an objet referenedfrom outside the global stak. Figure 6 shows the very similar ase of a pointer internalto the olletion segment where the target is older than the referene.Pointers going from the olletion segment to the olletion segment in upward dire-tion have to be handled di�erently. The reason is that we update the pointers at the sametime as we move the target objet. But in this ase the referene is moved before thetarget is moved, whih would destroy the reloation hain. The solution is to delay thebuilding of the reloation link until after the referene has been moved to its new loation.This means that we have to hek for this ondition in the marking phase, and if it holds,we only set the MARK bit in the target tag without replaing the tag by a link. In theCompat&Update phase, the link is reated after the referene has been moved. Whenthe target is moved later on, the referene an be updated in its proper plae. The proessis shown in �gure 7.4 AnalysisBeing a ompating method, the omplexity of the presented algorithm is proportional tothe size of the whole olleted area (i.e. garbage + non-garbage), while opying algorithmsdepend only on the amount of non-garbage. However, we will show that it onsiderablyredues the onstant fators involved.For a realisti omparison, we onsider an algorithm that is as lose as possible toours, but based on the unit-ell model. It is therefore similar to the one in [1℄, but using



Figure 7: Updating an upward pointer in the global stakstandard reursive marking:1. traverse all reahable objets and set mark bits in the olletion segment2. traverse root set and insert root pointers into reloation hains, resetting mark bitsin environments3. san the global stak top-down, insert upward pointers into reloation hains andupdate the partial hains when passing the target4. san the global stak bottom-up, insert down-pointers into reloation hains andupdate them when reahing the target. Move non-garbage objets down the stak.We �rst onsider the e�ort for marking and updating referenes in terms of memoryaesses. Let Rp be the number of root ells that hold pointers into the olletion seg-ment, Rs the number of other root ells, Sp the number of non-garbage pointers fromthe olletion segment into the olletion segment, and A the number of arguments ofnon-garbage strutures. For the unit-ell model we get� 2Rs read + 2Rs writes for marking/unmarking in the two root sans� 4Rp reads + 4Rp writes for marking, unmarking, linking and updating pointers fromthe root set into the olletion segment� 3Sp reads + 4Sp writes for marking, linking and updating internal pointers in theolletion segment� A reads + A writes for marking argumentsFor ompating let S be the number of surviving global stak objets and G be the numberof garbage objets. Then we need� 2S reads + S writes for sanning and moving the objets� 2G reads to test and skip the garbage objetsThis results in a total ofunitr = 2Rs + 4Rp + 3Sp +A+ 2S + 2Gunitw = 2Rs + 4Rp + 4Sp +A+ SFor the twin-ell model the analysis is similar. Note that, as above, we are ountingread/write aesses for single ells, while the total data oupies twie the spae that isneeded by the unit-ell model.� 2Rs read + 2Rs writes for marking/unmarking the root tags� 5Rp reads + 5Rp writes for marking, unmarking, linking and updating pointers fromthe root set into the olletion segment



Benhmark #oll. Rs Rp Sp S GBoyer 17 766 1074 39071 1061184 681352Browse 1 1627 721 2972 45440 20096Edf 3 1821 3067 10203 137808 59040Spreadsheet 1 935 145 278 5840 59712Plm Compiler 4 238 218 6638 89080 149960Toesp 4 103 84 97 2168 260920Tp 21 9881 13045 24975 581896 839768Chat 1 31 35 1923 35160 30376Theorem Prover 8 2661 1445 3798 72336 449328Figure 8: Root, Pointer, Survivor and Garbage Cells� 3Sp reads + 3Sp writes for marking, linking and updating internal pointers in theolletion segment� A reads + A writes for marking the tags of arguments� 2S reads + 2S writes for moving tag and value of the useful objets� G reads to test the tag and skip garbage objetsThis results in a total oftwinr = 2Rs + 5Rp + 3Sp +A+ 2S +G = unitr +Rp �Gtwinw = 2Rs + 5Rp + 3Sp +A+ 2S = unitw +Rp � Sp + SFigure 8 gives the parameters for a number of nontrivial benhmark programs1. It turnsout that, despite the fat that all data areas are twie as large in the twin-ell model, thegarbage olletor is not neessarily slower than its ounterpart in the unit-ell model. Themost important reason being that there is only one aess to every garbage objet, whilethe unit-ell algorithm does two (thus ompromising its advantage of having only half-sizeobjets). For all benhmarks given, the twin ell algorithm needs less read aesses.On the other hand, moving the useful objets requires two onseutive writes for thetwin ell, but only a single one for the unit ell. Writing onseutive memory loations,however, is usually implemented eÆiently in modern hardware, thus reduing its negativeimpat. In summary, for the benhmarks with more than about 50 perent garbage ratio,the twin ell algorithm does less memory aesses (read and write) than the unit ellalgorithm.5 Virtual BaktrakingThe marking phase as desribed in [1℄ needs two passes through the root set. This isbeause environment ells are marked in the �rst, and unmarked in the seond pass. Notethat these marks are not really essential sine no garbage is olleted in the environmentstak. Their use is solely1. to ontrol the environment traversal algorithm by marking the already visited ells2. to enable early reset of environment variablesThe �rst use an be avoided by employing a di�erent traversal algorithm, that automati-ally keeps trak of the visited parts of environments.1The garbage olletor was triggered whenever 64 kBytes of global stak were used up



Benhmark Virtual Baktrakingnone global only fullBoyer 681352 681352 0 % 681352 0 %Browse 20096 20096 0 % 20192 +0.5 %Edf 59024 59040 +0.0 % 64928 +10.0 %Spreadsheet 59712 59712 0 % 64096 +7.3 %Plm Compiler 149960 149960 0 % 152720 +1.8 %Toesp 260920 260920 0 % 260920 0 %Tp 828888 839768 +1.3 % 861512 +3.9 %Chat 30376 30376 0 % 30376 0 %Theorem Prover 449024 449328 +0.0 % 451136 +0.5 %Figure 9: E�et of virtual baktraking on the number of olleted bytesWhen one deides to drop early reset of environment variables, then no marking needsto be done in the environment stak and the two passes an be ollapsed into a single one.The omplexity of the twin ell algorithm is redued totwin0r = Rs + 3Rp + 3Sp +A+ 2S +Gtwin0w = 3Rp + 3Sp +A+ 2SThis will speed up the marking proess, but will redue the amount of olleted garbagefor some programs.To get an idea of how muh is lost by this simpli�ation, we have measured ourbenhmarks with three di�erent variants of the garbage olletor (�gure 9). The �rst onedoes no virtual baktraking at all, the seond one uses the simpli�ed algorithm (i.e. onlyvariables on the global stak an be early reset) and the third one performs full virtualbaktraking. Unfortunately, it seems that it is more important to do early resetting onenvironment variables than on global stak variables, whih favors the full variant. Onthe other hand, for many programs virtual baktraking does not have any e�et at all,and the seond pass through the roots is done in vain.6 AknowledgementI would like to thank Miha Meier for many fruitful disussions. Thanks are also due toAlexander Herold and Emmanuel van Rossum for reading and ommenting earlier versionsof this paper.



Referenes [1℄ K.Appleby, M.Carlsson, S.Haridi, D.SahlinGarbage Colletion for Prolog Based on WAMSICS Researh Report R86009B, 1986[2℄ J.BarklundA Garbage Colletion Algorithm for TriiaUPMAIL Tehnial Report 37B, Deember 1987[3℄ Y.Bekkers, B.Canet, O.Ridoux, L.UngaroMALI: A Memory with a Real-Time Garbage Colletor for Imple-menting Logi Programming LanguagesPro. 3rd Symposium on Logi Programming, 1986[4℄ M.Meier, A.Aggoun, D.Chan, P.Dufresne,R.Enders, D.Henry de Villeneuve, A.Herold,P.Kay, B.Perez, E.v.Rossum, J.ShimpfSEPIA - An Extendible Prolog SystemPro. of the XI. World Computer Congress'89 IFIP, San Franiso[5℄ F.L.MorrisA Time- and Spae-EÆient Garbage Compation AlgorithmCACM. Vol.21 No.8, pp.662-665[6℄ E. Pittomvils, M.Bruynooghe, Y.D. WillemsTowards a Real Time Garbage Colletor for PrologPro. Symposium on Logi Programming, 1985, pp. 185-198[7℄ H.TouatiA Prolog Garbage Colletor for AquariusReport No. UCB/CSD 88/443, August 1988, University of Califor-nia, Berkeley[8℄ David H. D. WarrenAn Abstrat Prolog Instrution SetTehnial Report tn309, SRI, Otober, 1983


