SEPIA Programming Environment

Micha Meier
Philip Kay
Emmanuel van Rossum

European Computer-Industry Research Centre (ECRC),
Arabellastr.17, 8000 Munich 81, West Germany

Hugh Grant
ICL Information Technology Centre
South County Business Park, Dublin, Ireland

Abstract

We present the programming environment of the ECRC SEPIA system.
SEPIA is an advanced Prolog system that allows integration of various exten-
sions which may go beyond the logic programming paradigm. We describe
here how its features were used to build its environment and what future
work is planned to complete it.

1 Introduction

SEPIA (Standard ECRC Prolog Integrating Advanced Applications) [4] is
a Prolog system developed at ECRC which serves as a basis for the inte-
gration of various extensions into a logic programming system. Its core is a
WAM-based system with a fast incremental compiler, and a WAM emulator,
extended by coroutining, event handling, modules, constructive negation and
extendible data types.

Its architecture has been designed so that it allows various extensions to
be integrated into it, among which are

e the constraint propagation system CHIP [6]
e the object oriented system PHOCUS [3]

e an interface to the INGRES database SEDUCE based on the EDUCE
system [5]

e a recursive query answering component for deductive DBMS DedGin*
[2] using the BANG file system [7]

e a windowing environment KEGI

This paper describes more in detail the KEGI environment for SEPIA
and ongoing and future work on KEGI and SEPIA environment.

2 SEPIA Environment

The KEGI (Kernel ECRC Graphic Interface) system consists of three parts:

e The working environment, which is a windowing user interface to the
SEPIA system.

e The 2D graphic package which is used to generate high quality graphic
output.

e An object-oriented interactive graphic system based on ICL PCE [1].

2.1 Background

The KEGI project initially investigated the various tools which were avail-
able to provide working environments and interactive graphics for Prolog
systems. PCE was obtained as being the most readily available and appli-
cable for doing such a task. Conventionally PCE runs as a separate process
and can be interfaced to any other process using a suitable connection. Such
connections have been made to Quintus’™ Prolog, BIM Prolog, C Prolog
and variants of LeLisp. Also a number of builtin predicates were developed
using the CGI library to compliment the PCE system and to provide the
Prolog programming with high quality 2D graphic output.

The SEPIA connection to PCE was implemented using external predi-
cates written in C together with supporting Prolog predicates. However, the
methodology adopted was in many respects different to that of the various
systems mentioned above.

Conventionally the connection between PCE and the Prolog system is
synchronous, any events that occur in the PCE windows will be passed to
Prolog system and queued only when it is explicitly required. This has the
disadvantage that if a user has any interaction with an application using PCE
he cannot interact with the Prolog system via the keyboard or other applica-
tions at the same time. Equally if the Prolog system is servicing commands
from the user input then he cannot interact with the PCE application.

Using SEPIA it was possible to overcome this handicap. SEPIA has
the functionality to handle asynchronous events i.e signal interrupts. The
connection between PCE and SEPIA uses a socket, this socket was opened
in such a mode that SEPIA receives a signal as soon as there is some data
available to be read in from the socket. When the user presses on a button,

PCE writes a corresponding message on the socket which will cause SEPTA
to interrupt whatever it was currently doing and invoke the interrupt handler
to read the contents of the socket and call the corresponding predicate to
service the button press. A further advantage was gained by the facility of
using the socket connection to run SEPIA remotely and yet still have PCE
display graphics on the users local machine. By this means PCE was able
to provide graphic facilities to the SEPIA programmer.

Also, now that we had asynchronous handling of events it was possible to
provide a user environment for SEPIA constructed using PCE. In this way
the SEPIA environment was built. When SEPIA was invoked and the user
called the goal 7- pce_env, the PCE process was started, the communication
socket was set up and a top level control window was created that contained
a number of predefined and user definable buttons and pulldown menus.
Such buttons were used to call builtin predicates such as 7- trace, ?- Is and
?7- env and pulldown menus were used for recalling the history of previous
calls, displaying the names of Prolog files, current predicates, modules and
avaliable libraries. Further windows could be opened for specific tasks such
as to edit files edit windows, show the on-line manual, an interface to the
SEPIA debugger and shell windows. All of these could be initiated from a
button press on the control window.

Furthermore, the system could be modified by the user by providing a
startup file or as an experienced user he could modify the environment to
suit his requirements by directly modifying the Prolog library file which was
compiled when the environment was initialised.

While very interesting from the theoretical point of view, the KEGI en-
vironment built up using the PCE system was not satisfactory from various
reasons:

e The interface was slow and it used up much memory. This was due to
the fact that an additional PCE layer was put between Prolog and the
Sunview™ system.

e Since the PCE system was available only for the Sun’™ machines, it
would have been difficult to port this environment to other machines,
which is a necessary condition for ECRC prototypes, as it is sponsored
by three major European companies who use different hardware.

e The system was not robust enough for controlling full user interaction.

To avoid these restrictions the emphasis of the KEGI development was
changed. X11 had always been recognised as the future foundation for the
system as this would guarantee hardware independence. However, at this
time X11 was very much in its infancy. In particular for users of SEPIA
the system was unstable and lacked many tools. Also the X11 toolkits from
Athena, Ardent and HP were very unstable and had not yet reach maturity.

It was decided that the SEPIA working environment would be further
developed using the SunView window libraries. The connection to the PCE

system and the CGI library for user interaction and programming would also
be maintained. All systems would be ported to X11 at a later date using the
XView toolkit when this was made available and X11 more commercially
robust.

2.2 Current State

The SunView implementation was developed using the many lessons learnt
from the first phase of the project and has now a significant internal user
base.

Figure 1: kegitool window with the on-line manual and editor window

The current features of the KEGI system include the following:

e Control panel, on line manual, editor windows and an interface to the
debugger. This is now called kegitool.

e Full asynchronous interaction with the PCE system

Figure 2: A 2D demo program in kegitool

o CGI 2D graphic output

The kegitool control panel and SEPIA tty window are contained in the
same frame. Interaction with SEPIA can be made either by the keyboard
or by the mouse, button or menu input. Predicate calls are maintained in a
history menu. Files can be displayed in a pulldown walking menu (in reality
all the files on the whole network can be displayed in this walking menu).

Common actions can be carried out on selected files such as compiling,
editing (in which case an editor of the user’s choice is started), printing etc.
Furthermore, the user can select text from anywhere on the screen and have
this compiled automatically. The names of previously compiled files, known
modules, user predicates and available libraries are maintained in further
pulldown menus for user intercation. The user can initiate the debugger,
on-line manual, define user buttons and quit or restart execution of the
underlying SEPIA process via a number of buttons. Currently kegitool is
being ported to X11.

Figure 3: A PCE demo program

The PCE system has been extended by the use of a graphic predicate
layer to perform common user functionality. In total there are 62 predicates
which amongst other things create warning or alert boxes, load icons and
cursors, create and display trees and template windows. Objects can still be
created and manipulated by using the predicates new, send and get. In this
way SEPIA benefits from an object-oriented graphic system. Currently the
PCE system is being ported to X11 using the Xview toolkit. It is anticipated
that users will not have to make any changes to their Prolog code to use the
new system.

The 2D graphic output library is a collection of 63 predicates to perform
high speed colour output. This allows users to draw lines, solids text etc
in many forms and colours. The 2D predicate library has been ported to
directly use the X11 Xlib functions. Applications which were developed
using the CGI implementation did not have to be changed.

The expected completion date for the X11-based SEPIA environment is

Figure 4: PCE on top of X11
at the end of 1989.

3 Debugging in SEPIA

As mentioned above, SEPIA has no interpreter, even the asserted clauses are
compiled, and it is possible to use the conventional debugger on the compiled
code without any restrictions. The advantage of such a scheme is that since
there is no interpreter, the extensions that modify the Prolog system, e.g.
the unification procedure, do not have to modify both the compiler and the
interpreter, modifying the compiler is sufficient. The SEPIA incremental
compiler is written in C for efficiency reasons which has proven to be a good
choice as the compilation speed is by order of magnitude higher than for
compilers written in Prolog. This makes the system more user-friendly and
speeds up the development of programs.

Another, not less important reason to have a debugger on compiled code,

is that the execution of the debugged code is much faster than it is the case
with interpreted programs and it also uses less space. Here some comparisons
of the speed of compiled (i.e. not debuggable), debuggable (but with the
debugger switched off) and debugged code (in leap mode) for the naive
reverse example on a (loaded) SUN-3/60:

System compiled debuggable debugged slowdown
Quintus Prolog 2.0 80k 2.6k 0.7k 114
SICStus Prolog 0.3.1 21k 1.3k 0.2k 105
SB-Prolog!2.3.2 26k 6.7k 0.9k 28

Sepia 2.2a 55k 42k 4.7k 11

It can be seen that Prolog systems that use an interpreter are very slow in
the debug mode, whereas for a compiler-only system the slowdown is much
smaller. Another disadvantage of interpreted programs is the space con-
sumption, which can be much higher than for the same compiled programs
and this can in fact prevent debugging large interpreted programs.

The KEGI interface to the debugger consists of one window which is
split into several parts: the source file window, a command button panel, an
output window and a control window which contains a series of buttons for
each port and leashing mode.

The SEPIA debugger is a full four-port debugger, but it can display
several additional ports:

e DELAY and WAKE
The SEPIA debugger supports fully the coroutining features. When a
procedure delays, its box is exited through the DELAY port and when
it is woken again, the box is re-entered through the WAKE port. It
is also possible to skip from the DELAY to the corresponding WAKE
port.

e LEAVE
This port is used to exit a procedure’s box after a block exit (non-local
jump) from the procedure or one of its children.

e NEXT
This and the remaining ports do not show entering or exiting the box
of a procedure but rather some actions inside it. The NEXT port
is traced when a clause fails and the execution continues to the next
clause of the same procedure. This port is missing in the original Byrd
debugger and it makes debugging much easier when it is provided.

o CUT

The CUT port is traced for all goals whose alternatives are discarded

"We do not consider here the SB-Prolog’s facilities for tracing compiled code as they
do not offer the functionality of a full four-port debugger and are not sufficient for sophis-
ticated debugging

Figure 5: The debugger window of kegitool

inside a cut. This is a very convenient way for the programmer to see
if the cuts are really necessary.

e UNIFY
This port is traced at the end of the head unification so that the
resulting bindings can be seen.

Apart from the standard leashing, the SEPIA debugger allows more de-
tailed filtering of the tracing information, any port and any procedure can
be either printed and the debugger stops there, only printed, or not shown
at all. At the debugger prompt the user can issue many commands, e.g.
various skip commands that allow to omit a part of tracing and resume it at
a specified place which can be e.g. a goal with a specified invocation number,
a specified level, intsantiation of a variable etc.

The debugger allows the user to look not only at the ancestor goals
but also to any other previous goal, i.e. at the whole current execution

tree. We plan to extend this feature with a graphical interface which would
show the shape of the complete tree and allow to zoom on its parts using
the mouse. Currently, when a port is printed in the debugger, the KEGI
debugger interface shows the definition of the corresponding clause in its
source file. This feature will be extended by showing precisely the position
of the current subgoal in the source file.

4 Tools for Analysis and Performance Measure-
ment

SEPIA has a statistics library file that extends the debugger to measure
the activity at the procedure level. For every procedure the main ports are
counted and they can be displayed in a table:

PROCEDURE # MODULE #CALL #EXIT #TRY #CUT #NEXT #FAIL
is /2 sepia_k 3 3 0 0 0 0
write /1 sepia_k 6 6 0 0 0 0
move /2 sepia 17 51 17 0 10 7
path /4 sepia 17 16 17 0 15 17
fail /0 sepia_k 22 0 0 0 0 22
' /0 sepia_k 43 43 0 0 0 0
opp /2 sepia 51 51 0 0 0 0
safe /1 sepia 51 34 51 23 28 17
not_member /2 sepia 139 95 123 18 105 44
|TOTAL: PROCEDURES: 20 368 320 210 43 158 109

This tool can be used both for low-level optimizations of the abstract
machine and for user source-level optimizations.

By loading another system library file it is possible to produce statistics
of the executed abstract instructions and store or add it into a file.

References

[1] A.Anjewierden. PCE-Prolog 1.0 reference manual. Technical report,
University of Amsterdam, October 1986. ESPRIT Project 1098.

[2] A.Lefebvre and L.Vieille. Bases de donnees deductives et DedGin*. In
Proceedings of the AFCET Conference on Databases, Paris, December
1988. invited paper.

[3] P.Dufresne D.Chan and R.Enders. PHOCUS: Production rules, horn
clauses, objects and contexts in a unification-based system. In Program-

mation en Logique, actes du Seminaire, pages 77-108, Tregastel, France,
May 1987.

[4] Micha Meier et al. SEPIA - an extendible Prolog system. In Proceedings
of the 11th World Computer Congress IFIP’89, San Francisco, August
1989.

[6] J.Bocca. Educe: A marriage of convenience: Prolog and a relational

dbms. In Proceedings of the 3rd Symposium on Logic Programming, pages
36-45, Salt Lake City, September 1986.

[6] M.Dincbas, P.Van Hentenryck, H.Simonis, A.Aggoun, T.Graf, and
F.Berthier. The constraint logic programming language CHIP. In In-
ternational Conference on FGCS 1988, Tokyo, November 1988.

[7] M.Freeston. The BANG file: a new kind of grid file. In SIGMOD ’87,
San Francisco, 1987.

