
SEPIA Programming Environment
Mi
ha MeierPhilip KayEmmanuel van RossumEuropean Computer-Industry Resear
h Centre (ECRC),Arabellastr.17, 8000 Muni
h 81, West GermanyHugh GrantICL Information Te
hnology CentreSouth County Business Park, Dublin, IrelandAbstra
tWe present the programming environment of the ECRC SEPIA system.SEPIA is an advan
ed Prolog system that allows integration of various exten-sions whi
h may go beyond the logi
 programming paradigm. We des
ribehere how its features were used to build its environment and what futurework is planned to 
omplete it.1 Introdu
tionSEPIA (Standard ECRC Prolog Integrating Advan
ed Appli
ations) [4℄ isa Prolog system developed at ECRC whi
h serves as a basis for the inte-gration of various extensions into a logi
 programming system. Its 
ore is aWAM-based system with a fast in
remental 
ompiler, and a WAM emulator,extended by 
oroutining, event handling, modules, 
onstru
tive negation andextendible data types.Its ar
hite
ture has been designed so that it allows various extensions tobe integrated into it, among whi
h are� the 
onstraint propagation system CHIP [6℄� the obje
t oriented system PHOCUS [3℄� an interfa
e to the INGRES database SEDUCE based on the EDUCEsystem [5℄



� a re
ursive query answering 
omponent for dedu
tive DBMS DedGin*[2℄ using the BANG �le system [7℄� a windowing environment KEGIThis paper des
ribes more in detail the KEGI environment for SEPIAand ongoing and future work on KEGI and SEPIA environment.2 SEPIA EnvironmentThe KEGI (Kernel ECRC Graphi
 Interfa
e) system 
onsists of three parts:� The working environment, whi
h is a windowing user interfa
e to theSEPIA system.� The 2D graphi
 pa
kage whi
h is used to generate high quality graphi
output.� An obje
t-oriented intera
tive graphi
 system based on ICL PCE [1℄.2.1 Ba
kgroundThe KEGI proje
t initially investigated the various tools whi
h were avail-able to provide working environments and intera
tive graphi
s for Prologsystems. PCE was obtained as being the most readily available and appli-
able for doing su
h a task. Conventionally PCE runs as a separate pro
essand 
an be interfa
ed to any other pro
ess using a suitable 
onne
tion. Su
h
onne
tions have been made to QuintusTM Prolog, BIM Prolog, C Prologand variants of LeLisp. Also a number of builtin predi
ates were developedusing the CGI library to 
ompliment the PCE system and to provide theProlog programming with high quality 2D graphi
 output.The SEPIA 
onne
tion to PCE was implemented using external predi-
ates written in C together with supporting Prolog predi
ates. However, themethodology adopted was in many respe
ts di�erent to that of the varioussystems mentioned above.Conventionally the 
onne
tion between PCE and the Prolog system issyn
hronous, any events that o

ur in the PCE windows will be passed toProlog system and queued only when it is expli
itly required. This has thedisadvantage that if a user has any intera
tion with an appli
ation using PCEhe 
annot intera
t with the Prolog system via the keyboard or other appli
a-tions at the same time. Equally if the Prolog system is servi
ing 
ommandsfrom the user input then he 
annot intera
t with the PCE appli
ation.Using SEPIA it was possible to over
ome this handi
ap. SEPIA hasthe fun
tionality to handle asyn
hronous events i.e signal interrupts. The
onne
tion between PCE and SEPIA uses a so
ket, this so
ket was openedin su
h a mode that SEPIA re
eives a signal as soon as there is some dataavailable to be read in from the so
ket. When the user presses on a button,



PCE writes a 
orresponding message on the so
ket whi
h will 
ause SEPIAto interrupt whatever it was 
urrently doing and invoke the interrupt handlerto read the 
ontents of the so
ket and 
all the 
orresponding predi
ate toservi
e the button press. A further advantage was gained by the fa
ility ofusing the so
ket 
onne
tion to run SEPIA remotely and yet still have PCEdisplay graphi
s on the users lo
al ma
hine. By this means PCE was ableto provide graphi
 fa
ilities to the SEPIA programmer.Also, now that we had asyn
hronous handling of events it was possible toprovide a user environment for SEPIA 
onstru
ted using PCE. In this waythe SEPIA environment was built. When SEPIA was invoked and the user
alled the goal ?- p
e env, the PCE pro
ess was started, the 
ommuni
ationso
ket was set up and a top level 
ontrol window was 
reated that 
ontaineda number of prede�ned and user de�nable buttons and pulldown menus.Su
h buttons were used to 
all builtin predi
ates su
h as ?- tra
e, ?- ls and?- env and pulldown menus were used for re
alling the history of previous
alls, displaying the names of Prolog �les, 
urrent predi
ates, modules andavaliable libraries. Further windows 
ould be opened for spe
i�
 tasks su
has to edit �les edit windows, show the on-line manual, an interfa
e to theSEPIA debugger and shell windows. All of these 
ould be initiated from abutton press on the 
ontrol window.Furthermore, the system 
ould be modi�ed by the user by providing astartup �le or as an experien
ed user he 
ould modify the environment tosuit his requirements by dire
tly modifying the Prolog library �le whi
h was
ompiled when the environment was initialised.While very interesting from the theoreti
al point of view, the KEGI en-vironment built up using the PCE system was not satisfa
tory from variousreasons:� The interfa
e was slow and it used up mu
h memory. This was due tothe fa
t that an additional PCE layer was put between Prolog and theSunviewTM system.� Sin
e the PCE system was available only for the SunTM ma
hines, itwould have been diÆ
ult to port this environment to other ma
hines,whi
h is a ne
essary 
ondition for ECRC prototypes, as it is sponsoredby three major European 
ompanies who use di�erent hardware.� The system was not robust enough for 
ontrolling full user intera
tion.To avoid these restri
tions the emphasis of the KEGI development was
hanged. X11 had always been re
ognised as the future foundation for thesystem as this would guarantee hardware independen
e. However, at thistime X11 was very mu
h in its infan
y. In parti
ular for users of SEPIAthe system was unstable and la
ked many tools. Also the X11 toolkits fromAthena, Ardent and HP were very unstable and had not yet rea
h maturity.It was de
ided that the SEPIA working environment would be furtherdeveloped using the SunView window libraries. The 
onne
tion to the PCE



system and the CGI library for user intera
tion and programming would alsobe maintained. All systems would be ported to X11 at a later date using theXView toolkit when this was made available and X11 more 
ommer
iallyrobust.2.2 Current StateThe SunView implementation was developed using the many lessons learntfrom the �rst phase of the proje
t and has now a signi�
ant internal userbase.

Figure 1: kegitool window with the on-line manual and editor windowThe 
urrent features of the KEGI system in
lude the following:� Control panel, on line manual, editor windows and an interfa
e to thedebugger. This is now 
alled kegitool.� Full asyn
hronous intera
tion with the PCE system



Figure 2: A 2D demo program in kegitool� CGI 2D graphi
 outputThe kegitool 
ontrol panel and SEPIA tty window are 
ontained in thesame frame. Intera
tion with SEPIA 
an be made either by the keyboardor by the mouse, button or menu input. Predi
ate 
alls are maintained in ahistory menu. Files 
an be displayed in a pulldown walking menu (in realityall the �les on the whole network 
an be displayed in this walking menu).Common a
tions 
an be 
arried out on sele
ted �les su
h as 
ompiling,editing (in whi
h 
ase an editor of the user's 
hoi
e is started), printing et
.Furthermore, the user 
an sele
t text from anywhere on the s
reen and havethis 
ompiled automati
ally. The names of previously 
ompiled �les, knownmodules, user predi
ates and available libraries are maintained in furtherpulldown menus for user inter
ation. The user 
an initiate the debugger,on-line manual, de�ne user buttons and quit or restart exe
ution of theunderlying SEPIA pro
ess via a number of buttons. Currently kegitool isbeing ported to X11.



Figure 3: A PCE demo programThe PCE system has been extended by the use of a graphi
 predi
atelayer to perform 
ommon user fun
tionality. In total there are 62 predi
ateswhi
h amongst other things 
reate warning or alert boxes, load i
ons and
ursors, 
reate and display trees and template windows. Obje
ts 
an still be
reated and manipulated by using the predi
ates new, send and get. In thisway SEPIA bene�ts from an obje
t-oriented graphi
 system. Currently thePCE system is being ported to X11 using the Xview toolkit. It is anti
ipatedthat users will not have to make any 
hanges to their Prolog 
ode to use thenew system.The 2D graphi
 output library is a 
olle
tion of 63 predi
ates to performhigh speed 
olour output. This allows users to draw lines, solids text et
in many forms and 
olours. The 2D predi
ate library has been ported todire
tly use the X11 Xlib fun
tions. Appli
ations whi
h were developedusing the CGI implementation did not have to be 
hanged.The expe
ted 
ompletion date for the X11-based SEPIA environment is



Figure 4: PCE on top of X11at the end of 1989.3 Debugging in SEPIAAs mentioned above, SEPIA has no interpreter, even the asserted 
lauses are
ompiled, and it is possible to use the 
onventional debugger on the 
ompiled
ode without any restri
tions. The advantage of su
h a s
heme is that sin
ethere is no interpreter, the extensions that modify the Prolog system, e.g.the uni�
ation pro
edure, do not have to modify both the 
ompiler and theinterpreter, modifying the 
ompiler is suÆ
ient. The SEPIA in
remental
ompiler is written in C for eÆ
ien
y reasons whi
h has proven to be a good
hoi
e as the 
ompilation speed is by order of magnitude higher than for
ompilers written in Prolog. This makes the system more user-friendly andspeeds up the development of programs.Another, not less important reason to have a debugger on 
ompiled 
ode,



is that the exe
ution of the debugged 
ode is mu
h faster than it is the 
asewith interpreted programs and it also uses less spa
e. Here some 
omparisonsof the speed of 
ompiled (i.e. not debuggable), debuggable (but with thedebugger swit
hed o�) and debugged 
ode (in leap mode) for the naivereverse example on a (loaded) SUN-3/60:System 
ompiled debuggable debugged slowdownQuintus Prolog 2.0 80k 2.6k 0.7k 114SICStus Prolog 0.3.1 21k 1.3k 0.2k 105SB-Prolog12.3.2 26k 6.7k 0.9k 28Sepia 2.2a 55k 42k 4.7k 11It 
an be seen that Prolog systems that use an interpreter are very slow inthe debug mode, whereas for a 
ompiler-only system the slowdown is mu
hsmaller. Another disadvantage of interpreted programs is the spa
e 
on-sumption, whi
h 
an be mu
h higher than for the same 
ompiled programsand this 
an in fa
t prevent debugging large interpreted programs.The KEGI interfa
e to the debugger 
onsists of one window whi
h issplit into several parts: the sour
e �le window, a 
ommand button panel, anoutput window and a 
ontrol window whi
h 
ontains a series of buttons forea
h port and leashing mode.The SEPIA debugger is a full four-port debugger, but it 
an displayseveral additional ports:� DELAY and WAKEThe SEPIA debugger supports fully the 
oroutining features. When apro
edure delays, its box is exited through the DELAY port and whenit is woken again, the box is re-entered through the WAKE port. Itis also possible to skip from the DELAY to the 
orresponding WAKEport.� LEAVEThis port is used to exit a pro
edure's box after a blo
k exit (non-lo
aljump) from the pro
edure or one of its 
hildren.� NEXTThis and the remaining ports do not show entering or exiting the boxof a pro
edure but rather some a
tions inside it. The NEXT portis tra
ed when a 
lause fails and the exe
ution 
ontinues to the next
lause of the same pro
edure. This port is missing in the original Byrddebugger and it makes debugging mu
h easier when it is provided.� CUTThe CUT port is tra
ed for all goals whose alternatives are dis
arded1We do not 
onsider here the SB-Prolog's fa
ilities for tra
ing 
ompiled 
ode as theydo not o�er the fun
tionality of a full four-port debugger and are not suÆ
ient for sophis-ti
ated debugging



Figure 5: The debugger window of kegitoolinside a 
ut. This is a very 
onvenient way for the programmer to seeif the 
uts are really ne
essary.� UNIFYThis port is tra
ed at the end of the head uni�
ation so that theresulting bindings 
an be seen.Apart from the standard leashing, the SEPIA debugger allows more de-tailed �ltering of the tra
ing information, any port and any pro
edure 
anbe either printed and the debugger stops there, only printed, or not shownat all. At the debugger prompt the user 
an issue many 
ommands, e.g.various skip 
ommands that allow to omit a part of tra
ing and resume it ata spe
i�ed pla
e whi
h 
an be e.g. a goal with a spe
i�ed invo
ation number,a spe
i�ed level, intsantiation of a variable et
.The debugger allows the user to look not only at the an
estor goalsbut also to any other previous goal, i.e. at the whole 
urrent exe
ution



tree. We plan to extend this feature with a graphi
al interfa
e whi
h wouldshow the shape of the 
omplete tree and allow to zoom on its parts usingthe mouse. Currently, when a port is printed in the debugger, the KEGIdebugger interfa
e shows the de�nition of the 
orresponding 
lause in itssour
e �le. This feature will be extended by showing pre
isely the positionof the 
urrent subgoal in the sour
e �le.4 Tools for Analysis and Performan
e Measure-mentSEPIA has a statisti
s library �le that extends the debugger to measurethe a
tivity at the pro
edure level. For every pro
edure the main ports are
ounted and they 
an be displayed in a table:PROCEDURE # MODULE #CALL #EXIT #TRY #CUT #NEXT #FAILis /2 sepia_k 3 3 0 0 0 0write /1 sepia_k 6 6 0 0 0 0move /2 sepia 17 51 17 0 10 7path /4 sepia 17 16 17 0 15 17fail /0 sepia_k 22 0 0 0 0 22! /0 sepia_k 43 43 0 0 0 0opp /2 sepia 51 51 0 0 0 0safe /1 sepia 51 34 51 23 28 17not_member /2 sepia 139 95 123 18 105 44|TOTAL: PROCEDURES: 20 368 320 210 43 158 109This tool 
an be used both for low-level optimizations of the abstra
tma
hine and for user sour
e-level optimizations.By loading another system library �le it is possible to produ
e statisti
sof the exe
uted abstra
t instru
tions and store or add it into a �le.Referen
es[1℄ A.Anjewierden. PCE-Prolog 1.0 referen
e manual. Te
hni
al report,University of Amsterdam, O
tober 1986. ESPRIT Proje
t 1098.[2℄ A.Lefebvre and L.Vieille. Bases de donnees dedu
tives et DedGin*. InPro
eedings of the AFCET Conferen
e on Databases, Paris, De
ember1988. invited paper.[3℄ P.Dufresne D.Chan and R.Enders. PHOCUS: Produ
tion rules, horn
lauses, obje
ts and 
ontexts in a uni�
ation-based system. In Program-mation en Logique, a
tes du Seminaire, pages 77{108, Tregastel, Fran
e,May 1987.[4℄ Mi
ha Meier et al. SEPIA - an extendible Prolog system. In Pro
eedingsof the 11th World Computer Congress IFIP'89, San Fran
is
o, August1989.



[5℄ J.Bo

a. Edu
e: A marriage of 
onvenien
e: Prolog and a relationaldbms. In Pro
eedings of the 3rd Symposium on Logi
 Programming, pages36{45, Salt Lake City, September 1986.[6℄ M.Din
bas, P.Van Hentenry
k, H.Simonis, A.Aggoun, T.Graf, andF.Berthier. The 
onstraint logi
 programming language CHIP. In In-ternational Conferen
e on FGCS 1988, Tokyo, November 1988.[7℄ M.Freeston. The BANG �le: a new kind of grid �le. In SIGMOD '87,San Fran
is
o, 1987.


