technical report ECRC—-92-1

Generalised Constraint Propagation Over

the CLP Scheme

Thierry Le Provost
Mark Wallace

006 . 000, 0664

L

YYTIREIT X o Yees!

EUROPEAN COMPUTER-INDUSTRY RESEARCH CENTRE

ECRC GMBH, ARABELLASTR. 17 D-8000 MUNCHEN 81, GERMANY - TEL +49 89/926 99 0 - FAX 926 99 170 - TLX 521 6910

(©European Computer-Industry Research Centre, February 1993

Neither the authors of this report nor the European Computer-Industry Research
Centre GmbH, Munich, Germany, make any warranty, express or implied, or assume
any legal liability for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represent that its use would not in-
fringe privately owned rights. Permission to copy in whole or in part is granted
for non-profit educational and research purposes, provided that all such whole or
partial copies include the following: a notice that such copying is by the permission
of the European Computer-Industry Research Centre GmbH, Munich, Germany;
an acknowledgement of the authors and individual contributors to the work; all
applicable portions of this copyright notice. Copying, reproducing or republishing
for any other purpose shall require a license with payment of fee to the European
Computer-Industry Research Centre, GmbH, Munich, Germany. All rights reserved.

About this paper:
This paper appears in the Journal of Logic Programming, 1993

i

Abstract

Constraint logic programming is often described as logic programming with unification re-
placed by constraint solving over a computation domain. There is another, very different,
CLP paradigm based on constraint satisfaction, where program-defined goals can be treated as
constraints and handled using propagation. This paper proposes a generalisation of propaga-
tion, which enables it to be applied on arbitrary computation domains, revealing that the two
paradigms of CLP are orthogonal, and can be freely combined. The main idea behind gener-
alised propagation is to use whatever constraints are available over the computation domain to
express restrictions on problem variables. Generalised propagation on a goal G requires that
the system extracts a constraint approximating all the answers to G. The paper introduces a
generic algorithm for generalised propagation called topological branch and bound which avoids
enumerating all the answers to (G. Generalised propagation over the Herbrand universe has been
implemented in a system called Propia, and we describe its behaviour on some applications.

11

1 Introduction

1.1 The CLP Scheme

Constraint logic programming is often described as logic programming with unification replaced by con-
straint solving over a computation domain. This is captured in a theoretical framework called the CLP
scheme [JL87]. A C'LP(X) program comprises rules of the form

hecl,...cn,bl,...bm

where the ¢; are constraints over the domain X and the b; are (user-defined or built-in) logic programming
goals. During computation when goals are unfolded using program clauses, the constraints in their bodies
are collected up and tested for consistency. In this paper we shall often refer to constraints in the CLP(X)
framework as basic constraints. One point to note is that the basic constraint predicates are built-into
the system, and cannot be defined by program clauses. A second point is that the consistency check
covers all the basic constraints which have been collected up during the computation (which distinguishes
constraints from ordinary built-in predicates [Mah87]). This check must, in theory, be effective.

1.2 CSP in Logic Programming

There is another, very different, CLP paradigm which is based on constraint satisfaction techniques
dating back to 1965 [GB65, Fik70, Mon74]. In the constraint satisfaction problem (CSP) paradigm
the constraints are problem-specific, and defined by sets of tuples. When CSP is embedded into logic
programming, a constraint can be defined in the program as a set of facts, or even as a set of rules
[Van89]. We shall often refer to constraints in the CSP framework as “propagation constraints”.

For solving CSP problems in traditional logic programming systems, backtrack search is used. The aim
is to perform relevant “tests” as soon as possible after instantiating a variable. Dynamic computation
rules, such as freeze [Col85] and delay [Nai86, MACT89] can be used to determine which goal to evaluate
next. However even such dynamic rules can only postpone evaluation until the propagation constraints
are partially or fully instantiated. Evaluating partially instantiated propagation constraints will generate
values for variables, usually creating undesirable branches in the search tree. Waiting till the constraint
is ground before evaluating, is to use it as an a posteriori test. To summarise, logic programs can only
use propagation constraints passively. Our motivation for constraints logic programming is to support
the active use of constraints [Gal85]. This is provided by techniques developed for solving constraint
satisfaction problems.

It should be noted that constraint solving over a computation domain, as described in section 1.1 above,
is replaced in this paradigm by constraint propagation over value domains [Fik70, Mon74, Mac77, HE80].
Informally constraint propagation operates by looking ahead at yet unsolved goals to see what locally
consistent valuations there remain for individual problem variables. In the CSP framework there is no
guarantee that, after a complete propagation sequence, the propagation constraints are globally con-
sistent, by contrast with constraint solving for basic constraints in the CLP scheme. However such
propagation techniques can have a dramatic effect in cutting down the size of the search space. Evidence
of the practical effectiveness of constraints propagation in logic programming is given in [DSV90].

1.3 Restrictions on Propagation in Logic Programming

One prerequisite for applying CSP techniques is that problem variables should have an associated domain
of possible values. Traditionally [Mac77, HE80] this is a finite domain, though more recently continuous
intervals have been studied [Dav87]. Up to now, constraint logic programming systems based on the CSP
paradigm (eg CHIP [DVST88]) have only been defined for finite domain variables. For each problem
variable a finite domain declaration is required. Each such variable can only take a finite number of
values, and looking ahead is a way of deterministically ruling out certain locally inconsistent values and
thus reducing the domains.

This restriction has prevented the application of propagation to new computation domains introduced
by the CLP scheme and related approaches. In addition propagation as currently defined only exploits a
fraction of the power of 1ts native universe of discourse. For instance it cannot reason on compound terms,
thereby enforcing an unnatural and potentially inefficient encoding of structured data as collections of
constants.

This has meant that the two approaches to integrating constraints into logic programming, as basic
constraints and as propagation constraints, have had to remain quite separate. Even in the CHIP sys-
tem [DVST88] which utilises both types of integration, propagation is excluded from those parts of the
programs involving new computation domains, such as Boolean algebra or linear rational arithmetic.

In this paper we alleviate two restrictions. Firstly we lift the restriction to finite domains, for propagation
in logic programming. Secondly we lift the restriction that demains are needed for propagation at all. In
this second sense, generalised propagation makes a contribution not just to the field of CLP, but also to
the general field of constraint satisfaction.

1.4 Generalised Propagation

This paper proposes a generalisation of propagation, which enables it to be applied on arbitrary computa-
tion domains. Generalised propagation can be applied in C'L P(X) programs, whatever the domain X. We
shall call GP(X) the system applying generalised propagation in C'LP(X). Finite domain propagation
in logic programming is just GP(F D).

The basic concepts, theoretical foundations, and abstract operational semantics of GP(X) can be defined
independently of the computation domain, X. This allows programmers to reason about the efficiency
of GP(X) in an intuitive and uniform way. This generality carries over to the implementation, where
algorithms for executing generalised propagation apply across a large range of basic constraint theories.
Last but not least, the declarative semantics of C'LP(X) programs is preserved in GP(X).

The main idea behind G P(X) is to use whatever constraints are available over the computation domain
X to express restrictions on problem variables. (Associating finite domains with variables is one specific
application of this concept.) Goals designated as propagation constraints are repeatedly approximated
as closely as possible using these constraints. When no further refinement of the current resolvent’s
approximation is feasible, a resolution step is performed and propagation starts again.

Consider a toy example. The query to be answered is + and(X,Y, 7), equ(X,Y) against the program
and(true, true,true) «

and(true, false, false) «

and(false,true, false) «

and(false, false, false) «

equ(true, true) «
equ(false, false) +

To use finite domain propagation we declare that X, Y and Z can each take two possible values
{true, false}. This is their finite domain. Now propagation on each atomic goal in the query could
be used to attempt to reduce the possible values for each variable (by eliminating impossible ones).
Propagation on and(X,Y, Z) yields no domain reductions, however, because, for each variable, every
domain value appears in some clause for and. Nor does propagation on equ(X,Y’) produce any domain
reductions.

However generalised propagation can be more successfully applied. We shall assume, for this example, that
the domain of computation is just the usual one of Prolog (so there is no built-in boolean constraint solver).
The constraints built-into the system are just equations, treated as usual by unification. Generalised
propagation over this domain of computation (which we call GP(HU)) can extract from propagation
only equations between terms.

Propagation on and(X,Y, Z) does not, initially, produce any equations, but propagation on equv(X,Y)
does produce the equation X = Y. This information is extracted since it holds for both answers X =
true \Y = true and X = false AY = false to the subquery < equ(X,Y). Now propagation is retried on

and(X,X,7) (which is and(X,Y, 7) in the environment X = Y’). This time an equation can be extracted
X = Z, which holds of both answers to the subquery. Thus propagation on both atoms in the original
query yields the equations X = Y A X = Z which are guaranteed to hold for all answers to the query.
Notice that the information thus extracted could not be expressed using variable domains.

The practical relevance of generalised propagation has been tested by implementing it in the underlying
constraint theory of first-order terms with syntactic equality [Cla79], which is GP(HU). Programs are
just sets of Prolog rules with annotations identifying the goals to be used for propagation. The language
has enabled us to write programs which are simple, yet efficient, without the need to resort to constructs
without a clear declarative semantics such as demons. Applications tackled include a set of propositional
satisfiability problems collected as a benchmark for theorem provers [MR91], temporal reasoning, and
disjunctive scheduling problems. The performance results have been very encouraging.

In the next section we shall describe finite domain propagation in logic programming, and introduce
generalised propagation with an example. Then in section 3 we shall specify generalised propagation,
discussing its logical and operational semantics and introducing a generic algorithm for its implementation
over arbitrary computation domains. In section 4 we shall describe an implementation of generalised
propagation called Propia. In section 5 we shall compare generalised propagation with some related
approaches, and we shall conclude in section 6.

2 Constraint Propagation

In this section we briefly review the motivation of finite domain propagation in logic programming and
describe its behaviour with some examples. Then we shall introduce generalised propagation in logic
programming,

2.1 Propagation in Constraint Logic Programming

The 1dea behind local propagation methods for CSP’s is to work on each propagation constraint indepen-
dently, and deterministically to extract information about locally consistent assignments. This has lead
to various consistency algorithms for networks of constraints, the most widely applicable of these being
arc-consistency [RHZ75, MonT74]. Consistency can be applied as a preliminary to the search steps or
interleaved with them [HE80]. The application of these techniques in logic programming can be related
back to the enforcement of link consistency in connections graphs [Kow79]. Finite domain propagation
in logic programming was accomplished through two complementary extensions [VD86, Vang9]

e explicit finite domains of values to allow the expression of range restrictions, together with the
corresponding extension of unification (FD-resolution)

e new inference rules, based on looking ahead at “future” computations, to reduce finite domains in
a deterministic way

The effect of looking ahead on a goal is to reduce the domains associated with the variables in the goal, so
that the resulting domains approximate as closely as possible the set of remaining solutions. Application
of these inference rules is repeated on all propagation constraint goals until no more domain reductions
are possible, forming a propagation sequence. Propagation constraint goals that are satisfied by any
combination of values in the domains of their arguments can now be dropped.

One algorithm for implementing lookahead is to enumerate all combinations of values for the constraint’s
arguments and check each combination by calling the goal instantiated with these values. The reduced
domains are then formed by projecting successful combinations onto each argument. CHIP in addition
implements a variety of predefined constraint predicates, which efficiently perform domain reduction by
specialised algorithms. (The drawback of such dedicated algorithms is that they cannot be applied to
program-defined predicates.) An example problem encoded in a CHIP-like syntax follows:

esp(X1, X2, X3, X4)
{X1,X2 X3 X4} :: {a,b,c},

constraint p(X3, X1), [1]
constraint p(X2, X3), [2]
constraint p(X2, X4), [3]
constraint p(X3, X4) [4]

pla,b) «

pla,c) «

p(b,c) «

The constraint annotations identify goals that must be treated by the new inference rule. Annotations
can be ignored for a declarative reading.

For our example problem, the initial propagation sequence is sufficient to produce the only solution. A
possible computation sequence is as follows (though the ordering is immaterial for the final result):

Goal Result of propagation
constraint p(X3, X1) 1] produces X3 :: {a,b}, X1 :: {b,c}
constraint p(X2, X3 :: {a,b}) 2] produces X2 =a, X3 =19

]

]
3] produces X4 :: {b, ¢}
4] produces X4 =¢
]
]
]
]

([
([
constraint p(a, X4) [
constraint p(b, X4 :: {b,c}) [
constraint p(b, X1 :: {b,c}) [1] produces X1 = ¢
constraint p(a, b [2] succeeds
constraint p(a [

(b [

constraint p

—

3] succeeds
4] succeeds

,C

C

~—

bl

Note that the propagation constraint [1] takes part in two propagation steps before it is solved. In general
constraints may be involved in any number (> 0) of propagation steps.

This example is deliberately very simple. Normally an answer is not obtained by propagation alone. For
example if we add the fact p(c,a) < to the program definition of p above, then propagation produces
no domain reductions at first. If a propagation sequence terminates without producing an answer, then
variables are instantiated non-deterministically to values in their domains: this can be achieved by an
explicit “labelling” routine (as in CHIP) or by an implicit labelling performed automatically by the
system.

2.2 A Motivating Example of Generalised Propagation

We briefly motivate generalised propagation with a simple example. The problem we consider is that of
compiling crosswords from an empty grid and a lexicon of available words.

The problem can be expressed as a logic program by recording the lexicon as a set of facts, and the grid
as a rule, thus:

w3(a, e, t)

w3(a,r,t) «

grid([Al, A2, ..., Zn]) «
w5(AL, A2, A3, A4, A5),

4(A3, B3,C3, D3),
w3(Ab5, B5,C5),

m o O ® >

Figure 2.1: Part of a crossword grid, showing three blank words

With this encoding, the search space for the query « grid([Al, ..., Zn]) for any non-trivial crossword is
unfortunately too large for any hope of obtaining a solution without further guidance.

The problem suggests itself for finite domain propagation, where a domain of {a,b,..., 2} can be asso-
ciated with each variable, and each word in the grid is used as a propagation constraint. Unfortunately
finite domain propagation still does not enable the program to yield a solution within any reasonable
elapsed time. One reason for this inefficiency is that too much time is spent removing letters from the
domains of the different variables without a compensating improvement in the search behaviour. For
example the removal of rare letters such as x from the domains of the variables provides little useful
“pruning” of the search space.

Nevertheless finite domain propagation in logic programming has been applied to the problem of crossword
compilation [Van89]. A successful CLP program was written in which a domain variable was associated
with each blank word in the crossword, whose domain was the set of words in the lexicon that could fit
there. The correct choice of words was enforced by constraints on their intersections. The finite domains
associated with the variables had around 30 possible words. In fact the total lexicon only had around 150
words. The two drawbacks of this solution were that the representation of the problem was unnatural,
and 1t only worked for small lexicons.

The problem was tackled using GP(HU). Syntactically the only change necessary to the above program
was to annotate each blank word as a propagation constraint, thus:

grid([Al, A2, ..., Zn]) «
constraint wh(Al, A2, A3, A4, A5),
constraint w4(A3, B3, C'3, D3),
constraint w3(A5, B, C5),

Instead of propagating domain reductions, the system propagates equalities. Thus the information that
is produced is positive information, which helps the search converge on a solution, rather than negative
information which prunes impossible, but often irrelevant, branches. Most importantly, if the lexicon
grows the quality of information produced remains good. For larger domains, by contrast, the value
of negative information is reduced. (We are reminded of the paradox which says that a black raven is
- logically - evidence that all cows are purple, since it provides negative evidence of the fact that all
non-purple objects are not cows!)

Not only does the GP(HU) program allow the original problem, with a lexicon of 150 words, to be

1 2 3

@ M moOw >

Figure 2.2: A blank crossword grid, with four difficult corners

solved, it enables the problem to be scaled up to realistic proportions. Using generalised propagation,
this program compiles crosswords from a lexicon of 25000 words. A more detailed discussion of this
application follows in section 4.1.1 below.

2.3 Granularity of Propagation Constraints

A nice property of constraint logic programming is the fine level of control it offers over problem solving.
A propagation constraint goal can be defined by rules and therefore can be arbitrarily complex. As
an example consider the following small crossword grid: This can be encoded as a single grid, using
propagation, as above, on each blank word:

grid2([Al, A2, ... G7]) +

constraint w3(Al, A2, A3),

constraint w7(B1, B2, B3, B4, B5, B6, BT),
constraint w2(C'1,C2),

constraint w3(Al, B1,C1),

constraint w7(A2, B2,C2, D2, B2, F2,G2),
constraint w2(A3, B3),

constraint w3(A5, A6, AT),

Such an encoding performs propagation at a very fine level of granularity, enforcing very local consistency.
However a more coarse granularity of propagation suggests itself for such a problem: we should check,
for each corner of the crossword and the centre, what constraints it imposes on the words which cross the
boundaries. The problem can be expressed naturally as five subproblems, with propagation performed
on each:

grid2([Al, A2, ... G7]) +
constraint tople ft([Al, A2, A3, B1,...,B7,C1,C2,D2,...,G2]),

constraint botle ft([G1,G2,G3,F1,...,F7,E1,E2,D2,..., A2]),
constraint centre([B4,C4, D3, ..., D6, E4, F4]),

Now the system will iterate over solutions to the subproblems and try to extract equations common
to all these solutions. In case the subproblems themselves are hard, it is of course possible to perform
propagation within the search for their subsolutions:

topleft([Al, ..., G2]) «
constraint w3(Al, A2, A3),
constraint w7(B1,..., BT),

Clearly it brings nothing to define the whole problem as a single propagation constraint. However the
facility to combine clusters of constraints into a single larger constraint means that propagation can be
used to enforce consistency just as local or global as necessary for the problem at hand. The only practical
necessity is to treat efficiently constraints involving a number of variables. Generalised propagation
provides a framework where local and global propagation are practical alternatives.

3 A Specification of GP(X)

3.1 Definitions

The language syntax and semantics used in this paper are based on first order logic. Atomic formulae
are built from variables, predicate symbols, function symbols and constant symbols. If ® is any open
formula, then 3® and VY& denote respectively the existential and universal closure of ® as usual. We also
introduce the following syntax: if ¢ is an unquantified formula, then 3, ® is the existential quantification
over all those variables in ® which do not occur in . For example 3\,(x,7).X > Y AY > 7 is the formula
AY.(X > Y AY > Z). This syntax is useful for expressing answers to queries. For example if + p(X, 7)
were a query, then the above example could denote an answer.

The predicate symbols are divided into interpreted predicates and uninterpreted predicates. The function
and constant symbols are divided similarly.

For a given computation domain X, the interpreted symbols have a predefined interpretation, independent
of the programs in which they appear. The = predicate symbol is always an interpreted predicate,
interpreted as equality in the underlying domain. Two further predicates which are always interpreted
are true and false. Some examples of interpreted function symbols are 4+ and — over numerical domains
such as the integers.

By contrast the semantics of the uninterpreted predicates is dictated by the program. Uninterpreted
functions and constants have the free interpretation in the underlying domain.

An atom containing only interpreted predicates, functions and constants is termed an interpreted con-
straint. An atom containing only uninterpreted predicates, functions and constants is termed a user
atom. An atom cannot contain both interpreted and uninterpreted symbols.!

We admit an additional syntax for atoms constraint A where A is a user atom. This syntax yields another
kind of constraints called propagation constraints. Unlike interpreted constraints, propagation constraints
have uninterpreted predicates whose semantics are dictated by the program.

We now further distinguish two classes of interpreted constraints. These are the basic constraints and
approrimation constraints. The conjunction of a set of basic or approximation constraints is also termed
a basic or approximation constraint respectively. Constraints of the form V' = C' where V is a variable

!In practice one can admit such atoms (e.g. p(1 + X)) and view them as abbreviations for a conjunction where the
equalities are made explicit (e.g. p(Y)AY = (14 X)).

and C'is a constant are always classed as basic constraints. Similarly true and false are basic constraints.
Their interpretation in any computation domain is obvious.

Approximation constraints “approximate” basic constraints in the sense that for any approximation
constraint AC' there are basic constraints C such that X = (C' — AC). An example of an approximation
constraint is X :: {1,2,3} which states that either X = 1 or X = 2 or X = 3. It approximates each of
the basic equality constraints X =1, X = 2 and X = 3. Approximation constraints are a generalisation
of Davis’ labels [Dav87]. The approximation constraints and the basic constraints need not be disjoint:
in other words basic constraints could approximate themselves.

A GP(X) program is a set of clauses of the form Head « Goaly,..., Goal; The head Head is a user
atom. The body Goaly, ..., Goal; 1s a set of atoms, which may include user atoms and constraints. A
clause with an empty head + Goaly, ..., Goals is termed a query. The set of clauses whose heads have
the same predicate p are termed the program definition of p.

An example clause is

profit(Company, P)+
constraint public(Company),
income(Company, I),
expenditure(Company, F),
P=1—-F

It has four atomic goals in its body, of which “constraint public(Company)” is a propagation constraint,
“income(Company, I)” and “expenditure(Company, F)” are user atoms, and “P = I — E” is a basic
constraint.

3.2 Declarative and Operational Semantics for GP(X)
3.2.1 A Framework for Evaluation in GP(X)

The framework for evaluation in GP(X) is based on the constraint logic programming scheme of Jaffar
and Lassez [JL87, JL86], extended with the concept of propagation agents. An evaluation in GP(X)
involves at any time a current goal, a current set of propagation agents, and a current constraint store.
Thus the state of an evaluation is represented by a triple < Goal, Agents, Store >.

3.2.2 Declarative Semantics for GP(X)

We base our semantics on that introduced for the CLP scheme in [JL86]. The computation domain X
provides an interpretation for the interpreted predicates, functions, and constants. The language Lp of a
C'LP(X) program includes uninterpreted predicates, functions and constants. An interpretation I of Lp
is based on X if I has the same underlying domain as X, and the same interpretation for the interpreted
predicates, functions and constants.

We say an Lp formula Fy X-entails a formula Fs, written Fy Ex Fs, to mean that for every interpretation
I based on X, if [= Fy then I |= F5. If an Lp formula F' is true in every interpretation based on X we
write Ex F. If a valuation 6 of the variables makes a formula F' true in X, we write X | F6.

Logically a propagation constraint constraint A is equivalent to the user atom A. In fact we shall define
for any GP(X) program P and query) a CLP(X) program clp(P) and query c¢lp(Q)) which result by
replacing all propagation constraints “constraint A” by the user atom A. The declarative semantics for P
and @ is, by definition, the declarative semantics for ¢/p(P) and ¢lp(@). Thus the declarative semantics
for GP(X) programs and queries reduce to the semantics for C'LP(X) programs and queries.

A clause Head + Goaly, ..., Goals; with free variables X, ...X; as usual denotes the formula
VXy,... X¢.(Head V =Goaly Vv ...V =Goaly).

The meaning of a program is given by the conjunction of its clauses. The denotation of a query
+ Goaly, ..., Goals, is the formula ~Goal, V ...V —~Goals.

A solution to a GP(X) query « G against a program P is a variable valuation @ for which P X-entails
(8. For the purposes of the formalisation of soundness and completeness we use a more general definition
of an solution under a constraint

Definition 1 For a given GP(X) program P, a solution to a query + G under a constraint S is an
valuation 0 for which X |= S6 and P l=x G0

3.2.3 Operational Semantics for GP(X)

We have chosen a transformational semantics for our constraint logic programming system following the

approach of [Sar89] and [HD91].

GP(X) States At any point in a GP(X) evaluation, the current state is formalised as a triple

< {Gq,..., G}, {AL, ... A} {Cy, ..., C} >. The current goal {Gy,...,G,} is a set of atoms, which
may include user atoms and atomic constraints. The current set of propagation agents {Ay,..., A} is a
set of user atoms. Finally the constraint store {C4, ..., C;} is a set of interpreted constraints, which may
include both basic constraints and approximation constraints.

A state < G, A, S > has a logical denotation, which we will often use in reasoning about soundness
and completeness of the operational semantics. The logical denotation of an atomic goal and an atomic
constraint has been discussed in the previous section. The propagation agent A; has the same denotation
as the user atom A;. The denotation of a set of atomic goals, or agents, or constraints is their logical
conjunction. In the following we sometimes use the symbols G, A and S to refer to sets, and sometimes
to logical conjunctions, depending on the context.

A derivation via a GP(X) program P can be formalised as sequence of state transitions,

< G1,A1,51 >—< G2,A2,52 >— ... =< Gn,An,Sn >., where the possible transitions depend on
P. To avoid ambiguity we usually make the program explicit by referring to “P-derivations”, and later
“P-refutations” and “P-computed answers”. A P-derivation starting with the state < G1, A1, 51 > and
ending in the state < Gn, An, Sn > is written < G1, Al, 51 >=—=< Gn, An, Sn >.

A query «+ @ is evaluated against a GP(X) program by initialising the goal to (¢,? the empty constraint
store and an empty set of propagation agents. Thus the initial state is < G,#, % >. In general the goal G
may contain both propagation constraints (such as “constraint public(company)” in the example in sec-
tion 3.1 above), basic constraints (such as “P = I — E”) and user atoms (such as “income(Company, I)”).

There are two kinds of terminal state, success states, and failure states. A failure state is a state in
which the constraint store contains the atom false. As described below, this atom is added whenever
the constraints in the constraint store S become unsatisfiable (i.e. X |= —35). A success state is one
that has an empty goal and an empty set of propagation agents and whose constraint store 1s consistent.
Thus < #,0,S > is a success state whenever S does not contain false. A P-refutation is a P-derivation
of the form < G,0,51 >=< 0,0, 52 >, whose final state is a success state. (In practice propagation
agents may be present, as long as no propagation on the agents is performed.)

State Transitions From certain states several alternative transitions are possible. Thus a GP(X)
evaluation involves the search of a tree whose branches correspond to alternative GP(X) derivations.
However in this section we concern ourselves purely with the definition of individual state transitions.

We shall use as an example the integers as a computation domain with basic constraints 77 = 75, and
approximation constraints 73 > Ty and T3 < T4. The terms T35 and T4 are restricted to constants or
variables. Any pair of approximation constraints 7, < T, ATy < T, will be abbreviated to T, < Tj < T..
Our example program will comprise two predicate definitions:

2Strictly the goal is the set of atoms in the body of « G

pl())F
p2(3,2) +
p2(1, 1) —
p2(3,4) +

State Transitions Inherited from CLP(X) Asin CLP(X), a user atom p(t1,...,tm) is processed
by selecting a clause p(ul,...,um) < Bi,... B, from the program definition of p, (The variables in the
clause are renamed so that they are different from the variables occurring in the current state.) The atom
p(tl,...,tm) is then replaced in the goal by the set {ul =¢1,...,um =tm, By ... B,}. If the program
definition of p is empty, then the atom p(t1,... ,tm) is replaced in the goal by false. Otherwise, each
clause in the definition of p defines an alternative transition. The transition can be expressed in the

following form (based on [Sar89]):

(p(ul,...,um) « Bl,...,Bn) € P
< (GU{p(tl,...;tm)}),A, S >—< (GU{ul =1t1,...,um=1tm,Bl,...Bn}), A, S >

and

~3X1,...,Xn,B.(p(X1,...,Xm) « B) € P
< (GU{p(tl,...;tm)}), A, S >—< (GU{false}), A, S >

Against our example program, a possible transition is

<AL Y), p2(XY) 1D, 0 >-<{X =3,Y = 0,p2(X,Y)}, 0,0 >.

Asin CLP(X), when a basic constraint is selected it is removed from the current goal and added to the
constraint store using a variant of the tell operation. The tell adds constraints to the constraint store
if they are consistent. The operation tell(C,S) checks the new interpreted constraint C' for consistency
with the current store S (X = 3.(S A (), and if consistency is established the constraint store becomes
SUC. If consistency is not established (X = —3.(S A C)) then the basic constraint false is added to the
constraint store. The resulting state is therefore a failure state.

cus if X E3(SAC)

tell(C,5) = { {false} US otherwise

The transition is expressed as follows:

< (GU{CH, A, S >—< G A tell(C,S) >

A simple example is the transition

<X =3,Y = 0,p2(X, V)1, 0,0 >< {Y = 0,p2(X, V)10, {X = 3} >.

To minimise the number of choice points in the evaluation tree in practical systems the previous two
transactions are combined with the test of the constraints in the body, yielding the single transition:

(p(ul,...,um) « Body) € P

Body = {cl,...,ck}U{Bl,...,Bn}

XEJ(SAul=tIA...Aum=tmAclA...Ack)

< (GU{p(tl,...;tm)}),A, S >—>< (GU{BL,...Bn}, A, (SU{ul =1t1,...,um=tm,cl,...ck}) >

We will, however, use the individual transactions in the completeness proof in section 3.3.2 below.

New GP(X) State Transitions The difference from CLP(X) lies in the handling of propagation
constraints. When a propagation constraint constraint A; is selected, the atom A; is added to the set of
propagation agents. The transition is as follows:

< (G U {constraint A;}), A, S >—~< G, (AU{A:}),S >

An example 1s:
< {constraint p1(X,Y), p2(X,) },0,0 >—< {p2(X,Y)},{p1(X,Y)},0 >.

10

The propagation agents spontaneously and repeatedly cause further state transitions in which new ap-
proximation constraints are added, if consistent, to the constraint store. In section 3.4.2 below, we shall
formalise an operator prop(A;, Seaq) that extracts from a constraint store Syq and a propagation agent
A; an approximation constraint. The extracted constraint is satisfied by all solutions to the propagation
agent with the input constraint store in the following sense. For a GP(X) program P, if # is any solution
to < A; under store Syq, then X = prop(A4;, Seq)f.

It is the spontaneous production of new information, in the form of approximation constraints, that
we call generalised propagation. Generalised propagation can be seen as an example of the relazed tell
operation of [HD91] which is discussed in more detail in section 5.2, below.

For any state < (G, A, S > in which A; is a propagation agent (A4; € A), there is a possible state transition
corresponding to single propagation steps on an agent A; in each subset S, of the constraint store S.
However if prop(Ai, Seiq) is already implied by S then no transition takes place (since the resulting state
would admit all the same transitions as the original state). Otherwise, the transition tell’s AC; to the
constraint store S. The transition is as follows:

Sotd €8

A, e A

X | V(S — prop(4;, Saa))

< G, A S >=< G A tell(prop(Ai, Sea), S) >

In our example program prop(pl(X,Y),0) = (1 < X <3A0<Y < 3) = AC1.
Thus there is a transition:

<0, {p1(X,Y), p2(X, Y)} 0 >—=< 0, {p1(X,Y), p2(X,Y)}, AC1 >.

In a sequential implementation, the constraint store S,;4 used for propagation is the current constraint
store S (i.e. S = Spq). Conversely, suppose the calculation of prop(A;, Seiq) takes place in parallel with
some state transitions. In this case, at the time prop(A;, Sqq) is told back to the constraint store S, the
store may include new constraints (i.e. no longer is S = Sy4). Hence the condition S,q C S. We shall
give an example of this in section 3.5.2 below.

The final transition returns a propagation agent from the set of agents to the current goal. This transition
enables the propagation constraints eventually to be unfolded like ordinary user atoms. The unfolding is
necessary to ensure the soundness of GP(X) computed answers.

The transition 1s as follows:

<G, (AU{AZ}),S > (GU {AZ}),A,S >

An example 1s the transition

<Ap2(X, Y} {pl(X,)}, 0 >—>< {pl(X,Y),p2(X,Y)},0,0 >.

GP(X) Computed Answers We now define the computed answer returned by a P-refutation.

Definition 2 For a program P, a P-computed answer, to a subquery < G with constraint store Sy is
I @S where S is the final constraint store in any P-refutation < G, 0, Sy >=<0,0,5 >.

Formally, no propagation agents can appear in either the initial or the final state. However, as noted
in section 3.2.3above, propagation agents may be present, as long as no propagation on the agents is
performed.

3.3 Soundness and Completeness
3.3.1 Soundness of GP(X)

Firstly note that constraints are only added to the constraint store using our tell operator. This ensures
that if the constraint store in any state is not consistent it is false, the state is a failure state, and, by
definition, no further transitions are possible.

11

For soundness we require that all the computed answers represent correct solutions.

Definition 3 For a GP(X) program P, a computed answer Ans to a query + G with constraint store
So is sound if every valuation 0 such that X |= Ans0 is a solution to < G under constraint 3\ gSo.

The following lemma follows immediately:

Lemma 1 For a GP(X) program P, a computed answer Ans to a query < G under constraint Sy is

sound if and only if X |=VY.(Ans — 3\5S0) and P |=x V.(Ans = G)

The result we shall prove is that for each P-derivation, < G, A1,51 >=—=< G5, Az, S2 > the final state
logically implies the initial state.

Lemma 2 For any P-derivation < G, Ay, 51 >=< G5, A, So >, it is the case that
P ':X V(Gz /\Az A Sz) — (Gl /\A1 A Sl)

Proof

By examining each allowed transition in turn, it is clear that the result holds for P-
derivations of length one. Inductively the result follows for derivations of any finite length.

A particular case of this result 1s when the derivations are in fact complete refutations. In case + (G4
is a query, and 3151 is a computed answer, there is a P-refutation < G1,0,5y >=< 0,0,51 >.
Since S1 D Sp, the first requirement for soundness X |= V.(I\¢1.51 — I\g150) is satisfied. Since the
P-refutation is sound by the above lemma, P |=x V.(S; — (1), which satisfies the second requirement
for soundness. We have therefore established the following theorem.

Theorem 3 For every GP(X) program P, every P-computed answer to any subquery «— G with any
constraint store Sy is sound.

3.3.2 Completeness of GP(X)

In this section we shall not only prove that every correct solution is found by some refutation, but we
shall also show that completeness is retained even if the system commits to certain transitions without
exploring any alternatives. In particular the order of selection of goals is immaterial, and the order,
“timing” and number of propagation steps makes no difference to the set of reachable success states.

Our approach is based on that of Jaffar and Lassez [JL86] where the computation domain is a predefined
structure. Later papers, after [Mah87], specify the domain as a theory and thus obtain a stronger com-
pleteness result. However standard domains, such as the Herbrand domain, cannot be defined precisely
enough for our needs by a theory, so we have returned to the earlier formalisation.

Our completeness requirement is expressed as follows (see [Smo91]):

Definition 4 Quer the computation domain X, a set of computed answers R represents a set of solutions
O, if, for every solution 0 € ©, there is a computed answer r € R such that X | rf.

Theorem 4 For any CLP(X) program P, the set of P-computed answers to any query < G under with
any constraint store Sy represents the set of solutions to « G under 3\ gSo.

Proof

For unconstrained queries, the proof is in [JL86], and sketched as part of the proof of the-
orem 1 in [Mah87]. The presence of constraints Sy in the initial store only cuts off derivations

12

which yield a computed answer inconsistent with Sy (since in the C'LP transitions defined
above only the tell operation is affected by the current constraint store). Solutions § which
satisfy such computed answers do not satisfy Sy, and therefore they are not solutions to «+ G
under constraint 3\ Sp. Consequently the remaining computed answers indeed represent all
the solutions to - G under 3\ 5So.

As we pointed out in section 3.2.2 above, since the logical denotation of constraint A; is defined to be
the denotation of A;, the declarative semantics of the program P and goal (G are precisely the declarative
semantics of the C'LP(X) program clp(P) and goal clp(G) respectively. Consequently the answers to
+ clp(G) against the program clp(P) are precisely the answers to < (G against P.

We now use the completeness of CLP(X) to prove that GP(X) is also complete.

Theorem 5 For any GP(X) program P, the set of P-computed answers to any query < G with con-
straint store So represents the set of solutions to «— G under 3,q.S.

13

Proof

For any G P(X) program P, if # is a solution to < G under constraint Sy, then for the
CLP(X) program elp(P), 0 is a solution to « clp(G) under Sy. By completeness of CLP(X),
the ¢lp(P)-computed answers to < ¢lp((G) represent all the solutions. However every clp(P)-
refutation of « ¢lp(G) can be mapped to a P-refutation of « G with the same computed
answer by replacing user atoms with propagation constraints where appropriate, and, wherever
those user goals are selected in the C'LP(X) refutation, adding two extra transitions which
add the atom to the set of propagation agents, and then return it to the user goal. Thus the
P-computed answers to < G also represent all the solutions.

This result is rather trivial. The more interesting question is what happens if the GP(X) evaluations
commits to transitions involving propagation. We must firstly show that completeness is not lost if we
only admit derivations in which propagation constraints are unfolded last. We must secondly show that
completeness is not lost if we only admit derivations in which propagation steps actually take place.
We must accordingly show that, by postponing the return of propagation agents to the current goal for
unfolding until it is empty, computed answers are not lost. We must then show that no computed answers
are lost as a result of propagation.

The first requirement can be met at once. By modifying the switching lemma of Lloyd [Llo84] to admit
constraints on any computation domain X, we conclude that the order in which goals are unfolded
cannot change a C'LP(X) refutation into a failed derivation. Moreover the computed answer returned by
the changed refutation is logically equivalent to the original computed answer. The modified CLP(X)
refutation maps to a G P(X) refutation, where the propagation constraints are unfolded last.

We now establish two theorems showing that the insertion of extra propagation steps into a GP(X)
refutation cannot change its result. The first theorem states that the constraint store which includes
approximation constraints added by propagation steps remains logically equivalent to the unexpanded
constraint store. The second theorem states that the number of propagation steps is guaranteed to be
finite. We start by establishing three lemmas.

Lemma 6 At any transition wn the refutation extended with propagation steps, the constraint store is SU
AC" where S was the store at this transition in the original refutation, and AC is the set of approzimation
constraints added by propagation steps.

This lemma is easily proved by induction on the transitions in the refutation.

Lemma 7 If the original P-refutation was < G,0,0 >=< 0,0, S¢;, >. then for each atom A; that
appears in any goal in any intermediate state in this P-refutation, P Ex Y.(Stin — 4i).

This lemma is a simple consequence of lemma 2 above. (In particular it means that each propagation
constraint is a logical consequence of the final store.)

Lemma 8 If < G,0,0 >=< 0,0, Sti, > is a successful GP(X) refutation without propagation steps;
and if < G1,0,0 >=< G2, A, S > is a subderivation of it; and if < G1,0,0 >—=< G2, A, (SU AC) >
is the GP(X) subderivation which results from inserting a number of propagation steps into that; then

X E3(SAAC)
Proof

Each approximation constraint prop(A;, Seiq) added during the refutation satisfies
X | prop(A;, Saa)f, for every solution 6 to A; with store Syq € S. By lemma 7 above,
P Ex V.(Stin — Ai), and Stin O Soia, therefore X = S, 0 implies that € is a solution to
+ A; under Sgq. Thus for every valuation 6 such that X |= 5,0, also X = prop(A4;, Soqd)f.
We conclude that
X EV(Stin = prop(4;, Soid))-

14

Since this holds for every approximation constraint prop(A;, Seq) it also holds for AC
which is a conjunction of such approximation constraints. Also S C Sfin, and so X E
V.(Spin = (S A AC)). The consistency of S U AC is now an immediate consequence of the
consistency of Sy .

This lemma shows that the additional approximation constraints cannot give rise to a failure state in
the extended derivation. Thus the addition of a finite set of propagation steps to a successful refutation
yields a new successful refutation. The final result says the resulting refutation yields the same computed
answer up to logical equivalence.

Theorem 9 If < G, 0,0 >=< 0,0, Stin > is a GP(X) refutation without propagation, and
<G 0,0 >=<0,0,(Stin U{ACH, ..., AC,}) > is a GP(X) refutation which differs from the first only
by including a number of propagation steps, then X | Stin = (Spin AN/, ACH).

Proof

Clearly = Stin(Srin A /\?:1 AC;). Taking S = Syipn in the proof of lemma 8 above, we
obtain the reverse implication: X | Syi, — (Spin A Niey ACS).

If an infinite number of transitions were inserted into a refutation, the result would no longer be a
refutation. In this way the completeness of GP(X) could be threatened if the evaluation “committed”
to each propagation step. However the second theorem states that there can never be an infinite number
of propagation steps.

Theorem 10 If< G, 0,0 >=< 0,0, Stin > is a successful GP(X) refutation without propagation steps,
the number of propagation steps that could be added to produce extra transitions is finite.

This is guaranteed by a condition on approximation constraints, introduced in the next section, which
ensures that any infinite sequence of propagations would produce an inconsistent constraint store. In
other words an infinite sequence of propagations could indeed occur in derivations which would have
failed anyway, but not by inserting propagations into a successful refutation.

3.4 A Specification of Generalised Propagation
3.4.1 Some Conditions on Approximation Constraints

The information extracted from a single propagation constraint is informally the best approximation to all
its answers. To make this notion formal we first introduce a partial ordering on interpreted constraints by
logical implication; that 1s if A implies B we write A C B. Thus logically stronger constraints are below
logically weaker constraints in our ordering. Notice that this is an ordering on the logical denotations
of the formulae, not the formulae themselves, thus all logically equivalent constraints are equal. Since
approximation constraints are a subclass of the interpreted constraints, this ordering defines a subordering
on approximation constraints.

We shall now impose a few conditions on the approximation constraints.

e They should include true and false.

e Over the domain X, every consistent strictly decreasing sequence of approximation constraints
whose free variables belong to a fixed finite set, should be finite.

The first condition merely ensures that every set of interpreted constraints has at least one upper bound
(true). The least upper bound can be used to approximate the sets of solutions to a propagation con-
straint. Moreover every unsatisfiable propagation constraint can be revealed to be so (since approximated

by false).

15

The second condition ensures that successful propagation sequences terminate. If ACY, AC,,... are
the approximation constraints added by a sequence of propagation steps, then by our definition of a
transition, no AC} is logically implied by /\f:_l1 AC5. Since constraints are closed under conjunction, each
such conjunction is itself an approximation constraint, and the sequence of conjunctions is decreasing
under our ordering. The second condition ensures that this sequence stabilises, if it is consistent.

In fact every countable set of approximation constraints can be mapped to a decreasing sequence in the
same way. Consequently any such set is either inconsistent, in which case its greatest lower bound is
false, or else 1t is consistent in which case the sequence stabilises and we have a greatest lower bound
which is itself an approximation constraint.

Recall that the underlying domain is not necessarily defined by a theory. For example the Herbrand
domain of logic programming is defined by an algebra. Consequently the compactness theorem does
not apply: there are indeed infinite sequences which are inconsistent with the Herbrand domain (eg.
Y. X = f(V), IV.X = f(f(Y)), ...), for which every finite subsequence is consistent.

Similarly over the integers, X > 1, X > 2,...1s an infinite sequence which is inconsistent, though every
finite subsequence is consistent. In fact there is no consistent strictly decreasing infinite sequence

T1; <T2 :e€lorT1l; >T2; : j € J where the 17'1;,72;T1; and T'2; are integers or variables from
a fixed set of free variables. Thus the class of approximation constraints 77 < 75 and T} > T, over
the integers does satisfy our conditions on approximation constraints, since also true = (1 > 1) and

false = (1 > 2).

3.4.2 Information Extracted by a Single Propagation Step
We are now in a position to specify precisely the result of a single propagation step on a constraint.

Definition 5 For a GP(X) program P, the constraint prop(A;, Seq) extracted by a single propagation
step on a propagation agent A; with constraint store Syq ts the smallest approzimation constraint AC;,
whose free variables are also free in A;, and which s satisfied by all the solutions to A; under Syq.

The intuition behind this definition is to extract as much information as possible from the propagation
constraint without excluding any solutions. The restriction that the free variables in the approximation
constraint are also free in the propagation agent is, necessary to avoid potentially infinite approximation
sequences involving more and more variables. Notice that this definition depends only on the declarative
semantics of the program and the agent. The result of propagation is independent of the precise program
definition for the predicate of A;.

For example, consider the result of propagation on the constraint p1(X,Y) defined as above

pl1(3,0) «

pl(1,1) «

pl(2,3) «

with constraint store {Y > 1}. Propagation on pl(X,Y) yields the tightest approximation constraint
which is implied by both X = 1IAY =1land X =2AY = 3. Thisis 1 < X <2A1 <Y <3AX <Y. This
is a simple example showing the difference between approximation constraints and “labels” as described
by Davis [Dav87]. The last atom X <Y cannot be expressed by any label on individual variables.

We now show that propagation on a given agent is monotonic in the sense that if there is more information
in the constraint store then more information will be extracted by propagation.

Lemma 11 Let A; be a propagation agent, and Sy and Sz be constraint stores. If S1 C S2 (i.e. S1 is
more constrained than S2), then prop(A;, S1) E prop(4;, Sa).

Proof

The condition S1 C 52 implies that = 516 — 526 for any valuation 6. If is a solution
to A; under constraint Sy, then P |Ex A;0 and X | S16. However we immediately conclude
that X = 520, and so 6 is also a solution to A; under S;. Therefore, by definition, X

16

prop(A;, S2)0. However prop(A;, S1) is the least approximation constraint satisfied by every
solution @ to A; under S1, and we can conclude that prop(4;,S1) C prop(A;, Sa).

As an example of this property consider prop(pl(X,Y),Y > 0) and prop(pl(X,Y),Y > 1), where pl is
defined as above. Y > 1 is more restrictive that ¥ > 0,80 (Y > 1) C (Y > 0).

prop(pl(X,Y), Y >0) = (1 < X <3A0<Y <3)=AC1, and

prop(pL(X,Y),Y > 1) = (1< X <2A1<Y <3AX <Y) = AC2.

Clearly the tighter constraint store excludes more solutions and allows a tighter approximation constraint

to be extracted, and indeed AC2 C ACT.

A propagation agent A; is idle in a state < G, A, S > with A; € A, if no transitions are possible by
propagating on A;. This can be formalised as:

Definition 6 A propagation agent A; € A is idle in < G, A, S > if for all subsets S,y C S,
X E S — prop(A;, Soid)

The previous lemma says that A; is idle in < G, A, S > if (and only if) X = S — prop(4;,).

3.4.3 Propagation Sequences

In this subsection we shall take an initial state < GG, A, Sy > and we shall consider what can result from
a sequence of propagation steps, assuming no other transitions take place. Thus each state that we shall
consider has the same goal GG and the same set of propagation agents A.

If every agent A; € A is idle, then no further propagation steps can take place. In our framework a
propagation sequence is a derivation < G, A, Sp >=< G, A, S¢;, > comprising solely propagation steps
and in whose final state all the propagation agents are idle. In this section we shall show that for any
initial state < G, A, Sy > all propagation sequences yield, up to logical equivalence, the same final state

< G,A,Sfm >.

To this purpose we first define an operator fiz which, for any given propagation agent A; maps constraint
stores to constraint stores. fiz(A4;,Sp) is the final store which results from propagating on A; until it is

idle.
In fact it can be shown that A; is idle in Sy A prop(A;, So):

Lemma 12 For any constraint store Sy and propagation agent A;,

if S = (SgUprop(Ai, Sp)) then X =S — prop(4;, S)
Proof

Let AC; = prop(4;, So). AC; is satisfied by every solution # to A; under Sy. Therefore,
for every such 6, X = So@ A AC;f. Thus @ is also a solution to A; under (Syp A AC;) = S. But,
as shown above, every solution to A; under S is a solution to A; under Sy C S. Therefore the
result of propagation on A; with .S remains AC; C S.

By monotonicity it then follows that no sequence of propagations on A; can produce more information
than prop(A;, So). Thus we can define fiz(A;, So) very simply as Sy A prop(A4;, So).

We can now establish three properties of the operator fix for any given agent A;.

Theorem 13 For any propagation agent A;, fixz(A;) is a monotonic, decreasing and idempotent operator
on constraint stores.

Using these properties of fiz it is simple to show that for any propagation agents A; and A;,
X ': fll‘(AZ, fil‘(Aj, SO)) = fil‘(Aj, fll‘(AZ, SO))

17

Since every propagation sequence is finite, as shown above, we are sure to reach a state where all the
constraints are idle. The above result shows that sequences of propagations on each agent can be reordered
at will without changing the final result. Moreover by monotonicity it follows that the same final result
is still obtained however the individual propagation steps on the different agents are interleaved.

Theorem 14 For any given initial state < G, A, S >, every propagation sequence produces the same
final state < G, A, Sfin > up to logical equivalence.

An example propagation sequence, using predicates pl and p2 defined as before is:
prop(pl(X,Y),0) = (1< X <3A0<Y <3)=AC1I.
Moreover prop(p2(X,Y),AC1) = (1 < X <3AILSY <2AY < X) = AC2.
Finally prop(pl(X,Y),AC2) = (1< X <1A1<L<Y <1)= AC3.
These propagations produce the following propagation sequence:
<0, {pl(X,Y),p2(X,Y)},0 >
<0 A{pl(X,Y), p2(X,Y)}, AC1 >+
<0, A{pl(X,Y),p2(X,Y)}, AC1U AC2 >+
<0, {pl(X,Y),p2(X,Y)}, AC1U AC2 U AC3 > .
It is interesting to follow different propagation sequences that lead to the same derivation
<O ApL(X,Y),p2(X,Y)},0 >=< 0, {p1(X, V), p2(X,)}, {1 <X <1,1 <YV <1} >.

3.5 Aspects of Programming in GP(X)
3.5.1 Unfolding Propagation Constraints

It was stated in section 3.1 above that logically a propagation agent A; is equivalent to the user atom
A;. However neither a single propagation step nor a whole propagation sequence is guaranteed to extract
approximation constraints logically equivalent to A;.

As much information is extracted as can be expressed using approximation constraints, but in general
there may remain further information not expressible as approximation constraints. In particular if a
pair of goals are inconsistent, independent propagation will not necessarily reveal this. Over the integers,
approximated as before by < and >, consider the propagation agent

7(X,Y) defined by the facts

r(1,2) «

r(2,3) «

r(3,1) «

The information extracted in fiz(r(X,Y),) is that X and Y lie between 1 and 3. Now if r is defined as
above and s 1s defined by the clauses

s(1,3) «

$(3,2) «

s(2,1) +

then propagation on the two agents r(X,Y), and s(X,Y) will produce nomorethan 1 < X < 3,1 <Y <3
in the final constraint store. However the result of the query « r(X,Y), s(X,Y) is, of course, failure.

This example shows that for soundness of GP(X) it is necessary that evaluation should not terminate
until the constraints in the constraint store imply the truth of the propagation agents. This is enforced
in our operational semantics by defining a success state to be one in which the set of propagation agents
is empty, so that the agents are guaranteed to be returned to the goals and unfolded.

In traditional constraint propagation systems, the propagation is complemented by search routines which
non-deterministically instantiate problem variables to values in their domains. This “labelling” enables
further propagation to take place, and eventually ensures that the propagation constraints are satisfied.
The use of propagation agents additionally as goals, treated by unfolding, has the effect of adding to the
constraint store the appropriate basic constraints in the domain of computation to satisfy the propagation
constraint. Thus it is an appropriate (and automatic) generalisation of labelling in finite domains. In
the crossword program, for example, the labelling is done solely by unfolding the propagation constraints
each time that no further propagation is possible. Nevertheless in general the programmer is also free

18

to write his own labelling procedures; and they will be treated before any unfolding of the propagation
constraints is allowed to begin.

3.5.2 Parallel Evaluation of Propagation Steps

Theorem 14 above frees the user from all concerns about the scheduling of propagation steps. Propagation
may be sequential, in which case each propagation step uses the latest constraint store, or the extraction
of information from propagation agents and constraint stores may be performed in parallel. For example
propagation on two agents pl(X,Y) and p2(X,Y) in the empty store performed sequentially (p1(X,Y)
then p2(X,Y)) yields the following two transitions,

<0, {pl(X,Y),p2(X,Y)},0 >

<O Ap1(X, V), p2(X,V)}L (1< X <3A0<Y <3) >

<0, {pl(X,Y),p2(X,V)},(I< X <3AIL<Y <2AY < X) >.

However if the calculation of prop(pl(X,Y),#) and prop(p2(X,Y),#) are performed in parallel, the fol-
lowing transitions might take place:

<0, {pl(X,Y),p2(X,Y)},0 >

<O Ap1(X, V), p2(X,V)}L (1< X <3A0<Y <3) >

<0, {pl(X,Y),p2(X,V)},(1 <X <3AN1L<Y <3)>.
The example shows that concurrent propagation may converge more slowly on the final fixpoint. However,
it 1s ultimately guaranteed to converge to the same fixpoint as sequential propagation.

If other transitions take place before all the agents are idle, the computed answers remain correct, as
shown above, but the search tree may be greater than necessary. (After the two steps above there remain
two clauses for both pl and p2 that are consistent with the constraint store.) Notice that “concurrent
propagation” can still be taking place even while unfolding transitions are made.

3.6 Termination in GP(X)

Termination of the search for answers to a propagation constraint is not guaranteed. Non-termination
due to unfolding is inherited from C'LP(X): in practice the programmer is responsible for ensuring that
unfolding should terminate. Just as any user goal in C'LP(X), a propagation constraint in GP(X) can
only be evaluated after the clause in whose body it appears has been unfolded. In this sense GP(X) is
no different from C'LP(X).

There are two differences. Firstly all answers to a propagation constraint are generally required instead
of just one as in CLP(X). Of course backtracking will generally imply that many answers to a goal must
be found in CLP(X) as well. The theoretical problem remains that in CLP(X) every answer lies at
the end of a terminating success branch, whilst the requirement during propagation for all answers to a
propagation constraint implies that any infinite branch in the search tree can cause non-termination of
a propagation step.’

Secondly, a propagation constraint may be evaluated and re-evaluated many times in GP(X). Luckily
this does not alter the termination behaviour of the program. The reason is that on later evaluations the
constraint store is logically at least as strong as before. Consequently the later evaluations may benefit
from extra pruning of some branches, but no new infinite branches can arise.

Implementations, like ours, that postpone unfolding until all propagation agents are idle, may therefore
sacrifice completeness waiting for a propagation step to terminate. However our framework admits
propagation taking place in parallel with unfolding, and in this case completeness is preserved at the risk
of certain branches in the search tree being “cut off” later than necessary.

3But it frequently does not, as we show below in section 3.7.3.

19

3.7 Topological Branch and Bound

We use the name “topological branch and bound” as a description of our technique for extracting ap-
proximation constraints from a propagation agent. The technique is based on a form of branch and
bound search through the answers to the propagation agent, where the bound is just a lower bound in
our ordering on approximation constraints.

3.7.1 Evaluating Propagation Constraints

Conceptually, the calculation of the information prop(A;, S) extracted in a propagation step requires

o finding all the computed answers to the goal A; with store S

e finding the smallest approximation constraint which is an upper bound for the set of computed
answers

Lemma 15 An approzimation constraint AC; s an upper bound on the set of computed answer to a
query G with constraint store S if and only if AC; is satisfied by all solutions to + G under S.

Proof

If AC; 1s satisfied by all solutions to <~ G under S, then by soundness it is an upper bound
on the computed answers. If AC; is not satisfied by some solution 6, then by completeness
there is a computed answer Ans such that X = Ansf and it is not the case that Ans C AC;.
Therefore ACj is not an upper bound on the computed answers.

Using this result, when calculating prop(A4;,S), the system can use the set of computed answers to A;
with S. Notice, though, that computed answers are defined only for states in which the set of propagation
agents is empty. As noted in section 3.2.3 above, we can allow propagations to be present as long as they
are not used to perform propagation steps. Therefore, when computing answers to a propagation agent,
the remaining propagation agents are temporarily “suspended”.

3.7.2 An Example

To illustrate the topological branch and bound algorithm we shall use as computation domain the Her-
brand universe. The basic constraints are equations T'1 = T2, and we shall also use equations as approxi-
mation constraints. As an example, using equations as approximation constraints, the best approximation
for the two answers X =a AY =aand X =bAY =bis X =Y.

We now describe the calculation of prop(t(X,Y,Z), X = a), using the following program definition.
t(b,c,d) «

We assume the predicate ¢¢ also has a program definition, but we will not need 1t to perform propagation
on t(X,Y, 7)!

The initial approximation constraint ACjy is set to false.

After each answer Ans to the goal « (XY, 7) is retrieved it is first checked for consistency with the
constraint store X = a. If AnsA X = a is unsatisfiable, then the answer is thrown away. The first answer
18 X =bAY =c¢AZ =d. This is indeed inconsistent with X = a and the answer is thrown away.

20

If no consistent answers are found, then constraint propagation has detected an inconsistency, and the
propagation sequence terminates producing the approximation constraint false. In our example, however,
there are further answers which are consistent with X = a.

When a consistent answer Ans; is found it is added to the current best approximation, and the pair
{AC;, A;} is approximated yielding a new approximation constraint AC;11. The next consistent answer
tot(X,Y)is X =aAY = bAZ = b, and this is also the next approximation. Call it AC. The following
(consistent) answer to t(X,Y) is X = aAY = ¢AZ = ¢. The best approximationto X = aAY =bAZ =b
and X =aAY =cANZ=cis X =aANY = Z. Callit ACS.

During the search for an answer, basic constraints are added to a local constraint store LS. If at
any stage LS;y1 — AC;, then the local search is abandoned. Search for new answers continues by
choosing other clauses to unfold. After unfolding the next clause, the local constraint store LS3 contains
{X =a,Y = W,Z = W}. Although the refutation is not yet complete, and in fact there may be no
consistent answers to (W), X | V.(LSs = AC3). Consequently it is unnecessary to search further: any
answer Ans obtained via this clause will be logically tighter than the current approximation AC5, and
therefore ACs will remain the tightest approximation to AC; and Ans.

Propagation terminates as soon as the approximation constraint AC; is implied by the constraint store,
X = a = AC;. In this case no new information could be extracted, and so prop(t(X,Y, 7), X = a) = true.
The next clause is t(a, b, ¢), and yields answer X = a AY = bA Z = ¢. The best approximation to this
answer and X = a AY = Z is simply X = «. Call it AC5. This is no stronger than the original
constraint store, and therefore no new information has been extracted by propagation on t(X,Y, 7).
Although there are further clauses defining ¢, there is no need to search further, and the calculation of
prop(t(X,Y,7), X = a) terminates producing the approximation constraint true.

Otherwise propagation terminates when there are no further alternative clauses to unfold. Then the
current approximation constraint is added to the constraint store. Thus prop(t(X,Y, Z), X = b) produces
X=bAY =cNZ=d.

3.7.3 Decision Procedures
Thus for GP(X) three decision procedures are required.

e For checking consistency, the system must support an effective decision procedure for interpreted
constraints over X (the same procedure is required for C'LP(X)). This requires a decision procedure
to establish a proof of X = V.(A!_; Ci — false) where the C; are atomic interpreted constraints.

e For extracting approximations, the system must additionally support an effective procedure for pro-
ducing the smallest approximation constraint which is an upper bound for an answer and a current
approximation. The approximation AC' for an agent A; must satisfy X | V.(3\4; Aiz; Ci) = AC,
where the C; are interpreted constraints.

e In section 3.2.3 above another effective decision procedure was mentioned, to determine if an ap-
proximation constraint is a logical consequence of the current store. This is needed again here to
test 1f the current approximation constraint AC' is already implied by the local constraint store col-
lected on a certain branch of the search tree. The formula to be proved is X E V.(Al_, C; — AC),
where the C; are interpreted constraints.

3.7.4 Interleaving Answering and Approximation

In practice the evaluation of propagation constraints interleaves the finding of individual answers and their
generalisation. To make this possible we assume that our procedure for extracting approximations can
return the smallest approximation constraint which is an upper bound for an answer and an approximation
constraint. We now prove that to approximate a finite set of computed answers it is possible perform the
approximations pairwise.

21

Lemma 16 If A2 is the best approzimation of {D1, D2} and A3 is the best approzimation of {A2, D3},
then A3 is the best approzimation of {D1, D2, D3}.

Proof

Call AC the best approximation for D1, D2, D3. Clearly A3 approximates D1 and D2 and
D3, therefore AC' < A3. Moreover AC approximates D1, D2, so A2 < AC'. Consequently
AC' approximates A2 and D3, so A3 < AC'. Therefore AC' = A3.

This lemma generalises to finite sets of answers by induction.

Recall that in calculating prop(t(X,Y, Z7), X = a) we used pairwise approximations to extract X = a as
the best approximation for the three answers X = a AY =bAZ =band X =aAY =cAZ =cand
X=aANY =bANZ =c.

3.7.5 Cutting All Remaining Branches

We now describe two optimisations which fit naturally into the evaluation of propagation constraints.
Both optimisations depend upon the interleaving of answering and approximation. At any point in the
evaluation of a propagation constraint the system has available

e the constraint store S

e the current approximation constraint AC' which is the smallest approximation constraint which is
an upper bound for the answers found so far

The current approximation constraint can be used just like the current best cost in a branch and bound
search. However it can also be used, in a way not available in branch and bound, to prune off all the
remaining branches of the search tree.

Using the procedure which decides if an approximation constraint is implied by the constraint store 5, 1t
is possible to prune the evaluation of a propagation constraint by interleaving the finding of answers and
generating new approximation constraints AC; and terminating the computation as soon as X E S —

AC.

Recall that we used the interleaving to extract the intermediate approximation AC3 = X = a for
prop(t(X,Y,7),X = a), At this point the current best approximation was already as strong as the
original constraint store X = a, and therefore the search for further answers stopped.

This optimisation is very important for propagation constraints defined by large numbers of clauses. For
such constraints it is often easy to find a few solutions, but very expensive to find them all. Its significance
is 1llustrated by the crossword compilation application described below 4.1.1.

3.7.6 Cutting off the Current Branch

When exploring a single branch the system collects locally a set of basic constraints extracted during the
unfolding of clauses. The conjunction of all the basic constraints extracted along a branch goes to make
up a single answer to the propagation constraint. If this answer is logically stronger than the current
approximation constraint (which approximates all the answers found so far), then it cannot affect the
final result.

Branch and bound search benefits from the observation that there is no need to explore to the end a branch
that is already more expensive than the current best branch. In evaluating a propagation constraint the
same observation applies: there is no need to explore further if the local constraints gathered on a branch
are already logically stronger than the current approximation constraint.

The required decision procedure is the same as that for determining if a propagation agent is idle. We
need to determine if the current approximation constraint is implied by a set of interpreted constraints.

22

Recall that in evaluating prop(t(X,Y, Z), X = a), the current best approximation AC5, at the time when
the clause t(a, W, W) « (W) was unfolded, was X = a AY = Z. After unfolding the clause the
local constraint store LS contained X = a AY = WA Z = W. Since X | V.LS = AC,, any further
answer Ans along this branch was bound to satisfy Ans — LS — AC. Consequently AC: was also the
best approximation for ACy and Ans for each such Ans. Since pairwise approximation is equivalent to
approximating all the answers at once, AC; was guaranteed to remain the next best approximation after
adding all the answers (whether there are any or not!) using this clause.

This optimisation proves to be very valuable for propagation constraints defined by recursive clauses.
This will be illustrated using the member predicate in section 4.2 below.

4 Some Instances of GP(X)

Two implementations of generalised propagation over the Herbrand universe have been completed. One
implementation is in the Elipsys system [DSVX91] which runs on a parallel machine. Using finite domains
as the approximation language, it has achieved good speedups on disjunctive scheduling programs [PV92]
and for temporal reasoning [Lev91].

In the paper we describe the other implementation which is embedded in a sequential prolog compiler
system. It is an implementation of generalised propagation over the Herbrand universe GP(HU), and it
is called Propia. Propia extracts information about equalities from propagation constraints, and it offers
a number of approximation languages some of which will be described below. Propia is implemented in
Sepia [MACt89] with the help of some special added built-ins.

An important requirement for the efficient implementation of generalised propagation is a sophisticated
coroutining facility. Sepia has a special built-in delay condition which enables a delayed goal to be woken
as soon as any of its variables are “touched” during unification: this includes the unification of two
variables in the clause as well as further instantiation. The delayed clause can then be redelayed again
on the same condition. Such a facility provides the ideal support for propagation agents which need be
checked if and only if any of their variables are “touched” in this way.

During the calculation of a single propagation step it is necessary to suspend other propagation agents
and to collect new constraints into a local constraint store. Both these requirements are satisfied in
Propia by simply renaming the variables in the propagation agent A; to new variables in a copy AA; of
the agent. Thus no agents are woken when AA; is evaluated, and local answers are expressed as bindings
on the new variables in AA;.

Of special interest is the implementation of the topological branch and bound. If the propagation
constraint is p(X,Y,Z) the current best approximation is held as a term. Thus the approximation
X =aAY = Z is held as the term p(a, W0, W0) (where W0 is a new variable). Similarly answers are
represented by terms. Thus, for example, p(a, b, ¢) might represent an answer to the goal « p(X,Y, 7).
After retrieving an answer the new approximation is obtained by anti-unifying the answer with the previ-
ous approximation. The result of anti-unifying p(a, b, ¢) with p(a, W0, W0), for example, is p(a, W1, W2).

Another built-in predicate i1s used to prune the search as soon as the answer is more constrained than
the current best approximation. This built-in checks for inequality between two terms. Specifically it
proves Y\pq (=1'1 = 1'2). Thus if p(X, Y, Z) is the agent being used for propagation, and if p(a, W, W) is
the current best approximation, it checks that YW.—p(X,Y, Z) = p(a, W, W). This built-in delays, and
redelays, on the free variables until the goal is a consequence of the current constraints, or contradicts
them. Thus the goal « VW.—p(X,Y, Z) = p(a, W, W) delays. However if X,V and Z become instanti-
ated it is woken. The instantiated goal YW.—p(a, b, ¢) = p(a, W, W) succeeds, but the instantiated goal
VW.=p(a, b, b) = p(a, W, W) fails (since indeed the terms are equal for W = b).

Now each time an answer to AA; is found, and a new best approximation is extracted and 1t is encoded
as a term AC;. If the term AC; is a variant of the original propagation agent A;, the search terminates
producing no new information. Otherwise the disequality ¥\ 44,(—AA; = AC;) is added as a (delayed)
goal, and the search restarts. If AC; approximates all the answers to AA;, then the search will fail, since
all answers will be pruned by the disequality. In this case AC; is indeed the result of propagation on A;.

23

4.0.7 Evaluating Propagation Sequences

In the case of finite domain propagation, the procedure for performing propagation on a single constraint is
called REVISE [MF85]. Essentially the evaluation of a propagation sequence for generalised propagation
can be obtained from the AC-3 algorithm of Mackworth [Mac77] by replacing REVISE with topological
branch and bound.

A feature of AC-3 is that after propagating on a constraint C', C' is removed from the list of constraints
to be dealt with in the current propagation sequence. ' is only added to the list again if some of its
variables are affected by propagation on other constraints. For the correctness of AC-3 it is therefore
necessary that propagation on a single constraint is itself a fixpoint operation, and as we showed above
in section 3.4.3 above, prop(A4;,S) U S = fiz(4;,S) is already a fixpoint. This condition is not satisfied
by relared tell [HD91], which is an abstraction of generalised propagation (see below 5.2).

4.0.8 Propagation as Consistency Checking

Various alternative approximation languages are available in Propia. The more expressive the approxi-
mation language the more information is extracted, but the costlier the propagation.

One very simple approximation language has just two approximation constraints: true and false. We
call this the consistency approximation language. With this language the result of propagation on a
constraint is either nothing (in case an answer was found) or failure (in case none could be found). The
behaviour of the crossword program with this language i1s to use each constraint as a continual check
on the choices made so far. This ensures that no inconsistent choices are made, but that no “active”
constraint propagation is done.

The advantage of using such a trivial approximation language is that in this case topological branch and
bound is very effective in optimising the evaluation of propagation constraints. Suppose a certain con-
straint is being evaluated for propagation. As soon as a single answer is found, the current approximation
constraint (approximating the answers found so far) becomes true. Since true is implied by the current
constraint store (since it is implied by any constraint store) propagation terminates immediately.

Clearly with the trivial approximation language generalised propagation is efficient and economic in its
basic operations. Assuming the propagation agents are all defined by flat relations, as is the normal
assumption for constraint propagation problems, then when a set of n variables become instantiated
during search it suffices to check once each of the agents involving an affected variable. In this context
the unification problem reduces to a matching problem which has constant cost for each tuple checked.
Thus the worst case complexity for consistency checking is e % d where e is the number of problem
constraints and d the number of tuples defining the largest constraint.

However Propia only checks constraints woken by the newly instantiated variables. In the crossword
application (described in the next section), for example, only two constraints are ever woken by the
instantiation of a single letter, however big the crossword. Sepia offers indexing on all arguments, orders
the indices by their effectiveness, and in checking a partially instantiated query i1t uses the most effective
index amongst those argument that are instantiated; and, of course, the uninstantiated arguments cannot
cause consistency to be violated. Consequently, for example, an average propagation step in the crossword
application with a 25000 word lexicon takes only ten milliseconds on a Sun4.

Consistency checking offers an alternative to intelligent backtracking, in this sense. If every user goal
is annotated as a propagation constraint, then the propagation prevents any further (irrelevant) choices
being made if any other goal is already unsatisfiable. This is because the failure is detected immediately
when attempting propagation.

4.1 GP(Datalog)

Datalog is logic programming without functions. The basic constraints in Datalog are equalities, X = ¢
or X =Y where ¢ is a constant and X and Y are variables. There is no termination problem for Datalog
queries, and thus propagation steps can always be made to terminate. Moreover for a propagation

24

mo O o >

Figure 4.1: A toy crossword example

agent with n variables, each propagation step reduces the number of distinct variables by one (either a
variable is instantiated to a constant, or two variables are unified). Consequently there is a maximum
of n propagation steps on each propagation agent. A consequence is that far less propagation steps are
performed by GP(Datalog) than would be necessary to enforce arc consistency over a suitable domain.
Crossword compilation provides evidence for this.

4.1.1 Crossword Compilation

Crossword compilation is an application of G P(Datalog). We now give a toy crossword compilation to
illustrate a G P(Datalog) evaluation. The crossword to be filled is:

The dictionary is encoded as a set of facts:

wh(b,ryak,e) — wid(b,u,m,p) — wb(b,e,t,t,e,1r)

wh(b,l ok, e) — wi(p,l,a,y) + 6(c,a,n,n,0,n)
wh(s,t,e,a,m) (f,ree) wb(w, e, a,l,t, h)
wh(e,rye,a,m) — wi(s,t,0,p) 6(d,e,a,r,t,h)
wh(p,a,t e, h) +

w5(p,z t,c,h) «

The problem is posed as the following query
+ constraint w4(A2, A3, A4, A5),
constraint w6(C'1,C2,C3,C4,C5,C6),
constraint wb(A2, B2, C2, D2, E2),
constraint wb(Ab5, B5, C5, D5, E5)

Recall that a GP(X) refutation is a sequence is state transitions, where each state is a triple < G, 4,5 >
comprising the current goal (G, set of propagation agents A and constraint store S. For the above query,
the refutation starts with an empty set of propagation agents and an empty constraint store. First all
the propagation constraints are moved into the set of propagation agents yielding the new state:

25

— =

w4(A2, A3, A4, Ab),
w6(C'1,C2,C3,C4,C5,06),
wbh(A2, B2,C2, D2, E2),
wb(Ab, B5,Cbh, Db, E5) },
n >
which has an empty goal, four propagation agents, and an empty constraint store.

Next propagation is attempted on all the agents (i.e. the blank words). However no new information is
elicited. The first agent, corresponding to the blank word w4(A2, A3, A4, A5), is then returned to the
goal. This time it is no longer a propagation constraint, but a user atom. The resulting state is:
< H{wd(A2, A3, A4, A5)},
{wb(C'1,C2,C3,C4,C5,C6),wb(A2, B2,C2, D2, E2), wb(Ab, B5,C5, D5, E5)},
0 >

The atom in the goal is unfolded, using the first clause in its program definition, yielding:
< 0,
{wb(C'1,C2,C3,C4,C5,C6),wb(A2, B2,C2, D2, E2), wb(Ab, B5,C5, D5, E5)},
{A2 =b,A3 = u, Ad=m,Ab = p} >

Now propagation is attempted again on all the agents. Using A5 = p, propagation on wb(p, B5, C'5, D5, Eb)
yields C5 = t AD5 = ¢ A E5 = h. Using Cb = t, propagation on w6(C1,C2,C3,C4,t) yields
C2 =eANC3 =aANC6 = h. Now propagation on wh(b, B2,e, D2, E2) yields false, and the system
backtracks to the unfolding of w4(A2, A3, A4, A5).

The choices “play” and “free” are similarly proved inconsistent by propagation, so finally the evaluation
reaches the state:
< 0,
{wb(C'1,C2,C3,C4,C5,C6),wb(A2, B2,C2, D2, E2), wb(Ab, B5,C5, D5, E5)},
{A2=35A3=t,Ad=0,Ab=p} >

Propagation yields, as before, C5 =t ADb=cANES=hANC2=eANC3=aAC6=h. Now propagation
on wh(s, B2,e, D2, E2) yields B2 =t A D2 = a A E2 = m. The crossword is completely filled except for
three wletters. The state is as follows:
< W,
{wb(C'1,C2,C3,C4,C5,C6),wb(A2, B2,C2, D2, E2), wb(Ab, B5,C5, D5, E5)},
{A2=5,A3=1,A4=0,A5=p,B2=1,C2=¢,D2 =a, F2=m,
Ch=t,D5=¢,E5=h,C3=0a,C6=h} >

The propagation agents are now, one by one, returned to the goal and unfolded. The constraint store
precludes all choices except ones that lead to a solution. Thus the four solutions are found without further
backtracking.

In real crossword grids, with real dictionaries, very little propagation is possible until the system starts
to guess words that instantiate the second or third letter in an intersecting word. In these early stages
the calculation of propagation steps quickly terminates because the tightest approximation soon becomes
true.

As the crossword fills up, the propagation begins to produce information which ensures no bad choices
can be made later. At this point propagation sequences begin to grow in length, as information extracted
from one constraint enables further information to be extracted from others.

To sum up, little work is invested in generalised propagation by the system until it actually starts to be
useful. Evidence for the naturally good behaviour of generalised propagation on crossword compilation is
this. The crossword program sketched above is perfectly naive. In fact a meta-program has been written
which takes any crossword drawn as a grid and generates such a program automatically. Yet generalised
propagation applied to the resulting program happens to yield a crossword compilation algorithm very
similar to one developed specially for crosswords and described in [Ber87]. On a Sun4 workstation, with
a 25000 word lexicon, a crossword grid from the International Herald Tribune can be compiled by Propia
in 90 seconds.

26

4.1.2 Equalities Between Variables

For the crossword application above, the only useful information concerns values for variables (expressed
as an equality between a variable and a constant). In this section we shortly demonstrate the usefulness
of extracting information about equalities between variables. Applications where such information is
important include those involving boolean variables, such as circuit design, analysis and testing, and
propositional satisfiability problems.

Such applications involve complex boolean functions describing the behaviour of, for example, circuit
components which are already analysed. Each such function can be used immediately as a propagation
constraint. Let us choose the very simple “and-gate”, which appeared in section 1.4 above, to illustrate
the following discussion. Its behaviour can be described using four clauses:

and(true, true,true) «

and(true, false, false) «

and(false,true, false) «

and(false, false, false) «

The approximation language admits any equality as an atomic approximation constraint. In a program
where constraint and(X,Y,7) appears as a goal, the following information can be extracted:

Constraint store Information extracted
Empty Nothing

X = false 7 = false

X = true 7 =Y

Y = false 7 = false

Y =true 7 =X

Z = true X =true ANY = true
X=Y =X

Even though boolean variables have finite (2-element) domains, finite domain propagation cannot elicit
any information in case, for example, the constraint store has X = true. In this case both Y and 7
could take either value true or false. For real problems in the applications listed above, the extraction
of information of the form Z = Y is essential for performance reasons.

To obtain such a behaviour on these applications in CHIP [SD90, SD87b, SD87a, Sim88, SP89] it was
necessary to use a form of guarded clause called “demons”. The demon clauses defining the and predicate
explicitly use the constraints in the “Constraint Store” column above as guards. FEach demon remains
idle, until the current constraint store logically implies its guard. At this point the clause is immediately
selected and unfolded. However no choice point appears in the evaluation tree: the system commits to
the selected demon clause and the other clauses are excluded. Expressed using an extended clause syntax,
with a vertical bar to separate the guard from the clause body, the and demons are:

and(X,Y,7) « X = false|Z = false

and(X,Y,7) « X =true|lZ =Y

Whilst the demons for and are built-in in CHIP, for complex boolean functions the CHIP programmer is
required to generate a set of demons for himself. To encode a set of demons for a propagation constraint
the programmer must consider all cases and generate each demon body by, effectively, performing the
propagation in their head. Propagation constraints like and can often be encoded into demons. However,
experiments have shown that the number of distinct demons required for even moderately complex
boolean functions can often be over ten thousand.

The relationship between generalised propagation and committed choice languages will be discussed in
more detail below.

4.2 GP(HU)

In the last section we examined applications run using Propia which did not use functors.

In fact all practical Propia programs use functors. We first consider some programs which use functors,

27

but whose propagation steps yield only bindings between variables and other variables or constants.

A propositional satisfiability problem is often expressed as a set of clauses,
(XVYVaZ)ANRXVY)AXVI)A. .

The idea is to obtain an assignment of ¢ or f to all the propositional variables so as to satisfy every
clause. Such a problem can be expressed in logic programming as a query:

« pelause([+X,4+Y, =72]), pclause([- X, =Y)), pclause([+X,+7]), ...

with the following definition of pclause:

pclause([+t|]) «

pclause([—f|]) +

pclause([-|T]) + pelause(T)

There 18 no restriction on the size of a clause, so the list in the argument of pclause may be arbitrarily
long. However atoms of the form pclause(List) can perfectly well be used as propagation constraints, and
used for pruning the search for a solution to satisfiablity problems. For example propagation on the goal
pclause([+X]) immediately produces the answer X = ¢, and similarly pelause([—X]) produces X = f.
Thus generalised propagation immediately assigns values to variables appearing in singleton clauses,
which is a technique used by specialised programs for solving propositional satisfiability problems.

Given a fixed set of clauses, with a fixed bound on the number of variables in a clause, it 1s possible
to use CHIP’s demons to perform similar propagation. Though in this case the “calculation of the best
approximation” for each agent and constraint store has already been done by the programmer, it is
interesting to record that Propia when applied to a benchmark of propositional satisfiability problems
[MRI1], had execution times on the same hardware similar to that obtained using CHIP’s demons. This
reflects the performance of the Sepia engine and the efficiency of the topological branch and bound
algorithm.

We now consider what happens when functors appear in the approximation constraints. The information
extracted remains information about equalities between terms. However the answers to a query may
now contain local variables. For example the first answer to the query < member(1,Y") given the usual
definition of member

member(X, [X|T]) «

member(X,[H|T]) + member(X,T)

is 3T.Y = [1|T]. Theoretically we can eliminate such local variables in approximation constraints by ad-
mitting functions functor(Atom), arity(Atom) and arg(Position, Atom) as approximation constraints,
where functor(f(X,Y)) = f, arity(f(X,Y)) = 2 and arg(l, f(X,Y)) = X. The above answer could
now be expressed as functor(Y) = dot A arity(Y) = 2 Aarg(1,Y) = 1. However we use a shorthand
which is to admit the _ symbol in answers. Thus we write Y = [1]].

Using these approximation constraints we wish to show that infinite decreasing consistent sequence are
finite. For a given depth of function embedding there are only finitely many equalities in a given fixed
set of free variables which can be used to approximate a propagation agent. Subsequently, to achieve
a tighter approximation it is necessary to use a deeper embedding of functions. An infinite sequence of
approximations therefore will include terms of greater and greater depth. Since terms of infinite depth
do not denote elements of HU, such infinite sequences cannot be consistent (see also section 3.4.1 above).

In many applications it 1s of interest to detect the success or failure of membership as soon as possible,
instead of just using member as a check. Yet even this is a serious problem (see for example [Nai86]).
For example even if the tail of the list is known most control regimes require the check to delay until the
head of the list either equals or fails to unify with the first argument.

Generalised propagation can be applied to any member propagation constraint without fear of non-
termination. The information extracted from “constraint member(M,[E1, ..., En|Tail])” can be sum-
marised as follows.

o If T'ail is empty, then

— M becomes equal to the most specific generalisation of M1,..., Mn where M¢ is the most
general unifier of M and E4. If none of the F¢ unify with M | the result is false.

— FEi becomes equal to the most general unifier of £'% and M if E¢ is the only element that unifies
with M. Otherwise there are no resulting constraints on Eq.

28

e If T'a:l is a variable, then

— There are no resulting constraints on M
— There are no resulting constraints on any E'+

— If none of the Ei unify with M, then Tail = []]

The effect of the topological branch and bound in pruning the search for the infinite set of answers which
return bindings for the tail is essential to ensure termination.

It is very instructive to try and construct ways of expressing the same propagation using guarded clauses!

Our experience shows that generalised propagation can safely be used for Horn clause programs with
function symbols. Moreover we have been experimenting with generalised propagation in a database
context, with favourable early results [BPM92]. The application to GP(HU) means that generalised
propagation can also be applied to database relations with compound attribute values.

5 Generalised Propagation and Other Approaches

There are many overlaps with other work and in this paper it is not possible to include a full comparison
in every case. We have tried to consider more closely related research which is particularly interesting
and influential. However even in the short list considered here, there are many points on which our
comparison could be greatly expanded.

5.1 Most Specific Logic Programs

The instance GP(HU) of generalised propagation extracts information from propagation constraints
which is precisely the most specific generalisation described in [MNL88]. In this earlier work, the most
specific generalisation of a set of possible solutions was calculated in advance of execution, so as to
transform a program statically into one which was more efficient and had other better properties. Var-
ious algorithms have been proposed for calculating most specific logic programs, some using bottom-up
evaluation and others breadth-first.

By contrast generalised propagation is performed at runtime. This presents new challenges since it must
be efficiently implemented, and there may be different tradeoffs between the precision of the approxima-
tion language (i.e. the amount of information extracted) and the cost of propagation. The topological
branch and bound procedure, based on a pruned top-down evaluation, can be efficiently implemented and
makes practicable the extraction of most specific generalisations, or other approximations, at runtime.

The most specific generalisation of a program captures as much information as can be captured once,
at compile time, and then nothing more is possible. Generalised propagation also offers more different
possibilities for optimisation since the flow of information through the program may depend on data
supplied at runtime. For example given the propagation agents and(X,Y'1, 71),0or(X,Y2,72), if X is
instantiated to ¢, then propagation yields Z2 = ¢, however if X 1is instantiated to f then propagation
yields information about Z1 instead! Finally generalised propagation offers the possibility to interleave
propagation and search, and a propagation agent may be involved in many different propagation sequences
during a single derivation.

5.2 Relaxed Tell

In [HD91] an operational semantics for constraint logic programming is introduced which offers an opera-
tion called relazed tell. The relaxed tell operation extracts from a non-basic constraint an approximation.
The operation requires two functions, a relazation function and an approximation function which depends
on the relaxation function.

29

A relaxation function r maps the constraint store S to an approximation r(S) satisfying = S — »(5).
CHIP uses such a relaxation function in its treatment of arithmetic constraints over finite domains. A
finite domain for a variable V| such as {1,2,4} can be approximated by its end points, 1 <V < 4.

An approximation function ap (given a relaxation function r) maps a non-basic constraint C' and a
store S to an approximation ap(S, C') satisfying (v(S) A C) — ap(S,C). CHIP also uses approximation
functions in its treatment of arithmetic constraints over finite domains. For example the linear constraint
14+ V1 = V2is handled by using the equations to reduce the upper bounds and increase the lower bounds
of the variable domains so that the equation is satisfied by the new bounds. Thus if V1 € {1,3} and
V2 € {2,3}, the result of approximation on the above equation is 1 < V1< 2 and 2 < V2 < 3.

The requirement on the approximation function in the relaxed tell framework is that it must approximate
the constraint C'; whereas in the framework of generalised propagation the result approximates all the
answers to the constraint. This difference arises because relaxed tell is designed for non-basic built-in
constraints such as arithmetic ones. For generalised propagation any user goal can be annotated as a
constraint. In this case there is a clear definition of an answer to the constraint, but the logical semantics
of the constraint itself is more difficult to pin down. The logical semantics for program clauses does not
license any negative consequences. However in this case no pruning information could be extracted from
propagation constraints! For our purposes it would therefore be necessary to use some form of minimal
model semantics for constraint logic programs, with all the restrictions this entails [JL87].

Apart from the restriction to built-in constraints, relaxed tell is an abstraction of generalised propagation.
The inclusion of a relaxation function makes it strictly more powerful than generalised propagation, whose
“relaxation function” 1s just the identity function. The disadvantage of using a relaxation function is
that propagation on a single constraint cannot be guaranteed to yield a fixpoint. In fact the example of
approximation above has this property. If the result of propagation is added to the constraint store the
resulting store now has a different relaxation 1 < V1 < 1, which enables further useful propagation to
be performed on the same constraint. This means that the efficient AC-3 algorithm no longer produces
complete propagation sequences.’

5.3 Guarded Clauses and Concurrent Constraint Logic Programming

It 1s not possible in this paper to make a comparison of generalised propagation with the different
languages in these frameworks. At an abstract level propagation constraints can be seen as deterministic
processing agents which communicate with the constraint store using relazed tell. More concretely it is
interesting to specify precisely what communications take place in terms of ask and tell, and how this
behaviour reflects the declarative semantics of the constraint.

We can therefore attempt to encode the behaviour of a propagation constraint as a set of definitions
using committed choice, guarded clauses. Let us take finite domain propagation as an example and use
ask X € {Cy,...,Cy} to ask if the current constraint store implies that (X = C1) V...V (X = Cy),
and tell X € {C1,...,Cy} to tell this formula to the constraint store. For constraint p(X,Y), where p is
defined as

p(L,2) <

p(2,1) <

p(3,1) <

we could express finite domain propagation thus:

constraint p(X,Y) <+ true | tell X € {1,2,3},tell Y € {1,2}, constraint p1(X,Y)
constraint pl(X,Y) « ask X € {2,3} |tell Y =1
constraint pl(—ask X =1 [tell Y =2
constraint pl(—ask X =2 |[tell Y =1
constraint pl(—ask X =3 |[tell Y =1
(
(

bl

bl

constraint pl —askY =1 | tell X € {2,3}
constraint pl —askY =2 | tell X =1

bl

X,Y)
X,Y)
X,Y)
X,Y)
X,Y)
X,Y)

This encoding is similar to that used for the and demons (see section 4.1.2 above).

In CHIP, which uses AC-3, it is therefore sometimes necessary to state constraints twice!

30

The main drawback of using such an encoding is the huge number of clauses necessary to capture each
interesting propagation. We hypothesise that if conjunctions of basic constraints are admitted in the
guard, the number of guarded clauses can rise exponentially with the number of clauses needed to express
the propagation constraint.

A second drawback of guarded clauses is, paradoxically, their great expressive power. For example it is
possible to express the merge operation using guarded clauses, although this operation has no logical
semantics. In general it 1s not possible to give a declarative semantics for a set of guarded clauses, and
thus it is not possible to state the effect of a program except in terms of the operational behaviour of its
clauses.

There is a “logical subset” of guarded clause programs that have a logical semantics. It is possible to state
when a set of “logical” guarded clauses is sound with respect to a logic program specification as in [Smo91].
However even for such logically sound guarded clauses there remains the question of completeness. There
seems no simple way to determine when the behaviour of a set of clauses is equivalent to the behaviour
of generalised propagation. For example it is only possible to confirm that the encoding of constraint
p(X,Y) using guarded clauses above really does extract all possible propagations in all possible constraint
stores by performing an exhaustive analysis on constraint stores. The set of interesting constraint stores
to be analysed soon grows prohibitively large for non-trivial constraints (see also above section 4.1.2).

A form of guarded rules with multiple heads is being investigated at ECRC [Fru92], which provides a
language for expressing constraint simplification. The rules are called simplification rules. In many cases
it would be practical to express certain interesting propagations as simplification rules. The integration
of these stmplification rules into our framework would make 1t possible to encode the results of static
analysis and partial evaluation of generalised propagation. Consequently the whole range of possibilities
on the continuum between compilation and interpretation of generalised propagation would be available
in one system.

5.4 Andorra

A relationship has been often pointed out between David Warren’s Andorra principle [War88] and the
preference for deterministic computation which underlies constraint propagation. Based on Warren’s
extended Andorra model [War90], the language AK L has been defined [HJ90]. In this section we compare
generalised propagation with AK L.

Andorra promotes deterministic computations. The control of how hard to work to find subcomputations
that yield deterministic results has reached a considerable degree of sophistication. However the basic
idea is to perform parts of the computation locally and if the result is deterministic to make it available
globally, adding the resulting constraints to the constraint store. This is similar to extracting results
from propagation constraints.

In a local computation in Andorra, nothing i1s thrown away. This is quite different from constraint
propagation which finds many answers, extracts “common” information from them all, and then throws
the answers away again. This can in practice make constraint propagation more expensive than Andorra’s
deterministic promotion, but it also makes it possible to extract more information deterministically than
can be done in Andorra. For example generalised propagation extracts X = f(_) from the propagation
agent p(X) defined by

p(f(a)) «

p(f(b)) <

However the evaluation of p(X) is not deterministic so no information can be extracted in Andorra.

A second difference has to do with the dependence of information extracted on the precise syntax of the
program. In Andorra the information that can be extracted from a local computation depends on the
precise clausal definitions of the goal predicates involved. For example we could recode p(X) above as
PUFY)) q(Y)

g(a) «

q(b)

to get more information extracted by Andorra from the goal p(X). In constraint propagation the infor-
mation extracted is independent of the program syntax. It depends only on the logical semantics of the

31

program. Therefore constraint propagation has a more abstract behavioural semantics than deterministic
promotion in Andorra.

6 Conclusion

The same word “constraint” has been used to describe two rather different extensions of logic program-
ming. In one extension (C'LP(X)) “constraints” involve interpreted predicates whose interpretation on
the underlying domain is predefined. In the other extension (based on CSP) “constraints” are goals which
are used not for search but for deterministic reduction of the search space. This paper has extracted a
more abstract concept which includes both uses of the word constraint.

The abstract concept is useful for clarifying our understanding of C'LP, but this paper has shown that
it also yields immediate practical benefits. A generalisation of propagation has been introduced which
integrates the constraint behaviour of both extensions. This enables techniques of local consistency
enforcement from CSP to be applied to arbitrary goals in arbitrary C'LP(X) programs. The result is
called GP(X), for “generalised propagation parameterised on the computation domain X”.

Propagation on a goal GG in GP(X) requires that the system extracts a constraint approximating all
the answers to G. The paper has introduced a generic algorithm for generalised propagation which
avoids enumerating all the answers to a propagation constraint. Instead the retrieval of answers is
interleaved with approximation steps, so that an approximation to the answers found so far is always
maintained. This approximation is used to cut branches in the search for answer, in a way similar to
branch and bound. Additionally it is used to cut all the remaining branches in the search tree, when the
approximation becomes too general to be useful. The algorithm has been called topological branch and
bound, in section 3.7 above.

Generalised propagation offers very flexible control via the choice of approximation constraints. If only a
coarse approximation is offered the topological branch and bound drastically prunes the search tree, thus
making generalised propagation relatively cheap. If a finer approximation is offered, more information is
extracted from each propagation constraint, enabling the global search to be more reduced.

An implementation (called Propia) of generalised propagation over the Herbrand universe has been
described. Experiments with Propia have shown that generalised propagation enables problems to be
simply stated and efficiently solved in a way not possible using either C'LP(X) or propagation based on
CSP. It has been very rewarding to take pure logic programs as specifications and, by simply annotating
certain goals as propagation constraints, to achieve an efficient implementation. A very important feature
of the resulting programs is their guaranteed correctness with respect to their specification. This can
be contrasted with the encoding of the same problems using demons (a special form of guarded clause),
which cannot be validated against the specification since they have no declarative semantics.

As to the future, further implementations of generalised propagation are being developed for new com-
putation domains, thus expanding the range of problems that can be naturally expressed as GP(X)
programs. We are also investigating the notion of propagation constraints as concurrent processing
agents. In this view generalised propagation is an interesting special case of concurrent constraint logic
programming, in which the operational semantics can be dramatically simplified (and for which there
is always an equivalent declarative semantics). Finally, partial evaluation of GP(HU) is already under
investigation at ECRC, with the results expressed in the form of demons. With the integration of simpli-
fication rules into our system (see section 5.3 above), the potential for optimisation of GP(X) programs
can be fully explored.

7 Acknowledgements

This paper has benefited from discussions with many researchers both inside and outside of ECRC. We
particularly wish to thank André Veron, for his extensive implementation work and experimentation on
generalised propagation in the Elipsys system. We also thank the reviewers for perceptive and helpful
comments. Andrei Voronkov gave important feedback on the final draft. Our collaborators in the CHIC

32

Esprit project (Nr. 5291) have also helped sharpen our ideas. Finally thanks to all the CORE team
at ECRC and to Alexander Herold, for reading many drafts of papers on generalised propagation and
helping to bring out the important issues.

Bibliography

[Ber87]

[BPM92]

[Cla79]

[Col85]

[Dav87]

[DSV90]

[DSVX91]

[DVS+88]

[Fik70]

[Fru92]

[Gal85)

[GB65]

[HD91]

[HES0]

[FJ90]

[ICL87]

[ICL.88]

[ICL.90]

H. Berghel. Crossword compilation with Horn clauses. The Computer Journal, 30(2):183-188,
1987.

S. Bressan, T. Le Provost, and O. Monteil. Experiments with set-oriented propagation.
Experiments performed at ECRC: report in preparation, 1992.

K.L. Clark. Predicate logic as a computational formalism. Technical Report 79/59, Imperial
College, London, 1979.

A. Colmerauer. Theoretical Model of Prolog II, pages 3-31. Ablex Publishing Corporation,
1985.

E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32:281-331,
1987.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving large combinatorial problems in
logic programming. Journal of Logic Programming, 8:74-94, 1990.

M. Dorochevsky, K. Schuermann, A. Véron, and J. Xu. Constraints Handling, Garbage Col-
lection and Execution Model Issues in ElipSys. In A. Beaumont and G. Gupta, editors, Pro-
ceedings of the ICLP’91 Pre-Conference Workshop on Parallel Execution of Logic Programs,
Paris, June 1991. LNCS 569.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The
constraint logic programming language CHIP. In Proceedings of the International Conference
on Fifth Generation Computer Systems (FGCS’88), pages 693-702, Tokyo, Japan, November
1988.

R.E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artificial Intel-
ligence, 1:27-120, 1970.

T. Fruehwirth. Constraint simplification rules. Technical Report ECRC-92-18, ECRC, July
1992.

H. Gallaire. Logic programming: further developments. In IEEE Symposium on Logic Pro-
gramming, pages 88-99, Boston, July 1985. Invited paper.

S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM, 12:516-524,
1965.

P. Van Hentenryck and Y. Deville. Operational semantics of constraint logic programming
over finite domains. In Proc. PLILP’91, Passau, Germany, Aug 1991.

R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-314, October 1980.

Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In Proc.
of the T" Int. Conf. on Logic Programming [ICL90], pages 31-46.

Proceedings of the 4" International Conference on Logic Programming, Melbourne, 1987.
MIT Press.

Proceedings of the 5'* International Conference and Symposium on Logic Programming, Seat-
tle, 1988. MIT Press.

Proceedings of the 7" International Conference on Logic Programming, Jerusalem, lsrael,
1990. MIT Press.

33

[JL86]

[JL87]

[KowT9]

[Lev9l]

[Llo84]
[Mac77]

[MACT89]

[Mah87]

[MF85]

[MNLSS]

[MonT74]

[MRO1]

[NAC90]
[Nai86]

[PV92]

[RHZ75]

[Sar89]

[SD87a]

[SD87b]

[SD90]

[Sim88]

J. Jaffar and J-L. Lassez. Constraint logic programming. Draft Technical Report, Monash
University, June 1986.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the Fourteenth
ACM Symposium on Principles of Programming Languages (POPL’87), Munich, FRG, Jan-
uary 1987.

R. A. Kowalski. Logic for Problem Solving, chapter 8. North-Holland, 1979.

J. Lever. Temporal reasoning - a progress report. Presented at the CHIC workshop, Imperial

College, 1991.
J.W. Lloyd. Foundations Of Logic Programmaing. Springer-Verlag, 1984.

A K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118,
1977.

M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. De Villeneuve, A. Herold, P. Kay,
B. Perez, E.Van Rossum, and J. Schimpf. Sepia - an extendible prolog system. In G. X.
Ritter, editor, Information Processing 89, San Francisco, September 1989. Elsevier Science

Publisher B.V.

M. J. Maher. Logic semantics for a class of committed-choice programs. In Proc. of the 4"
Int. Conf. on Logic Programming [ICL87], pages 858—876.

A K. Mackworth and E.C. Freuder. The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems. Artificial Intelligence, 25:65-74, 1985.

K. Marriott, L. Naish, and J .-L. Lassez. Most specific logic programs. In Proc. of the 5" Int.
Conf. and Symp. on Logic Programming [ICL88], pages 909-923.

U. Montanari. Networks of constraints : Fundamental properties and applications to picture
processing. Information Science, 7(2):95-132, 1974.

I. Mitterreiter and F. J. Radermacher. Experiments on the running time behaviour of some
algorithms solving propositional calculus problems. Technical Report Draft, FAW, Ulm, 1991.

Proceedings of the 1990 North American Conference on Logic Programmang. MIT Press, 1990.

L. Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in Computer Science.
Springer, 1986. PhD. Thesis, Melbourne Univ.

T. Le Provost and A. Veron. Boosting an application via constraints prototyping and or-
parallelism. Forthcoming ECRC report, 1992.

A. Rosenfeld, A. Hummel, and S.W. Zucker. Scene labelling by relaxation operations. Tech-
nical Report TR-379, Computer Science Department, University of Maryland, 1975.

V.A. Saraswat. Concurrent Constraint Programmaing Languages. PhD thesis, Carnegie-Mellon
University, Pittsburgh, Pa, January 1989.

H. Simonis and M. Dincbas. Using an extended prolog for digital circuit design. In [EEFE
International Workshop on Al Applications to CAD Systems for Electronics, pages 165—188,
Munich, W.Germany, October 1987.

H. Simonis and M. Dincbas. Using logic programming for fault diagnosis in digital circuits.
In German Workshop on Artificial Intelligence (GWAI-87), pages 139-148, Geseke, W. Ger-
many, September 1987.

H. Simonis and M. Dincbas. Propositional calculus problems in CHIP. In H. Kirchner,
editor, Proceedings of the 2nd International Conf on Algebraic and Logic Programming, Nancy,
France, October 1990. CRIN and INRIA-Lorraine, Springer Verlag. (to appear).

H. Simonis. Test pattern generation with logic programming. In New Aspects of Research for
Testing of VLSI Circuits, Ising, W. Germany, March 1988.

34

[Smo91]

[SP89)

[Van89]

[VDS86]

[War88]

[War90]

G. Smolka. Residuation and guarded rules for constraint logic programming. Technical
Report 12, Digital PRL, June 1991.

H. Simonis and T. Le Provost. Circuit verification in CHIP: Benchmark results. In L.J.M.
Claesen, editor, Proceedings of the IFIP TC10/WG10.2/WG10.5 Workshop on Applied For-
mal Methods for Correct VLSI Design, Leuven, Belgium, November 1989. IFIP, North Hol-
land, Elsevier Science Publishers.

P. Van Hentenryck. Constraint Satisfaction in Logic Programmang. Logic Programming Series.

The MIT Press, 1989.

P. Van Hentenryck and M. Dincbas. Domains in logic programming. In Proceedings of the
Fifth National Conference on Artificial Intelligence (AAAI’86), Philadelphia, PA, August
1986.

D.H.D. Warren. The Andorra Model. Presented at the Gigalips Workshop, Univ. of Manch-
ester, 1988.

D.H.D. Warren. The Extended Andorra Model with implicit control. Presented at the ICLP’90
workshop on Parallel Logic Programming, Isreal, June 1990.

35

Other Reports Available from ECRC

[ECRC-TR-LP-60] Mireille Ducasse and Anna-Maria Emde. Opium 3.1 - User Manual A High-level
Debugging Environment for Prolog. 1991.

[ECRC-TR-LP-61] E. Yardeni, T. Frihwirth, and E. Shapiro. Polymorphically Typed Logic Programs.
1991.

[ECRC-TR-DPS-81] U. Baron, S. Bescos, and S. Delgado. The ElipSys Logic Programming Language.
17.01. 1991.

[ECRC-TR-DPS-82] Sergio Delgado, Michel Dorochevsky, and Kees Schuerman. A Shared Environment
Parallel Logic Programming System On Distributed Memory Architectures. 18. 01. 1991.

[ECRC-TR-DPS-83] Andre Veron, Jiyang Xu, and Kees Schuerman. Virtual Memory Support for OR-
Parallel Logic Programming Systems. 05. 03. 1991.

[ECRC-TR-DPS-85] Michel Dorochevsky. Garbage Collection in the OR-Parallel Logic Programming.
15. 03. 1991.

[ECRC-TR-DPS-100] Alan Sexton. KCM Kernel Implementation Report. 22. 05. 1991.
[ECRC-TR-DPS-103] Michel Dorochevsky. Key Features of a Prolog Module System. 08. 03. 1991.

[ECRC-TR-DPS-104] Michel Dorochevsky, Kees Schuerman, and Andre Veron. ElipSys: An Integrated
Platform for Building Large Decision Support Systems. 29. 01. 1991.

[ECRC-TR-DPS-105] Jiyang Xu and Andre Veron. Types and Constraints in the Parallel Logic Pro-
gramming System ElipSys. 15. 03. 1991.

[ECRC-TR-DPS-107] Olivier Thibault. Design and Evaluation of a Symbolic Processor. 13. 06. 1991.

[ECRC-TR-DPS-112] Michel Dorochevsky, Jacques Noyé, and Olivier Thibault. Has Dedicated Hardware
for Prolog a Future ? 14.09. 1991.

[ECRC-91-1] Norbert Eisinger and Hans Jiirgen Ohlbach. Deduction Systems Based on Resolution. 29.
10. 1991.

[ECRC-91-2] Michel Kuntz. The Gist of GIUKU: Graphical Interactive Intelligent Utilities for Knowl-
edgeable Users of Data Base Systems. 4. 11. 1991.

[ECRC-91-3] Michel Kuntz. An Introduction to GIUKU: Graphical Interactive Intelligent Ultilities for
Knowledgeable Users of Data Base Systems. 4. 11. 1991.

[ECRC-91-4] Michel Kuntz. Enhanced Graphical Browsing Techniques for Collections of Structured
Data. 4. 11. 1991.

[ECRC-91-5] Michel Kuntz. A Graphical Syntax Facility for Knowledge Base Languages. 4. 11. 1991.
[ECRC-91-6] Michel Kuntz. A Versatile Browser-Editor for NF2 Relations. 4. 11. 1991.

[ECRC-91-7] Norbert Eisinger, Nabiel Elshiewy, and Remo Pareschi. Distributed Artificial Intelligence
- An OQuerview. 4. 11. 1991.

[ECRC-91-8] Norbert Eisinger. An Approach to Multi-Agent Problem-Solving. 11. 11. 1991.

[ECRC-91-9] Klaus H. Ahlers, Michael Fendt, Marc Herrmann, Isabelle Hounieu, and Philippe Marchal.
TUBE Implementor’s Manual. 21. 11. 1991.

[ECRC-91-10] Klaus H. Ahlers, Michael Fendt, Marc Herrmann, Isabelle Hounieu, and Philippe Marchal.
TUBE Programmer’s Manual. 21. 11. 1991.

[ECRC-91-11] Michael Dahmen. A Debugger for Constraints in Prolog. 26. 11. 1991.

[ECRC-91-12] Jean-Marc Andreoli and Remo Pareschi. Communication as Fair Distribution of Knowl-
edge. 26. 11. 1991.

36

[ECRC-91-13]
[ECRC-91-14]
[ECRC-91-15]
[ECRC-91-16]
[ECRC-92-1]
[ECRC-92-2]
[ECRC-92-3]
[ECRC-92-4]

[ECRC-92-5]
[ECRC-92-6]
[ECRC-92-7]

[ECRC-92-8]
[ECRC-92-9]
[ECRC-92-10]

[ECRC-92-11]
[ECRC-92-12]

[ECRC-92-13]

[ECRC-92-14]
[ECRC-92-15]

[ECRC-92-16]
[ECRC-92-17]

ECRC-92-18
ECRC-92-19

[]
[]
[ECRC-92-20]
[]

ECRC-92-21

Jean-Marc Andreoli, Remo Pareschi, and Marc Bourgois. Dynamic Programming as
Multiagent Programming. 26. 11. 1991.

Volker Kuchenhoff. On the Efficient Computation of the Difference Between Consecutive
Database States. 5. 12. 1991.

Sylvie Bescos and Michael Ratcliffe. Secondary Structure Prediction of rRNA Molecules
Using ElipSys. 16. 12. 1991.

Michael Dahmen. Abstract Debugging of Coroutines and Constraints in Prolog. 30. 12.
1991.

Thierry Le Provost and Mark Wallace. Constraint Satisfaction Over the CLP Scheme.
30. 1. 1992.

Gérard Comyn, M. Jarke, and Suryanarayana M. Sripada. Proceedings of the 1st Com-
pulog Net meeting on Knowledge Bases (CNKBS’92). 30. 1. 1992.

Jesper Larsson Traeff and Steven David Prestwich. Meta-programming for reordering
Literals in Deductive Databases. 30. 1. 1992.

Beat Wuthrich. Update Realizations Drawn from Knowledge Base Schemas and Erecuted
by Dialog. 4. 2. 1992.

Lone Leth. A New Direction tn Functions as Processes. 25. 2. 1992.
Steven David Prestwich. The PADDY Partial Deduction System. 23. 3. 1992.

Andrei Voronkov. FExtracting Higher Order Functions from Fuirst Order Proofs. 23. 3.
1992.

Andrei Voronkov. On Computability by Logic Programs. 23. 3. 1992.
Beat Wiuthrich. Towards Probabilistic Knowledge Bases. 02. 4. 1992.

Petra Bayer. Update Propagation for Integrity Checking, Materialized View Maintenance
and Production Rule Triggering. 08. 4. 1992.

Mireille Ducassé. Abstract views of Prolog executions in Opium. 15. 4. 1992.

Alexandre Lefebvre. Towards an Efficient Evaluation of Recursive Aggregates in Deductive

Databases. 30. 4. 1992.

Udo W. Lipeck and Rainer Manthey (Hrsg.). Kurzfassungen des 4. GI-Workshops
“Grundlagen von Datenbanken”, Barsinghausen, 9.-12.6.1992. 12. 05. 1992.

Lone Leth and Bent Thomsen. Some Facile Chemustry. 26. 05. 1992.

Jacques Noyé (Ed.). Proceedings of the International KCM User Group Meeting, Munich,
7 and 8 October 1991. 03. 06. 1992.

Frederick Knabe. A Distributed Protocol for Channel-Based Communication with Choice.
10. 06. 1992.

Benoit Baurens, Petra Bayer, Luis Hermosilla, and Andrea Sikeler. Publication Manage-
ment: A Requirements Analysis. 03. 07. 1992.

Thom Friuhwirth. Constraint Simplification Rules. 28. 07. 1992.
Mark Wallace. Compiling Integrity Checking into Update Procedures. 29. 07. 1992.
Petra Bayer. Data and Knowledge for Medical Applications: A Case Study. 30. 07. 1992.

Michel Dorochevsky and André Véron. Binding Techniques and Garbage Collection for
OR-Parallel CLP Systems. 11. 08. 1992.

37

[ECRC-92-22]
[ECRC-92-23]
[ECRC-92-24]
[ECRC-92-25]
[ECRC-92-26]

[ECRC-92-27]
[ECRC-92-28]

ECRC-92-29
ECRC-92-30

[]
[]
[ECRC-92-31]
[]

ECRC-92-32
[ECRC-92-33]
[ECRC-92-34]
[ECRC-93-1]

ECRC-93-2
ECRC-93-3

[]
[]
[ECRC-93-4]
[]

ECRC-93-5

Shan-Wen Yan. Efficiently Estimating Relative Grain Size for Logic Programs on Basis
of Abstract Interpretation. 25. 08. 1992.

Jean-Marc Andreoli, Paclo Ciancarini, and Remo Pareschi. Interaction Abstract Ma-

chines. 25. 08. 1992.

Jean-Marc Andreoli and Remo Pareschi. Associative Communication and its Optimization
via Abstract Interpretation. 25. 08. 1992.

Jean-Marc Andreoli, Lone Leth, Remo Pareschi, and Bent Thomsen. On the Chemustry
of Broadcasting. 25. 08. 1992.

Marc Bourgois, Jean-Marc Andreoli, and Remo Pareschi. Extending Objects with Rules,
Composition and Concurrency : the LO Ezperience. 25. 08. 1992.

Benoit Dageville and Kam-Fai Wong. SIM: A C-based SIMulation Package. 28. 09. 1992.

Beat Wuthrich. On the Efficient Distribution-free Learning of Rule Uncertainties and
thewr Integration into Probabilistic Knowledge Bases. 29. 09. 1992.

Andrei Voronkov. Logic Programming with Bounded Quantifiers. 29. 09. 1992.
Eric Monfroy. Grébner Bases: Strategies and Applications. 30. 09. 1992.
Eric Monfroy. Specification of Geometrical Constraints. 30. 09. 1992.

Bent Thomsen, Lone Leth, and Alessandro Giacalone. Some Issues in the Semantics of
Facile Distributed Programmang. 22. 10. 1992.

Mireille Ducassé. An Ertendable Trace Analyser to Support Automated Debugging. 04.
12. 1992.

Jorge Bocca and Luis Hermosilla. A Preliminary Study of the Performance of MegalLog.
20. 12. 1992.

Benoit Dageville and Kam-Fai Wong. Supporting Thousands of Threads Using a Hybrid
Stack Sharing Scheme. 18. 01. 1993.

Steven Prestwich. ElipSys Programmang Tutorial. 18. 01. 1993.
Beat Wuthrich. Learning Probabilistic Rules. 28. 01. 1993.
Eric Monfroy. A Survey of Non-Linear Solvers. 02. 02. 1993.

Thom Frihwirth, Alexander Herold, Volker Kuchenhoff, Thierry Le Provost, Pierre Lim,
Eric Monfroy, and Mark Wallace. Constraint Logic Programming - An Informal Intro-
duction. 02. 02. 1993.

38

