Conjunto:
Constraint Logic Programming
with Finite Set Domains

Carmen Gervet

ECRC

Arabellastrale 17, D-81925 Munich, Germany
carmen@ecrc.de

Abstract

Combinatorial problems involving sets and relations are currently tackled by
integer programming and expressed with vectors or matrices of 0-1 variables.
This is efficient but not flexible and unnatural in problem formulation. To-
ward a natural programming of combinatorial problems based on sets, graphs
or relations, we define a new CLP language with set constraints. This lan-
guage Conjunto!' aims at combining the declarative aspect of Prolog with
the efficiency of constraint solving techniques. We propose to constrain a set
variable to range over finite set domains specified by lower and upper bounds
for set inclusion. Conjunto is based on the inclusion and disjointness con-
straints applied to set expressions which comprise the union, intersection and
difference symbols. The main contribution herein is the constraint handler
which performs constraint propagation by applying consistency techniques
over set constraints.

1 Introduction

Various systems of set constraints have been defined for purposes such as ax-
iomatizing a set theory in {log} [4], prototyping combinatorial problems with
sets, multisets and sequences in CLPS[13], manipulating strings in CLP(¥*)
[16], analyzing programs [7] [1] [2] among others. According to the objectives
aimed at, each of these languages proposes a constraint solver for a class of
set constraints over a computation domain.

The motivation for Conjunto originates from a desire to combine the effi-
cient constraint satisfaction techniques with the declarative aspect of Prolog
in order to solve combinatorial problems based on sets, relations or graphs
(minimum node cover, minimum set cover, set partitioning, set packing,...).
These NP-complete problems correspond to real life problems such as ware-
house location, resources allocation, graph colouring, etc. They belong to
the class of Operations Research (OR) problems and are currently solved us-
ing Integer Linear Programming (ILP) or constraint satisfaction techniques
over 0-1 domain variables. A problem formulated in ILP is tightly coupled
with the resolution technique and modifying some constraints or adding new

!Conjunto: [konrUnto], Spanish for set.

ones would require a revision of the whole system. In Conjunto, like in any
Constraint Satisfaction Problem language, the constraint solving is incre-
mental and independent of the various constraints of the problem at hand.
The current 0-1 formulation of combinatorial problems on sets or graphs is
not natural and forces one to handle very large matrices with respect to
the size of the problem. For example partitioning the set {a, b, ¢, d} into a
set of 3 subsets P* = {S, Sa, S3} (without optimization criterion for sim-
plicity reasons) would be defined in ILP by stating the following system of
arithmetic constraints:

Tal +Ta2 +Ta3 =1, Tp1 +Tp2 +Tp3 =1,
Tl + T2 +Te3 =1, Ta1 +Ta2 + a3 =1,
where z;; = 0..1 (1 if i € S, 0 otherwise).

Solving combinatorial problems aims at computing a feasible or optimized
solution from a given finite search space. In particular, the set covering and
set partitioning problems consist of computing a subset or a set of subsets
from a given one. No order is required in the solution, and often the reso-
lution would gain if the symmetries were avoided. Toward these aims, the
use of set variables and set constraints looks ideal. To initialize the search
space, we propose to attach a finite set domain to each set variable. A more
natural and concise statement of the above problem is:

SlﬂSQ Z{}, 51053 = {}, 52053 Z{}, 51USQU53 = {a, b, C, d},
S1,82, 83 :: {}..{a,b,e,d}. (i)

These domain constraints (i) initialize the set variable domains. They have
the same semantics as : {} C S; C {a, b, ¢, d}.

Two general questions arise from this comparison: can set constraints ap-
plied to set variables be expressive enough to describe combinatorial prob-
lems on sets and graphs 7 Can consistency techniques be powerful enough
to solve such problems 7 In this paper we aim at answering a more specific
question derived from the two previous ones: can we find a good tradeoff be-
tween the expressive power of set constraints and the efficiency of consistency
techniques ?

In Conjunto, we propose to compute extensional finite sets using set
constraints over finite set domain variables. A set domain attached to a set
variable is specified by its greatest lower bound (glb) and least upper bound
(lub). The inclusion and disjointness constraints over these domain vari-
ables are solved by applying consistency techniques which allow to perform
deterministic computations until we reach a fixed point. This approach can
be seen as an adaptation of finite domains [3][9] to finite set domains where
the number of elements of the domain is no longer linear but exponential in
the size of the upper bound and where the order relation is not total (<)
but partial (C). As a consequence, checking the consistency of arithmetic
constraints over each value of a domain would take a polynomial time in the
domain size whereas for set constraints, this would lead to an exponential
number of tests in the size of the largest domain upper bound. To avoid
such inefficient computations, the consistency algorithms in Conjunto per-
form reasoning on the bounds of the set domains: the consistency is checked

over the lower and upper bounds of a set domain. This reasoning on bounds
removes inconsistent values from a set domain by increasing the lower bound
and/or reducing the upper one.

This article is organized as follows. Its first part presents the related
work. The second part informally introduces the approach upon which Con-
junto uses active constraint propagation on finite set domains. The third
part is devoted to the language description. The operational semantics is
presented in the fourth part and comparisons are made with finite integer
domains languages. Some areas of applications using finite set domains are
presented in the fifth part in particular a bin packing example is given. Di-
rections for future works are mentioned in the conclusion.

2 Related Work

2.1 Sets in CLP

Several approaches have been tackled in the recent years to embed sets in
the CLP framework.

CLP(2*) [16] (string handling) represents an instance of the CLP scheme
in the computation domain of regular sets which are finite sets composed
from finite strings. CLP(X*) constraints are of the form A in (X.”ab”.Y)
which states that any string attached to variable A must contain the sub-
string ab. A scheduling strategy for selecting constraints ensures termination
of the satisfiability procedure.

{log} [4] is based on an axiomatized set theory where set terms are con-
structed using the interpreted functor with, e.g. 0 with x with (O with y with z)
= {{z,y},x}. The satisfaction procedure of the complete solver is based on a
non-deterministic selection of constraints by taking into account all the pos-
sible substitutions between the elements of two sets. This non-determinism
leads, in the worst case, to a hidden exponential growth in the search tree
(if s1 = s9 and #s1 = n, there are 2" computable solutions). Nevertheless,
{log} allows to define a very large class of sets such as hereditarily finite sets
(sets of finite depth).

Example 2.1 For ease of presentation, we use {z,y} for) with x withy. Let
a system of constraints be s C {3,2,a}. To solve it in {log}, the set term s
has been previously constructed. It could be the set s = {1, z9, ...,z }. The
variables z; are not necessarily distinct. The constraint handler infers (using
a built-in universal quantifier) the constraints: V¢ € {z1, xo,..., zp}, t €
{3,2,a}. An atomic equality between ¢ and one element of {3,2, a} is derived
in a non-deterministic way.

The CLPS language is founded on the set notion of sets of finite depth
over Herbrand terms (simple sets are sets of depth one). The satisfaction
of constraints is performed using consistency checking techniques [8] over

set elements defined as domain variables. Completeness is guaranteed at
an exponential cost in the number of set elements by computing a tensorial
product which builds the set of all the possible combinations linking elements
of the various given domains: a1 ® ... ® ap, = {{z1,...,zn} | T1 € a1,...2, €
an}. This language is already used for prototyping several problems.

Example 2.2 Let us consider the above mentioned example s C {3,2,a}.
s can be specified by s = {z1,z9,...,2x} in CLPS, where the vari-
ables z; are not necessarily distinct. The constraint handler gener-
ates an equivalent system of constraints : depth(s) < depth({3,2,a}),
#s < #{3,2,a} , =1 € {3,2,a},z2 € {3,2,a}, ...,z € {3,2,a}, s €
{{3},{3,2},{3,a},{2,a},{3,2,a}}. The exhaustive set of possible instances
of s is computed. As soon as the domain of one z; is modified, the domain
of s is recomputed.

2.2 Systems of set constraints

A related line of work is program analysis systems [7] [1] [2] among others.
They handle a larger class of sets (infinite sets) than Conjunto, {log} or
CLPS. The set variables are introduced to model a program. The different
resolution algorithms are based on transformation algorithms. These trans-
formations preserve consistency either by computing a least model [7] which
does not preserve all solutions or by computing a finite set of systems in
solved form [1]. [2] demonstrated that the latter algorithm is solvable in
non-deterministic exponential time.

3 Representing sets by lower and upper bounds

The previous section reflects that to embed sets in a CLP language, there
are two alternatives: (i) to define a set constructor which allows to build
a set term , (ii) to apply set constraints over set expressions. The first
alternative founds expression in “lists” of variables {z1,zs,...,z,} for the
representation of a set term ({log}, CLPS). In this case, the non determinism
of the set unification leads to compute a number of combinations which may
grow exponentially with the largest number of set elements. The second
alternative has been chosen by program analysis systems and CLP(X*). In
Conjunto, we propose a specific case of this alternative, by constraining a set
variable to belong to a finite set domain. The notion of finite domain has
first been used and defined in the constraint logic programming language
CHIP [3]. Such a computation domain has proved its efficiency in the CLP
framework by a powerful use of consistency checking techniques.

In Conjunto, a set is an extensional set which contains only Herbrand
terms (no variables and no sets). We use the word ground to define it. A
finite set domain (for set inclusion) is defined by a finite set of ground sets
and specified by its greatest lower bound (glb)- intersection of the ground

sets - and its least upper bound (lub)- union of the ground sets. Elements
of the lower bound are elements of the set variable whereas elements of
the upper bound are possible elements of the set variable. For example
{{8,a}..{3,a,9(1),5}} defines a set domain with glb = {3,a} and lub =
{3,a,9(1),5}. The values in this domain are the sets {3,a}, {3,a,9(1)},
{3,a,5}, {3,a,9(1),5}.

Example 3.1 The example introduced in section 2 is handled in Conjunto
as a single constraint S C {3,2,a}. The domain of S has been previously
initialized and is reduced so as to satisfy this constraint.

Our motivation behind the set domain concept in a CLP framework is to
combine a natural and flexible statement of combinatorial problems on sets
(set partitioning, bin packing) and graphs with the efficiency of constraint
satisfaction techniques. But from our experiment set constraints are not
expressive enough to tackle the problems on graphs. In fact, our objectives
are not limited to the definition of set domains but also aim at describing
relations in the same way. Lauriere first addressed this issue in his seminal
language ALICE [12]. In Conjunto, a finite relation domain constrains a
relation variable R C S7 x S9 where S7 and Sy are respectively the domain
and the range of R (ground sets). A graph is a specific relation where the
domain and range coincide. A forthcoming report will describe this extension
to relations and graphs in more detail.

4 The Conjunto language

4.1 A set domain for set variables

Definition 4.1 A finite set domain D attached to a set variable S is the
discrete lattice or powerset {S € 2 | glb, C S} under inclusion specified by
the notation glbs..lubs. glbs and [ubs represent respectively the intersection
and union of elements of D.

The indexical domain is defined using the functions (i) d(X) for the
domain of a set expression X, (ii) lub(X) for the least upper bound of
X, (iii) glb(X) for the greatest lower bound of X. By definition d(X) =
glb(X) .. lub(X).

4.2 The constraint domain

Domain of discourse The domain of discourse is D = FP(HU) U HU
where FP(HU) is the set of finite sets in 27V and HU the finite Herbrand
Universe. Thus, values of D could be either simple Herbrand terms or ground
sets. For example s = {a, b, f(a),V} where a,b, f(a) are Herbrand terms and
V is a variable, is not an element of D because V is a variable and thus s is
not ground.

Definition 4.2 A Conjunto language £ consists of:

1. Binary predicate symbols: arithmetic constraint symbols (=, >, <, #)
and set constraint symbols (C, €, ¢, #°, ::). The two latter predicates
#0 and :: are respectively interpreted as the disjointness constraint and
the domain constraint.

2. Unary function symbols introduced previously: d, lub, glb of arity one.

3. Binary operator symbols: arithmetic ones (+,—) and set operators (U,
N, \, #). The two latter are interpreted as a complementary difference
(S\S'"={z|z€S,z¢S}) and the usual set cardinality operator.

4. Constants: Cs (ground sets), Cj, (Herbrand terms) belonging to D, the
empty set (2 and its complementary Top in FP(HU).

5. Variables and domain variables D, taking their value in FP(HU) or
HU.

Set expressions A set expression S of £ where S7 and Sy are set expres-
sions is given by the following abstract syntax: S ::= Cs | D, | S1 U Sy |
S1NSy |81\ Ss.

A set expression is composed of set domain variables together with set
operator symbols. The domain of a set expression is also a finite lattice
under inclusion [6]. It could be represented by computing its exact bounds
at an exponential cost in the size of the largest upper bound invoked. But for
efficiency reasons, it is represented in Conjunto by approximating its bounds
in terms of the domain bounds of the set variables. The following properties
give the equivalences and/or implications which exist between the upper and
lower bounds of a set expression domain and the upper and lower ones of
the set variable domains invoked.

Properties 4.3 1. glb(Y) CY C lub(Y)

2. lub(Y U Z) =1ub(Y) Ulub(2)
3. glb(YNZ)=glb(Y)N glb(Z)
4. lub(Y NZ) Club(Y) Nlub(Z)
5. glb(YUZ) D glb(Y)Uglb(Z)
6. lub(Y\ Z) =1lub(Y) \ glb(Z)
7. glb(Y \ Z) = glb(Y) \ glb(Z)

Proof The proof of the first five properties is given in [15]. To demonstrate
6. and 7., assume X and Y are set variables whose domains are respectively
specified by gIb(X) .. lub(X), gIb(Y) .. lub(Y).

6. 2 € lwb(X\Y)iff {z}nX\Y # {}iff {2}nX # {JA{z}nY = {}iff
x € lub(X)Ax ¢ glb(Y). Thus lub(X \'Y) = lub(X) \ glb(Y).

7.z € glb(X\Y)iff {2} C X\Y iff {z} C X A {z} Z glb(Y) iff {z} C
glb(X) A {z} € glb(Y) iff x € glb(X) \ glb(Y). O

%() is represented by the syntax {} and interpreted as the empty set.

In [15] they use this notion of bounds as knowledge approximation on
behalf of the whole knowledge base. In Conjunto, these properties constitute
a very important issue on a constraint propagation viewpoint. It means that
constraints over set expressions can be approximated in terms of constraints
over set variables (see section 5) with a limited loss of the approximated set
expression domain. The loss in the computation of the lower bound of the
domain of a set expression s U s1 is not very surprising for it is very close to
the problem of handling disjunctions in Prolog.

4.2.1 Basic constraints
=20+

>~ denotes the system of basic constraints composed of set constraints and
arithmetic constraints. >, is the set of basic arithmetic constraints defined
in 9] {az =by+c,ax # c,ax > by + c,ax < by +c¢,z € {ay,..,an}} where
the a,b,c,a1, a, are positive integers and xz,y are domain variables). We
include Y, in the system as the solver handles finite (integer) domains when
dealing with the cardinality operator #. For reasons of space, its handling
will not be presented here.

Y1 comprises set relation constraints and set domain constraints as de-
fined below.

X1 = (21"7 Zd)

In the following, let us denote a set domain variable (not a set expression)
by S or S’ and a ground set by s. a,aq,...,a, denote elements of the finite
HU and X any variable taking its value in the finite Herbrand Universe.
The semantics of set equality, membership, inclusion and disjointness is the
usual one.

Set relation constraints TLet >, = { S C S S #° S’ }. The equality
constraint is defined using the following rewriting rule:

Si3351—>5(_:51,51 cs

Set domain constraints Elements of), are set domain constraints ¢.e.,
of the form b(S) :: glb(S)..lub(S). In other terms if glb(S) = {a1,...,a;}
and lub(S) = {ai,...,a,} this constraint corresponds to {aj,...,a;} € S C
{a1,...,aq}. Nevertheless the set domain constraint can not be replaced by
the latter as the special handling of domains is fundamental to Conjunto’s
consistency techniques.

3avoids confusions with the arithmetic equality and fits the Conjunto implementation
syntax.

4.2.2 n-ary constraints

Set expressions together with binary set predicate symbols are n-ary con-
straints. In other terms, if cons is any constraint predicate symbol in
{C,D,#%}, n-ary constraints are of the form: Seyp1 cons Segpo.

Remark The disjointness constraint (#°) is equivalent from a semantical
viewpoint to SN .S; = {}, a specific case of the n-ary constraint SN.S; = S,
where Sy = {}. As S #° S is of much use in partitioning problems, it
has been embedded in Conjunto as a basic set relation constraint. A local
arc consistency algorithm has been implemented to solve it. Doing so, we
convert a n-ary constraint into a set relation one and avoid the more general
approximation process which is useless here and looses information about
the domain bound computation (see properties 4.3).

4.2.3 Mixed computation domain constraints

This last class of constraints establishes links between variables from two
computation domains: (i) the finite HU universe (ii) the finite FP(HU)
universe. It concerns the set of {X € S, X ¢ S}* constraints.

4.2.4 Admissible system of constraints

As an adaptation of [9], an admissible system of constraints is a system of
constraints where every set constrained variable occurs in some set domain
constraints. Set constraints are only considered in a given context (where
domains are attached to the variables).

Having defined the foundations of Conjunto we need to define its opera-
tional semantics comprising the consistency algorithms.

5 Operational semantics for set constraints

Conjunto does not fit to the standard CLP scheme [11] as the operational
semantics is based on the notions of postponing some constraints and prop-
agating other constraints whose satisfiability is not always provable. The
solver schedules in a data-driven way, the set constraints checked through
consistency techniques.

5.1 Preliminary definitions

First let us consider a constraint graph G to represent a constraint satisfac-
tion problem. The approach is the usual one, that is each node s; of the

*In {log} [4] they do not need to distinguish these constraints from C as they can write
z €S+ {z} CS. In Conjunto {z} is not a term (if x is a variable) so we do need to
define C as a primitive constraint.

graph corresponds to a set domain variable; each directed arc (s;, s;) linking
the variables s; and s; corresponds to a single constraint ;. Thus we as-
sume for simplicity reasons that there is at most one constraint linking two
variables in a given order of variables (s; C s2 and s9 C s1 are two distinct
constraints). This assumption simplifies the algorithm description but no
restriction is actually imposed on real Conjunto programs.

The definitions of node, arc consistency [14] and solved form [9] are kept
and recalled hereafter.

Definition 5.1 Let ¢(S) be a unary constraint (i.e, with one set variable)
such that a set domain Dy = glbs.. lubs is attached to S. ¢(S) is node consis-
tent iff Vv € Dy, c(v) is true.

Definition 5.2 Let ¢(S,S5’) be a binary constraint such that set domains
D; = glbs..lubs and Dy = glbg .. lubg are respectively attached to S and S’.
¢(S,8") is arc consistent iff for all v € Dy, there exists w € Dy such that
c(v,w) is true.

Definition 5.3 A system of basic set constraints is in solved form iff ev-
ery unary constraint is node consistent and every binary constraint is arc
consistent.

5.2 Solved form computation
5.2.1 The internal set representation

Unlike for finite integer domains, the time complexity for operations on
ground sets (+, — versus U, N, \) can not be considered as constant as it
closely depends on the internal set representation. We made the choice to
represent each domain bound with a sorted list where the time complexity for
any set operation (U, N, \) is upper bounded by O(2d) where d is #lub(s) +
#9lb(s) and s the set with the largest domain. # is the cardinality operator.
We have experimented another approach which consists of representing a set
domain as a vector of 0-1 variables. This reduces the time complexity of the
U and N operations to O(#lub(s)) where lub(s) is the largest domain upper
bound. But it leads to a much larger occupation of the memory space. In
the following d will always stand for #lub(s) + #glb(s).

5.2.2 Node consistency for basic set relation constraints

The node consistency checking for unary set constraints (set constraints with
only one set variable) is quite straightforward. Let the algorithm be noted
NCgets. Tt performs the following tests: for each unary constraint C; on
the set variable s; with domain D; remove all the inconsistent sets from
the domain D;, by reducing its upper bound and/or by increasing its lower
bound. More detail concerning the computations over the bounds are given
in the general case of arc consistency (arc_cons-{C,#"}).

For example, the system of constraints: S : {a,3}..{a,3,7,f},S C
{a, f,3} is node consistent iff the domain of S is reduced to S

{a,3}..{a,3, f}.

Complexity issues Let n be the number of variables and d the sum of
the largest upper bound and lower bound in the set domains. The time
complexity for NCjsess is in the worst case O(2nd).

5.2.3 Arc consistency for basic set relation constraints

Recall the set of basic set relation constraints 3, = { S C 5,5 #% S’} where
S and S’ are set domain variables. The existing arc consistency algorithms
can not be simply adapted to check consistency of set relation constraints
over set domain variables. The reason is that these algorithms are based on
a domain reasoning (except for AC-5 over arithmetic constraints [10]). That
is, an arc (i,j) is consistent for each element of an integer domain D;. This
reasoning takes polynomial time in the length of the largest domain. In the
case of set domains, this reasoning would lead to an exponential number of
tests in the largest upper bound length. For efficiency reasons, this reasoning
is replaced in Conjunto by a reasoning on the domain bounds.

As formally introduced in [10], the existing arc consistency algorithms
manipulate a list or queue of elements to reconsider. Once a variable domain
4 has been modified, some constraints need to be checked again. In terms of
arcs, this means that some arcs (4,7) need to be reconsidered.

In Conjunto we consider two queues: one noted (g contains the arcs
(si,s;) for which the glb of s; has been increased and requires to reconsider
arcs (s;,5;). The definition of the second queue noted @y, is then straight-
forward. It contains the arcs (s;, s;) for which the lub of s; has been modified
and requires to reconsider the arcs (s;, s;). As a logical consequence, the first
queue might contain constraints of the form s; C s;, s; £0 5, Sj #0 s; and
the second queue might contain constraints of the form s; C s;. Handling
two queues avoids checking again arcs where a modification of the domain
of s; does not justify a need to reconsider arcs (s;,s;). This optimization
goes in the same line as the one given in AC-5 where the objective is to take
into account the semantics of constraints and thus to check again only the
constraints for which a need is justified.

Now that the different queues have been defined, we need to give the spec-
ification of the consistency algorithm for the inclusion and the disjointness
constraints arc_cons-{C, #°}. This algorithm reconsiders an arc (s;, s;) ac-
cording to the constraint predicate it represents. This arc comes from a given
queue due to a reduction of the domain of s;. It computes and returns the
new domain D; of s; and a boolean value indicating a possible modification
of D; (1 if D; has changed, 0 otherwise). In the following, the domain D;
will stand for the two sets glb(s;), lub(s;) and the arc (s;, s;) will be replaced

by its associated constraint predicate Cj;. As usual Cj;(s, s’) represents the
constraint Cj; between the set values s and s" and denotes a boolean value.

procedure arc_cons-{C,#%}(in:(C;;),inout: D;, out: CHANGED)
begin
case (;;jof
1. S; g Sj
if = lub(s;) C lub(s;) then
begin
lub(s;) lub(s;) Nlub(s;);
CHANGED = 1;
end
else CHANGED = 0;
2. S; 2 Sj
if - glb(s;) D glb(s;) then
begin
glb(si) < glb(s;) U glb(s;);
CHANGED = 1;
end
else CHANGED = 0;
3. 5i#£ s 0rs; 20 s
if = lub(s;) #° lub(s;) then

begin

lub(s;) « lub(s;) \ glb(s;);
CHANGED = 1;

end

else CHANGED = 0;
end
Fig. 2 : local arc consistency for the inclusion and disjointness constraints

The two first cases differentiate the constraints where s; appears in the right
of left hand side of C.

Complexity issues. Like for the node consistency algorithm, the time
complexity for this algorithm is closely linked to the set operation cost and
is in O(2d).

Queue issues. Note first that the lower bound glb(s;) can only get modi-
fied in the D case and second that the lub(s;) might get reconsidered either
due to a glb(s;) modification in the #° case, or due to a [ub(s;) modification
in the C case. Thus the constraint s; C s; comes from the Q,, queue and
might imply (if D; gets modified) to add constraints of the same kind in the
same queue. The constraint s; O s; comes from the Qg queue and could
also require to add constraints of the same kind or disjointness ones to the
same queue. On the other hand, the s; #° s; constraint comes from the Qg
queue and modifications of lub(s;) could lead to add s; C s; constraints in
the Qup queue.

In Conjunto the constraints linked with a variable s; are stored in a list
L, initialized in the beginning of the resolution. Like in arc consistency
algorithms for arithmetic constraints, the access to these constraints will not
be taken into account in the time complexity results. So, to add constraints
to one queue, requires to select from a given list specified by the string
BOUND, the constraints for which the need to check them again is justified.
The previous paragraph gave us some indications about the constraints to be
selected given a modified domain bound. The following algorithm performs
this selection. () stands either for the Qg or Qs queue which is given as
an input. Note that the s; C s; constraints are the only ones which need to
be reconsidered due to a modification of lub(s;).

procedure addto_queue (in: D;, BOUND inout: Q)
begin
if BOUND = “lub” then Q = QU {Vk, s, C sj € Ly, }
else if BOUND = “glb” then Q = Q U {Vk, Cy; € Ly, | Crj # s C 55}

end

The next step consists of initializing these queues. To do so, we need to
perform once the above defined local arc consistency algorithm upon each
arc (s;, s;) of the graph G. The algorithm arc_cons considers once each arc
and stores it (in case of a domain modification) in the right queue according
to the constraint considered. It returns the two queues Qg and Q. We
keep the previous notation for (s;, s;) that is Cj;.

procedure arc_cons(in: G out: Qgup, Qrup)

begin
Qgivs Quub < {};
for each Cj; € G do
begin
arc_cons-{C, #%} (Ci; , D;, CHANGED);
if CHANGED then
if C;; = s; 2 s; then addto_queue (D;, “glb”, Qqs)
else addto_queue (D;, “lub”, Quup)
end
end

Let e be the number of directed arcs or constraints and d the number intro-
duced above. The time complexity of arc_cons is in O(2ed).

We now give the complete algorithm for arc consistency checking of set
relation constraints over finite set domains. It performs deterministic com-
putations to reach a consistent system. The algorithm first applies the node
consistency algorithm to check the unary constraints. Then it performs the
arc_cons algorithm once to initialize the queues by performing a first prop-
agation on each arc of the graph G. The two next interwoven loops aim at
reaching the solved form. One iteration of the largest loop consists of emp-
tying the @y loop and then of checking one arc Cj; from the Qg queue.
This checking might lead to add arcs to any of the two queues (to the Qs
one in case of C;; = s; £0 sj, to Qg otherwise).

begin AC;.s
fori «+ until n do
NOsets (7')1
arc_cons(G, Qgp, Qrup) ;

while @4y not empty do
begin
while @, not empty do
begin
select and remove Cj; from Qup;
arc_cons-{C, #°} (Ci;, D;, CHANGED) ;
if CHANGED then addto_queue (D;, “lub”, Qus) ;

end

select and remove C;; from Qgp;
arc_cons-{C, #°} (Ci;, D;, CHANGED);
if CHANGED then
if C;; = s; 2 s; then addto_queue (D;, “glb”, Qqs)
else addto_queue (D;, “lub”, Q) ;
end
end

Fig. 5 ACe4s: the new arc consistency algorithm

Theorem 5.4 AC,. is correct and terminates.

Proof (correctness) First, each set s removed from a domain D; can not
belong to any arc consistent solution: a set is removed if it does not satisfy a
local consistency (cf. arc_cons-{C,#%}). Furthermore it can never be added
further on. So by a continuous reduction of D; all the sets removed can never
belong to any solution, so s in particular can not belong to any solution.
Second, AC,; is totally arc consistent, that is for all arcs (s;, s;), for all
sets s in D; there is one set s’ in D; such that Cj;(s, s’): the continuity of the
set inclusion and disjointness predicate symbols assure that if the domain
bounds are sound values then any set value in the domain is also sound.
The two points demonstrated guarantee that ACq.s builds the largest arc
consistent solution: all the reduced domains do not contain a set which might
lead to an inconsistent solution and thus should be removed. O

Proof (termination and complexity) The size of the set domains can
only get continuously reduced (see operations on the domains in arc_cons-
{C,#%}). Once a variable domain is reduced to one single set no constraint
containing this variable is added to any queue. So if d’ is the largest value
of #lub(s) — #glb(s) a constraint could be checked at most d' times. Termi-
nation is thus guaranteed for each loop.

Now, let I be the size of @, and e — [the one of Q4. The cost of
arc_cons-{C,#%} is d for one constraint (d being the largest #lub(s) +

#glb(s)). So for one constraint AC;.s could be iterated d' times till the
constraint is solved. If only one queue was handled, e constraints would be
reconsidered in the worst case. So the time complexity would be O(edd').
In the case of Conjunto all the constraints are not reconsidered each time
a modification occurs. If the constraints to be checked again only belong
to the Qup queue, the time complexity would be O((e — I)d + ldd'). If
they would only belong to the (g queue, the time complexity would be
O(ld + (e — l)dd"). Assuming that maz(l, e —) = e — [, the upper bound
time complexity of ACses is O(Id + (e — [)dd'). The gain versus a single
handled list is Id — ldd'.0

5.2.4 Partial lookahead for n-ary constraints

Recall the class of n-ary constraints: Sezp1 cons Segp2 where Segp; are set
expressions and cons is any constraint predicate symbol in {C, D, #°}.

These constraints are handled efficiently by a reasoning about variation
lattice bounds just like in AC,.s using the properties 4.3 of the functions
glb(s), lub(s) for set expressions s. Thus constraints over set expressions
are approximated in terms of constraints over set variables. Let a n-ary
constraint be Sezp1 = Sezp2 for example. Let the set expression Sezp1 range
over glby ..lub; and Sezpo over glbs ..luby. For the equation to be satisfied,
the two terms must range over glb..lub where glb is the maximum of glb;
and glby and lub is the minimum of lub; and [ubs. In the following, we use
the term PLH-solved form for this class of constraints upon which a new
partial lookahead algorithm is applied.

Note that for efficiency reasons, very nested constraints such as S1MN...N
S, = {} are split into more simple ones like S;NSy = §’, S'NS3 = S, ..., S¥n
Sn. = {}. This process might avoid awakening the initial constraint which
involves a large amount of set domain variables (if lub(S7) gets modified but
the bounds of S’ remain the same). This approach prefers efficiency gain
over memory loss. It has been used in the bin packing application.

5.2.5 Forward checking for mixed computation domain con-
straints

The constraints {X € S, X ¢ S} are currently handled in Conjunto using
forward checking over the integer variables X, that is the constraints are
postponed until X is ground. If X becomes a ground term a, the constraints
are rewritten into:

aeS—{a} CS ag S —{a}y#° S

Now that the consistency algorithms for set relation constraints and n-ary
constraints have be defined, we need to define the solver which uses these
algorithms to transform a system of set constraints into a consistent system.

5.3 The constraint solver

The constraint solver of Conjunto transforms a system of set relation con-
straints into a system in solved form and a system of n-ary constraints into
a system in PLH-solved form. The membership and nonmembership con-
straints are delayed (flounder notion in [9]) until they become unary con-
straints.

Algorithm The solver acts in a data driven way using a relation between
states. A state of the program is the system of constraints or pair S =<
SC, DC > where SC'is a set of set relation constraints and n-ary constraints
and where DC' is a set of set domain constraints. First apply the node
consistency algorithm NCjes to the unary constraints to obtain the state
< 8C,DC'" >, then depending on the constraints apply the arc consistency
algorithm AC;.s or the partial lookahead algorithm to obtain the state
S'=<8C,DC" >.

Theorem 5.5 A system < SC, DC > in solved form (i.e., containing only
set relation constraints resulting from AC;) is satisfiable if the set of con-
straints DC is satisfiable.

Proof First, if any set domain is unsound (glb(s) > lub(s)) then the system
is clearly unsatisfiable. Second, if the set of set relation constraints is not
empty, it is always possible to find a solution by computing the least model.
In fact, the continuity of the inclusion and disjointness predicates guarantees
that any set value within the respective domains leads to a solution. So
assigning to each of the domain variable the respective lower bound of their
domain leads to a solution. O

Expressive power It is worth noting that in a system in PLH-solved form
which contains some union together with some intersection operators, the set
domain bounds of a set variable can be locally consistent but not globally.
The reason is that the union operator does not preserve the lower bound
computation (see property 4.3.5) of a set expression domain whereas the
intersection does not preserve the upper one (property 4.3.4). So global con-
sistency is not provable for systems of set constraints comprising union and
intersection operators unless the solver performs exhaustive computations
at an exponential cost in the largest upper bound among the set domain.

Example 5.6

The following set of constraints:

Si o {}A{L1,2,a,b}, So: {}..{1,2,a,b}, S5 :: {}..{1,2,a,b},

51 USQ US3 = {1,2,a,b}, Sl ﬂSQ 053 = {}

is in PLH-solved form but not globally consistent. Assigning respectively to
each set variable the lower bound of its domain (or the upper one) does not
lead to a solution.

6 Application

The following example of bin packing illustrates how constraint propagation
acts actively over set constraints and is sufficient to solve such problems, and
how set domains bring expressiveness and conciseness to the program.

Problem description Bin packing problems belong to the class of set
partitioning problems [5]. A multiset of n integers is given {wy,...,w,} and
specifies the weight elements to partition. Another integer W, is given and
represents the weight capacity. The aim is to find a partition of the n integers
into a minimal number of m bins (or sets) {s1, .., sk} such that in each bin
the sum of all integers does not exceed Wy,q;. This problem is usually stated
in terms of arithmetic constraints over 0-1 variables and solved using various
OR techniques or constraint satisfaction ones. It requires one matrix (a;;)
to represent the elements of each set, one vector x; to represent the selected
subsets s; and one vector w; to represent the weights of the elements a;;.
Hereafter is the abstract formulation of the bin packing problem in Integer
Programming (IP) and in Conjunto.

IP abstract formulation Conjunto abstract formulation

Z;-nzl aijr; =1Vie{l,.,n} s1Ns2={}, siNsg={}, ..,sn-1Nsm ={}
s1Us2 U Uspy = {(1,w1), .., (n,wy)}

where:

z; =0.1 (1if s; € {s1,..,5}) sj {1, w), .., (n,wn)}

ajj = 0.1 (1 ifi € S]')

Yic @ijwi < Wingg Vj € {1,...,m} weight(i,w;) = w;;
Zf&:gllb(s") weight(i,w;) < Wnae Vs

Under these assumptions, the program to solve is to minimize the number of bins:
. m .
minzo =3 ;" T, minzo = #{s; | s; # {}}

Problem statement Let P = { item(l,wy),..., item(i,w;),...,
item(n,wy)} be a non empty set of items i with a weight w;. The aim
is to partition P into a minimal number of IV subsets such that the sum of
the w; in a computed subset of P does not exceed a limited weight Wmazx.
The heuristic used is the first fit descending which first sorts the objects in
decreasing order of their weight. Bins are then filled one after another. The
program uses the union operators as a constraint predicate (cf. previous
remark on efficient handling of nested set expressions) and exploits the set
representation with finite domains. We evoke a simple Conjunto program
partly shown on figure 6 which solves large instances (80 items partitioned
into 30 sets) and finds the optimal solution in about 22 seconds on a SUN
4/40. The part of the program given only shows the partitioning for a given
N. The optimization predicate is the classical one which initializes N to

the value weight(P)/Wmaz and extends N at each call of the top level
predicate until a failure is encountered. The solution is the last successful
partition.

solve(N,Sets) :- state_constraints(Sets, P) :-
pieces(P), restrict_weight (Sets),
make_sets(N,P,Sets), $all_disjoints(Sets),
state_constraints(Sets,P), $all_union(Sets,P).
labeling(Sets).
labeling([1).
make_sets(0,Plub,[]). labeling([S1|Sets]) :-
make_sets(N,Plub, [Set|Sets]):- $refined(S1),!,
$Set ::{}..Plub, labeling(Sets).
N1 is N - 1, labeling([S1|Sets]) :-
make_sets(N1, Plub,Sets). $refine(S1),

labeling([S1]Sets]).

Figure 6: A partitioning program with Conjunto built-ins

Problem solving The predicates preceded by $ are Conjunto built-
ins. The main idea behind the program consists of retrieving the ini-
tial set (pieces()), creating a number N of sets whose initial domains
are {}..P (make_sets()), stating the constraints (restrict_weight() ,
all_disjoint() , all_union()) and adding (or removing in case of failure)
elements to the sets by choosing first the element with the greatest weight
(Labeling()). The weight constraint (restrict_weight ()) constrains the
total weight of the elements of each set not to be greater than the limited
weight Wmaz. The top-level predicate is solve (N,S) if the partition rep-
resents N sets.

Problem data The problem receives as data the maximum weight al-
lowed in each computable set weight_max(50) and a finite set of items
pieces({item(it1,W_1),..., item(it80,W_80)}).

Conjunto built-ins The refine procedure tries to add elements to the glb
of each set and in case of failure (the weight of the items is strictly greater
than weight_max(50)) removes them from the lub. The all_disjoint ()
predicate constrains the upper bound of each S; not to contain any lower
bound of the remaining set domains D; with (i # j). It has the semantics of
the following set of constraints S1NSy = {}, S1NS3 = {},...,Sn—1NS, ={}.
The all_union() predicate constrains the union of all the upper bounds to
be equal to the set P. It is encoded by splitting the |JS; = P into simple
constraints S, U S, =5, ...,S¥U S, = P.

Experimental results and comparisons We made a complete compar-
ative study with a 0-1 Finite Domain (FD) formulation. For the encoding of
sets and set constraints, we used respectively lists of 0-1 variables and arith-
metic constraints on the variables as described previously. The arithmetic
constraint predicates were handled using the ECLiPSe solver® for arithmetic
constraints over finite domains. The FD program was encoded so as to use
the same first fit descending heuristics and the same labeling procedure as
the Conjunto program. The following array gives the time together with
space consumption results. The number of backtracks in the two program
executions is the same.

Criterion Conjunto program | FD program
global stack peak (bytes) 847 872 2 334 720
trail stack peak (bytes) 126 968 987 136
garb. collection number 27 77

cpu time (sec.) 21.6 31.5

garb. collection time (sec.) | 1.21 6.28

The two programs differ in the data structure used and thus in the con-
straints applied to these data. The first point to note is that this difference
has an impact both on the space consumption (stack peaks®) and on the
cpu time. The space consumption comprises among other stacks, the global
stack and the trail stack. The data structure is largely responsible for the
growth of the global stack peak. The difference of space consumption (stack
sizes) in the two approaches comes from the set-like representation as list of
0-1 domain variables versus two sorted lists in Conjunto: (i) The lists of 0-1
variables are never reduced because retrieving an element from a set corre-
sponds to setting a variable domain to zero. This is not the case with the
set domain representation. (ii) The trail stack is used to record information
(set domains or lists of zero-one variables) that is needed on backtracking.
The number of backtracks in the two program executions is the same, so the
difference comes from the amount of information needed to be recorded.

The difference in the garbage collection number comes also from the
space consumption as this number is the number of stack garbage collection.

The difference of cpu time is due first to the time needed for garbage
collection which is a direct consequence of the size of the stacks which are
garbage collected; and second to the time needed for performing operations
on the data. A profile on the cpu time consumption indicated that half of
the consumption in the FD program resolution is a time needed for per-
forming arithmetic operations on the 0-1 variables. The weight constraint
applied to each set is one of the costly computations. The weight constraint

®based on consistency techniques which perform a reasoning about variation domain
bounds or about variation domains depending on the constraint predicate.
Sthe peak value indicates what was the maximum allocated amount during the session.

a;1 X Wi+ a0 X Wo + ...ajp X Wy, < Wiae which is awakened each time an
a;j is set to 1, consists of a cartesian product of two lists. In the Conjunto
program, it consists of constraining the sum of weights W; directly available
from the elements (i, W;) of a domain upper bound. Another costly com-
putation in the FD formulation, is the one of the largest weight not already
considered for one set. This requires to check the 0-1 variable in link with
one weight. A weight is not yet considered if the corresponding domain
variable is not instantiated. In the Conjunto program, this computation
corresponds to the difference of the two bounds of a set domain. The result-
ing set constains the elements (¢, W;) which have not been considered yet.
This difference operation is in fact the most time consuming in the Conjunto
program resolution, for it is also performed to compute disjoint sets. But it
represents half of the cpu time consumption of arithmetic operations.

Thus, it arises from this application based on the computation of a mini-
mal set of bins, that set constraints together with set domains are expressive
enough to embed the problem semantics and allow to avoid encoding the
information as lists of 0-1 variables or handling additional data (the list of
weights), and also that consistency techniques for set constraints are efficient
to solve combinatorial problems on sets.

7 Conclusion and future work

A new CLP language embedding sets, called Conjunto is presented. In
Conjunto, set variables range over finite set domains. This representation
has several strengths: it is rather natural; it is powerful enough to express
the set semantics; it leads to an efficient use of consistency techniques. New
consistency algorithms for reasoning on the set domain bounds are the basis
of the constraint solver. An O(ld + (e — [)dd') arc consistency algorithm is
presented for the class of set relation and set domain constraints where [is
the number of inclusion constraints, e—[the number of remaining ones, d the
sum of the cardinalities of the largest domain bounds and d’ their difference.
The operational semantics is described and guarantees satisfiability for a
large class of constraints. An application of this computation domain to
a bin packing problem is presented. It illustrates how efficiency can be
combined with expressive power.

We are currently investigating the applicability of relation constraints
to set covering problems. In this extended domain of computation based
on the same notions of bounds, some complexity issues are currently be-
ing investigated for the consistency algorithms handling relation and graph
constraints. Some work is still to be done though, both to complete the
experimental work on set constraints and to evaluate the expressive power
and practical interest of relations.

Acknowledgements

Special thanks to Pascal Van Hentenryck for his comments and worthwhile sugges-
tions on a previous version of the paper. Many thanks also to Alexander Herold
for his support, to Mark Wallace and Christophe Bonnet for their proofreading and
useful comments. This work was supported in part by the ESPRIT Project 5291
CHIC.

References

[1]
[2]
[3]
[4]
[5]
[6]

[7]

[10]

[11]

[12]

[13]

[14]

Alexander Aiken and Edward L. Wimmers. Solving Systems of Set Constraints.
In IEEE Symposium on Logic in Computer Science, June 1992.

L. Bachmair, H. Ganzinger, and U. Waldmann. Set Constraints are the
Monadic Class. In Proceedings of the LICS’93, 1993.

M. Dincbas, H. Simonis, and P. Van Hentenryck et al. The Constraint Logic
Programming Language CHIP. In FGCS, Japan, Aug. 1988.

A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. In
ILPS’93, 1993.

M.R. Garey and D. S. Johnson. Computers and intractability, A guide to the
theory of NP-completeness. Victor Klee, 1979. 124-130.

G. Gierz and K.H. Hofman et al. A Compendium of Continuous Lattices.
Springer Verlag, Berlin Heidelberg New York, 1980. Chapter 0.

N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set Constraints.
In Proceedings of the Sixzth Annual IEEE Symposium on Logic in CS, pages
300-309, July 1991.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic
Programming Series. The MIT Press, Cambridge, 1989.

P. Van Hentenryck and Y. Deville. Operational Semantics of Constraint Logic
Programming over Finite Domains. In Proceedings of PLILP’91, pages 396—
406, Passau, Germany, Aug. 1991.

P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency
algorithm and its specializations. Artificial Intelligence, 57:291-321, 1992.

J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proceedings
of the 14th ACM Symposium on Principles of Programming Languages, pages
111-119, Munich, Germany, 1987.

J. L. Lauriere. A Language and a Program for Stating and Solving Combina-
torial Problems. Artificial Intelligence, 10:29-127, 1978.

B. Legeard and E. Legros. Short overview of the CLPS System. In Proceedings
of PLILP’91, Passau, Germany, Aug. 1991. 3rd International Symposium on
Programming Language Implementation and Logic Programming.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
1977.

[15] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. D:
System theory, Knowledge engineering and Problem solving. Kluwer Academic
Publishers, 1991.

[16] C. Walinsky. CLP(X*): Constraint Logic Programming with Regular Sets. In
ICLP’89, pages 181-190, 1989.

