2099 000, 'ééét 04,
s?? § ¢ s":: i : 7 November 1995

TITTIRITT ¢ Teae?

The Handbook of Parallel
Constraint Logic Programming
Applications

Alexander Herold (ed.) (ECRC)

Abstract

This is the final technical deliverable of the APPLAUSE project. It provides a summary
of the APPLAUSE technology and its implementation in ElipSys and ECL'PS®. It then
includes a tutorial on how to use constraints and parallelism in ECL‘PS®. The main
part of the book contains descriptions of the APPLAUSE applications summarizing the
experience gathered in the course of the project. The book is targeted at potential users
of parallel constraint logic programming (CLP) and ECL‘PS®. Tt aims to encourage them
to exploit the potential of parallel CLP by presenting the APPLAUSE exemplars.

European Computer-Industry
Research Centre GmbH
Arabellastr. 17,

D-81925 Minchen
Germany

Contents

Chapter 1. The APPLAUSE Project by Alexander Herold 6
1 The APPLAUSE Framework 7

2 The APPLAUSE Technology 9

3 The APPLAUSE Systems 12
3.1 ElipSys . . . o 12

3.2 ECLIPS® . . 13

Chapter 2. A Tutorial on Parallelism and Constraints in ECL'PS® by Steven

Prestwich 17
1 Introduction 18
1.1 How to read this tutorial o L. 18
2 OR-Parallelism 18
2.1 How touseit 19
2.2 How it works o 19
2.3 When touse it oo 20
2.4 SUMIMATY .« o v v v v v e e e e e e e e e e e e 32
3 Independent AND-parallelism 32
3.1 How touse it o 33
3.2 How it works o 33
3.3 When touse it oo 34
3.4 SUMIMATY .« o v v v v v e e e e e e e e e e e e 38
4 Finite Domain constraint handling 38
4.1 Description of the 8-queens problem 39
4.2 Logic programming methods 0L 39
4.3 Constraint logic programming methods 42

4.4 Non-logical calls oo 44

4.5 Parallelism. o 45
4.6 SUMIMATY .« o v v v v v e e e e e e e e e e e e 45
Appendix: Calculating parallel speedup 0. 46
5.1 The obvious definition 0oL 46
5.2 A better definitiono o Lo 47
5.3 Speedup curves Lo 48

Chapter 3. PSAP : Planning System for Aircraft Production by Jacques

Bellone 49
1 Introduction 50
1.1 Production Intervals and Assembly Lines - Definitions 50
1.2 Current Practice 50
1.3 PSAP History 51
1.4 SUMIMATY .« o v v v v v e e e e e e e e e e e e 52
2 Problem Descriptiono 52
2.1 Objectives L 52
2.2 Inputs 53
2.3 Outputs 53
2.4 Cost Functions 54
2.5 Details of the Planner’s Work 55
3 Qualificationo 56
3.1 Limits of ARTEMIS 56
3.2 Why CLP 7 . . . o 56
3.3 Problem Size and Complexity 57
3.4 First Solution vs. Optimal Solution 57
3.5 Why Parallel CLP 7 oo 58
4 Constraints Modelling / Initial Prototype 58
4.1 PSAP Constraints oo 59
4.2 Domain Size 60
4.3 Limits of the First CLP Implementation 60
4.4 Conclusion 61

5 Parallelization 61
5.1 Where is parallelism introduced 7o 61

5.2 Parallelism Introduction Difficulties 62

5.3 Methodology L 63

5.4 Conclusions on Parallelism Introduction 64

6 Performance Debugging / Improvement L. 65
6.1 Sequential Improvementso 65

6.2 Parallel Improvements o oL 68

6.3 PSAP 2 Benchmarking oL 72

6.4 PSAP 3 Benchmarking oL 76

6.5 Interaction between Parallel and Sequential Improvements 80

7 Conclusions 81
7.1 Parallel CLP Assessment 81

7.2 Enhancements and Extensions to Parallel CLP System 82

7.3 Development Total Effort 83

7.4 Other Conclusions 83

7.5 Acknowledgments L oo 84
Chapter 4. The TCO Application by André Chamard 85
1 Introduction 86
2 Problem Descriptiono 86
3 Problem Qualificationo 91
4 Constraint Expression and Prototyping 97
5 Parallelization 104
6 Performance Debugging and Optimization 105
7 Conclusion 118
8 Acknowledgments L Lo 119

Chapter 5. A Decision Support System for the Venice Lagoon by Giuditta

Festa, Giuseppe Sardu and Roberto Felici 120
1 Problem description. 121
1.1 The Venice Lagoon and its safeguard 121

1.2 A DSS for the Venice Lagoon 123

Characterization 127
Constraint Modelling and Prototyping 128
3.1 Constraint modelling for the DSS modules 128
3.2 Some general remarks oL oL o L 136
3.3 A foreseeable evolution for the DSS 137
Parallelization Lo 138
4.1 “Our parallelism” o oo 138
4.2 Some general remarks about parallelism 139
Performance debugging and optimization 140
5.1 About pre-computation. Lo 140
5.2 User-defined constraints 142
5.3 min_max and Minimizeo 144
Conclusions 144

Chapter 6. Decision Support in Molecular Biology by Chris Rawlings and

Dominic Clark 146
1 Problem Description - Predicting Protein Structure 147
1.1 Protein Topology Prediction 147
2 Qualificationo 149
2.1 afB Sheets . . . Lo 149
2.2 all-a proteins 151
3 Constraint Modelling and Prototyping 152
3.1 a/(sheets topology - CBSle/2e 152
3.2 all-helix bundle topology L. 157
4 Parallelization Strategy o o 161
4.1 Benchmarking methodology L. 162
5 Performance Debugging and Optimization 162
6 Conclusions L e 165

Chapter 7. A Tourist Advisory System for Greece by Panagiotis Stam-
atopoulos and Isambo Karali 167

1

Introduction L 168

2 MaTourA Architecture 168
3 Problem Description 170
4 Characterization 173
5 Constraint Modelling and Prototyping 174
6 Parallelization 177
7 Performance Debugging and Optimization 178
8 Conclusions 180
Bibliography 183

Chapter 1.

The APPLAUSE Project
Alexander Herold

1 The APPLAUSE Framework

During the last decade a new programming paradigm called “logic programming” has
emerged. The best known representative of this new class of programming languages is
Prolog, originated from ideas of Alain Colmerauer in Marseille and Bob Kowalski in Edin-
burgh. Programming in Prolog differs from conventional programming both stylistically
and computationally, as it uses logic to declaratively state problems and deduction to
solve them. Hence logic programming belongs to the class of declarative programming
languages.

It is a truism that logic programming (LP) is no panacea to solve all problems. On the
contrary LP needs to be extended to provide a useful tool for solving real-life problems. In
this report we will concentrate on solving combinatorial problems, such as scheduling and
planning problems, resource allocation problems or problems arising in decision support,
ie. this report will focus on a technology to solve large-scale search problems. To meet
the requirements of such problems two essential extensions to the basic paradigm of logic
programming were necessary.

First logic programming was extended by the concept of constraints. In particular the
introduction of so called finite domains constraints made it possible to solve large combi-
natorial search problems. The essential idea was to use the constraints to prune the search
space in an a priori way, thus shifting the basic search paradigm of logic programming
from a "generate and test” approach to a so called ”constrain and generate” approach.
With this new search paradigm the main drawback of "generate and test” is avoided, ie. to
repeatedly generate candidate solutions which are later rejected. Very often combinatorial
problems occur in optimization tasks. In order to cope with such combinatorial optimiza-
tion problems some constraint logic programming systems offer optimization strategies
based on branch & bound techniques.

However, for real-life problems the remaining search space which needs to be explored can
still be very large. Hence it is quite obvious to exploit the inherent parallelism of such
a search procedure. In such a way constraints and parallelism complement each other
perfectly. Constraints are pruning the search space a priori and parallelism is speeding up
the search of what remains. Combined with branch & bound techniques even super-linear
speedups can be observed. In terms of logic programming parallelism supporting search
is called OR-parallelism. The introduction of OR-parallelism into the constraint logic
programming framework is resulting in a parallel constraint logic system.

These were horizons with which the first parallel CLP system was conceived. It was called
ElipSys. The initial development of ElipSys was carried out within the ESPRIT project
EDS (European Declarative System) between 1989 and 1993. The goal of the EDS project
was to develop a large-scale parallel database server equipped with two declarative pro-
gramming languages, one based on LISP and one based on Prolog. ECRC was responsible
for the Prolog based system and developed the parallel CLP system ElipSys. ElipSys was
designed with the aim of providing a high level tool for the exploitation of the processing
power being delivered by the new generation of general purpose multi-processors, with
a particular focus on real-world and real-size problems in Operation Research and Arti-
ficial Intelligence. In this respect, it was conceived as a valid alternative to imperative
languages and their parallel extensions, since it relieves the programmer of the low-level

tactical concerns associated with parallel programming and allows him/her to concentrate
on the high-level strategic issues (eg. algorithm design). At the end of the EDS project
ElipSys was at a first stage of maturity as a practical parallel programming system and
it was available on various workstations and multiprocessors.

Initial feedback from users within the EDS project highlighted the need for further devel-
opment of the ElipSys environment. Since ElipSys was aimed at being a practical system
collaboration and understanding of users’ needs was crucial for its future effectiveness.
These were the motivations which lead to launch the ESPRIT project APPLAUSE (Ap-
plication & Assessment of Parallel Programming Using Logic). The initial platform on
which APPLAUSE was built was ElipSys. In the course of the project ECRC decided
to integrate its different logic programming systems into one leading edge system, called
ECLPS. In particular, ECL'PS® integrates the ElipSys technology and became the new
supporting platform for the APPLAUSE project.

The main objective of the APPLAUSE project was to support the emergence of parallel
CLP as a leading programming technology and its implementations ElipSys / ECL{PS®
as the corresponding programming systems by combining the efforts of the providers of
this important European technology with those of a set of end-users and application
developers well positioned in commercially important and challenging application areas.
The approach adopted in the APPLAUSE project, to achieve the objective of moving
parallel CLP to the market, was to build a number of credible demonstrations of its use.

For this purpose, the APPLAUSE project has selected three commercially important
generic classes of applications and within each of these classes it has developed exploitable
exemplars:

e Planning & Scheduling
e Decision Support

o Multi-Agent Systems

For Planning and Scheduling the project has built two major demonstrators for the Air-
craft and Space Industry. The first one enhancing an existing planning system for aircraft
production originally implemented in the sequential CLP system CHIP. The second appli-
cation is a planning system for constructing optimized curricula for the training of aircraft
pilots.

For Decision Support, the project addressed two different application domains: Molecular
Biology and Environmental Monitoring and Control. In the former, two application do-
mains have been considered. First, a system for protein sequencing and structure analysis
has been developed and second a system for Genetic Map Construction. In the area of
Environmental Monitoring and Control, a pilot application for the evaluation, simulation
and control of the pollution in the Venice Lagoon was developed.

For Multi-Agent Systems, the project focused on the Tourism industry. A tourist advisor
for Greece was conceived.

This report is structured into seven chapters. In this first chapter we will review the
main technological concepts and the underlying platforms of the APPLAUSE project.

The purpose of this chapter is provide enough insight to understand the technological
basis of this report. The second chapter contains a tutorial on parallelism and constraints
in ECL‘PS®. This is a tutorial for the working programmer on the ECL‘PS® parallel
constraint logic programming language. It assumes previous experience of ECL{PS¢, or
at least some version of Prolog, and introduces the parallelism and constraints features.
Further details can be found in the ECL'PS® User Manual [ECL95] and the ECL‘PS®
Extension User Manual [ECL94]. The remaining chapters contain descriptions of the

following APPLAUSE applications:

o PSAP: A Planning System for Aircraft Production;

o TCO: Training Curriculum Optimization;

Using Parallel CLP to Predict Protein Topology;

e A Decision Support System for the Venice Lagoon;

MaTourA: Multi-Agent Tourist Advisor.

2 The APPLAUSE Technology

The power of logic programming languages rests on three mechanisms: unification, re-
lational form and nondeterministic computation. Constraint logic programming
is contributing to all these aspects: it extends unification to constraint solving in new
constraint domains richer than the usual “Herbrand Universe”. It allows terms more
expressive than uninterpreted Herbrand terms to be handled, and it provides new com-
putation rules overcoming the limitations of chronological backtracking as used in logic
programming.

The CLP scheme has several advantages over traditional logic programming languages.
As far as programming convenience is concerned, it allows the programmer to reason
directly in terms of the intended domain of discourse instead of forcing the coding of
semantic objects in terms of a Herbrand universe. As far as efficiency is concerned, it
allows implementors to exploit the properties of the new computation domains in order
to devise efficient constraint-solving algorithms. Hence CLP combines the declarativeness
and flexibility of logic programming with the efficiency of conventional approaches.

One of the first CLP systems was CHIP [DVS*88b] developed at ECRC between 1986
and 1990. The CLP roots of the APPLAUSE technology are going back to this system.
CHIP was designed to tackle real world constrained search problems. It was based on
the concept of active use of constraints [Gal85], [Din86], [Van89a] and included three new
computation domains: finite domain restricted terms, boolean terms and linear rational
terms. For each of them CHIP used specialized constraint solving techniques: consistency
techniques for finite domains, equation solving in the boolean algebra and a symbolic
simplex-like algorithm for linear constraints. CHIP was already successfully applied to a
large number of industrial applications [DVSt88a]. Below the computation domains of

CHIP relevant to the APPLAUSE applications are introduced:

Finite Domains: The basic feature of CHIP for solving discrete combinatorial problems
is the ability to work on domain-variables, i.e. variables ranging over a finite set
of values (e.g., finite set of natural numbers). CHIP provides a large variety of
constraints on domain-variables:

o It can cope with arithmetic constraints such as equations, disequations and
inequalities over arithmetic terms constructed from natural numbers, domain-
variables over the natural numbers and the usual arithmetic operators.

o [t allows symbolic constraints on domain-variables to express logical or func-
tional relationships.

e [t also includes some extensions for finding solutions optimizing some evaluation
functions based on branch and bound techniques. These meta-predicates can
be used for solving combinatorial optimization problems.

All constraints are solved through consistency checking and constraint propagation
techniques, a powerful paradigm emerging from Al to solve discrete combinatorial
problems. The computational framework for integrating consistency techniques into
logic programming has been defined in [Van89a).

Rational Arithmetic: Rational terms are built from rational numbers, rational vari-
ables (i.e., variable ranging over rational numbers) and the following arithmetic op-
erators: addition, subtraction and multiplication by a constant (therefore restricted
to linear terms). Constraints allowed on rational terms are equations, inequalities,
and disequations. The constraint-solver is an adaptation of the simplex algorithm
based on variable elimination, and not on matrix manipulations. CHIP can be used
for deciding if a set of constraints is satisfiable or not, and for finding the most general
solution to a set of constraints optimizing a linear evaluation function [DVS*88b].

Other computation domains include boolean constraints [BS87], nonlinear arithmetic con-
straints [Hon92] and sets constraints [Ger94].

Several of the above mentioned techniques make use of a data-driven computation. More-
over CHIP offers a number of constructs to explicitly control the execution in a demon-
driven way. Most importantly CHIP contained a delay mechanism which enables corou-
tining in a demon-driven way.

One of the main limitations of such "traditional” constraint logic programming systems
is the limitation, that the users are bound to use the constraints offered by the systems.
During the last years an important research effort has been spent on developing new
concepts to support the user in writing his own constraints. Essentially three different
approaches following different philosophies have been proposed:

o low-level predicates and explicit programming of constraint propagation [MS92]
e constraint handling rules [Fru95]

e generalized propagation and approximate generalized propagation [LW93]

10

The field of CLP has been extensively reviewed during the last years. An informal in-
troduction to the different concepts mentioned above can be found in [FHK*92]. The
reader interested in a thorough technical review is referred to [JM94]. The concept of
finite domains which is the most important one for the APPLAUSE applications is also
introduced in the next chapter.

One of the main advantages of LP and CLP is that there is a great deal of implicit par-
allelism expressed in most programs. Essentially there are two sources of parallelism in
a logic program. Firstly two goals can be executed in parallel. In this case we speak
of AND-parallelism. In case the two goals are independent, ie. they do not share any
information, in other words they do not have any variables in common, we are exploiting
independent AND-parallelism otherwise it is dependent AND-parallelism. Secondly two
different alternatives of one goal can be explored concurrently. In this case we are ex-
ploiting OR-parallelism. In particular, OR-parallelism is most beneficial to search-based
applications. It was therefore natural to introduce OR-parallelism into the CLP framework

[Van89b)].

Ideally, the programmer should not have to think about the parallelism in his program at
all, but only think of what needs to be done sequentially. However, we are still quite far
from this ideal, though there has been considerable research into automatic parallelization.
In the current state of the art not all parallelization decisions can be made by the system,
and the best parallelizations are still found by humans. This was the main reason for
providing the user with the possibility to annotate the program, thus to giving the system
directives of which parts of the search tree to explore in parallel. A programmer typically
uses knowledge about the program to make an initial parallelization, and then measures
speedups associated with different parallelizations on a set of queries. But finding a good
parallelization of a program can be a difficult task. The tutorial in Chapter 2 gives hints
on how to tackle this task and the applications descriptions summarizes the experiences

made throughout the course of the APPLAUSE project.

In addition to annotating his program the programmer has a set of primitives at his
disposal which are providing efficient parallel versions of built-ins typically used in search
based programs. In combinatorial search problems very often a cost is associated to
each solution and the user is usually interested in finding a solution with an optimal
cost, that is one with the lowest possible cost. Most CLP systems provide functions for
optimization based on the branch and bound method as also mentioned above. In a
nutshell, branch and bound works by searching for a solution to the problem and then
adding a further constraint that any new solution must be better than the current best.
This strategy fits well with the standard backtracking search employed by most sequential
logic programming systems.

However, experiments have shown (partly carried out in the framework of APPLAUSE)
that the current approaches to parallelizing branch and bound in CLP are still not able to
solve many of the larger optimization problems in reasonable time spans (such as some very
complex job-shop scheduling problems). More recently a new application of parallelism
has been developed which is called cost-parallelism [PM95]. Cost-parallelism has been
combined with Or-parallelism to find optimal solutions more quickly than pure Or-parallel
branch and bound, and also find more accurate solutions within a given time frame. First
experiments with cost-based optimization in some of the APPLAUSE applications have
shown promising results.

11

OR-parallelism and constraints are complementary means to attack search based problems.
Because of the NP-completeness of the target problems, solutions cannot avoid search.
They should mainly rely on the effective modeling of the problem with the appropriate
data structures and constraints, so as to have as low a complexity as possible. Search is
used to explore the remaining cases which have not been excluded. OR-parallelism is then
a natural way to speed-up this phase of the computation. In other words, the computations
after the “don’t know point” inherent to the solving of NP-complete problems can be
naturally supported by “don’t know” parallelism, that is OR-parallelism.

3 The APPLAUSE Systems

In the following we will briefly introduce the initial APPLAUSE platform ElipSys and its
successor, the ECL'PS® system.

3.1 ElipSys

The general objective of the ElipSys [VSRLI3] project was the development of a technology
which enables the development and execution of portable high performance applications
dealing with wvery large search spaces. Being convinced that there is no single panacea
for parallel processing, ElipSys is targeted at a specific class of applications (large search
problems) running on general purpose parallel machines.

The ElipSys language has been designed to effectively support the development and exe-
cution of real-world search applications. The ElipSys language uses a logic-based notation
to describe search spaces. It uses constraints and parallel logic programming as two com-
plementary means to control the exploration of search spaces. Constraints are used to a
priori reduce the search space. Parallelism is used to explore the different alternatives in
parallel when a “don’t know” point in the search space is encountered.

From its CHIP [DVS*88b] ancestor ElipSys has inherited finite domains, built-in arith-
metic and symbolic constraints. It has been equipped with a flexible user level language
integrating in one environment finite domains, built-in arithmetic constraints, advanced
coroutining mechanisms and term manipulation primitives. While the first two items al-
low a CHIP programming style and expressive power, the last two make it possible to let
users develop at user-level additional constraints or add new-inference rules.

The ElipSys language is equipped with an annotation which enables the programmer to
express where the search tree described by the program can be traversed in parallel. The
annotation is a conservative hint to the underlying parallel system which is free to exploit
it or not. No splitting can occur if no annotation is present. In addition ElipSys provides
specialized primitives for the parallel enumeration of finite domains.

ElipSys is equipped with side-effects and cut to support the sequential Prolog-style code
which typically surrounds a pure constraint logic programming piece of search code (which
can use parallel execution) in real-world applications. During the parallel execution of the
search-based core of the application, cuts behave like cavalier cuts. Side-effects are fully
asynchronous. In the same spirit, collecting predicates such as bagof/3 and the like do not

12

behave as in a sequential system and gather solutions in the order in which the system

finds them.

Many combinatorial problems involve the optimization of one criteria. Optimization con-
structs are higher-order predicates which receive a goal and a cost function as arguments.
ElipSys offers optimization predicates well-integrated into the parallel constraint environ-
ment.

Execution models for OR-parallel logic programming have been studied extensively. The
various proposals differ in binding environment, scheduling, and pruning. Most execution
models are targeted at either a shared store machine or a distributed store machine. The
ElipSys execution model should however enable efficient implementations on both kinds
of parallel machines.

There are basically three different options for the binding environment: sharing, copying,
and recomputation. ElipSys uses a shared binding environment based on binding arrays.
Scheduling and pruning involve synchronization and fine grain data transfer. ElipSys has
therefore a message based scheduler. The dictionary and code are seldomly updated and
are easy and efficient to implement with shared memory. On distributed store machines
the ElipSys system relied on the existence of virtual shared memory.

3.2 ECLPS¢

During the course of the APPLAUSE project ECRC launched its ECL‘PS® project. It
aims brings together the experience in designing and developing logic programming system
that ECRC has gained during its 10 years of existence. A wide range of systems closely or
loosely related to the logic programming paradigm have been studied, implemented and
experimented with. To mention a few highlights:

o Efficient implementation of LP systems; incremental compilers; stable and robust
product-quality systems; development of sophisticated programming environments,
e.g. debugging support and graphical interfaces

e Extensions of logic programming, in particular constraint programming and object-
oriented programming; rapid prototyping and efficient implementation of such ex-
tensions; both application-driven and research-based extensions were experimented
with.

o Deductive databases, complementing relational database technology with deductive
capabilities; manipulation, storage and retrieval of complex structures in a database
context.

e Exploitation of parallel platforms for efficient execution of constraint search prob-
lems.

The core of the ECL'PS® system is based on SEPIA, an efficient product-quality Prolog
system which was designed as an efficient support for various LP extensions. It comprises
a large set of features that allow new extensions and systems to be efficiently implemented
and interfaced.

13

The database component of ECL'PS® has been taken from the Megalog system. Mega-
Log’s database subsystem has been directly interfaced to ECL'PS¢. Currently ECL'PS®
is used as the technological basis for ECRC’s contribution to the ESPRIT project IDEA.

The constraint component of ECLIPS® is based on the CHIP technology. However, the
architecture of the constraint component has been completely redesigned to support the
easy integration of new constraint solvers and constraint systems.

Finally ECL‘PS integrates the parallel technology of the ElipSys system. Thus the Elip-
Sys users, in particular those in APPLAUSE, benefited from the rich constraint libraries
offered in ECL'PS®. It should be mentioned that using ElipSys the TCO application would
not have been possible.

The Constraint System of ECL'PS®

Two major requirements influenced the Constraint System of ECL'PS®. First it had to
be backward compatible with the original CHIP and ElipSys systems to support the ap-
plication development which was carried out in the framework of the ESPRIT projects
CHIC and APPLAUSE. Second it had to support and integrate the novel research proto-
types developed at ECRC within the CHIC project. It became quickly clear that it was
beyond the capabilities of the existing systems to satisfy such divers needs in terms of
functionality, extensibility and flexibility.

The main contribution of ECL'PS® in the area of CLP architecture is the design and
implementation of its novel generic constraint interface capable of supporting the require-
ments coming from both applications and research. This constraint interface rests on two
fundamental concepts:

e metaterms and

® suspensions

Metaterms are a generic means to program rich data structures, eg. those required to
implement new computation domains of constraint logic programming languages. The
second concept, ie. suspensions, is a generalization of a well-known mechanism in logic
programming to overcome the left-to-right depth-first computation rule of Prolog-like
languages. Its main purpose is to provide a high-level interface to program constrained
search techniques.

The constraint interface is now fully integrated into the ECL!PS® system providing a
uniform high-level interface for the development of the different constraint extensions.
These constraint extensions are implemented in the ECL!PS® language itself as libraries.
The interoperability of these libraries, a major problem for other constraint systems, is
automatically guaranteed. ECL!PS® now provides the following constraint libraries:

e finite domains

e linear rational arithmetic

14

e set constraints
o generalized propagation

e constraint handling rules

The sequential architecture of the ECL'PS®system is sketched in figure 3.1.

CHR= Gen. Pop.

Applications

Finite Domains Ratiorals Sets

Constraint Interface

Froolog Machine (EEFIN)

HMNG File Syetem (Meqnaloq)

Figure 3.1: Sequential architecture of ECL'PS®

Parallel ECL'PS¢

Parallel ECLPS® is an extension of the current sequential ECL{PS® system exploiting OR-
parallelism. It replaces ElipSys and hence had to support existing ElipSys applications.
The main criteria used in the design were the following:

1. Execution Platforms: The system should execute efficiently on a wide variety of
platforms, from true shared-memory multiprocessors to a network of heterogeneous
workstations. The main implication of this criteria is that the design cannot make
any assumptions about the availability of shared memory and even virtual shared
memory.

2. ElipSys Integration: The system should incorporate ElipSys features, such as
optimized constraints handling and visualization tools which have proven to be very
useful to end-users.

3. Modular Design : The sequential engine should be modified as little as possible
so as to retain its efficiency and functionality in a parallel setting.

Given the above requirements it became quickly clear that parallel ECL‘PS® had to deviate
from the binding array scheme of ElipSys, since this would have required major changes
to the existing sequential system. In addition, efficient implementation of the binding

15

arrays scheme will require support for virtual shared memory which is not available on all
parallel platforms.

A realistic scenoario of a common computing environment in the near future is a network
of workstations where some or all workstations are multi-processors with a small number
(2 - 8) of CPUs. Based on the results of a first protoype for parallel CLP [MS94] on such
a network of heterogeneous workstations, it was decided that ECL'PS® will use a hybrid
scheme:

o [t is using stack-copying when sharing work between processes on the same machine,
ie. for shared multi-processor machines Parallel ECLiPS¢ is built on top of copying
scheme.

o However, when sharing work across machines Parallel ECL‘PS€ is using a recompu-
tation model, as it turned out that it is cheaper to recompute than to communicate.

The idea of such a hybrid copying/recomputation scheme is illustrated in figure 3.2. The
dashed line around the engine processes E on the multiprocessor indicates that they share
some state. (such as global dictionaries).

—
l
_

Network

---------- |

Multiprocessor Workstation

Figure 3.2: Hybrid Model

The main issue in such a system is scheduler, which has to coordinate the concurrent
activities of the engines so that parallel CLP applications are run correct and fast. It also
has to decide on the fly whether stack-copying or recomputation is the most appropriate
mechanism. The ECL!PS® scheduler is dsitributed across the different nodes of the network
and based on the concept of message passing.

Finally Parallel ECLiPS® offers a very flexible worker management. It is possible to add
and remove resources during long running applications.

The first release of Parallel ECLPS® has been at the beginning of 1995. It provided
ECL‘PS® on shared memory machines. First target platforms were the multiprocessors of
SUN and the ICL DRS 6000. Parallel ECL'PS® for distributed memory is currently under

development.

The ECLiPSe system has been licensed to around 250 institutions including both industrial
and academic sites. More information concerning ECL!PS® can be found on WWW under
the URL: http://www.ecrc.de/eclipse/eclipse.html.

16

Chapter 2.

A Tutorial on Parallelism and Con-
straints in ECL'PSe¢

Steven Prestwich

17

1 Introduction

Logic programming has the well-known advantages of ease of programming (because of its
high level of abstraction) and clarity (because of its logical semantics). The main draw-
back is its slow execution times compared to those of conventional, imperative languages.
In recent years, research has produced various extensions which make such systems com-
petitive.

ECLPS®, the ECRC Prolog platform, is a logic programming system with several exten-
sions. Two of these extensions are targeted at problems with large search spaces; these
are constraint handling and parallelism. Constraints are used to prune search spaces,
whereas parallelism exploits parallel or distributed machines to search large spaces more
quickly. These complementary techniques can be used separately or combined to obtain
clear, concise and efficient programs. These extensions originated in other ECRC systems:
constraint handling came from CHIP and the parallelism from ElipSys, both with some
changes.

This tutorial is adapted and extended from a similar tutorial for ElipSys [Pre93a]. It pro-
vides some general principles on how to make the best use of parallelism and constraints.
It is intended as an introduction for the working programmer, and does not contain details
of all the built-in predicates available. These details can be found in the Manuals.

1.1 How to read this tutorial

If you are just interested in OR-parallelism then go directly to Section 2, which is self-
contained. This is the most important form of parallelism in ECL'PS®. If you are just
interested in AND-parallelism then read Section 2 followed by Section 3, because 2 contains
information necessary to understand 3. When you are ready to test OR- or AND- parallel
programs for performance, Appendix 5 describes how to handle timing variations when
calculating parallel speedups, and includes a note on speedup curves. If you are just
interested in constraints then jump to Section 4 which is self contained, except for Section
4.5 which links the ideas of constraints and parallelism. If you are interested in all aspects
of parallelism and constraints, then just read the sections in order.

2 OR-Parallelism

Many programming tasks can be naturally split into two or more independent subtasks.
If these subtasks can be executed in parallel on different processors, much greater speeds
can be achieved. Parallel hardware is becoming cheaper and more widely available, but
programming these machines can be much more difficult than programming sequential
machines. Using conventional, imperative languages may involve the programmer in a
great deal of low-level detail such as communication, load balancing etc. This difficulty in
exploiting the hardware is sometimes called the programming bottleneck. ECL!PSavoids
this bottleneck. It exploits parallel hardware in an almost transparent way, with the
system taking most of the low-level decisions. However, there are still certain programming
decisions to be made regarding parallelism, and this tutorial gives some practical hints on

18

how to make these decisions. In the future even greater transparency will be achieved as
analysis and transformation tools are developed.

2.1 How to use it

First, we must tell ECLPS®how many processors to allocate for the program. One way to
do this is to specify the number of workers when parallel ECL‘PS¢is called. For example

peclipse -w 3

calls parallel ECL'PS¢with 3 workers. If no number of workers is specified, ECL‘PS¢will
simply run sequentially with the default of 1 worker. Other ways of changing the number
of workers are described in [ECL95, ECL94].

Note: For the purpose of this tutorial we shall assume that a worker and a processor
are the same thing, though there is a subtle difference: it is possible to specify a greater
number of workers than there are processors, in which case ECL'PSwill simulate extra
processors. Simulated parallelism is useful for some search algorithms, as it causes the
program to search in a more “breadth-first” way. However, it does add an overhead and
uses more memory, so it should only be used when necessary.

As a simple example, here is part of a program:

p(X) - p1(X).
p(X) - p2(X).

In a standard Prolog execution, a call to p will first enumerate the answers to p1, then on
backtracking those of p2.

We can tell ECLiPSto try p1 and p2 in parallel instead of by backtracking simply by
inserting a declaration

:- parallel p/1.

p(X) - p1(X).
p(X) - p2(X).

The set of answers for p will still be the same in parallel as in the backtracking computation,
though possibly in a different order.

For convenience, some built-in predicates have been pre-defined as OR-parallel in the
library par_util. For example par_member/2 is an OR-parallel version of the list mem-
bership predicate member/2. Before defining new parallel predicates it is worth checking
whether they already exist in the library.

2.2 How 1t works

The computation of p splits into two (or more if there are more p clauses) parallel
computations which may be executed on separate workers if any are available, and if

19

ECL‘PS¢decides to do so — these decisions are made automatically by the ECL'PS°task
scheduler, and need not concern the programmer.

Continuations

Not only will p1 and p2 be computed in parallel, but also any calls occurring after p in
the computation. This part of the computation is called the continuation of the p call.

For example, if p is called from another predicate:

q(X,Y) - r(X), s(X), t(V).
s(X) - u(X), p(X), v(X).

:- parallel p/1.

p(X) - p1(X).
p(X) - p2(X).
then p(X) has two alternative continuations in a computation of :- q(£(4),Y):

pl(£(A)), v(£(A)), t(¥)
p2(£(A)), v(£(A)), t(¥)

and it is these processes which will be assigned to separate workers. The idea of a contin-
uation plays a large part in deciding where to use OR-parallelism.

2.3 When to use it

When should we declare predicates as OR-parallel? It may appear that all predicates
with more than one clause should be parallel, but this is wrong. In this section we discuss
why it is wrong, indicate possible pitfalls, and consider the effects of OR-parallelism on
execution times.

Non-deterministic calls

Since a parallel declaration tells the system that the clauses of the predicate should be tried
in parallel, clearly only predicates with more than one clause are candidates. Furthermore,
deterministic predicates should not be parallel, that is those whose calls only ever match
one clause at runtime. For example, the standard list append predicate:

append ([],A,4).
append([A|B],C,[AID]) :- append(B,C,D).

20

q:= ... pX)
:- parallel p/1.

p(X) :- guardi(X), !'.
p(X) :- guard2(X), !'.
p(X) :- guard3(X), !'.

Figure 2.1: A simple predicate with commit

is commonly called with its first argument bound to concatenate two lists. Only one
clause will match any such call, and there is no point in making append parallel. If
append is called in other modes, for example with only its third argument bound, then it
is nondeterministic and may be worth parallelising.

Side effects

Only predicates whose solution order is unimportant should be parallel. An example of a
predicate whose solution order may be important is

p :- generatel(X), write(X).
p :- generate2(X), write(X).
p :- generate3(X), write(X).

where generate{1,2,3} generate values for X non-deterministically. If p is parallelised
then the order of write’s may change. In fact any side effects in the continuation of a
parallel call may occur in a different order. This may or may not be important, only the
programmer can decide.

Even if solution order is unimportant, it is recommended that any predicates with side
effects such as read, write or setval are only used in sequential parts of the program, oth-
erwise the performance of the system may be degraded. The OR-parallelism of ECL!PS¢is
really designed to be used for pure search. If parallel solutions are to be collected then
there are built-in predicates like findall which should be used.

The commit operator

When the cut ! is used in parallel predicates, it has a slightly different meaning than in
normal (sequential) predicates. When used in parallel in ECL'PSit is called the commit
operator. Its meaning can be explained using examples.

First consider Figure 2.1. The “guards” execute in parallel, and as soon as one finds a
solution the commit operator aborts the other two guards. Only the continuation of the
successful guard survives.

This simple example can be written in another way using the once meta-predicate, as in
Figure 2.2. This is a matter of preferred style.

21

q := ... once(p(X))
:- parallel p/1.

p(X) :- guardi(X).
p(X) :- guard2(X).
p(X) :- guard3(X).

Figure 2.2: Replacing commits by “once” in a simple parallel predicate

q:= ... pX)
:- parallel p/1.

p(X) :- guardi(X), ', bodyl(X).
p(X) :- guard2(X), ', body2(X).
p(X) :- guard3(X), ', body3(X).

Figure 2.3: A less simple predicate with commit

In the more general case there may be calls after the commits, as in Figure 2.3. The
commit has exactly the same effect as before, with the body calls at the start of the
parallel continuations. By the way, this example cannot be rewritten using once without
a little program restructuring, because of the body calls.

Some predicates may have an empty guard, corresponding to (for example) the “else” in
Pascal. An exampleis shown in Figure 2.4 The meaning of this predicate is “if guard1 then
bodyl, else if guard2 then body2, else body3”. This must not be parallelised simply by
adding a declaration, because the empty guard may change the meaning of the program
when executed in parallel. The reason is that if we make p parallel then we may get
body3 succeeding followed by (guardl, !, bodyl) or (guard2, !, body2) giving more
solutions for p than in backtracking mode.

It is safer to use commits in each of the p clauses and to introduce a new guard, as in
Figure 2.5. This is now safe, but at the expense of introducing extra work (the negated
guards in the third clause). A safe and efficient method, though slightly more complicated,
is shown in Figure 2.6 where we split the definition of p into parallel and sequential parts.

p(X) :- guardi(X), ', bodyl(X).
p(X) :- guard2(X), ', body2(X).
p(X) :- body3(X) .

Figure 2.4: A typical sequential predicate with empty guard

22

p(X) :- guard1(X), !, body1(X).
p(X) :- guard2(X), !, body2(X).
p(X) :- not guard1(X), not guard2(X), !, body3(X).

Figure 2.5: Handling empty guards when parallelising

p(X)
p(X)

guards(X,N), !, bodiesl_and_2(N,X).
body3(X) .

:- parallel guards/2.

guards(X,1) :- guardi(X).
guards(X,2) :- guard2(X).

bodies_1_and_2(1,X) :- body1(X).
bodies_1_and_2(2,X) :- body2(X).

Figure 2.6: Another way of handling empty guards when parallelising

Parallelisation overhead

Even if a program is safely parallelised it may not be worthwhile making a predicate
parallel. For example, in a Quick Sort program there is typically a partition predicate
as shown in Figure 2.7. Although for most calls to partition both clauses 2 and 3 will
match, one of them will fail almost immediately because of the comparison H<D or H>=D.
There is no point in making partition parallel because the overhead of starting a parallel
process will greatly outweigh the small advantage of making the comparisons in parallel.

To express the fact that the overhead of spawning parallel processes is equivalent to
a significant computation (depending upon the hardware, perhaps as much as several
hundred resolution steps) we say that ECL'PS®supports coarse-grained parallelism.
The grain size of a parallel task refers to the cost of its computation, roughly equivalent
to its cpu time. Only computations with grain size at least as large as this overhead are
worth executing in parallel, in fact the grain size should be much larger than the overhead.
Computations which are not coarse-grained are called fine-grained.

Estimating grain sizes is usually not as obvious as in the Quick Sort example. In fact it
is the most difficult aspect of using OR-parallelism, and we therefore spend some time

partition([l,_,[1,[1).
partition([H|T],D, [H|S],B) :- H<D, partition(T,D,S,B).
partition([H|T],D,S,[HIB]) :- H>=D, partition(T,D,S,B).

Figure 2.7: Quick Sort partitioning predicate

23

process_value :-
value(X),
process(X).

value(1).
value(2).

value(n).

Figure 2.8: Grain size estimation

discussing it. In the context of OR-parallelism, a parallel task is a continuation, and so
when we refer to the grain size of a parallel predicate call we mean the time taken to
execute that call plus its continuation. To illustrate this, consider the program in Figure
2.8, where process (X) performs some computation using the value of X. Now the question
is, should value be parallel? The answer depends upon the computations of the various
process calls since the value calls are fine-grained. We now discuss this question in some
detail.

Grain size for all solutions

Say that we require all solutions of process_value. In a backtracking computation the
total time to execute process_value is approximately

ti+...+1,

where t; = time(process(i)). In an OR-parallel computation (assuming sufficient workers
are available) the total computation time is approximately

kE+ maximum(ty...t,)

where k is the overhead of starting a parallel process, which is machine and implementation
dependent. As can be seen from the formulae, if process has

e no expensive calls then k becomes significant, and the backtracking computation is
faster;

e one expensive call then the sequential and parallel cases will take about the same
time;

e two or more expensive calls then k is insignificant and the parallel computation is
faster.

The programmer must try to ensure that at least two continuations have significant cost.

24

one_process_value :-
value(X),
process1(X),

|
L)

process2(X) .
:- parallel value/1.

value(1).
value(2).

value(n).

Figure 2.9: Grain size estimation and an obvious commit

Grain size for one solution

Say that we only require process_value to succeed once. In a backtracking computation
the time will be
ti+ ...+ 1

where s is the number of the first succeeding process(s). In a parallel computation the
time will be
kE+ minimum(ty...t,)

Now the parallel computation is only cheaper if there are one or more values of 1 < s for
which process(i) is expensive.

Grain size and pruning operators

Pruning operators such as the commit may affect estimates of the grain size of a con-
tinuation. Consider the program in Figure 2.9. Here n processes will be spawned with
continuations

processi(l), !, process2(1).

processi(n), !, process2(n).

As soon as processl on one worker succeeds, all the other workers will abandon their
computations. Hence the actual grain size of any continuation of an OR-parallel call is
no greater than that of the cheapest process before pruning occurs. Of course, it may be
smaller than this if failure occurs before the pruning operator is reached.

In fact, we must consider the effects of commits in any predicate which calls a parallel
predicate, even indirectly. For example, see the program in Figure 2.10. Since p1 contains
a commit which prunes p2, and p2 calls value (indirectly), we only need to estimate the
grain size of the continuation up to the commit, that is the grain size of

25

pl :- p2, !.
p2 :- process_value, p3.
process_value :-

value(X),
process(X),

Figure 2.10: Grain size estimation and a less obvious commit

delay expensive_process(A) if nonground(A).

p :- expensive_process(X), process, X=0.
process :- cheap_processl.
process :- cheap_process2.

Figure 2.11: Grain size estimation and coroutining, first example

process(X), p3

The same holds for any pruning operator, including once/1, not/1 and -> (if-then-else)
because these contain implicit commits. When we talk about a continuation for an OR-
parallel call in future, we shall mean the continuation up to the first pruning operator.

Grain size and coroutining

When estimating the grain size of a continuation, we must take into account any suspended
calls which may be woken during the computation. For example, consider the program in
Figure 2.11. When deciding whether to parallelise process we estimate the grain sizes of

cheap_processl, X=0
cheap_process2, X=0

These appear to be cheap, but at runtime X=0 wakes expensive_process and so it is
effectively expensive.
On the other hand, given the program in Figure 2.12, it appears that process has two

expensive continuations

cheap_processli, expensive_process(X)
cheap_process2, expensive_process(X)

before the commit occurs, but this is deceptive because expensive_process is not woken
until after the commit.

26

delay expensive_process(A) if nonground(A).

p :- process, expensive_process(X), !, X=0.
process :- cheap_processl.
process :- cheap_process2.

Figure 2.12: Grain size estimation and coroutining, second example

berghel :-
word(A1,A2,A3,A4 ,A5), % column
word(A1,B1,C1,D1,E1), % row
word(B1,B2,B3,B4,B5), % column
word(A2,B2,C2,D2,E2), % row
word(C1,C2,C3,C4,C5), % column
word(A3,B3,C3,D3,E3), % row
word(D1,D2,D3,D4,D5), % column
word(A4,B4,C4,D4 ,E4), % row
word(E1,E2,E3,E4,E5), % column
word(A5,B5,C5,D5,E5) . % row

Or O W DWW NN -

word(a,a,r,o,n).
word(a,b,a,s,e).
word(a,b,b,a,s).

Figure 2.13: Sequential Berghel program

Parallelisation of predicates

So far we have discussed when it is worthwhile making a call OR-parallel. However, in
ECL'PS¢we parallelise calls indirectly by deciding whether to declare a predicate parallel or
not. To do this, the programmer must consider the most important calls to the predicate,
that is the calls which have greatest effect on the total computation. If they would be
faster in parallel then the predicate should be declared as parallel. For some predicates
this may be easy to see but others may be called in many different ways.

For example consider the Berghel problem. We are given a dictionary of 134 words each
with 5 letters. We must choose 10 of them which can be placed in a 5 x 5 grid. The
program is shown in Figure 2.13. Is it worth making word parallel?

We must consider grain sizes. During the computation of berghel there will be many
calls to word, with all, some or none of the arguments bound to a letter. The grain size
will depend partly upon how many letters are bound. It will also depend upon the bound
letters themselves, for example binding an argument to a z will almost certainly prune
the search more than binding it to an a. Another factor is the continuation of each call.

27

The continuation of the fifth call is

word (A3,B3,C3,D3,E3),
word(D1,D2,D3,D4,D5),
word (A4,B4,C4,D4,E4),
word(E1,E2,E3,E4,E5),
word (A5,B5,C5,D5,E5)

whereas that of the eighth call is only

word(E1,E2,E3,E4,E5),
word (A5,B5,C5,D5,E5)

The cheaper calls may be slower when called in parallel and the more expensive calls
faster.

The result of parallelising word is the net result of all these effects, which can best be
estimated by experimentation (trace visualisation and profiling tools, when available, can
help greatly).

Parallelisation of calls

We can make more selective use of OR-parallelism by parallelising only some calls. In the
Berghel example, if we keep word sequential and add a new parallel version as in Figure
2.14 then we can experiment by replacing various calls to word by calls to parword. The
question is, which calls should be parallel?

Running this program on a SUN SPARCstation 10 model 51 with 4 CPU’s it turns out
that the best result (a speedup of about 3.3) is obtained when all the calls are parallel
— in other words, simply declaring word parallel. However, this may not be true for all
machines and all numbers of workers. This example behaves differently in experiments
with ElipSys on a Sequent Symmetry with 10 workers, and we conjecture that similar
effects will be observed in ECL!PS®with more workers, or on parallel machines with faster
cpu’s. With all word calls parallel we get a speedup of 6.7, but if we only parallelise the
first 2 calls as in Figure 2.14 we obtain an almost linear speedup of 9.7. So in some cases
it is worth a little experimentation and programming effort to selectively parallelise calls.

In this example we chose between the parallel and sequential versions according to a static
test: the position of the call in a clause. The choice could also be based on a dynamic
property such as instantiation patterns.

Partial parallelisation

Recall that it is worth parallelising a predicate if (for most of its calls) there are at least
two clauses leading to large-grained continuations. If we can predict which of the clauses
may lead to such continuations then we can extract them from the predicate definition,
and avoid spawning small-grained parallel processes.

28

berghel :

parword (A1,A2,A3,A4,A5),
parword(A1,B1,C1,D1,E1),
word(B1,B2,B3,B4,B5),
word(A2,B2,C2,D2,E2),
word(C1,C2,C3,C4,C5),
word(A3,B3,C3,D3,E3),
word(D1,D2,D3,D4,D5),
word(A4,B4,C4,D4 ,E4),
word(E1,E2,E3,E4,E5),
word(A5,B5,C5,D5,E5) .

:- parallel parword/5.

parword(a,a,r,o,n).

parword(a,b,a,s,e).
parword(a,b,b,a,s).

process_value :-
value(X),
process(X).

value(1).
value(2).
value(3).
value(4).

% leads
% leads
% leads
% leads

Figure 2.14: Parallelising selected calls

to
to
to
to

cheap process
expensive process
cheap process
expensive process

Figure 2.15: A program worth partially parallelising

29

process_value :-
value(X),
process(X).

value(X) :- valuel13(X).
value(X) :- value24(X).

valuel13(1).
valuel3(3).

:- parallel value24/1.

value24(2).
value24(4).

Figure 2.16: Partially parallelised version

p(X) :- q(X), new(X), r(X).
:- parallel new/1.

new(X) :- a(X).
new(X) :- b(X).

Figure 2.17: Parallelised disjunction

For example, consider the sequential program in Figure 2.15. If we know that process (1)
is small-grained for i = {1, 3} but large-grained for i = {2,4} then it is best to decompose
value into backtracking and parallel parts, as shown in the parallel program of Figure
2.16. Then values 1,3 are handled by backtracking while values 2,4 are handled in parallel.

Parallelisation of disjunctions

ECL'PS®(in common with most Prolog dialects) allows the use of disjunctions in a clause
body. For example,

p(X) :- qX), (aX); b(X)), rX).

It may be worthwhile calling a and b in OR-parallel mode if a, r and b, r (plus any
continuation of p) have sufficiently large grain. The use of disjunction is really a notational
convenience, and may hide potential parallelism. Of course it would be possible to add a
parallel disjunction operator to ECL!PS®, but this is unnecessary because we can instead
make a new, parallel definition as shown in Figure 2.17.

30

;- worker(2).

p(X) :- ascending(X),
p(X) :- descending(X).

Figure 2.18: Ascending-descending example

Speedup

Assuming we have OR-parallelised a program well, what speedup can we expect? The
answer depends on whether we want all solutions to a call or just one.

Speedup for all solutions When parallelising a predicate, we often hope for linear
speedup. That is, if we have N workers then we want queries to run N times faster. Because
of the overhead of spawning parallel processes we usually obtain sublinear speedup, though
with fine tuning we may approach linearity.

Consider the program shown in Figure 2.18 where ascending(X) has answers
X=1, X=2, ... X=1000

descending(X) has answers
X=1000, ... X=2, X=1

and both ascending(X) and descending(X) take time ¢ to find each successive answer
(where t is much greater than the parallel overhead k).

With 2 workers the time taken to find all solutions for p is 2000¢ with p sequential, but
1000t + £ with p parallel: almost linear speedup.

Speedup for one solution However, when using a predicate to find one solution, we
generally find little relationship between execution times in backtracking and OR-parallel
modes, except when averaged over many queries. This is because solutions may not be
distributed evenly over the search space.

The time to find one solution for the query p(X), X=1000 is 1000¢ with p sequential (999
failing calls followed by 1 succeeding call to ascending), but ¢ + k with p parallel (an
immediately succeeding call to descending). This is a speedup of almost 1000 using only
2 workers: very superlinear speedup.

On the other hand, the time to find one solution for the query p(X), X=1 is ¢t with p
sequential and ¢ 4+ k& with p parallel: no speedup at all.

This shows that for single-solution queries the difference between superlinear speedup and
no speedup may depend only on the query.

31

2.4 Summary

The best use will be made of OR-parallelism if the programmer keeps it in mind from the
start. However, a program written for sequential ECLiPS¢can be parallelised using the
principles outlined in this section. Here is a summary of the principles.

o Look for predicates which are worth declaring as OR-parallel. When deciding this,
all runtime calls to the predicate must be considered. If all, or almost all, calls to
a predicate would be faster in OR-parallel, and if it is always safe to do so, then it
is worth declaring the predicate as parallel. If it is sometimes worth calling in OR-
parallel and sometimes not (but always safe), then a useful technique is to make a
parallel and a sequential definition of the predicate and use them where appropriate.

o A call is unsafe in OR-parallel if it has side effects in any of its continuations, or if
it has commits in some but not all of its clauses.

e A call is (probably) faster in OR-parallel if it has at least two expensive continu-
ations. A continuation should only be considered up to the first commit or other
pruning operator which affects it, and taking into account any suspended calls.

o To further refine a program, look for parallel predicates with some clauses which do
not have expensive continuations, then isolate the useful clauses in a new parallel
definition. Also look for disjunctions in clause bodies which may hide parallelism,
and replace these by calls to new parallel predicates.

e The once operator is sometimes stylistically preferable to the use of commits in
parallel predicates.

However, these principles do not guarantee the best speedups. In [Pre93b, Pre94c| we
described various ways in which (for example) two parallel declarations could combine
to give a poor speedup, even though each alone gave a good speedup. We also showed
that improving a parallel predicate may have a good, bad or no effect on overall speedup.
Effects like these make tuning a parallel program rather harder than tuning a sequential
one. Note that they are not ECL'PS°bugs and will occur in many parallel programs.
They may be more obvious in ECL'PS®since parallelisation of logic programs is very easy.
The significance of these effects is that they make it hard to recommend a good general
strategy. Probably the best approach is common sense based on knowledge of the program,
plus the use of available programming tools. ECL‘PS°will soon have at least one trace
visualisation tool to aid parallelisation.

3 Independent AND-parallelism

As well as OR-parallelism ECL!PS¢supports independent AND-parallelism, which is used
in quite different circumstances. AND-parallelism replaces the left-to-right computation
rule of Prolog by calling two or more calls in parallel and then collecting the results.
Dependent AND-parallelism is rather different, and is outside the scope of this tutorial.

32

p(X) :- qX), r(X).

qa). r(c).
q(b). r(d).
qle). r(e).

Figure 3.1: Simple AND-parallelism example

3.1 How to use it

As with OR-parallelism, we need to tell ECL'PShow many workers to allocate. Then we
simply replace the usual “,” conjunction operator by a parallel operator “&”; for example
replace

p(X) - q(X), rX).
by
p(X) - qX) & r(X).

More than two calls can be connected by &.

For convenience there is a built-in predicate which can be used to map one list to another.
This is maplist, and it applies a specified predicate to each member in AND-parallel.
See [ECL95, ECLI4] for details.

3.2 How 1t works

As an example (which is not to be taken as a useful candidate for AND-parallelism, but
only as an illustration), consider the program in Figure 3.1. In standard Prolog, given
a query :-p(X), q is first solved to return the answer X=a then r is called, fails, and
backtracking occurs. The next solution to q is X=b and again r fails. For the next solution
X=c, r succeeds. On backtracking no more solutions are found.

Now if we call g and r in AND-parallel:
p(X) - qX) & r(X).

what happens instead is that the solutions {X=a, X=b, X=c} of q and {X=c, X=d, X=e}
of r are collected independently using different workers, and then the results are merged
to give the consistent set {X=c}. This is clearly a rather different strategy for executing a
program, and in this section we discuss when it is better than the usual strategy.

As with OR-parallelism, it is not always true that different workers will be assigned to
AND-parallel calls, depending upon runtime availability. This need not concern the pro-
grammer.

33

3.3 When to use it

When should AND-parallelism be used? It may seem at first glance that it will always
be faster than the usual sequential strategy, but as often with parallelism this intuition is
wrong. In this section we discuss when to apply AND-parallelism.

Non-logical calls

It is sometimes incorrect to use AND-parallelism because of side effects and other non-
logical Prolog features. For example

p(X) :- generate(X), test(X).

test(X) :- X\==badterm, rest_of_test(X).

Here generate(X) binds X to some term, and test (X) performs some test on X, including
the non-logical test X\==badterm. Say that the answers to generate(X) are

{X=goodterml, X=goodterm2, X=badterm}
and the terms permitted by rest_of_test(X) are
{X=goodterml, X=badterm}

Then p has only one answer {X=goodterm1}

However, if we use AND-parallelism:
p(X) :- generate(X) & test(X).

then test (X) is first called with X unbound, and has answers
{X=goodterml, X=badterm}

Merging this with the answers for generate(X) we get more answers:
{X=goodterml, X=badterm}

which is incorrect. Examples can also be found where a program fails instead of generating
solutions.

34

Non-terminating calls
AND-parallel calls must terminate when called in any order. For example, given
p(L1,L2) :-
append ([LeftHead|LeftTail] ,Right,L1),
append (Right, [LeftHead |LeftTaill ,L2).
where append is the usual list append predicate. This program with a query
:-p([1,2,3],L2)
would give answers
{L2=[2,3,1], L2=[3,1,2], L2=[1,2,3]}
But if we use AND-parallelism:
p(L1,L2) :-
append ([LeftHead |LeftTail] ,Right,L1) &
append (Right, [LeftHead |LeftTaill ,L2).
then the call

append (Right, [LeftHead |LeftTaill ,L2)

will not terminate because Right is unbound.

Shared variables
Even if the calls can safely be executed in any order, it is not necessarily worth calling
them in AND-parallel. If the answers to one call restrict the answers to another call, then

this pruning effect may give greater speed than finding all the answers to both calls and
then merging the results.

For example consider
p(X) :- computel(X), compute2(X).
compute2(X) :- cheap_filter(X), compute3(X).
where computel (X) has the answers
{X=1, X=2, ... X=1000%}
and cheap_filter(X) allows the bindings

35

quicksort([Discriminant|List],Sorted) :-
partition(List,Discriminant,Smaller,Bigger),
quicksort(Smaller,SortedSmaller),
quicksort(Bigger,SortedBigger),
append (SortedSmaller, [Discriminant |SortedBigger],Sorted).

Figure 3.2: Sequential Quick Sort program
{X=1000, X=1001, ... X=1999}

Say compute3 performs some expensive computation on X. Now given a query :-p(X), X is
generated by computel(X) and cheap_filter quickly rejects all answers except X=1000,
so that compute3(X) is only called once. The total computation time for all solutions is
(ignoring the times of cheap_filter for simplicity)

time(computel(1))+ ...+ time(compute1(1000))+
time(compute3(1000))

If we use AND-parallelism instead:
p(X) :- computel(X) & compute2(X).

then compute2(X) is called with X unbound and compute3(X) is called 1000 times for
each permitted answer of cheap_filter (X). The total computation time for all solutions
is now (ignoring the parallelism overhead)

maximum(time(computel(1)) + ...+ time(compute1(1000)),
time(compute3(1000)) + ... + time(compute3(1999)))

Comparing the two times, it can be seen that the parallel time will be slower than the
sequential time if compute3 is more expensive than computel. By calling computel and
compute?2 independently we lose the pruning effect of computel on compute2. In fact, in
this example cheap_filter should not be used in independent AND-parallel, but as a
constraint or a delayed goal.

Parallelisation overhead

As with OR-parallelism, we must consider the overhead of creating parallel processes, and
only parallelise calls with large grain size. When estimating grain size for AND-parallelism
we do not need to consider continuations, only the grain size of the calls themselves. Also,
because of the way AND-parallelism is implemented we always estimate grain size for all
solutions, never for one solution.

Consider the Quick Sort program in Figure 3.2. For large lists Smaller and Bigger the
grain sizes of the recursive quicksort calls may be large enough to justify calling them
in parallel, as in Figure 3.3. Of course, as the input list is decomposed into smaller and
smaller sublists parallelisation becomes less worthwhile.

36

quicksort([Discriminant|List],Sorted) :-
partition(List,Discriminant,Smaller,Bigger),
quicksort(Smaller,SortedSmaller) &
quicksort(Bigger,SortedBigger),
append (SortedSmaller, [Discriminant |SortedBigger],Sorted).

Figure 3.3: AND-parallel Quick Sort program

quicksort([Discriminant|List],Sorted) :-
partition(List,Discriminant,Smaller,Bigger),
length(Smaller,SmallerLength),
length(Bigger,BiggerLength),

(SmallerLength>30,

BiggerLength>30 ->
quicksort(Smaller,SortedSmaller) &
quicksort(Bigger,SortedBigger)

; quicksort(Smaller,SortedSmaller),
quicksort(Bigger,SortedBigger)),

append (SortedSmaller, [Discriminant |SortedBigger],Sorted).

Figure 3.4: Conditional AND-parallel Quick Sort program

In fact Quick Sort is not a good example for ECL'PS®because it is more concerned with
OR-parallelism, and its implementation of AND-parallelism is not very sophisticated.
Since it collects all the results of two AND-parallel goals, there is an overhead which grows
as the sizes of the goal arguments grow. For the Quick Sort program, coarse-grained goals
also have large terms, and so it is probably never worthwhile using AND-parallelism. We
shall use Quick Sort for purposes of illustration and pretend that this overhead does not
exist, but the reader should be aware that goals should only be called in AND-parallel
when their arguments are not very large.

Conditional parallelisation

We can make more efficient use of AND-parallelism by introducing runtime tests. Say
that for a given number of workers, lists with length greater than 30 make parallelisation
worthwhile, while smaller lists cause fine-grained recursive calls which do not make it
worthwhile. Then we can write the program shown in Figure 3.4.

This can be further refined by making partition calculate the lengths of Smaller and
Bigger as they are constructed, to avoid the expensive calls to length. In fact, we should
be careful of introducing expensive runtime tests.

A point worth noting is that when estimating the grain size of a quicksort(L) call to
set the threshold (30 in this case) we should base the estimate on the version with the
runtime test. The version with the tests will have greater grain size for a given list length,

37

and so the threshold can be set lower, giving greater parallelism.

Speedup

It is possible to obtain superlinear speedup with AND-parallelism. For example, say
we have AND-parallel calls (a & b) where b fails immediately. Then a can be aborted
immediately. But if instead we had called (a, b) the failure of b would not be detected
until after a had completed, thus AND-parallelism may cause a large speedup. *

However, if none of the AND-parallel calls fails then the expected speedup is linear or
sublinear. Unlike OR-parallelism all solutions of AND-parallel calls are computed, and
so there is no difference between one-solution and all-solution queries. However, when
there are not enough workers available AND-parallel calls will be called using the same
worker, as already mentioned. This execution will be noticeably less efficient than a normal
sequential execution. Therefore AND-parallel calls need to have large grain size so that
the overhead is not significant.

3.4 Summary

A program written for sequential ECL'PS¢can be AND-parallelised using the principles
outlined in this section. Here is a summary of the principles.

e Look for conjunctions of calls which can be called in AND-parallel. First consider
whether they are safe in parallel. It is unsafe to AND-parallelise calls sharing vari-
ables which are used in non-logical calls such as var(X), X\==Y, setval(X,Y) and
read(X). It is also unsafe to AND-parallelise calls whose results depend upon the
order in which they are called.

o Next consider whether they will be faster in parallel than in sequence. Only ex-
pensive calls with small arguments are worth calling in parallel. Also, calls which
compete to bind some shared variable will probably be faster when called sequen-
tially. If a cheap way can be found to estimate the grain sizes of calls at runtime, then
this can be used in a runtime test to choose between sequential and AND-parallel
execution.

As with OR-parallelism, there is no strategy which always leads to the best speedups.
However, a common-sense approach works well in most cases.

4 Finite Domain constraint handling

Constraint handling can speed up search problems by several orders of magnitude, by
pruning the search space in the forward direction (a priori), in contrast to backtracking
search which prunes in the backward direction (a posteriori). Many difficult discrete

'However, at the time of writing ECL'PS®will not detect the failure of b in this example; it may in
future versions.

38

combinatorial problems can be solved using constraints which are beyond the reach of pure
logic programming systems. Such problems can of course be solved by special purpose
programs written in imperative languages such as Fortran, but this involves a great deal
of work and results in large programs which are hard to modify or extend. CLP programs
are much smaller, clearer and easier to experiment with. ECL‘PS°has incorporated a
number of constraint handling facilities for this purpose. For an overview on constraint
logic programming see [vH89], from which some of the examples below have been adapted.

We shall illustrate how to use the finite domains in ECL!PS®with a single example: the
overused but useful 8-queens problem.

4.1 Description of the 8-queens problem

Consider a typical combinatorial problem. We have several variables each of which can
take values from some finite domain. Choosing a value for any variable imposes restrictions
on the other variables. The problem is to find a consistent set of values for all the variables.

For example, consider the ubiquitous 8-queens problem. We have a chess board, 8 x 8
squares, and 8 queens, and we wish (for some reason) to place all these queens on the
board so that no queen attacks another. It is well known that there are 92 ways of doing
this.

Placing any queen on the board typically imposes new restrictions by attacking several
new squares: along the vertical, horizontal and two diagonal lines. It is possible to imagine
many strategies for placing the queens on the board. We now discuss some of these and
their expression in ECL/PSe.

4.2 Logic programming methods

Before describing how to use constraints, we give several versions without constraints.
These will help to illustrate the later versions and to contrast the two approaches.

Generate-and-test

The most obvious formulation is a purely generate-and-test program which places all the
queens on the board and then checks for consistency (no queen attacks another). This is
shown in Figure 4.1: permutation is a library predicate which generates every possible
permutation of the list [1,2,3,4,5,6,7,8] non-deterministically, and safe checks for
consistency. The first number in the list denotes the row of the first queen (in column 1),
the second number the row of the second queen (in column 2) and so on.

This is arguably the most natural program, but extremely inefficient.

39

eight_queens(Columns) :-
Columns = [_,_,_,_,_,_,_,_1,
Numbers = [1,2,3,4,5,6,7,8],
permutation(Columns,Numbers),

safe(Columns).

safe([]).

safe([Column|Columns]) :-
noattack(Column,Columns, 1),
safe(Columns).

noattack(Column, [],0ffset).
noattack(Column, [Number |Numbers] ,0ffset) :-
Column =\= Number - Offset,
Column =\= Number + Offset,
NewOffset is Offset + 1,
noattack(Column,Numbers,NewOffset).

Figure 4.1: 8-queens by generate-and-test

Test-and-generate

With a small change, the generate-and-test program can be made quite good. We simply
reverse the calls in the eight_queens clause and use coroutining to suspend the checks
until they can be made. This is shown in Figure 4.2. Now all the checks are set up initially
and suspended, and then the queens are placed one by one. Each time a queen is placed
the relevant checks are woken immediately, thus interleaving placements with checks. This
is closer to the way in which a human would proceed.

Standard backtracking

The next most obvious formulation is to explicitly interleave the consistency checks with
the placing of the queens. A typical such program is shown in Figure 4.3.

This is a fairly clear program, and more efficient than the previous program because it
has no coroutining overhead. But it is not the best available; in fact if we increase the
number of queens (and the size of the board) it becomes hopelessly inefficient.

Forward checking

The strategy can be improved by a technique called forward checking. Fach time we place
a queen, we immediately remove all attacked squares from the domains of the remaining
unplaced queens. The trick is that if any domain becomes empty we can immediately
backtrack, whereas in the previous program we would not backtrack until we tried to
place the later queen. All the useless steps in between are thus eliminated.

40

eight_queens(Columns) :-
______ R N
Numbers = [1,2,3,4,5,6,7,8],
safe(Columns),
permutation(Columns,Numbers) .

noattack(Column, [],0ffset).
noattack(Column, [Number |Numbers] ,0ffset) :-
check(Column,Number,0ffset),
NewOffset is Offset + 1,
noattack(Column,Numbers,NewOffset).

delay check(A,B,C) if nonground(A).
delay check(A,B,C) if nonground(B).
delay check(A,B,C) if nonground(C).

check(Column,Number,0ffset) :-
Column =\= Number - Offset,
Column =\= Number + Offset,

Figure 4.2: 8-queens by test-and-generate

eight_queens(Columns) :-
solve(Columns, [1,[1,2,3,4,5,6,7,8]).

solve([],_,[1).

solve([Column|Columns] ,Placed,Number) :-
delete(Column,Number,Numberi),
noattack(Column,Placed,1),
solve(Columns, [Column|Placed] ,Numberil) .

Figure 4.3: 8-queens by standard backtracking

41

eight_queens(Columns) :-
Columns :: 1 .. 8,
solve(Columns) .

solve([Column]) :-
indomain(Column) .
solve([Columnl,Column2|Columns]) :-
indomain(Columni),
noattack(Columnl, [Column2|Columns],1),
solve([Column?2|Columns]) .

noattack(Column, [],0ffset).

noattack(Columnl, [Column2|Columns] ,0ffset) :-
Columni ## Column2,
Columnil ## Column2 + Offset,
Columnil ## Column2 - Offset,
NewOffset is Offset+1,
noattack(Columnl,Columns,NewOffset) .

Figure 4.4: 8-queens by forward checking

A Prolog program using forward checking can be written, but we shall not show it here
because it is rather long. It maintains a list of possible squares for each queen, and every
time a queen is placed these lists must be reduced.

The program is indeed more efficient for a large number (larger than about 12) of queens,
but for fewer queens it is less efficient because of the overhead of explicitly handling the
variable domains. It is also considerably less clear than the previous program.

4.3 Constraint logic programming methods

We now come to constraint handling. We shall compare and contrast these methods with
the Prolog methods described above.

Forward checking

We can very easily write a forward checking program for 8-queens, as in Figure 4.4. The
built-in predicate is the ECL'PS¢disequality constraint.

This program looks similar to the standard backtracking program, but even simpler be-
cause the variable domains are not explicitly manipulated. Instead they are an implicit
property of the domain variables, set up by the call Columns :: 1 .. 8. The program
works in much the same way as the Prolog forward checking program, but is more efficient.

42

eight_queens(Columns) :-
Columns :: 1 .. 8,
safe(Columns),
placequeens(Columns) .

safe([]).

safe([Column|Columns]) :-
noattack(Column,Columns, 1),
safe(Columns).

placequeens([]).

placequeens([Column|Columns]) :-
indomain(Column),
placequeens(Columns) .

Figure 4.5: 8-queens with improved forward checking

Improved forward checking

We can also write a constraints analogue to the test-and-generate program, which gives
more sophisticated forward checking. When we place a queen, not only can we check for
empty domains but also for singleton domains. Placing a queen may reduce a remaining
queen’s domain to one value, and we can immediately place that queen and do further
forward checking. This is sometimes called unit propagation.

This will be better than the previous program. We should do as much propagation as
possible at each step, because a propagation step is deterministic whereas placing a queen
is non-deterministic.

The forward checking program provides no opportunity to do this, because when placing
each queen not all the constraints have been called yet. We need a different formulation,
as in Figure 4.5. This is similar to the test-and-generate program, though much faster
because of forward checking. It sets up all the relevant constraints and only then does it
begin to place the queens. Note that the placequeens call could actually be replaced by a
call to the equivalent library predicate labeling. However, we will modify placequeens
below, so it is useful to show it here.

The first-fail principle

Forward checking can be improved by the first-fail principle. In this technique, we do
not simply place the queens in the arbitrary order 1,2,3... but instead choose a more
intelligent order.

The first-fail principle is a well-known principle in Operations Research, which states that
given a set of possible choices we should choose the most deterministic one first. That is,
if we have to choose between placing the seventh queen which has 3 possible positions,

43

placequeens([]).
placequeens([Column|Columns]) :-
deleteff(Column, [Column|Columns] ,Rest),
indomain(Column),
placequeens(Rest) .

Figure 4.6: 8-queens with improved forward checking plus first-fail

and the sixth queen which has 5 possible positions, we should place the seventh queen
first. We have already seen a limited version of this principle when we selected queens
with 0 or 1 possible places first in the forward checking programs.

It is very simple to implement the principle in ECL‘PS¢, as shown in Figure 4.6. The
deleteff built-in deletes the domain variable with the smallest domain from the list of
remaining domain variables. Variations on deleteff are listed in the Extensions User

Manual [ECL94].

Note that it is quite simple to obtain a radically different computation strategy by con-
trolling the way in which variables take domain values. It would be far more difficult to
write these strategies directly in a logic program.

Maximising propagation

There is another useful principle which makes a significant improvement to the 8-queens
problem. Like the first-fail principle this is concerned with choosing an intelligent order
for placing the queens, but the aim here is to perform as much propagation as early as
possible.

If we begin by placing the first queen, that is the queen on the first column, this enables
ECLPS¢to delete squares from the domains of all the future queens. However, if we begin
by placing, say, the fourth queen then more squares can be deleted. This is because the
middle squares can attack more squares than those on the edges of the board.

4.4 Non-logical calls

With such sophisticated execution strategies it is hard to predict when domain variables
will become bound. In this way, constraints are similar to suspended calls (that is, those
used in coroutining). If variables become bound at unexpected points in the computation,
cuts, side effects and other non-logical built-ins (such as var and \==) may not have the
expected effects. It is therefore advisable to use constraints only in “pure” parts of a
program.

44

placequeens([]).

placequeens([Column|Columns]) :-
deleteff(Column, [Column|Columns] ,Rest),
par_indomain(Column),
placequeens(Rest) .

Figure 4.7: 8-queens with parallel forward checking plus first-fail

4.5 Parallelism

The two features of OR-parallelism and constraint handling can easily be combined to
yield very efficient and clear programs. Predicates in a CLP program can be parallelised
as in a logic program, exactly as described in Sections 2 and 3, and subject to the same
restrictions plus those described in Section 4.4.

There is also a more direct interaction between constraints and OR-parallelism. Constraint
handling aims to reduce the number of non-deterministic choices in a computation, but
such choices must still be made. They can be made in parallel by using a parallel coun-
terpart of indomain called par_indomain (this is available in the f£d library).

Any of the previous programs can be parallelised in this way. For example, Figure 4.7
shows a parallel forward checking program.

4.6 Summary

Programs should be written with constraints in mind from the start, because they use a
different data representation than logic programs (which do not have domain variables).
Here is a summary of the general principles discussed in this section.

e Given a problem, look for ways of using forward checking as opposed to backtracking
search, then formulate the forward checking in terms of constraints.

e Try to enhance forward checking by setting up as many constraints as possible before
choosing values by indomain.

o Try to further reduce backtracking first by choosing values from small domains, and
then by choosing values in an order which maximises propagation.

e Beware of using constraints in parts of a logic program with cuts, side-effects or
other non-logical features.

o Parallelise CLP programs exactly as with logic programs, also replacing indomain
by par_indomain where it is safe and profitable to do so.

45

5 Appendix: Calculating parallel speedup

A figure which must often be calculated to evaluate a parallel program is the parallel
speedup. However, variations in parallel execution times make speedup tricky to measure.
In a previous technical report [Pre93b] we described various ways in which a program may
give very different execution times when run several times under identical circumstances.
This is not a bug of ECL'PS®but a feature of many parallel programs.

Several ways to cope with these variations can easily be thought of: do we take the mean
of the parallel times and then calculate speedup, or do we divide by each parallel time and
then take the mean speedup? What sort of mean should we use (arithmetic, geometric,
median)?

In a recent paper by Ertel [Ert94] it is shown that, given a few common-sense assumptions
about the properties of speedup, there is only one sensible way of calculating speedup from
varying times. The paper gives quite general results, and this note extracts the details
relevant to ECL'PScusers.

5.1 The obvious definition

Speedup is commonly defined as S = %— where T is the sequential and 7T, the parallel
r

execution time. Because of variations in the parallel system, we may have several parallel

times Tp1 ... T for exactly the same query. For certain types of program (especially single-

solution queries) these times may vary wildly. This is not a fault in ECL*PS¢but a feature

of certain types of parallelism. The causes are not relevant here, but the effects are. How

do we calculate the speedup when parallel times vary?

The usual method is to take the arithmetic mean of the parallel times and then divide
to get S. This method has been widely used for years by empirical and theoretical scien-
tists [Ert94], and is appropriate in some cases. A system designer who wants to compare
the parallel and sequential performance is interested in the reduction of cost in the long
run — he wants to compare the sum of many parallel run times with the sum of many
sequential run times. Ertel calls this the “designer speedup”.

However, the designer speedup is not appropriate for the user . A user is interested in the
speedup for a single run, and therefore needs the expectation of the ratio % Moreover
the designer speedup carries no information about the variation of speedup{g What is a
good definition for “user speedup”, and how could we define speedup variation?

To illustrate the problem, say we have
1 2
T,=10 T, =2 T =50

If we take the arithmetic mean of Tp1 and sz then calculate the speedup we get S = 0.38.
If we calculate the two possible speedups and take the arithmetic mean we get S = 2.6.
If we take the geometric mean in either case we get S = 1. Which, if any, is correct?

46

5.2 A better definition

It is shown in [Ert94] that the correct way to calculate (“user”) speedup in these cases
is to take the geometric mean of all possible speedups. That is given {T}...T"} and
{T} ... 7"} (normally n = 1) to take the geometric mean of the ratios

T} . .
{T—g ‘ @—1...n,j—1...m}

In the example above this gives S = 1, which is sensible: using Tp1 we have S = 5 and
using sz we have S = é, so “on average” we get the product S = 1. For technical reasons

on why this is the correct method, see [Ert94].

A note on calculation

The geometric mean of n numbers is the n* root of their product. If the numbers are too
large to multiply together, this can be calculated by taking the arithmetic mean a of their
natural logarithms, and then calculating e®.

If some of the parallel times or speedups are identical, they must still be treated as if they
are different. For example, if

1 2 3
T,=10 T' =2 T?=2 7% =3

then we must count 2 twice:
10
S = — ~4.37
J2x2x3

Other applications

The definition is useful for randomised search algorithms, where T; may also vary consid-
erably.

It also covers the case where we wish to calculate the speedup of one parallel program A4
over another parallel program B, if we take T to mean the parallel execution times of B.

It even covers the case where programs A and B take different queries. The times 7" and
T]Z may be the (parallel or sequential) times for a set of queries, in which case S is an
average of the speedup of A over B for those queries.

Quasi standard deviation

To measure the deviation from the geometric mean Ertel suggests the quasi standard
deviation:

D=¢

where

Again if some of the times are the same, count them as if they are different.

If D = 1 then there is no deviation from the mean, in contrast to the usual standard
deviation which is 0 when there is no deviation.

5.3 Speedup curves

For performance analysis we often plot a graph of speedup as a function of the number of
workers. However, there are a few pitfalls which should be avoided:

e As mentioned above, speedup may vary from run to run, and so to plot a speedup
curve we should several runs for each number of workers and find average speedups.

e Speedup curves may take any shape; for example there may be kinks, troughs, or
plateaus. This means that speedup curves cannot be extrapolated nor interpolated.
For example, if we have a nice, linear speedup curve for 1...10 workers we cannot
use this as evidence for a good speedup with 11 workers.

e Even a small change in a program may have a large (good or bad) effect on speedup.
Therefore we may get a completely different speedup curve after a small change, (in
the program, the query or the number of workers for example.

These effects (which are described more fully in an earlier technical report [Pre93b]) show
that a speedup curve actually says little about a parallel execution. A good speedup curve
does not necessarily indicate good parallel behaviour, and so caution should be exercised
when using speedup curves. This is not to say that speedup curves are useless: we can
take a poor speedup curve to indicate poor parallel behaviour.

Acknowledgement

Thanks to Liang-Liang Li, Micha Meier, Shyam Mudambi and Joachim Schimpf for sug-
gestions and proof-reading.

48

Chapter 3.

PSAP : Planning System for Aircraft
Production

Jacques Bellone

49

1 Introduction

PSAP (Planning System for Aircraft Production) is an aircraft production planning
decision support system, whose aim is to schedule the aircraft production over the next
years (more than five years). Up to 400 aircraft and 30 assembly lines are concerned.
Among the several factories involved, the Argenteuil factory was chosen as a pilot site,
since, in the current practice, the production plans for the other factories are generally
derived from those elaborated for Argenteuil. The users are the planning experts of the
Argenteuil factory.

The planning process takes into account all factory departments involved in the main
assembly steps, whose results will condition all further production management compu-
tations (schedule for each factory, required primary parts, workshop schedule computa-
tions...).

Such long term production schedules the assembly lines where the big aircraft sections are
manufactured. A section is a major aircraft part (e.g. cockpit, wing, rear fuselage, final
assembly). This production is paced.

The objective is to find schedules respecting the delivery dates for all aircraft and being
a satisfactory compromise between section storage costs and workload. The production
plans have to take into account the assembly lines’ limited flexibility (not all production
rate transitions are possible and each significant change has a considerable cost).

Production planning and scheduling are complex operations involving a great number of
constraints, both numerical and symbolic. These constraints are likely to vary with time:
constant changes in the production context make it necessary to modify the constraints
embodied in the planning system, as well as the cost elements. In such environments,
classical Operational Research programs and ad hoc software definitely lack flexibility.
In contrast, Constraint Logic Programming [Col87, JL87, DSV8T7] appears as a good
candidate, since it offers the desired modifiability as well as efficiency.

1.1 Production Intervals and Assembly Lines - Definitions
The production rate of an assembly line is the number of aircraft sections produced per
month.

The production interval (PI) is the number of days between the start of two successive
aircraft sections on an assembly line. In other words, each assembly line receives a new
aircraft section every PI. Pl is the reciprocal of the production rate.

An assembly line is dedicated to the production of a particular section of one or more
aircraft types (e.g. single seater aircraft, twin seater).

1.2 Current Practice

Preparing a production schedule is currently performed by a planner with a pencil and an
eraser. It takes one week, which raises essentially two problems :

50

1. It is a very long and inflexible process : The planning task occurs, basically, every
three months, but there is a constant requirement on planners to simulate the effect of
possible new orders, of confirmation or cancellation of options, of modification of due
dates or of the main characteristics of certain aircraft, etc... They can usually only
provide approximate answers by testing limited local modifications to the current
schedule. Furthermore, such a job takes from 1/2 day to 3 days, which is rather
dissuasive.

2. The result can only be evaluated a posteriori : As the cost criteria cannot be formal-
ized, the planning process can only take into account intuitive cost criterion. This
means that the result cannot be characterized precisely with regard to these criteria.

Thus has emerged a need for a planning tool that would not only compute schedules
according to a given formalized evaluation function, but also be flexible and swift enough
to be used as a decision support system for evaluating any interesting scenario upon
request. The scenarii might be for current production (e.g. for the Mirage 2000), as
well as for pre-production (e.g. for the Rafale). For pre-production, delivery dates and
some production parameters (e.g. production cycle parameters) are often changed to test
several production possibilities.

1.3 PSAP History

When the Dassault factories started to look into the question what kind of software tool
would help the production planner, their first attempt was to adapt the ARTEMIS [Sys88]
software to the planner’s need. But it soon appeared that this main frame scheduling
software would not be able to really solve their problems (cf. chapter 3).

This motivated internal development of a decision support system for planning with the
objective of automating certain tasks and of anticipating the evolutions of the production
context. This development was assigned to the Artificial Intelligence and Advanced Com-
puter Techniques Department of the Advanced Studied Division. The emerging Constraint
Logic Programming, which seems well suited to handle planning and scheduling problem,
was chosen (for the reason cf. chapter 3).

Starting from very few specifications, a first mock-up, called PSAP 1 (cf. chapter 5), was
developed. The modelling of the problem was naive. The results provided by this mock-up
were sufficiently good to demonstrate the feasibility of a CLP based system for this type
of complex problem.

A first prototype, PSAP 2 (cf. chapter 5 and 6), based on precise specifications was then
completed. Parallelism was applied to this prototype to search some optimal costs. The
results were not satisfactory neither in terms of quality of the solutions nor in terms of
parallelism use. The search tree was too large, even for parallel execution, the properties
of the problem were not sufficiently analyzed.

The PSAP 3 prototype was developed (cf. chapter 6) in order to reduce the search tree.
The pre-computation and the labelling phases were modified. The parallelism was applied
to PSAP 3 and gave interesting results.

51

1.4 Summary

Chapter 2 describes the application in terms of objectives to be fulfilled, inputs/outputs
and the planner’s work.

Chapter 3 discusses the limits of an ”on the shelt” scheduling tool such as ARTEMIS, the
choice of Constraint Logic Programming, the size of the problem and its complexity, first
solution vs. optimal solution, why parallelism was necessary.

Chapter 4 studies the first constraint modelling of the problem(PSAP 1).

Chapter 5 studies the parallelism introduced to solve the cost optimization problem :
where it has been introduced, introduction difficulties, methodology used and paralleliza-
tion effort.

Chapter 6 studies different pre-computations and heuristics through PSAP 2 and PSAP
3. Sequential and parallel improvements to PSAP are discussed, followed by a descrip-
tion of their interaction. The improvement from PSAP 2 to PSAP 3 was driven by the
performance debugging process, as shown in the benchmark paragraph.

2 Problem Description

2.1 Objectives
The objective of PSAP is to provide a decision-making support system for Dassault’s
production planning experts (hereafter called planner).

The first task of the planner is to pace the different assembly lines assigned to the manu-
facture of given aircraft units in accordance with their due dates, with a view to preparing
the production schedule. Then, the planner has to calculate the resulting workload and
storage time.

The overall goals are :

e balancing the workload,
e reducing staff changes (i.e. the number of production interval changes),

e reducing storage costs.

Balancing factory workload is quite impossible within PSAP. As a matter of fact, PSAP’s
aim is to pace the assembly lines for one given aircraft model (Falcon, Mirage 2000 or
Rafale), whereas Dassault factories produce all these models.

Staff changes increase the workload but reduce the storage costs.

As one may imagine, it is not easy to achieve a compromise between these three goals.
Moreover, there is no cost function which takes into account both storage costs and staff
changes. The difficulty in formalizing a cost function leads to the design of an interactive
system. These requirements imply for the system to be easily parameterizable and

52

to interact with the user via a user-friendly interface. User interactions require that
schedule solutions must be obtained within a short time.

2.2

Inputs

Three kind of inputs are used :

o Aircraft Production rules, also called Factory Data. The most relevant factory data

are description of the assembly lines, description of the different aircraft produc-
tion types, and for a given type of production, description of the related sections
(production cycle, workload, precedence constraints, storage costs). A section is a
major aircraft part (e.g. cockpit, wing, rear fuselage, final assembly) produced in
one assembly line.

Production Orders, also called Planning Data. They are objective data. The most
relevant planning data are delivery due dates for the orders, work in progress on the
assembly lines, learning curve laws (i.e. a new production or a staff change implies
an increase of the production cycle during the time the staff is learning new tasks).

Production Policy, also called Planner Data. They are subjective data. The most
relevant planner data are the requirements stated by the factory director in terms
of workload and/or of storage costs, the planner’s expertise, his wish to avoid too
frequent production interval changes as well as changes to the short term production.
These subjective data need an interactive system and the introduction of subjective
parameters to be set by the planner.

The planner data are not predictable and require interactions during the scheduling pro-
cess, whereas the factory and planning data are described a priori.

2.3

Outputs

The main output is the schedule for each assembly line. This is the objective of PSAP.
But the overall goal is to have a schedule which gives a good compromise between the
staff changes and the storage time for a each aircraft model with a balanced workload for
each factory. The definition of the good compromise depends on the current production

policy.

Hence, the other main outputs are :

e the number of the production interval changes,

o the storage time for each section, each aircraft and each assembly line,

e the workload and the overload for each section, each aircraft and each assembly line.

33

MODEL 1

TYPE TYEEZ TYPE 3 ,YPE4
A~ _ /‘\,‘ PR NN == Ta N
/N T L~ ST 7
/ N ::\\‘\\\\ ///’ /// //) \
/ \\\\ - - _ - — \
/ \\ \\\\\ T~ /,// /// // I \
y N \\\ ~ - 0 - , | \
/ N /\/\/\"\\\\:;<\\ // ! \\

4 N - T~ | \
section 1 sect. 1 sect. 2 sect. 2 sect. 3 sect. 4 sect. 5 sect. 6
Ass. Line Ass. Line Ass. Line Ass. Line Ass.Line Ass Line Ass. line Ass. line

11 14 2.1 2.4 3 4 5 6

Figure 2.1: Example of Factory Data, one aircraft model production type has 5 sections
produced by 5 assembly lines (sections and assembly lines are production type-dependent)

2.4 Cost Functions

The assessment of a schedule depends on the results given by the different cost functions.

A schedule involves two costs : workload and storage time. These costs qualify the
schedule’s qualitative properties. However, such qualification is actually not an easy task,
as balancing these two costs in one and the same cost function is not easy to achieve.
Moreover, balancing these two costs depends on the current production policy.

The workload of an assembly line depends on its different production intervals and on the
workload for each of its manufactured sections. Moreover, when the production interval
changes, there is an overload due to the workers’ new task learning time.

The workload used for a given section depends on :
e the rank of this section on its assembly line (this rank is the parameter of the staff
learning function which is a logarithmic function),

o the last production interval change which produced an overload.

The overload function for a given section, which is a further learning function due to the

staff change, depends on :

e the time interval between this section and the section where the last production
interval change occurred; if this time interval is shorter than the latter’s production

cycle, an overload occurs for the section,

e the ratio between the current production interval and the previous one.

54

The complexity of the workload cost function for an assembly line has led to restrict
the workload optimization to overload optimization in PSAP and hence, to minimize the
production interval changes.

The storage time is the time between the end of manufacturing one section and the
manufacturing start of the next section.

The relevant costs actually used in PSAP are the number of production interval
changes and the storage times.

2.5 Details of the Planner’s Work

First task, the planner schedules a new production or modification of the aircraft to be
produced (modification to some aircraft type, adding or removing aircraft). In this case he
schedules the last assembly line, then the previous one and so on. This allow minimization
of the storage time between the end of an aircraft production and its delivery date. To
start by the last assembly line is not a simplification, it is the actual way of scheduling.
This way of scheduling is the most efficient because in long term scheduling, the last
assembly line is the most constrained.

The subtask, which schedules one assembly line, consists in pacing each assembly line,
i.e. in choosing for which aircraft section the production interval has to change and which
value the new production interval has to take.

Second task, he calculates the resulting workload and storage time.

Third task, considering a previous schedule, he may want to modify some of the assembly
lines which may imply modification of the next and/or previous assembly line(s). This
modification is mainly due to the fact the work in progress in this assembly line has not
respected the previous schedule. The aim of the planner is to minimize the number of
assembly lines to be rescheduled.

The second task may occur at any time during task 1 and 3.

Forth task, often included in the first or the third task, the planner optimizes schedule
costs with regards to the current production policy.

The subtask 7to pace an assembly line” might be more or less difficult to calculate.
Scheduling the last assembly line, called general assembly, requires a lot of work. When
the assembly line scheduling is done from the last line to the first one, a given assembly
line (which is not the last one) is easier to schedule if :

o the same aircraft are produced by this line and the following line,
o there are no learning curve laws applied to the production cycle of sections produced

by the following line.

But as can be seen in Figure 1, the first condition is respected by 60-70% of the assembly
lines (e.g. not respected by lines 2.4 and 3 which share aircraft from line 4). And the
second condition is respected only by old production without any new production type or
new aircraft version.

35

Thus, at least 50% of the assembly lines need a lot of scheduling work, and for a brand
new aircraft, this could be 100% of the assembly lines.

3 Qualification

This chapter discusses :

o the limits of classic scheduling tools such as ARTEMIS [Sys88], a project man-
agement product which handles scheduling, planning and resources management
aspects,

e the choice of CLP,
e the problem size and complexity of the problem,
e first solution vs. optimal solution,

e limits and optimization, which led us to consider parallel CLP.

3.1 Limits of ARTEMIS

ARTEMIS has been studied by the Argenteuil and Merignac factories’ planners.

The main drawbacks noted at that moment were :

e no possibilities to optimize cost functions,
e no possibilities for easy handling of the production interval,

e ARTEMIS has been adapted to be able to manage the problem in the same way as
without software.

While Merignac’s planners chose ARTEMIS as a drawing tool, Argenteuil’s planners pre-
ferred to search for a more powerful software package. Now Merignac’s planners also want

PSAP.

3.2 Why CLP ?

Constraint Logic Programming (CLP) expresses in a very declarative and comprehen-
sive way the constraints and successfully manages combinatorial problems encountered in
production scheduling (e.g. the car-sequencing problem).

CLP thus preserves the declarativity of PROLOG, allowing swift software development
and offering easy software modifiability, but greatly improves the resolution speed on
highly combinatorial problems by hard-wiring of domains and constraint propagation.

56

It allows problems to be addressed in a flexible way, which so far have only been solved
by rigid conventional programming methods (as Operations Research methods). Among
these problems are production management, planning and scheduling, logistics.

Thus, the first PSAP mock-up has been implemented using CLP. The following paragraphs
summarize the experiments with this sequential version of PSAP.

3.3 Problem Size and Complexity

The average size of the problem manageable by the PSAP prototype is to plan 200 planes
and 12 assembly lines over five to ten years. The operational system needs to handle up to
400 aircraft and 30 assembly lines over five to ten years. But, as the schedule is computed
assembly line per assembly line, the maximum size of the PSAP problem is to pace 400
aircraft sections over 10 years with a time unit of a half day.

A PSAP complexity analysis compared PSAP to the Warehouse Location Problem. This
study took into account the schedule problem as a whole (i.e. with the workload and
overload functions). The conclusion, even if there is no formal proof, was “it seems that
PSAP is at least as difficult as a Warehouse Location Problem with variable size” [BS93].
The whole PSAP problem hence seems NP-complete.

Because of this foreseeable difficulty, the whole problem has never been taken into account
by the PSAP prototype. Due to the impossibility of balancing the two costs, PSAP
prototypes solve a simplified problem using several steps. Thus, the planner shares his
work into several tasks : pace one assembly line, then look at its storage and workload
costs.

Considering this simplified problem, a polynomial algorithm might be found. But its
execution time would be rather dissuasive due to the combinatorics introduced by the
number of solution possibilities as briefly explained above.

The combinatorics is due, when pacing an assembly line, to the choice between increasing,
decreasing the production interval, and keeping it even.

If these 3 choices are available for each aircraft section, they imply, for 250 aircraft units,
a huge 3?°° search tree. A polynomial algorithm must obviously prune this tree but this
will not be sufficient for the actual data.

But such an algorithm will need a cost function which the planners are not able to fix.

3.4 First Solution vs. Optimal Solution

A schedule involves two costs : number of interval changes and storage. As the
relative weights of these costs are likely to vary with the context, PSAP can optimize
either storage cost or the number of interval changes, or number of interval changes then
storage cost; it is up to the planner considering his current policy. He can also interact with
PSAP to optimize these costs from a production policy point of view using his knowledge.

He can mix these interactions with the provided automatic cost optimization. The sub-
jective PSAP parameters are used for both manual and automatic optimization.

57

The subjective PSAP parameters have to be significant for the planner and must provide
a “good first solution” in terms of costs. A good first solution minimizes both the number
of interactions during the manual optimization and the automatic optimization time.

For instance, the most appreciated of these subjective parameters allows the planners to
give the maximum number of interval changes before pacing an assembly line.

Thus, pre-computation and heuristics manageable by the planner with understandable
parameters is a way to add constraints in order to provide acceptable-quality first solutions.

3.5 Why Parallel CLP ?

In the sequential CLP version of PSAP, the first experiments have shown two drawbacks

e the optimization time is too long even if optimization started with good bounds,

o the quality of the schedule is too sensitive to the input data.

This is true for the first mock-up and also for the PSAP 2 prototype with the first attempt
to introduce some pre-computation and heuristics. The constraint modelling part will
detail why, but at this point we have felt it difficult to sufficiently prune the search space
to allow efficient time optimization with sequential CLP.

The remaining search tree is still sufficiently large to feel that there is a need for parallelism
when searching an optimum, for the following reasons :

e the aim of pre-computation and heuristics is to prune the search tree (and thus, to
decrease the number of solutions) without removing interesting solutions, as it is
difficult to know a priori where these solutions are, the search tree is not sufficiently
pruned to be explored in sequential execution,

e the pre-computation implies non-deterministic research the size of which depends
on the pre-computation (subjective) parameter value (value set by the planner).

The need for parallelism has also been felt necessary as optimization proved possible
with small-size data sets (e.g. 70 aircraft), however not for large-size data sets (e.g. 250
aircraft).

4 Constraints Modelling / Initial Prototype

The initial mock-up (PSAP 1) was followed by two prototypes (PSAP 2 and 3) which

have explored several pre-computation, heuristics and parallelism possibilities.

The PSAP kernel is divided into 3 main parts :

e precedence constraints between the different sections of one and the same aircraft,

38

e production interval constraints between the sections produced in an assembly line,

e procedure to label the start date of each section in an assembly line.

The first part of PSAP is trivial for CLP techniques.

The second part of PSAP is more complex due to the disjunctive constraints expressing
the choice between increasing, decreasing the production interval and keeping it even.

The precedence and interval constraints obviously prune the huge search tree but this will
not be sufficient for some of the data. This search tree is explored within the third part.

The third part of PSAP chooses where and how the interval is changed. This is called
the labelling part, and the search tree is explored in this part. Hence, parallelism is
introduced in this part. Cost optimization is implemented in this part as well.

4.1 PSAP Constraints

Precedence Constraints

These are precedence constraints between macro tasks (airframe sections) for each aircraft.

The sequencing of the assembly is partially ordered. Below is shown a schematic prece-
dence flow chart for the Mirage 2000. “A — B” means “A is before B”, and this is a
constraint. Note also that the assembly, e.g., of structure subsections “1-17” and “17-26”
makes section “1-26”.

These constraints relate to two types of constraints :

e Cycle length constraints, expressing a task duration (ProductionCycleSection;) wi-
thin which it is impossible to begin the next one (BeginDateSection,y1).
o Delivery date constraints, imposing a maximum length to the whole production
cycle.
These constraints between a section ¢ and the following section 7 4+ 1, look as follows :

BeginDateSection; + ProductionCycleSection; + StorageTimeSection;

= BeginDateSection; 4

In the case of delivery date constraints BeginDateSection;yq 1s the delivery date of the
aircraft, and ¢ is the last section of it.

Production Interval Constraints

These are constraints between the planes on each assembly line.

The number and the extent of changes to the interval are strictly limited once the standard
production speed has been reached. Precise figures will be given, e.g. at least 3 months

59

final bly

section 1-35

7

section 1-26 section 26-35

S

section 1-17 section 17-26

7

section 1-10 section 10-17

Figure 4.1: Precedence Flow Chart

between two consecutive changes; do not decrease the interval by more than X% for initial
value between A and B, and so on ... These interval-changing constraints will be called
line-interval constraints.

There are additional constraints, complying with the capacity limits, over the planning
horizon, of the assembly lines. They impose, due to the unicity of the tools, a minimum
interval of time between aircraft of a certain type on one assembly line. These constraints
shall be called type-interval constraints.

All these constraints are disjunctive constraints.

4.2 Domain Size

PSAP sets the precedence constraints between the sections of each aircraft. This is
straightforward and allows the domain-size available for the start date of each section
to be reduced to the maximum value of the storage time (e.g. 120 half days, data set by
the planner). Then it computes the assembly line planning per assembly line, beginning
by the last one. The constraints on the production interval reduce the domain for the start
date (e.g. 90 half days, if started at 120). The size of the actual problem to be solved for
each assembly line thus is to find a value for the start date of N aircraft sections in a 90
domain-size. N is the actual number of aircraft to be planned and currently is between

100 and 300.

4.3 Limits of the First CLP Implementation

The planners’ fuzzy specifications for the schedule costs had led to a very disappointing
mock-up :

e the quality of the schedule was far from the one expected by the planner, (mostly
because there were too many production interval changes),

60

e the time constraints did not sufficiently constrain the system, which resulted in a
lot of uninteresting solutions,

e the costs constraints were too weak, hence no actual optimization (neither storage
time nor workload) was possible, with the naive modelization chosen, in an accept-
able time (this long time was also due to the huge number of solutions).

The two first points led to an uninteresting first solution, the last one shows that a
sequential optimization is unacceptable by the planner in terms of time.

Moreover, the lack of definition of the cost criteria requires a parameterizable and inter-
active tool capable providing an acceptable first solution. Only then a tool with optimal
solution search can be considered.

4.4 Conclusion

PSAP 1 was a sequential mock-up version ported from CHIP to ElipSys. No heuristics
were implemented. Poor cost specification and too big a search space led to a great amount
of useless backtracking at the end of the schedule. This huge search space implies that
there is limited optimality search time. The cost found was thus in fact a suboptimal cost
(cf. paragraph 5.3) far from the actual optimal value.

The main problem of PSAP arises from the lack of time (i.e. precedence and interval)
constraints and of costs constraints. Parallelization, pre-computation and heuristics have
been used to reduce this combinatorics.

Considering PSAP 3, its use of parallelism, pre-computation and heuristics, the expressive
power of ElipSys or ECLPS¢is adequate.

5 Parallelization

Parallelism was introduced into the first sequential prototype in order to solve the cost
optimization problem. The sequential prototype provides suboptimal solutions only for
small-size data sets. These solutions were moreover far from the solution expected by the
planner.

The following paragraphs discuss where parallelism was introduced, parallelism introduc-
tion difficulties, the methodology followed to introduce parallelism and the last paragraph
concludes on the parallelization effort.

5.1 Where is parallelism introduced ?

As searching for the first solution is fast, parallelism is only needed when an optimal
solution is searched with, for instance, a branch and bound procedure as the one given by
the min_maz built-in.

61

Two parts seems well suited to support parallelism so as to improve the PSAP execution
time and results : the interval constraints part and the labelling part.

In the interval constraints part, setting the disjunctive constraints in parallel might avoid
the drawback arising from the use of the disjunctive constraints. But the size of the
tree would remain the same (3" | with N= number of aircraft) and only a huge number
of processors would improve the execution time. This possibility was hence not studied
further.

As the search tree is explored in the labelling part, some parallelism may improve this
part. But parallelism alone will have the same drawback than in the interval constraints
part. The solution is to mix parallelism with more or less lazy heuristics. PSAP 2 started
this work with lazy pre-computation and heuristics which still needed too much paral-
lelism. Then, a better compromise was studied in PSAP 3 with eager pre-computation
and heuristics which need less parallelism.

This identification and coding is quite easy; the main effort is to predict the improve-
ment due to parallelization and to tune parallelization and heuristics.

5.2 Parallelism Introduction Difficulties

“Ideally, the effort required for parallelizing a sequential program should be limited to
identifying those portions of the program that must be executed in a parallel fashion
and making sure that they actually run in parallel without communication overhead”

[Mud94].

The identification phase is quite easy, at first sight, and ECRC has provided us with
some documents about this phase [Pre92].

The checking phase needs a tool such as ParSee. ParSee provides visualization of the
parallel execution behaviour to check the amount of used (or needed) parallelism and the
size of communication overhead.

For PSAP the checking phase was not so easy. Even if benchmarks have shown no com-
munication overhead and further potential for more processors than allowed by the used
computers, the access time to an optimal (or suboptimal) solution was too long. This
was mostly due to the fact that parallelism has been introduced to solve a point that a
sequential program does not really manage : the search for the optimum. The problem,
in its first modelization, was so hard that even parallel execution with 4-processor or
12-processor computers did not fast enough the optimality search.

In fact, the introduction of parallelism, starting from a first prototype, implies two different
questions :

o is the size of parallel grain coarse enough ?

e is the size of the remaining search tree (pruned by the constraints) small enough ?

Answering the first question leads to making choices on the nodes in which parallelism
will be added, and in which way.

62

Answering the second question leads to working on the constraints modelization, on the
labelling heuristics, on the branch and bound strategy and, if needed, to adding a pre-
computation step. This work has, of course, effects on the above choices; this is why, in
the following paragraph on methodology, the first step concerns sequential behaviour.

5.3 Methodology

When parallelism is introduced to solve a cost optimization problem not tractable under
sequential execution, two points have to be solved :

e how parallelism has to be introduced,

e which maximum data size can be handled by the parallel program.

Our benchmarking work followed two methodology directions with strong interactions.

The first direction used aims at tuning the program behaviour and to introduce paral-
lelism in the best conditions. This methodology may be called parallelism introduction
methodology and has three steps :

o first step is to obtain good sequential behaviour : constraints modelization, pre-
computed constraints, labelling heuristics, branch and bound strategy, in order to
prune the search tree;

e second step is to choose the nodes where parallelism will most improve the program;

e third step is to choose the actually needed number of workers (processors).

The first step is described in the CHIC Lessons on CLP Methodology [CFGG95b).
The second step is described in the APPLAUSE report [Pre92].

The third step needs more inputs. Many benchmarks on the whole range of data sets are
needed for making this choice. For each benchmark, a ParSee analysis has to be done to
answer this question.

The second direction used aims at fixing the maximum data size the parallel program can
handled. This methodology can be called benchmarking methodology. It will give the
limits of the parallel program in terms of specification (i.e. are current data sets handled
?7) and in terms of qualification (i.e. what are the improvements provided by parallelism,
pre-computation, heuristics... 7).

Each of the parallelism introduction methodology steps needs benchmarks on the relevant
data sets. Benchmarking methodology mostly consists increasing the size of the search
tree. This size is increased according to two directions :

e data size : start with small data sets and increase the data set size,

63

e search tree size : for each data set, start working without (sub)optimal search, then
go on with suboptimal search; lastly, if the search tree is sufficiently pruned, finish
with optimal search.

There are different kinds of suboptimal search :

e search in limited time,

e search skipping over solution less well than a given percentage of the found subop-
timal cost,

e search where the minimum bound of the search space is too high.

In the two first kinds, the suboptimal search is known a priori.

In the last kind, we do not know a priori what kind of search will be done. In this kind,
the difference between a suboptimal search and an optimal search depends on the value
of the found solution : if this value is lower than the minimum bound it is a suboptimal
search, if not, it is an optimal search.

Moreover, this last kind can be found into the two first cases.

The different ways to limit the search tree size hence are :
e to start with a low maximum bound (the first solution found in a previous trial) and
to increase it,
e to start with a high minimum bound and to decrease it,
e to prune the search tree from a given percentage below a found suboptimal solution,

e to stop the search after a certain amount of time. The latter way may also be a
requirement of the system in order to give constant answer time to the end-user.
The only drawback is how to make sure that a solution will be given within this
time. This feature is now available in ECL‘PSe.

5.4 Conclusions on Parallelism Introduction

“Ideally the effort required for parallelizing a sequential program should be limited to
identifying those portions of the program that must be executed in a parallel fashion and
making sure that they actually run in parallel without communication overhead.” [Mud94]

The current technology would be very close to this ideal if the following points were more
straightforward :

o the forecast of the biggest OR-nodes,

o the forecast of the parallel behaviour of a sequential program.

64

If the introduction of parallelism has not significantly added time as needed to debug the
system. However, it has increased the time to understand the behaviour and the results
of the program and its reliability. This performance debugging requires significant time.

This significant time is due to the difference between a suboptimal search and an optimal
search described below. For instance, in PSAP 2 which prunes the search tree from a
given percentage below a found suboptimal solution, time was spent :

e on finding a percentage for each data set,

e on finding benchmarking where the successive suboptimal solutions are identical
whatever the number of workers, otherwise speed-ups between executions which
give different results are not meaningful,

e on finding the minimum lower bound.

From a developer’s point of view, parallelism has allowed the optimization problem mod-
elization to be studied (which would not have been feasible in sequential execution) and
thus, has improved the sequential version of PSAP.

6 Performance Debugging / Improvement

It is difficult to split sequential and parallel improvements. Both are linked by a common
program behaviour, i.e. the sequential modelizations can provide different biggest OR-
nodes (different by their size or/and their place in the search tree).

Nevertheless, as the basis of a parallel program is a sequential program, this chapter
describes sequential improvements, and then parallel improvements in its two first para-
graph. The third paragraph discusses the result of these different improvements and their
interaction through a representative set of benchmarks.

All conclusions about sequential or parallel improvements are the results of several bench-
marks on PSAP 2 and PSAP 3. But the benchmarks sections only show the main results
with parallel execution and discuss the obtained speed-ups.

Real data were used at each development step. Only the size of the data was reduced (70
aircraft instead of 200) in order to speed up performance debugging (and to have results
when optimizations are too long with PSAP 1 or PSAP 2).

6.1 Sequential Improvements

As PSAP 1 constraints do not propagate enough to give results which satisfy the planner,
a pre-computation has been added. The aim of this pre-computation is to add some
constraints which prune the search tree.

Two stages succeed one another :

65

o the first pre-computation, implemented for PSAP 2, is a lazy pre-computation which
leaves large search tree space; Parallelism is expected to improve this labelling pro-
cedure when searching for a (sub)optimal cost;

o the second one, implemented for PSAP 3, is an eager pre-computation with a much
smaller search tree than the PSAP 2 pre-computation. In this case, parallelism is
needed to improve the reliability of the pre-computation results when searching for
a (sub)optimal cost.

PSAP 2 Pre-computation

In PSAP 2, the first prototype version tested in the factory, more user control together
with pre-computation, heuristics and more parallelism, were introduced. With a given
maximum number of production interval changes determined by the user, a pre-selection
of possible change ranks is achieved, with some rating used as a starting point for the
heuristics.

To obtain more pruning, a statistical pre-computation is made in order to simulate the
reasoning so that it can be identified by the planner’s eye. This pre-computation is made
once the interval constraint has been set, giving two types of information indicating :

o the aircraft units, not requiring a production interval change, to be eliminated,

e the possible production interval for the remaining units.

The heuristics using the information from this pre-computation are lazy heuristics, in the
sense that the search tree is pruned but the final decision is still taken by the constraint
propagation during the labelling part. Such heuristics were chosen because :

e at that moment, an optimistic view of parallelism with constraints led us to think
that constraints and heuristics would provide some good decisions to prune the
search tree and that parallelism would sufficiently speed up the search through it,

o the eliminated aircraft are actually to be eliminated, i.e. no “good” solution is
removed by this pruning.

Pre-computation results, as arising from statistics, prune the search tree by adding new
constraint propagation.

Stating constraints to forbid interval changes on aircraft not found by the statistical pre-
computation really prunes our search tree, for instance, with N = number of aircraft, from
3V to a 3V/19 (e.g. 3% to a 3°°) branches without removing any relevant branches.

Pre-computation results are also used to improve the labelling procedure.

66

PSAP 2 Labelling

PSAP 2 labelling expresses the same three possibilities as PSAP 1 labelling (to increase,
to decrease, to keep even the production interval) but sets the production interval to the
value given by the pre-computation as first value.

The use of the pre-computation production interval by the labelling procedure does not
really prune the tree. However, at least in sequential mode, this use avoids a lot of
backtracking as, most often, the first production interval chosen within this labelling is an
acceptable solution whereas the one chosen by other domain value labelling procedures is
not an acceptable solution.

The other domain value labelling procedures tested are the three following ones :

e maximum domain value domain taken as first production interval; this labelling
minimizes the storage cost but increases the number of interval changes,

e minimum domain value domain taken as first production interval; this labelling
minimizes the number of interval changes but increases the storage cost,

o central domain value domain taken as first production interval; this labelling tries
to find a compromise between the two costs.

The choice of the pre-computed value instead of the central value as first value when
labelling the production interval, has provided PSAP 2 with best compromises between
the two costs. This labelling tries to put the suboptimal solutions in the left part of the
search tree.

This labelling is hereafter called interval direction.

Sequential PSAP 2 Conclusions

This pre-computation is tuned by a subjective parameter actually hard to use by the
planner. The effect of this parameter is to forbid a interval change to more or fewer
aircraft but the number of the remaining aircraft are out of control for the end user.

As a conclusion, a value had been fixed for this parameter being the one used while
benchmarking.

Lack of precision when tuning the parameter leads to dramatic behaviour.

For instance, the same value of this parameter applied to some data leaves too many
remaining aircraft (e.g. 30); in this case, the search tree is not sufficiently pruned; whereas
applied to some other data, it does not leave enough aircraft (e.g. 4), in the latter case,
some “good” solutions disappeared from the search tree.

Moreover, it appears in both cases that this parameter can, sometime, remove “good”
solution branches. This is due to the difficulty for a statistical function to be reliable in
all cases.

67

Due to the lazy pre-computation, interval direction labelling needs parallelism to find
suboptimal solutions in a search tree which is not sufficiently pruned for a sequential
execution.

But this lazy pre-computation prevents the search for the optimal solution of actual data
sets because the search tree is still too large.

Pre-computation (slope_difference) and Labelling in PSAP 3

As the planner requested a better first solution, the statistical pre-computation was modi-
fied in such a way that the new pre-computation (called slope_difference because differ-
ence of latest start date slopes is the basis of this computation) only keeps a few aircraft.
Then the heuristics during the labelling will be “eager” and no longer lazy, as in PSAP 2.

Pre-computation acts in two steps :

o the first step sets a weight on each aircraft, the heaviest aircraft being the most
interesting interval change points,

e the second step, driven by the end user, filters the heaviest aircraft.

In other words, if the end user requested 6 changes, the second step of the pre-computation
will filter the 6 aircraft where interval changes are required, and the interval direction
labelling is optimized to achieve a storage time that is as small as possible. Then, using
the PSAP interface, the end user can change the schedule as he wishes.

Moreover, as the pre-computation is safer and as the production interval is dynamically
computed at the beginning of each labelling, the labelling sets the production interval
value which obviously decides whether the interval is to increase, decrease or to be kept
even.

As the interval direction labelling is optimized, there is no need to parallelize it as in PSAP
2. The introduction of parallelism will arise in the new cost optimization procedure.

Even if this pre-computation is much more reliable than that of PSAP 2. there is no proof
that the heaviest aircraft are really the best points for production interval changes. The
new cost optimization procedure takes into account this uncertainty and removes it.

6.2 Parallel Improvements

This paragraph discusses where the parallelism was introduced in PSAP 2 and PSAP 3.

The lazy pre-computation of PSAP 2 implies a huge search tree during the labelling phase,
hence parallelism was introduced into the labelling procedure in several ways.

The eager pre-computation of PSAP 3 and its new labelling implies a much smaller search
tree in the labelling phase, hence parallelism is not needed in this phase. Parallelism
is needed in a phase just before labelling. The aim of this phase is to remove the pre-
computation unreliability.

68

Introducing Parallelism and Heuristics in PSAP 2

The labelling part was parallelized, thereby allowing searches in the 3 branches at the
same time. This procedure thus expresses the three interval labelling possibilities :

e to increase the interval,

e to decrease the interval or

e to keep the interval even;

and sets a value to the production interval.

Parallelism may, in addition, overcome the pre-computation result drawback due to the
statistic, not always reliable, solution.

Several labelling procedure were tested :

e the best sequential heuristics (called interval direction)

e mixed parallelism, to express the three interval labelling possibilities, and heuristics,
to set the production interval value (called parallel interval direction),

e all in parallel (called parallel_3),
e only production interval value setting done in parallel (called parallel 1),

e more or less parallelism, called e.g. parallel_3_100 : parallelism is used only for the
100 first aircraft.

The aim was to know how to tune parallelism in such a CLP application, i.e. how much
parallelism is needed to actually improve the results.

The used heuristics parallelize either the choice of the new production interval (e.g. par-
allel 3 and parallel 1), or not (e.g. interval direction and parallel interval direction); and
they parallelize either the choice of the production interval changes (e.g. parallel.3 and
parallel interval direction) or not (e.g. interval direction and parallel_1).

But no heuristics can completely determine where and how to change the production in-
terval and the remaining disjunctive constraints do not allow good constraint propagation,
i.e. the production interval domain-size reduction is done only during the labelling (overall
by the way of an element constraint).

PSAP 2 Conclusions

Whatever the parallelism and heuristics used, the search tree remained too large and the
access time to a suboptimal solution too high. Even if super linear speed-ups, i.e. for
N workers the speed-ups are greater than N, were noticed and if ParSee analysis shows
that better results could be reached with a 30-processor machine, the access time to a
solution and the unreliability of the pre-computation led to the introduction of the PSAP
3 pre-computation which requires to parallelize another predicate.

69

New Cost Optimization

The use of the slope_difference pre-computation results in two ways being available for use
of the min_maz primitive. The first way really improves the storage cost starting from
a mean cost, the second slightly improves the cost found by the first one. These two
ways have to be used in the following order (with P the number of possible values for a
production interval) :

o instead of choosing 6 aircraft out of 30, the end user may, in a first stage, report 10
changes and then, request the optimal solution in terms of storage days with only 6
changes out of the previous 10 (the search tree is then reduced to 210 % P branches
instead of 10'!)2.

e to improve a result in terms of storage, the planner sometimes just moves the change
point to 1-3 aircraft before/after the first change point found. The search tree size
for 6 changes, if we allow 5 possible aircraft for each change, is 5% (15,625 x P°
branches).

In fact, the first point allows to get rid of small errors, i.e. the uncertainty of the slope-
_difference pre-computation. These errors are due to the fact that slope_difference does
not always set the weights on the aircraft as it (the weight setting) should be done, and
its filtering part may remove important aircraft from the list of possible interval changes.

Parallelism is introduced when searching the 6 element subsets are searched within the 10
potential interval change element sets.

The mean value of P is, however, still close to 120 (storage time maximum value). In
order to reduce the number of branches in the search tree, a new labelling, which reduces
P, has been implemented.

These 2 new ways of using min_mazx make benchmarking with one worker easier without
loosing any interesting solutions.

“min_max” vs. “minimize”

The PSAP 3 labelling procedure consists in a interval change sub-list generation followed
by interval value setting. Parallelism is introduced in the sub-list generation. The interval
values are set by the compulsory interval direction labelling procedure.

The trivial way to write this labelling procedure is :
min_max (parallel_generation(SL), setting_values(SL))

This new labelling procedure does, however, seem more appropriate when using the min-
imize built-in than for the min_maz. In fact, :

Zthe formula is the combination C’%, but giving an example with a realistic value is the only way to
show the improvement from PSAP 2 to PSAP 3

70

e a priori there is no point in restarting the branch and bound from the top of the
search tree where the interval change point subsets are generated,

e it is more efficient to re-start from the bottom of the tree where interval changes
and interval values are fixed.

Hence, this labelling procedure has been rewritten :
minimize(parallel_generation(SL), setting_values(SL))

Tuning the parallel labelling in PSAP 3 consisted in finding with one and several workers
which amongst the solutions is the best. Benchmarks always showed best running time
with the minimize built-in use whatever the number of workers.

Use of the new cost_parallel_min_mazx and cost_parallel_minimize built-ins also has to be
studied.

Benchmarks showed running times with the minimize built-in use outperform those with
the cost_parallel_min_max built-in use. The late availability of the cost_parallel_minimize
built-in has not allowed to benchmarking it.

The PSAP 3 search tree, although it has the same shape as the PSAP 2 search tree, is
smaller, the PSAP 3 labelling is more driven by the pre-computation, the PSAP 3 pre-
computation is more reliable and more tractable by the end-user : the PSAP 3 optimal
solution access time is much more reasonable than the PSAP 2 access time.

New Labelling

The idea of this new labelling consists in reducing the number of possible values for a
production interval, P, in a realistic way without removing “good solution” in terms of
cost.

This new labelling is implemented as the interval direction labelling, i.e. the highest
possible production interval is chosen in order to obtain the shortest storage time. But,
once this value has been chosen, the following points are added in the new labelling:

o first, store the first value that is compatible with the propagation of the whole set
of constraints,

o then, starting from this value in order to try only relevant values, allow other possible
P — 1 values.

As the production interval first value is the highest possible value and, as the aim is to
reduce the storage cost, it appears meaningless to search a solution with a high P value.
The writing of the formal proof of this statement has yet to be completed. Once such
a formal proof exists, we will be able to say that the optimal solution of the remaining
search tree is also the optimal solution of the whole search tree (i.e. the search tree with

P = 90).

This labelling is hereafter called new interval direction.

71

6.3 PSAP 2 Benchmarking

As PSAP 2 did not prove a successful way to solve the problem, we only present the more
meaningful parallel execution benchmarks in order to assess what has been explained in

the above PSAP 2 sections.

Moreover, on account of the long running time needed for sequential execution, only a few
benchmarks were conducted.

All benchmarks were only done for (sub)optimal cost research.

All benchmarks concern one assembly line schedule, most often the last one, the most
difficult to schedule as already said.

The benchmarks consider the time required for labelling, i.e. the time for the parallelized
procedure. The labelling time is the running time, starting from the first call for the
labelling procedure, that is necessary to prove the (sub)optimality of the solution. It is
also called the elapsed time. This labelling procedure takes the longest running time of
the PSAP 2 program. The running time to set all constraints and to make the statistical
pre-computation is between 20 seconds to 2 minutes for all data sets.

The PSAP 2 benchmarks were not complete for the following reasons :

o they were not run at least 5 times, due to the very long time needed to find solutions
with one worker,

e they were not made for all possible numbers of workers,

e some of them were made with a greater number of workers than available on the
used computers (this was done to get an idea on the actually needed parallelism).

The selected benchmarks are those which are most relevant to show the different optimiza-
tions (storage time and number of interval changes) and the main drawbacks (search space
too big and running time too long) of PSAP 2. They also assess the need for parallelism
on account of their speed-ups.

The result of these first benchmarks and the difficulty to achieve them have led to designing
PSAP 3 instead of finishing the benchmarks on PSAP 2.

Three benchmarks are presented : the aim of the first benchmark was to minimize the
number of interval changes, the aim of the others was to minimize the storage time for a
given maximum number of interval changes.

First Benchmarking

They concerned a data set of 198 Mirage 2000.
Statistical pre-computation and parallel_3_100 labelling were used.

The used branch and bound built-in was the ElipSys min_maz. The found number of
interval changes cost was the optimal solution because the lower bound was set to 1 and

72

of there was no use of the X percent better solution than the previous one in the min_max
built-in.

The same optimal number of interval changes with the same storage cost was found
whatever the number of workers.

The following results were obtained on the 12 processors of the Sequent Symmetry com-
puter.

One trial from one to eight workers were made and the following array shows for each
number of workers :

o [abelling time in mn. is the labelling time to prove the optimality of the number of
interval changes,

o speed-up is the speed-up between the one worker elapsed time and the two, three, ...
and eight workers elapsed time.

number of workers 1 2 3 4 5 6 7 8
time in mn. 625 | 234 | 199 | 180 | 166 | 149 | 129 | 122
speed-up - 1267 1314134513751 4.19 | 4.85 | 5.11

As shown in this array, the speed-ups are quite super linear for 2 and 3 workers, then ”sub
linear” (i.e. 7 workers are 5 times as fast as 1). Even if it is interesting to save 8 hours
out of 10 hours computation time for 7-8 workers, and to save 6.5 hours with 2 workers,
it is still too long for an interactive tool.

Second Benchmarking

They concerned a data set of 105 Falcon.

The maximum number of interval changes was 5. Statistical pre-computation and interval
direction labelling were used.

The used branch and bound built-in was the ElipSys min_maz. The found storage time
cost was a suboptimal solution because of the set lower bound and because of the use of
the 10 percent better solution than the previous one in the min_max built-in. The lower
bound was set to search a solution at least 20 percent better than the first found.

The following results were obtained on the 12 processors of the Sequent Symmetry com-
puter.

One trial for six workers and one for one worker were made, and the following array shows
for each number of workers :

o [abelling time in mn. is the labelling time to prove the suboptimality of the storage
cost,

e first solution (1/2days) is the first found storage cost in half days,

73

e second solution (1/2days) is the second found storage cost in half days.

o third solution (1/2days) is the third found storage cost in half days.

number of workers 6 1
labelling time (mn.) 85.38 more than 20 hours
first solution (1/2days) | 2952 2952
second solution (1/2days) | 2648 2612
third solution (1/2days) | 2298 | not found after 20 hours

The same benchmark on the 4 processors of the ICL DRS 6000 computer gave (the legend
of this array is the same as the previous one, except that 8 workers were used instead of
six and that a forth solution was found with 8 workers) :

number of workers 8 1

labelling time (mn.) 15.33 more than 12 hours
first solution (1/2days) | 4291 (found in few seconds) | 2952 (found in few seconds)
second solution(1/2days) | 2952 (found in few seconds) | 2612 (found in few mn.)
third solution (1/2days) 2648 (found in few mn.) 2323 (found in 12 hours)
forth solution (1/2days) 2207 not found after 12 hours

In the two benchmarks, note that the last solution found with 6 and 8 workers was not
found with one worker and that its search was stopped, hence the suboptimality yet to
be proved. Moreover, the second and third solutions were not the same with one worker
as with several workers. This is due to parallel execution which explores branches in the
search tree which are different from those searched in sequential execution.

The speed-ups on Symmetry and on DRS 6000 are super linear, since the result with one
worker respectively was at least 10 and 44 times as slow than with 6 and 8 workers. We
say at least because the last solution was not found and the suboptimality not proved.

Moreover, if we consider the quality of the solution, 8 workers on DRS 6000 found a
better solution than 6 on Symmetry. It may not be meaningful to compare DRS 6000
and Symmetry results, but it is clear that more parallelism improves the speed-ups and
explores a more fruitful part of the search space in the alloted time.

Third Benchmarking

It concerns a data set of 130 Mirage 2000. For once, it involved the second assembly line
(used only for the manufacture of single seater aircraft) where 70 aircraft are manufactured.
This line is as difficult to schedule as the last assembly line because the following line
manufactures both single and twin seater aircraft.

The maximum number of interval changes was 3. Interval direction labelling was used but
not statistical pre-computation.

The used branch and bound built-in was the ElipSys min_maz. The found storage time
cost was a suboptimal solution because of the set lower bound and because of the use of

74

the 10 percent better solution than the previous one in the min_max built-in. The lower
bound was set to search a solution at least 20 percent better than the first found.

The following results were obtained on the 4 processors of the DRS 6000 computer. One
trial for eight workers and one for one worker were made, and the following array shows
for each number of workers :

o [abelling time in sec. is the labelling time to prove the suboptimality of the storage
cost,

e first solution (2842 half days) is the elapsed time (in seconds) needed to find the
first found storage cost (2842),

e second solution (2548 half days) is the elapsed time (in seconds) needed to find the
second found storage cost (2548).

o third solution (2248 half days) is the elapsed time (in seconds) needed to find the
third found storage cost (2248).

o forth solution (2012 half days) is the elapsed time (in seconds) needed to find the
forth found storage cost (2012), which is the suboptimal cost.

number of workers 8 1

labelling time (sec.) 98 340
first solution (2842 half days) | 8 sec. 1 sec.
second solution(2548 half days) | 5sec. | 2 sec.
third solution (2248 half days) | 7 sec. | 2 sec.
forth solution (2012 half days) | 10 sec. | 256 sec.

8 workers were 25 times faster than one in reaching the 71 percent better solution (2012
half days) and 3 times faster to prove its optimality. In this case, the same storage cost
were found with eight and one worker.

Conclusions

Benchmarks with greater size data sets are impossible because the running time takes more
than 10 hours with one worker and more than one hour with 4 or 8 workers. However,
the promising speed-ups found with these two small data sets led us to safely prune the
search tree in such a way that parallelism would give results in an acceptable running
time. PSAP 3 was the way chosen to prune the search tree.

Moreover, ParSee analysis showed :
e no parallelism overhead in PSAP 2 (e.g. due to communication between ElipSys
workers),

e all the workers are well used,

o 30 workers would be used by PSAP 2.

75

At that time, it would have been worth having access to a 30-processor computer to check
this forecast and look at the speed-ups.

6.4 PSAP 3 Benchmarking

Numerous benchmarks were conducted. In our search to find the bounds of the search
tree manageable by PSAP 3, three classes of benchmarks emerged :

e benchmarks on a small search tree whose speed-ups given by parallel execution are
sub linear, i.e. for N workers the speed-ups are smaller than NV,

e benchmarks on a large search tree but with small grain size whose speed-ups given
by parallel execution are sub linear,

e benchmarks on a large search tree but with large grain size whose speed-ups given
by parallel execution are super linear, i.e. for N workers the speed-ups are greater

than N.

One representative benchmark of each classes is presented hereafter.
All benchmarks were only done for (sub)optimal cost research.

All benchmarks concerned one assembly line schedule, it was always the last one, the most
difficult to schedule as already said.

As for PSAP 2, the benchmarks consider the elapsed time to label, i.e. the time for the
parallelized procedure. But, the PSAP 3 labelling procedure consists in a interval change
sub-list generation followed by interval values setting. Parallelism was introduced into the
sub-lists generation. The interval values are set by the compulsory new interval direction.

This labelling procedure takes the longest running time of the PSAP 3 program. The
elapsed time to set all constraints and to make the statistical pre-computation is between
20 seconds to 2 minutes for all data sets.

Their aim was to minimize the storage time for a given maximum number of interval
changes. They were made on the 4 processors of the ICL. DRS 6000 computer.

The benchmarks were made on the first PSAP 3 optimization. This optimization searches
Y production interval changes out of X possible aircraft. The X aircraft are given by the
slope_difference pre-computation.

The first task done was to define X and Y for each data set. AsY is a subjective parameter
given by the planner, it remained to be defined which values of X, for a given ¥ and a
given data set, would give an acceptable behaviour (i.e. acceptable running time and
acceptable solution quality) in sequential execution and speed-ups in parallel execution.

For a sequential execution, C'% must not be too big, for a parallel execution X — Y must
not be too small. As a matter of fact, C¥ gives an idea of the search tree size, and to
obtain improvements from parallel execution, this size must not be too small. Several
benchmarks with an X value from Y + 1 to 10 for the small-size data sets or up to 20 for

76

the large-size data sets have shown some bounds to the value of C%. The conclusion of
this section will give these bounds.

When X is chosen for a given data set, the solution’s quality must be checked by the
planner. The graphic interface shows him the different X change possibilities. He can
check that no relevant aircraft is removed from the interval change possibilities list.

The first two presented benchmarks are the lower and upper bound of the actual data set
size. The last one is a medium size data set.

The first benchmark concerned a small data set and search for the optimal storage cost.

The second benchmark concerned a large data set and search for a suboptimal storage
cost.

The third benchmark concerned a medium size data set and search for the optimal storage
cost.

First Benchmarking

A data set of 70 Mirage 2000 was chosen.

The maximum number of interval changes was 3. Slope_difference pre-computation and
new interval direction labelling were used.

The chosen optimization was to choose 3 production interval changes out of 10. The
search tree size hence was the combination €7, i.e. there were 120 subsets with 3 changes
to be explored.

The used branch and bound built-in was the ElipSys minimize. The found storage time
cost was the optimal solution because the percent parameter of minimize was not used
and the lower bound set in the minimize built-in was smaller than the found storage cost
(1199 half days for the lower bound, 1636 half days for the optimal cost).

Whatever the number of workers, two storage time values were found before the optimal
storage time value.

8 trials for each number of workers were made, and the following array shows two means
for each number of workers :

o time in sec. is the arithmetical mean of the eight elapsed times, given in seconds,

o speed-up 1s the geometrical mean of the eight speed-ups between the one worker
elapsed time and the two, three and four workers elapsed time.

number of workers | 1 2 3 4
time in sec. 534 | 280 | 198 | 160
speed-up - 1.9 1 2.69 | 3.32

Second Benchmarking
A data set of 250 Mirage 2000 was chosen.

77

The maximum number of interval changes was 11. Slope_difference pre-computation and
new interval direction labelling were used.

The chosen optimization was to choose 11 production interval changes out of 14. The
search tree size hence was the combination C}}, i.e. there were 364 subsets with 11
possible changes to be explored.

The used branch and bound built-in was the ElipSys minimize. The found storage time
cost was a suboptimal solution as (although if the percent parameter of minimize was not
used) the lower bound set in the minimize built-in was greater than the found storage
cost (7000 half days for the lower bound, 6627 half days for the optimal cost). Besides,
only 84 subsets were explored instead of the 364 possible subsets.

With one worker, five storage time values were found before the optimal storage time
value.

With two, three and four workers, four storage time values were found before the optimal
storage time value.

8 trials for each number of workers were made, and the following array shows two means
for each number of workers :
o time in mn. is the arithmetical mean of the eight elapsed times, given in minutes,

o speed-up 1s the geometrical mean of the eight speed-ups between the one worker
elapsed time and the two, three and four workers elapsed time.

number of workers | 1 2 3 4
time in mn. 212 | 52 22 18
speed-up 4.02 | 9.7 | 11.51

This optimal storage time only needs 10 interval changes which means that one possible
changes was removed by the good behaviour of new interval direction labelling.

Third Benchmarking

A data set of 99 Falcon was chosen.

The maximum number of interval changes was 3. Slope_difference pre-computation and
new interval direction labelling were used.

The chosen optimization was to choose 3 production interval changes out of 11. The
search tree size hence was the combination C7,, i.e. there were 165 subsets with 3 changes
to be explored.

The used branch and bound built-in was the ElipSys minimize. The found storage time
cost was the optimal solution because the percent parameter of minimize was not used
and the lower bound set in the minimize built-in was smaller than the found storage cost
(3000 half days for the lower bound, 3122 half days for the optimal cost).

78

Whatever the number of workers, the first storage time value found was the optimal
storage time value, except sometimes with 4 workers.

Ten trials for each number of workers were made, and the following array shows two means
for each number of workers :
o time in sec. is the arithmetical mean of the ten elapsed times, given in seconds,

o speed-up is the geometrical mean of the ten speed-ups between the one worker elapsed
time and the two, three and four workers elapsed time.

number of workers | 1 2 3 4
time in sec. 77| 43 32 33
speed-up 1.79 | 2.39 | 2.34

The speed-ups were smaller here than for the first PSAP 3 benchmark because the optimal
cost was in one of the first left branches of the search tree and the 3 interval changes
constraint propagation thus became very efficient and reduced the parallel grain size in
such a way that the communication overhead slowed down the parallel execution.

Conclusions

This conclusion discusses the reasons for such speed-ups differences between the second
benchmarking and the others. The object is to find the bounds within which PSAP 3

benefits from parallel execution.

From these two benchmarks, and from others benchmarks not presented here, the search
tree size manageable by PSAP 3 can be discussed. This size depends on the value of C¥,
on the size of the parallel grain and on the data set size.

The following search space bounds were found for an optimal storage cost search with
four workers :

e (% smaller than 100, whatever data set size smaller than 100 aircraft :

parallel execution provides no meaningful improvement, as running times are below
ten minutes with one worker. Although in the first benchmarking, it is worth to get
solutions in less than 3 minutes with four workers, the search tree size is not enough
large to require parallel execution. As can be seen in the first benchmarking above,
speed-ups are sub linear, i.e. for N workers the speed-ups are smaller than N. This
condition means also that it is not worth trying X <Y 42, as the planner will never
request more than 10 for X? (for such small-size data sets).

e whatever C'Y, whatever data set size smaller than 100 aircraft :
if constraint propagation reduces the parallel grain size too much, the
speed-ups become non-existent. This case may also occur for data set sizes greater
than 100 aircraft. The problem here is to know a priori the parallel grain size. This
size depends on the number of interval changes, on the data set size and on the first
solution found. The following remarks can be made :

808 = 45

79

— if the number of interval changes is smaller than 4, a small parallel grain sizes
are possible, whatever data set size,

— small parallel grain sizes mainly occur for small data set sizes which are not
the actual data set sizes of PSAP,

— if the first solution found in sequential execution is the optimal solution, the
parallel grain size may be too small to obtain speed-ups while searching for the
solution optimality proof if there is good constraint propagation.

o ('Y greater than 100, whatever data set size greater than 150 aircraft :
parallel execution with 4 workers cannot handle such a large search tree in an accept-
able time . First trials with more than 7 workers on a 12-processor SGI computer
showed that such large search trees can be handled in an acceptable time.

This last point concerns the actual data sets, those which really require parallel execution.
PSAP 3 was modelized to find solutions for actual data sets on 12-processor computer
and it does.

The search space bounds may be studied for an suboptimal storage cost search with four
workers (cf. second benchmarking). There, the suboptimal cost was found in the first
84 subsets studied out of the 364 subset possibilities.

To give an idea of the time needed to prove solution optimality in the case of the second
benchmarking, the parallel_generation procedure was reversed in order to generate the
subsets in the reverse order, and the same benchmark gave, with one worker on DRS
6000, the same suboptimal storage cost? after 7 hours and 16 minutes’ running time
instead of the previous 212 minutes (i.e. 3 hours and 32 minutes). This running time is
too long to conduct benchmarking with four workers.

PSAP 3 parallel execution for actual data sets improves the running time to prove the
storage time cost optimality or to find a suboptimal storage time cost. In its current
state, PSAP 3 needs more than seven workers to provide a running time of less than five
minutes for a suboptimal search. More benchmarks are needed with the 12-processor SGI
computer to determine the running time to prove a cost optimality.

6.5 Interaction between Parallel and Sequential Improvements

The purpose of the sequential improvements introduced in PSAP 2 mainly are to put the
suboptimal solutions in the left part of the search tree but the search tree remains too
large to obtain the remaining search tree optimal solution.

The sequential improvements introduced in PSAP 3 thus are mainly aimed to reduce the
search tree in order to obtain the remaining search tree optimal solution.

The sequential improvements introduced in PSAP 3 result in poor speed-up in parallel
for the small-size data sets (e.g. 3 times faster with 4 workers instead of dramatic super
linear speed-up in PSAP 2).

4this suboptimal cost thus is the optimal cost

80

For the actual data sets, super linear speed-up are even more important for PSAP 3 than
for PSAP 2. This is mainly due to the PSAP 3 search tree pruning provided by new
interval direction labelling.

Nevertheless, for all the data sets, the access time has been improved, i.e. whatever the
number of workers between 1 and 4, the access time for a given number of workers is much

better in PSAP 3 than in PSAP 2.

In terms of access time, the sequential improvements has improved both sequential and

parallel behaviour of PSAP 3.

7 Conclusions

7.1 Parallel CLP Assessment

PSAP belongs to a mixed scheduling and planning application area : scheduling area by its
precedence constraints and planning area by the pacing problem. The main characteristics
of PSAP application area can be defined by the PSAP specifications :

e the precedence and interval production constraints,
e two cost criteria, they are the storage time and the workload,

e the compromise between these two costs depends on the current production policy,
moreover there is no function to optimize these two costs,

e the planners do not use any algorithm but their expertise to pace the assembly lines
with respects to the current production policy about the resulting costs.

The given compromise between the two costs is to give a maximum number of interval
changes and to let PSAP searching for the (sub)optimal storage time cost.

Given the simplified optimality search, our initial intuitions were that :

e CLP could express in an easy and declarative way the specified constraints but
these constraints do not much propagate on the domain variables, this leads to an
infeasible optimality search,

e parallel execution could help to search the optimal (or at least suboptimal) cost into
the large remaining search tree.

These initial intuitions were verified and super linear speed-ups were find. But they were
too simplistic, as PSAP 2 ParSee analysis showed : more parallelism than currently
available was needed. This is because of the weakness of propagation between the different
constraints implies a too huge search tree.

Considering PSAP 3 results, the use of parallel CLP and its analysis tool, ParSee, is well
suited for PSAP, as it allows :

81

o to know the search tree size and to give ideas to reduce it to a size manageable by
the current ECRC’s computers,

e to tackle previously infeasible problem as:

— the optimality proof search for small data sets,

— to find, for actual data sets, suboptimal costs which are actually better than
costs found with a sequential execution. And it may be possible to prove cost
optimality in an acceptable running time.

Characteristics for applications in the same area than PSAP can be :

e some constraints which the propagation does not prune a lot the search tree,

e a function for the cost criteria which the propagation does not prune a lot the search
tree,
e a lot of man expertise to assess the modelization, pre-computation and heuristics

chosen to prune the search tree,

a need of an interactive tool used by the experts,

a need to quickly optimize the solution quality and costs,

a sequential execution of an optimal cost search takes several hours.

If an application has those characteristics, parallel CLP is adequate as it was for PSAP.

7.2 Enhancements and Extensions to Parallel CLP System

Most of the enhancements and extensions to parallel CLP system, useful for PSAP, are
already included in ECL'PS®. Some of them are the cost parallel branch and bound built-
ins : cp_min_max and ep_minimize. Another is to allow the use of more workers : by
the port to new multi processors platforms as the 12-processor SGI or, when super linear
speed-ups are expected to allow the use of more workers than available processors.

Some useful enhancements concern rather the ECL'PS¢debugging and analysis tools.

When a parallel execution takes too long it could be useful to stop it and to switch into
a debug mode to check if :

e all the processors are actually active,

e they are doing more communications than processing.

e there is no loop, or any other bugs, because this can occur in a branch of the search
tree never reached by a sequential execution.

82

ParSee analysis was the key point to understand the PSAP 2 performance, it will be nice
to provide it with ECL'PS®. As it can predict the ability of thirty processors use from a
four processors execution, it can also predict parallel grain size or parallelism need from
a sequential execution.

Another analysis tool, could also give an idea of the constraint propagation size in terms
of elapsed time and in terms of search tree branch pruning.

7.3 Development Total Effort
It is difficult to estimate the total effort required for developing PSAP :

o as several engineers and last year students contributed to the development which
started before the APPLAUSE project. Most of the persons, with PROLOG back-
ground, learnt CLP then parallel CLP developing PSAP which is not the best way
to learn a new technology. But most of these students and all the engineers became
efficient within two months, which is a good indication of the declarativity of the
technology and to its accessibility by new users.

o Before the APPLAUSE project beginning, PSAP was stopped then restarted.

e Moreover, the Argenteuil’s planner changed and some PSAP specifications changed
with them.

To reach PSAP 3 and its user-friendly interface, more than 5 man-years were required
without the specifications time. From today, such a system will need one man-year for
the specifications and 3 man-years of development effort.

The difficulty encountered in the parallelization process was very small. As a matter of
fact, most of the time lost was due to difficulties with temporary problems of the pre
release of ElipSys and ECL'PS®. The time spent for introducing parallelization is anyway
significantly less than for each of the other phases : specification, modelling, expression
of the constraint, sequential improvements. The time to adjust the search tree to a size
manageable by the provided parallel computers was the time to improve the sequential
behaviour. This last time was the most important since this means several trials of different
pre-computations, heuristics and optimality searches.

7.4 Other Conclusions

CLP in sequential execution has proved adequate in the search for good solutions, since
efficient (though simple) pre-computation with a graphic user-friendly interface could be
designed.

PSAP has induced the development in the ElipSys and ECL!PS¢system of some general
purpose features, like time/} and adaptation of the cost parallel branch and bound to the
minimize built-in.

ECLPS¢cannot be applied for the moment to the practical PSAP application because of
factors which have nothing to do with parallelism as :

83

e a formal proof of the new interval direction labelling to convince the planner of
the actual optimality of the solution,

e an idea in French Francs of the savings obtained by (sub) optimal storage costs with
regard to current storage costs in the case of an identical number of changes and of
a similar workload,

e the availability of ECLiPS®on a network of workstations with the same performances
as those seen on the SGI computer.

The main conclusions are :

e Parallel execution has made possible to produce a better quality solution with super-
linear speed-ups,

e parallel resources when available, can be efficiently and relatively easily exploited in

ECLPS*for this kind of application.

7.5 Acknowledgments

Let the ECL'PS¢team at ECRC be thanked for their highly qualified and friendly help. At
Dassault Aviation, Patrick Albers, André Chamard, Marc Sicard and Annie Fischler have
worked on the internal application together with the author of this report; this work could
not have been carried out without their efficient participation. The PSAP 3 benchmarks
were mainly done by Patrick Albers (LAAS-CNRS) and by Shyam Mudambi (ECRC).
Thanks also to Vincent Sarracanie who did hard work on this problem and its complexity
during its stay at Dassault. Last but not least, thanks to Ute Nichols for her patience to
correct my poor English in almost all this report and some others.

84

Chapter 4.

The TCO Application
André Chamard

85

1 Introduction

The training of aircraft pilots is an important issue for an aircraft manufacturer. This has
to be taken into account from the initial design until the commercial phase. It has indeed
become impossible to sell an aircraft without consideration for the appropriate training
system. This is the reason why an internal study on pilot training has been launched at
Dassault Aviation. Increasing cost and complexity of the training process, indeed, have
made 1t necessary to re-consider the whole training curriculum. This implies assessing the
relative capabilities of the training means, taking into consideration the fast progress of
simulation and estimating the potential benefits from an earlier training for some of the
piloting tasks.

Pilot training has been modelled by operational experts at Dassault Aviation. The per-
spective is now to develop a decision support system based on the model they have elab-
orated. This task has been assigned to the Artificial Intelligence and Advanced Computer
Techniques Department of the Advanced Studies Division. A prototype has been imple-
mented in Constraint Logic Programming (CLP), benefiting from the Department’s previ-
ous experience with these techniques, in particular for production management problems
[BCP92, CF94, CF95, BCF95, CFGG95a, CFGGI5b]. Parallel CLP has been identified
as a potential way of overcoming certain performance limitations of sequential CLP due
to the highly combinatorial nature of the problem. Therefore the TCO application has
been chosen as a contribution of Dassault Aviation to APPLAUSE, and a parallel version
of the prototype has been developed and systematically tested for the project.

This report provides a description of the problem, of its modelling and the strategies
for solving it, both in sequential and parallel CLP (ECL‘PS®). The approach adopted
here could be applied to any training problem involving a variety of training means with
significantly different efficiencies and costs. The conclusions drawn do not seem, therefore,
to be limited to this particular training optimization problem:.

2 Problem Description

The Context

Pilot Training Pilot training is a long and selective process. The pilot students’ cur-
riculum consists of several phases, each characterized by the location at which they take
place and the type of training. They can be thought of as school years, even though their
durations may not be a year. The number of pilot students decreases at each phase. There
are currently five phases: Primary, Basic, Advanced, OTU (Operational Training Unit),
OCU (Operational Combat Unit).

The whole range of piloting competences the pilot should have acquired at the end of
the curriculum is divided into what is called piloting tasks. Taking Off, Landing, Night
Flying, Patrol Flying, Low Altitude Flying are examples of tasks. This division depends
on the level of granularity at which the curriculum is considered: Low Altitude Flying, for
instance, can be further decomposed into Low Altitude Flying with Visibility and Radar-
Based Low Altitude Flying. For curriculum planning purposes, however, it is useless to

86

go into much detail. 22 tasks have been identified as a basis for this study. For each
task, the pilot has to reach a required level, referred to by convention as 100%, at the
end of the curriculum. The tasks are usually taught in more than one phase, often in all
of them. Continuity is important. The teaching of Acrobatic Flying eg. currently starts
in the Primary phase on small planes, continues in the subsequent phases and is finally
completed on the operational combat aircraft (currently, the Mirage 2000).

Training is performed on training means available in the training schools and air-force
bases: these are planes, of course, ranging from small training planes to two-seater and
single-seater combat aircraft, as well as a variety of simulator types, from simple PC
simulator programs to complete mission simulators, including cockpit trainers, partial
task trainers, etc. Their cost dramatically increases with the level of sophistication and
realism. Simulators may have a cost greater than that of the small training planes.

Current Trends The level of performance required from modern aircraft has a strong
influence on pilot training at least in two respects:

e They are more and more expensive. This has a direct impact on the cost of training,
since combat aircraft have to be used for the training. The overall cost is already of
the order of two million Ecus per pilot. It will increase dramatically if the current
training structure is kept.

e The systems are more and more complex. This makes the pilot’s tasks harder and
harder and the tendency is towards a longer training.

The design of the future pilot-training schemes has to take these evolutions into account.

Designing a Training System. The TCO Project The training means cannot be
considered in isolation. A global view of the training system is necessary if one wants
to use the means in such a way that the cost is kept down at a reasonable level. The
aim of the TCO (Training Curriculum Optimization) project is to allow to design optimal
curricula given a set of means considered as available. This availability may be real, in the
perspective of a short-term improvement of the current practice, or potential, in a more
prospective approach.

A Learning Model

The Basic Learning Model Comparing the characteristics of means is a key issue,
which requires choosing a learning model. Most training processes can be represented by
‘sigmoid’ curves (Figure 2.1): early progress is slow, then learning proceeds at a constant
speed until some asymptotic level is approached.

This kind of model has been adopted in TCO for the training to a particular task on a
given means. But this model is basically non-linear and would lead to great computational
difficulties in an optimization perspective if it were kept as such. The curve, however, can
be simply characterized by three parameters: a familiarization (adaptation) time (f), an

87

Level

Maximum m s
level

f Training hours

Figure 2.1: Learning Curve

efficiency (e), which is the learning speed, and a mazimum reachable level (m) — in short,
mazimum level or ceiling. In practice, the learning curve has been considered (by the
operational experts themselves) as piecewise linear: first, the familiarization (adaptation)
time during which no progress is achieved, then a constant learning speed, until the ceiling
is reached. This kind of law is much more tractable, with no significant alteration of the
model’s significance.

Reaching the Required Competence Level for a Task Learning a task is achieved
by using a set of means. For instance, the task Normal Domain Flying was decomposed
in 1992 as follows:

| PHASE # | PHASE NAME | TRAINING |

1 Primary 5 hours on Epsilon

2 Basic 25 hours on Alpha Jet

3 Advanced 4 hours on mission simulator

4 OTU no training for this task
3 hours on complete simulator,

5 oCU 3 hours on two-seater combat aircraft,
3 hours on single-seater combat aircraft

This leads to the kind of representation given in Figure 2.2.

The temporal aspect is expressed by the phases. In the model adopted here there is no
notion of chronology inside a phase: the means are simply sorted by increasing order
of their maximum levels. How their utilization by all the students will be eventually
scheduled is not relevant for the TCO project. TCO 1is about planning the curriculum
and is not concerned with scheduling nor time-tabling.

It is important to note that a means with a relatively low maximum level cannot be used
if its ceiling has been already overstepped by a more powerful means in an earlier phase.
This is a crucial point which will be discussed in detail later. For the model to be complete,
a notion of maturing should also be introduced: the learning speed in a given phase also
depends on the level reached previously; the higher the already acquired competence (in

88

Level

100 %

3hrs.

5 hrs. 25 hrs. 4dhrs 9 hrs. Training hours
>
Ph. 1 Ph.2 Ph.3 Ph.5

Figure 2.2: The Normal Domain Flying Task

previous phases, with other means), the higher the speed. This presentation of the chosen
learning model allows us now to define the problem in a more complete way.

Problem Description

Data and Results A tasks decomposition is assumed, as well as the declaration of
the means available in the phases. Defining the curriculum amounts to determining the
number of training hours (possibly a non integer number) assigned to each means for each
task in each phase. This provides a kind of teaching programme, comparable to those
applicable to standard education at the state level. They define the number of hours to
be dedicated to the various activities and lessons, for each school year and each subject,
and the levels to be reached. Time-tabling is left up to the teachers’ and headmasters’
organization skills.

The basic data are therefore the following:

o a list of tasks

e a list of phases

e a list of means declared as available for each task and each phase
e the utilization cost per hour of each means

e the maximum reachable level for each means declared as available in a phase for a
task

e the relative efficiencies of the means (in the different phases and tasks) compared to
that of the two-seater combat aircraft

e the utilization times of the means in the current curriculum (which will allow to
compute absolute efficiencies).

Constraints of pedagogical or organizational nature are specified:

89

e total duration of the curriculum

e total duration for certain phases

e minimum or maximum utilization of certain means

e minimum number of flying hours

e minimum level to be reached at the end of certain phases for certain tasks

e ctc.

The results are
e for each phase and each task, the utilization time of all the available means.

The objective is in general to minimize the total cost. But one may also want to compute
the theoretical minimum duration (ie. with no cost constraint). The cost minimum with
no duration constraints on the one hand, the duration minimum with no cost constraint
on the other hand are nothing but two extreme points of a Cost = f(Duration) curve
which is quite meaningful for the users, and on which they intend to perform sensitivity
analyses. The most acceptable compromise between cost and duration is likely to be in
some area of the curve where the cost is relatively low, but a significant duration decrease
can be achieved by just slightly increasing the cost (Figure 2.3).

Cost

best compromise

admissible area

minimumecost |- — J— — = - = - - - —=———
|

minimum duration Duration

Figure 2.3: Cost—Duration Curve

A Global Problem Constraints such as maximum duration for the whole curriculum
or for a phase, or minimum number of flying hours, involve all the tasks. This makes it
impossible to split the problem by optimizing the tasks separately. As a consequence, a
full problem with the current data does correspond to 22 tasks and 5 phases.

Origin of the Data Maximum reachable levels and relative efficiencies are parameters
whose necessity is implied by the learning model. But they are not normally handled by
domain experts and are not accessible through immediate experience. A reflection on the
procedures to be set up in order to provide experimental criteria for the comparison of the

90

means is under way. The current data on the tasks have been so far defined by one expert.
They are consistent but more based on intuition than on observable criteria. Yet they are
sufficient for the purpose of testing the model and its computer implementation. In any
case, the issue of parameter acquisition and validity, though crucial for the TCO project,
is outside the scope of APPLAUSE and will not be discussed further in this report.

Approximate Optima The retained learning model, being piecewise linear, has a cer-
tain degree of approximation. It is then sensible that the requirements should not be for
exact optima, but for approximate ones. The practical objective is therefore to find solu-
tions within a given percentage (5% eg.) of the theoretical (but not totally meaningful)
optimum. It is in fact expected that the computer system will be able to produce several
curricula, whenever possible, within a specified percentage of the global optimum.

3 Problem Qualification

A Mixed Integer-Linear Problem

Sketch of the Problem Structure In the rest of this document, the following nota-
tions will be adopted:

o the means are indexed in chronological order of the phases and in order of increasing
maximum levels inside each phase

e the utilization time of means m; is T;, expressed in hours
e its cost per hour is ¢;

o P, = e;* T, denotes the (possibly null) progression achieved with m;, where P; is
expressed in percents of the required level and ¢; is the efficiency of m;, in percents
of level per hour

o ;=P +..4 P_;+ P is the level reached after the (possibly null) utilization of

m;.

For the purpose of explanation, a simplified problem featuring a single task will be con-
sidered now. It will be assumed that 4 means are declared available, over 2 phases: the
first two means can be used in Phase 1, the other two ones in Phase 2. It will be assumed
as well that the familiarization times are negligible. The means’ characteristics are given
below:

H Phase ‘ Means ‘ Efficiency ‘ Maximum Level ‘ Cost H

1 my 4 40% 1
Mo 8 60%)

2 M3 2 50% 2
My 10 100% 20

91

The corresponding set of equations will express that

o the level reached just after actually using a means cannot be higher than its maxi-
mum reachable level; if the means is not used, then no constraint is imposed

e the level reached at the end should be 100%

e the overall cost is the sum of the utilization times multiplied by the costs per hour.

The equations are the following (with conjunction between equations noted by commas):

MINIMIZE Cost = 1«17 + 5Ty + 2 x T+ 20 x Ty
UNDER

Ty >0, P, >0, Ly >0,

T, >0, P, >0, Ly >0,
T3>0, P3>0, Lz >0,
T4>0, P4 >0, Ly >0,
Cost > 0,

P1:4>|<T1, L1:P1,

Py =8x15, Ly =Ly + P,
P =2%13, Lz = Ly + Ps,
Py =101y, Ly = Lz + Py,
(L1§40\/P1:0),

(L <60V P, =0),

(Ls <50V Py =0),

L, =100

The basic constraints are linear and it can be assumed that the variables are continuous. A
priori, this kind of problem seems to be within the scope of classical linear programming
methods, like the Simplex algorithm. This small example, however, already shows the
existence of disjunctions which will deeply affect the problem’s complexity.

Several Sources of Disjunctions a) Maximum Level

The above example features three disjunctions related to maximum reachable levels. Only
the third one, actually, is a real disjunction, since for means m; and m, the maximum
reachable levels cannot be overstepped by previous ones. Therefore, the associated con-
straints are also true if these means are not used. Only mg is such that a level greater than
its own maximum (50%) may be reached by a preceding means (mq with ceiling 60%).
This allows us to write the following, equivalent but simpler, system:

MINIMIZE Cost =1« Ty + 5« Ty + 2 T35+ 20 % T}
UNDER

T >0, P >0, Ly >0,

1,20, P, >0, Ly >0,

T3>0, P >0, Ly > 0,

Ty>0, P >0, Ly >0,

Cost > 0,

P=4x1Ty, L1 = Py,

92

Py =8x%T5, Ly =Ly + P,
Ps=2%1T3, Ls=Ly+ Ps,
Py,=10«T,, Ly= L3+ Py,
Ly <40,

Ly <60,

(Ls <50V Py =0),

Ly =100

The remaining disjunction cannot be removed. Instead of a conjunction of constraints,
which would define a convex polyhedron in the solution space (the intersection of the
half-spaces defined by the inequality constraints), the disjunction leads to a non convex
polyhedron. The Simplex method is no longer applicable, and the choice of particular
branches needs to be made. Moreover, if this simple example features only one disjunc-
tion, real problems will show a great number of them. With respect to the maxi-
mum reachable level constraints, a disjunction will be encountered each time
a means has a maximum level lower than that of at least a means available
in a preceding phase. Such means will be called ‘disjunctive means’. Since the
means are sorted by increasing ceilings inside each phase, a means can be disjunctive only
because of the presence of a higher-level one in a preceding phase, not in the same phase.

Other sources of disjunction exist, which will now be explained.
b) Familiarization

Familiarization times T, Ty, T3, T; can be added to the above example. These times lead
per definition to no progress, but they have a cost. Moreover, one needs to stipulate that
these new variables may only take two values: either 0 (if the means is not used), or a
given fixed value (respectively, Fi, Iy, F5, Fy). The new constraint system is the following:

MINIMIZE Cost = 1 (Ty + T]) + 5+ (To + Ty) + 2% (T5 + T5) + 20 (T4 + 1)
UNDER

T, >0,7/>0, P, >0, Ly >0,

T, >0, Ty >0, P,>0, Ly >0,

T3>0, T4>0, P, >0, Ls >0,
Ty>0,T;,>0, P, >0, Ly >0,

Cost > 0,

P =4x1T,, L = P,

Py =8x%T5, Ly =Ly + P,

P =2%13, Lz = Ly + Ps,

Py,=10«T,, Ly= L3+ Py,

(Ty >0, Ly <40, T{ = Fy) v (T1 =T] =0)),
(T2 >0, Ly <60, Ty = Fy) vV (T, =T, =0)),
(T5 >0, Ls <50, T; = Fs5) vV (T5=T5=0)),
T, = Fy, % my has to be used

Ly =100

These new disjunctions make the problem even more complex. In addition, it has been
assumed that the familiarization time, whenever applied, is fixed. It would certainly be
more realistic to make it a function of the history of the learning process: if eg. a pilot

93

student has already flown on a two-seater combat aircraft, the adaptation time to the
single-seater will be almost negligible. 1t is obviously not the case if he has only piloted
training planes. Taking this into account would introduce further difficulties both for
modelling and resolution.

¢) Maturing

Modelling the maturing process is another hard issue. One may consider defining a ma-
turing factor, by which the means’ efficiencies in a given phase will be multiplied. This
factor would be a function of the amount of training already carried out eg. at the end
of the previous phase (expressed as a duration or a level). In order to keep the basic
constraints linear, one would have to introduce thresholds. Durations or levels previously
reached being only known a posteriori, this would lead to additional combinatorics.

A Mixed Integer (Binary)-Linear Problem This altogether makes the problem a
Mixed Integer (Binary)-Linear Problem. It is binary since all choices can be expressed
by boolean variables: pieces of equations like T{ = F; V1] = 0 can, indeed, be replaced
by T{ = Fy « Bl, (Bl = 1V Bl = 0). Finding feasible (not necessarily optimal) solu-
tions may imply exploring somehow all binary choices corresponding to utilization or non
utilization of the disjunctive means (plus, with more complex models, checking whether
certain thresholds are reached). Finding the optimum will imply traversing at least implic-
itly the whole search space. The time required to solve the problem can thus be expected
to be polynomial in the best case and exponential in the worst case as a function
of the total number of disjunctions.

Hints on the Problem’s Size The current data feature 22 tasks with 12 generic
training means in 5 phases. The total number of unknown is however less than the product
of these figures, since only part of the means can be available for a given task and in a
given phase. In fact, there are 262 availability declarations for means to tasks in phases,
ie. 262 utilization times to be determined. The number of constraints is of the order of
500. But the crucial point is not the number of continuous variables or the number of
constraints. If the problem boiled down to solving the linear constraints, that would be
easily achievable by Simplex-based tools. The number of disjunctions, or equivalently of
0-1 variables, is what really determines the complexity.

Let us consider only the maximum level-related disjunctions. With the current data sets,
there are 63 disjunctive means. If, in order to minimize the overall cost eg., one (naively)
enumerated all the combinations of utilization / non utilization of these means, and if for
each combination a Simplex were run (with the idea of eventually computing the minimum
of all linear minima) that would mean running the Simplex 25 times, which is certainly
not feasible in practice. If fixed familiarization times are added, all the means become
‘disjunctive’. The size of the naive search space is then 22%% instead of 2°%, making the
problem even more intractable. A realistic account of maturing would add another 88
disjunctions (4 phase level thresholds per task), which would give a figure of 2°°°. Tt is
clear that the entire search space need not be explicitly traversed. The figures are however
huge and it is very unlikely that ‘absolute’ optima can be found within a reasonable time.
A sensible objective is to provide good quality solutions within a proven distance to the

theoretical optimum and in a relatively short time. This is still hard. For the time

94

being, the model will take into account only the disjunctions originating from the
maximum reachable level constraints. If this can be solved in a proper way, further
refinements will be introduced.

Previous Attempts to Solve the Problem The experts made several attempts to
solve the problem, manually and by using spreadsheets. Optimization, indeed, can be
achieved on each task separately by using a greedy algorithm, as far as no phase duration
or global duration constraints are introduced. However, as soon as such constraint are
stipulated, even for one task, no simple algorithm seems to allow to solve the problem.
With several tasks, it is impossible to decide a priori how these constraints will ‘distribute’
over the different tasks, so that the problem cannot even be split. It can no longer be
solved by manual or semi-automatic methods. This is what led to the idea of applying
advanced resolution techniques.

Choice of CLP, ECL'PS®’s Rational Solver and Parallelism

Choice of CLP For solving this problem, two major candidate techniques appear a
priori: dedicated Mixed Integer-Linear Programming (MILP) packages on the one hand,
and CLP on the other. A general discussion about CLP compared to Operations Research
techniques in general can be found in [CFGGY95a). For this particular problem, the per-
formance level to be expected from a MILP package is certainly higher than that of CLP,
but the flexibility of CLP programming languages has been a strong argument in their
favour. The requirement, indeed, is for a decision support system, and raw performance
is not as important as the possibility for the user to interact with previous results (eg.
introduce new pedagogical constraints). These results are possibly approximate (within
a given distance to the optimum) but should be delivered in a short time. In addition,
as far as performance is concerned, the number of continuous variables is not a limiting
factor here. In contrast, ease of implementation of the heuristic methods is crucial, and for
that purpose CLP languages have a decisive advantage over MILP packages. Finally, the
system’s specifications may evolve. CLP’s declarativeness (meaning ease of expression and
modification of the constraints and strategies) will much better allow the evolutions of the
system. The Artificial Intelligence and Advanced Computer Techniques Department has
a previous experience in the development of CLP-based decision support systems, mainly
for production planning and scheduling [BCP92, CF94, CF95, BCF95] and has worked on
methodological aspects [CFGG95a, CFGGI95b]. User interaction principles designed for
scheduling problems are also valid for TCO and will be applied.

Choice of a CLP Rational Solver It has been assumed so far that the problem
would be handled by some combination of linear programming and enumeration methods.
When choosing CLP languages like CHIP or ECL'PS®, one has the choice between linear
solvers (LS) over continuous (rational) variables and also a Finite Domain (FD) solver. A
comparison can be found in [CFGG95a, CFGGI5b]. The Finite Domains are widely used
for all kinds of planning and scheduling problems and need to be considered seriously.
Below will be given arguments in favour or against the two solvers as far as TCO is
concerned, and the conclusion reached.

95

In Favour of Finite Domains

TCO is a discrete problem, even for the utilization times, for in practice these times will
be integer numbers (possible null) of learning hours or half-hours. It is not sensible to
plan eg. that the pilot students should use a given mission simulator 2.37 hours in phase
2. One needs to round this figure, eg. to 2.5 hours.

The local propagation-based FD solver will handle larger-sized problems than the LS
solver, which performs global manipulations over the constraint network. This is however
probably not decisive here, since the number of constraints is not very large.

In Favour of a Linear Solver

Propagation is rather weak with the Finite Domains for the kind of disjunctive constraints
encountered in TCO. Basically, one would use conditional propagation, viz. a disjunctive
constraint would be frozen (leading to no propagation at all) until, as an effect of the
decisions made by the program, one of its alternatives becomes either true or false for any
possible values combination of its variables. This implies that a considerable amount of
labelling would be required before some significant propagation is achieved. In addition,
not the 0-1 variables need to be labelled (63 variables with the current data), as with
a linear solver, but the utilization-time variables (262 variables with the current data),
since propagation is not complete and only instantiation of all variables can ensure correct
solutions. Global constraints have been developed in the Finite Domains for certain classes
of problems, mainly in the area of scheduling, logistics and placement [BC94, CHI94, Vgi’)],
but there is apparently no such global constraint that would fit the TCO planning problem.
It is not a scheduling problem, not the problem of finding an order among training actions.
The (now) classical disjunctive or cumulative constraints do not apply. TCO is a planning
problem, where the issue is to decide at a high level which resources (the means) have
to be used, which number of them are required and in which phases. The relatively
weak handling of disjunctions achieved with conditional propagation might actually be
acceptable if the aim were only to find a feasible solution. But one wants optimize, even
if 1t 1s with some approximation, and the cost function is the sum of a large number of
elementary costs. In the Finite Domains this often leads to a poor evaluation of the cost
objective when the underlying propagation is weak (refer to the experience with the PSAP
system in APPLAUSE). This was confirmed by experiments made at the beginning of the
TCO project with the Finite Domain solver of CHIP.

In contrast, with linear solvers over continuous variables, linear relaxation techniques
provide a global handling of the disjunctive constraints. A better evaluation of the cost
objective may be expected, since the approximation of the not yet solved disjunctions
combine linearly, whereas with Finite Domains an unsolved disjunction handled with
conditional propagation would have simply no effect at all. For these reasons, the Linear
Solver was preferred for TCO.

The rest of this document will be devoted to describing the constraints and strategies used
in the prototype, and the way the system was parallelized.

Parallelism Applying OR-parallelism is a natural way of speeding up of the exploration
of the choice points. More precisely, the initial expectations about parallelism for TCO
were the following:

96

e in exploration phases, the users will want to get a set of significantly different accept-
able solutions within a limited time; parallelism should help to increase the number
of structurally distinct satisfactory solutions

e when the user has reached a stable definition of the problem, he may want to run the
proof of optimality to completion (with some specified accuracy); here, parallelism
is expected to substantially reduce the time needed for this proof.

4 Constraint Expression and Prototyping

The Mock-up The first mock-up was written in CHIP in 1993-1994, using the Rational
Solver [B94]. It allowed to solve optimally only small problems (5 tasks). An algorithm for
the distribution of the global constraints (such as maximum total duration) to the tasks
was implemented, with which larger problems could be solved. But this approach was
finally abandoned, since the distance of the thus obtained solutions to the actual optima
could not be satisfactorily estimated.

A totally new mock-up was written at the end of 1994, which forms the base of the work
in APPLAUSE. It was designed so as to give a pre-view of the final tool and, at the same
time, facilitate the development work and the search for efficient resolution strategies.
A high-level control of constraint setting and interaction with data is provided. The
resolution core is implemented in CHIP / ECL'PS®, ie. it can run in both languages given
a very limited number of specific predicate re-definitions. The mock-up has a graphical
user interface for parameter acquisition and result display, written in CHIP’s graphical
layer (this has not been ported so far to ECL‘PS®, since it can be used independently from
the resolution to exploit results produced by the CHIP and ECL‘PS® versions).

All examples of code given in this report will be in ECL!PSe.
Constraint Expression

Introduction of Linear Relaxations a) General Presentation

The disjunctions of the problem cannot be handled as mere choice points. As was already
mentioned, the combinatorics are huge and it is simply impossible to construct all the
alternative sets of linear constraints and for each of them run a linear optimization. The
idea of linear relaxation is then to replace a disjunction of constraints by a conjunction,
in a way such that

e the conjunction’s solution set is a superset of the disjunction’s
e it is as close as possible to it

e ways are provided to express the choices and when a particular branch is chosen,
the solution set reduces dynamically to that of the branch.

This is achieved by introducing continuous variables for each choice point which are ini-
tially constrained to range between 0 and 1, and will eventually be assigned the value 0

97

or 1 (it is impossible to impose integrity constraints from the start, ie. to mix continuous
and integer variables). These variables express the relative validity of the branches at
any step of the computation. The best (tightest) possible linear relaxation of a problem
consisting of linear constraints and disjunctions of linear constraints is the one whose so-
lution polyhedron is the convex hull of the (non-convex) polyhedron defined by the initial
problem. Computing it proves however very hard as soon as the initial problem features
more than one disjunction. The intersection of the convex hulls of several disjunctions,
indeed, is in general larger than the convex hull of their conjunction. Thus, computing
the convex hull requires a time, and leads to a number of constraints, which may be ex-
ponential in the number of disjunctions in the worst case [DBH93]. Therefore, in general,
looser relaxations are looked for, and several methods exist for this purpose. The basic
relaxation method adopted for TCO is common in Mixed Integer-Linear Programming.
Assume that the original disjunction is

AL X < B VA, X < By

where Ay, A, are matrices with numeric coefficients, X is a vector of unknown, By, B;
are vectors of numbers. The relaxation is the following:

Ay X < Uyd + By(1 - 6)

where the vectors U; and U, are suitable upper bounds for A;.X and A,. X, respectively.

This kind of relaxation may define the convex hull but may also be significantly larger
[DBH93], depending on the dimension and the accuracy of the upper bounds. Reasonable
bounds, however, can often be found from practical considerations related to the problem’s
semantics, which has been the case for TCO. It is still worth trying to tighten them. The
closer the relaxation to the convex hull, the closer the cost of the linear optimum to that
of the feasible optimum (ie. that of the best solution satisfying the integrity constraints
on the ¢ variables), and the earlier useless branches will be eliminated in the search for the
feasible optimum. As a matter of fact, if computing the convex hull were tractable, any
search on the ¢ variables would be avoided — except some limited enumeration in certain
degenerate cases — for the vertices of the convex hull (where linear optima are located)
correspond to integer values of the § coefficients. The experiments carried out for TCO to
tighten the constraints by using knowledge about what they mean will be explained later.

b) Example
Consider the small example given in 3 a). The disjunctive constraint

(Ls <50V Py =0)

or, equivalently (since P3 > 0)
(Ls <50V P < 0)

will be replaced by the relaxation

98

Ls < 508 + Us(1 — §),
Py < Va8 +0(1 —)

where appropriate values for the upper bounds Us and V3 need to be found. This is done
by considering the maximum level that can be reached before mgs. It is that of my, 60,
and this allows to take Us; = 60. For V3, it is easy to see that if the means mj is used,
the progression cannot be more than its level, which is limited to 50, hence V3 = 50. The
relaxation is therefore (after eliminating the null term in the expression of Ps):

Ls < 506 4 60(1 — §),
Py < 508

Discrete Optimization Since at least some search is inevitable, this has to be con-
ducted in such a way that useless steps are avoided: when a solution has been found with
a given cost, it is no use searching for solutions that may have a higher cost. Branch &
Bound methods have been developed for that purpose. For the TCO problem, procedures
corresponding to min_maz and minimize of the Finite Domains of ECL'PS¢[ECL94] have
been used. We will shortly recall the principles of these procedures. What relates to
parallel execution will be explained in the section on parallelism.

a) Min_max

The principle is simple:

o usual depth-first backtracking search is performed;

e cach time a new solution is found, the search is restarted from scratch, with the
constraint that the cost should be strictly less than the cost of this solution;

e the procedure stops when the current search fails; then, either at least one solution
has been found, in which case the last found one is optimal (the search for a better
one has failed), or the problem has got no solution at all.

Practically, the stronger the constraints, the better the dynamic implicit evaluation of the
cost lower bound performed by the constraint system and the quicker useless branches
will be pruned.

A min_mazx for the rationals was first written from scratch for TCO, but finally it was
found wiser to benefit from the built-in’s safer implementation, and to use it with rational
costs by simply rounding them down whenever a solution is found.

Finding approximate optima is often enough, as is the case for TCO. This is done by
imposing a percentage: when a solution is found, then the search restarts with a new cost
upper bound equal to the previous cost minus the percentage. Then, when the last search
fails, the distance of the last solution (if there are solutions) to the absolute optimum is
guaranteed to be less than the percentage. Time-limits can also be specified (this feature
was implemented in ECL'PS® for TCO). Note that in that case if the system stops because
of the time-limit no optimality (even by some percentage) has been proven.

99

b) Minimize

An alternative method consists in having the system backtrack with a new cost constraint
when a new solution has been found, instead of re-starting the search from the top of the
tree as with min_maz. The idea is that no solution to the new constraint may have existed
in the part of the search tree already visited, since no solution to the previous, weaker,
constraint, existed there. All that was said above about the strength of the constraint
system, the possibility of optimizing by n % or of imposing a time-out equally applies to
that method. (It is, however, much harder to implement than min_mazx.)

Predicting which of the re-computation-based min_maz or the backtracking-based mini-
mize will perform better on a given problem is not easy, and one has to experiment. For
TCO, both min_maz and the minimize-like predicate with cost-parallelism were tried. The
latter proved to be very efficient (this is explained in detail in 6).

c¢) Example

The equations of the small example given above easily translate to ECL'PS® code. Without
min_maz, enumeration of the branches leads to:

[eclipse 1]:

T1 $>= 0, P1 $>= 0, L1 $>= 0,
T2 $>= 0, P2 $>= 0, L2 $>= 0,
T3 $>= 0, P3 $>= 0, L3 $>= 0,
T4 $>= 0, P4 $>= 0, L4 $>= 0,

P1 $= 4xT1, L1 $= P1,

P2 $= 8xT2, L2 $= L1 + P2,
P3 $= 2xT3, L3 $= L2 + P3,
P4 $= 10%*T4, L4 $= L3 + P4,

L1 $<= 40,

L2 $<= 60,

D3 $>= 0, D3 $<= 1,

L3 $<= 50*D3 + 60%*(1-D3),
P3 $<= 50*D3,

L4 $= 100,

Cost $>= 0,
Cost $= 1*T1 + 5*xT2 + 2*T3 + 20xT4,

(D3 $= 0 ; D3 $= 1), % ¢;’ is the ‘or’ operator
rmin(Cost) . % linear minimization

P1 = 40

P2 = 20

P4 = 40

L1 = 40

L2 = 60

100

L3 = 60

P3 =0

L4 = 100
T1 = 10
T2 = 2.5
T3 =0

T4 = 4

D3 =0
Cost = 102.5 More? ()
P1 = 40
P2 = 10
P4 = 50
L1 = 40
L2 = 50
L3 = 50
P3 =0

L4 = 100
T1 = 10
T2 = 1.25
T3 =0

T4 = 5

D3 =1
Cost = 116.25
yes.

[eclipse 2]:

With romin_max (min_max adapted to rationals), the second branch is abandoned before
its complete exploration, for it leads to a cost higher than the previous one:

[eclipse 3]:

T1 $>= 0, P1 $>= 0, L1 $>= 0,
T2 $>= 0, P2 $>= 0, L2 $>= 0,
T3 $>= 0, P3 $>= 0, L3 $>= 0,
T4 $>= 0, P4 $>= 0, L4 $>= 0,

P1 $= 4xT1, L1 $= P1,

P2 $= 8xT2, L2 $= L1 + P2,
P3 $= 2xT3, L3 $= L2 + P3,
P4 $= 10%*T4, L4 $= L3 + P4,

L1 $<= 40,

L2 $<= 60,

D3 $>= 0, D3 $<= 1,

L3 $<= 50*D3 + 60*(1-D3),
P3 $<= 50%D3,

L4 $= 100,

101

Cost $>= 0,
Cost $= 1*T1 + 5*xT2 + 2*T3 + 20xT4,

r_min_max((D3 $= 0 ; D3 $= 1), Cost, 0), % optimum by 0% sought

r_min(Cost).

Current cost 102.5
Optimal cost 102.5

P1 = 40
P2 = 20
P4 = 40
L1 = 40
L2 = 60
L3 = 60
P3 =0

L4 = 100
T1 = 10
T2 = 1.25
T3 =0

T4 = 4

D3 =0
Cost = 102.5
yes.

[eclipse 4]:

Linear minimization is performed after r_min_maz in order to commit the cost to its
actual minimum in the optimal branch. In this example, this is enough to instantiate all
the problem variables. In general, an additional procedure is required for that, which has
been omitted here for the sake of simplicity.

The TCO Program Operation The basic mechanisms have been explained. We will
now say a few words on how the program works globally. For each resolution, the following
operations are successively performed:

e The data and parameters are loaded and processed, and a single term representing
the curriculum is constructed, whose characteristics will be accessed in the rest of
the program in an object oriented-type way.

e The various types of constraints are successively set up. Failure may occur during
this phase. In the operational system, information will then be displayed about
when the constraint system has become inconsistent, and the user will be invited to
reconsider at least some constraints of the latest introduced type.

o The discrete minimization procedure is run on the labelling of the decision variables,
possibly with a time-limit and a specified accuracy. Experience has shown that

102

failure seldom occurs at this step, for most of the time solutions exist, even if at
a very high cost. However, this is not guaranteed, and the operational system will
have to provide practical hints for constraint relaxation.

e The optimum solution found is displayed in a spreadsheet form via the graphical
interface (see Figure 4.1). A multi-solution variant of the resolution program based
on the results of parallelism will be implemented and exploited at the user-interface
level in the next version of the prototype.

r'ﬂ Systeme d’Entraineme nt 0
SYSTEME « | CURSUS ~ | CONTRAINTES « | GPTIMISER v | VOIR = | RESULTATS «
CURSUS OPTIMISE Cout total = 5705.2 Duree iptale = 622.4
Resultat : a95_10tasks_110
Cursus : a%95_15taches assaut inter_combat inter_tomt_temps 1 nav_bal nay_tad
. avian (1) 00 *E P 0/0 *
Contraintes : a93_13taches 160 Sn_rission_ccmplet (1) 647630 113/118 = 3567256 207204
sim_misaicn (19 w 070 070 w 070
ot (1) i 0/o o/ w 070
q PP pe(l) *]* ** 0/0 * i g
Critere d’optinisation : cout i 50 I 7 50 o
Coeff. de matiration : 1 sim_missicn_complet (2) 0/0 0/ R 0/0 0/0
sim_ruissicn (2) o 0/0 0/0 i 0/0
Coeff. de rattrapage : (1]) I 070 070 I 070
Optimum recherche a : 5 % pres Bt) Hr s i Hr i
ps(2) 070 e 070 E¥ES e
avicn (3) 070 o DO 247762 g
. . L.) sim_rission_complet (3) [o/ *j* [[T]
Choix de visalisatio dn resultat : o issin) g o780 /0 g 297176
voir: [CURSUS TACHE ot (3] OO 307/62 65/04 OO ERIETRE
O oD oD o oD o
e (3] 21701 155 /06 15702 w 11704
- SR g o wpw 770 o
lzzaml Sim_mission_complet () O Wl B e A ﬁﬂﬂ
Volume Horsire / Cout o) [T 3] g B2/08 070 =l
Volume Horsire / Niveau / Caut phase (0 ;16045734 6171007148 B7/100/4066 | 207/100/3512 | 142/100/4338 [216/10074312
phase (1) : €29 /7038 64 /60638 118 /60/118 0434640 25675 1256 2050204
phase (%) : 7.5/7178 0/15/0 074070 0734640 0/50/0 074540
phase (3): 16074141 2171501 36140 /626 114 /34,6196 224 /50,762 28745 €22 =
A
=
phase (4) = 160/1354 04070 0070 ETATAS 192715 /08 04040 T

Figure 4.1: A Result Displayed by TCO

Performance of the Basic Program With the basic linear relaxation mechanisms
that have been explained above and with no particular strategy for the labelling of the
decision variables, performance is rather poor. Due to the combinatorial nature of the
problem, an exponential behaviour in the worst case is inevitable, but it should be reduced
to its minimum. Before parallelism was applied, several tracks were explored, some of
which led to significant improvements both for sequential and, later, for parallel execution.
They concern the improvement of the constraint system, on one side, and simple ordering
principles for the decision variables inside the labelling routine, on the other side, and will
be explained in section 6. We will first expose the principles of the parallelization of TCO.

103

5 Parallelization

This section is about the basic principles, initial expectations and first results regarding
the parallelization of TCO. Optimization of parallelism will be dealt with in section 6,
where a detailed account and representative figures are provided.

Parallelizing the Labelling Using OR-parallelism on choice points is the most natural
idea, which means here parallelizing the assignment of 0 or 1 to the decision variables. It
had to be checked that these choices are of enough coarse grain. This is, indeed, of utmost
importance since the time spent in communication and reallocation of workers depends on
it. Experience has proved that this parallelization is quite efficient, ie. of an acceptable
grain. This is probably due to the fact that the most important decisions are put first
(see section 6). The parallelizing strategy which has been used for the first experiments
consists in using:

e an analog of par_indomain for rationals applied to the decision variables

e min_max as the minimization procedure.

The Program The program can be sketched as follows:

tco :-
get_data(Data),
set_up_constraints(Data, Decisions, Cost, UtilizationTimes),
value_order(Domain01), h [0, 1] or [1, 0]: parameter
accuracy(Percent),) parameter
r_min_max(labelO1(Decisions, Domain01), Cost, Percent),
instantiate_all(UtilizationTimes). % ensure ground solution

labelO1([1,).

labelO01([D|Decisions], Domain01) :-
r_par_indomain(D, Domain0O1),
labelO1(Decisions, DomainO1).

r_par_indomain(X, Domain) :-
par_member(V, Domain),
X $= V.

Results This strategy works well for the proof of optimality: the results show quasi-
linear speed-ups with the hardest problem instances (see the figures with min_max in the
tables given in section 6). They are, however, worse for the easier problems. Note that
this parallelism has absolutely no effect on the time spent to find the solutions. This may
seem disappointing, but probably only shows that the heuristic ordering of the variables

104

and the values (see 6) is good. Though these results were already satisfactory, it was felt
that parallelism could bring more in terms of quality and variety of the solutions. This
lead to a second phase of experiments, which is explained in section 6.

It is worth noting that this introduction of parallelism was extremely simple and required
almost no specific debugging effort. This may be due to the fact that the system was
initially programmed in a very declarative way, with no assert/retract eg., and with global
variables used only in the pre-processing part. Only certain phenomena caused by the
inherent asynchronism of parallel execution were slightly puzzling at the beginning. For
example, if the results are written into a file in Prolog format, then a term and the following
comma, or dot, written by a given worker should never be separated by a write statement
performed by another worker in the same file; it is therefore crucial to use an atomic goal

like

printf(Stream, "%q, ", [Term])

and not a complex goal goal like
write(Stream, Term), write(Stream, ", ")

Such features, however, are easily mastered.

The Rational Solver The ECL'PS‘rational solver used for the experiments is clp(Q,
R) [Hol95]. It is significantly slower than that of CHIP for example, which had several
consequences:

e only small to middle-sized data could be tested within a reasonable time (between 9
and 21 decision variables, as compared to the 63 of the real-sized problem instances)

e it might be the case that with a faster solver the communication overhead ceases to
be negligible and the speed-ups are slightly lower

e some strategies like having parallel choice points on dichotomic constraints for the
phase durations could not really be tested, for the additional constraints resulted in
unacceptable slow-downs.

6 Performance Debugging and Optimization

Improvements to Sequential (and Parallel) Performance In this section will be
discussed the improvements made necessary by the poor performance level of the basic
constraint model, and which proved valuable both for sequential and parallel execution.
Enhancements relating specifically to parallelism are discussed in 6.

105

Improving the Constraint System a) Adding Constraints on the Levels to
Separate the Branches

In the example already used, the relaxation

Ls < 506 4 60(1 — §),
Py < 508

expresses that either ms cannot be used (6 = 0), or it may be used (6 = 1) and the level L3
reached after its (possibly null) utilization is less than its ceiling (50). However, nothing
does actually prevent Ls to be less than 50 with 6 = 0, and Ps to be zero with § = 1.
In other words, the configuration Ls < 50, P; = 0 is common to both branches, ie. a
disjunction has been expressed, but not a mutual exclusion. This is logically not a problem,
but procedurally may lead a computational redundancy and slow down performance.

To obtain separated branches, one needs to express eg. that
o cither the level reached before mg is not greater than its ceiling, and ms may be

used

o or this level is greater than the ceiling of mgs, and m3 may not be used.

This means that the original disjunction has to be re-written as

L2 S 607
((Ly <50, Ls < 50) V (Ly > 50, Py = 0))

where Ly < 50 and Ly > 50 guarantee that no solution to the global problem common to
the two branches can be found. Since Ly < 50 is implied by L3 < 50, the disjunction can
be simplified, giving

L2 S 607
(Ls <50V (Ly > 50, P3 = 0))

The relaxation is straightforward:

Ly > 50(1 — &),
Ls < 508 4 60(1 — §),
Py < 508

Since strict inequalities are not always handled efficiently by linear solvers, an arbitrary
small quantity ¢ can be introduced:

Ly > 50(1 + €)(1 = §),
Ls < 508 4 60(1 — §),
Py < 506

Though one constraint is added to each disjunction, performance has been improved by
a factor between 2 and 7 on the data sets that have been tried, due to the removal of

106

redundant computations. The method exposed in the next paragraph, however, subsumes
this improvement.

b) Adding Propagation Constraints Between Decision Variables

If a disjunctive means in a given phase cannot be used because its maximum level is
overstepped by the utilization of some other means before it, then no means of the same
or of a subsequent phase having a ceiling lower or equal to its own can be used either, for
their maximum levels will be also overstepped. In terms of decision variables, this means
that if the one attached to the given means is assigned value 0, the variable of these other
means has also to be 0. This is only partially expressed by the equations written so far.
Let us consider the example below with an additional means ms/, belonging to the same
phase as ms and also disjunctive but with a higher ceiling (55). We obtain the following
system:

Ly > 50(1 — &5),

L3 <5065 + 60(1 — 53),
Ps <5003,

Ly > 55(1 — &),

L3 < 5565 + 60(1 — 53/),
P3 < 5503

If 45 takes value 0, d3 should as well. In practice, when d3» = 0 occurs, then L, > 55
is imposed, but this implies only that d3 should be at least equal to 0.5 in order that
Ls < 50054+ 60(1 — d3) be satisfied. The way of enforcing value 0 to be propagated in such
a case is quite simple: it is enough to add a new constraint between the decision variables:

53 S 53/

to ensure that d3 = 0 will be entailed by d3 = 0, or é3» = 1 from d3 = 1. When added
systematically to the previous equations these new propagation constraints lead to a slight
performance improvement. More interesting is the fact that when the branch-separating
constraints (Ly > 50(1 — d3) and Ly > 55(1 — d3/) are removed, then performance is
improved by a factor of 10. This may mean that the main effect of the branch-separating
constraints was in fact to achieve some propagation between the decision variables, which
is now taken over in a more efficient way by the new constraints, and that the branch-
separating action in itself was not so crucial. But this explanation has not been proven.
Anyway, in practice, the best system for this example appears to be

L3 <5065 + 60(1 — 53),
Ps <5003,

L3 < 5565 + 60(1 — 53/),
P3 < 5503

even though it may allow some redundancy between the branches. (It might be the
case that some of the separation constraints could be kept, but this has not been yet
investigated.)

107

In general a §; < §; constraint has to be written between any two means m; and
m; such that the maximum level of m; is lower or equal to that of m; and m; is
in the same phase as m; or in a subsequent one. There may be in principle some
redundancy between these constraints due to transitivity. To eliminate this, a simple ad
hoc procedure using the Finite Domain solver has been written for TCO, which computes
the minimal set of propagation constraints to be set up. In practice, however, redundancy
is seldom encountered and this procedure may be skipped.

Improving the Labelling a) Ordering the Decisions

The reason for ordering the decisions is to be able to make first those decisions which have
the most significant impact on the most constrained aspects, ie. here cost and durations.
Which decisions have more influence was hard to determine a priori, and experiments were
necessary. The results are simple and they are explained below.

Ordering the Decisions for each Task

A number of tests have been performed on the order of the decisions for a given task.
The basic choice is whether to start from the first phases (the beginning of the training)
or the last ones. Starting from the end, ie. ordering the variables in antichronological
order of the phases and decreasing order of means’ ceilings inside each phase, seems to
be statistically better, in particular for the proof of optimality, which is about 1.5 faster
that the reverse order on the tested examples. It is likely that this order enforces stronger
constraints on the curriculum. These results, however, are in no way absolute, and could
be reconsidered. The ordering is simply an execution parameter. Attempts to start eg.
with the means with highest cost or highest maximum level have not proved conclusive.

Ordering the Tasks

With the current labelling, the decisions for a task are completely made before the system
goes to the next task, and performance is extremely sensitive to the order in which the tasks
are handled. Attempts to correlate this to simple criteria like the number of disjunctive
means in the task, the means’ costs, etc, have first failed. Finally, a good agreement
between execution time and a synthetic criterion was found. This criterion is the absolute
efficiency of the two-seater combat aireraft (coefficient ‘k”) for the task. Starting with the
tasks with the lowest values of k pays off most of the time. The meaning of k is the
following. The efficiencies given in the data are relative values, expressed by convention
as a percentage of the efficiency of the two-seater combat aircraft (100 %). If a means
is declared as having a relative efficiency of 50 % eg., learning with it is assumed to be
twice slower than with the two-seater. This is conventional since the two-seater may not
be adapted at all for learning the task in the particular phase (beginners cannot use it
for instance). Important is the overall consistency of the relative values: if a means in a
phase has an efficiency of 30 % and another one of 60 %, then learning with the second one
should be twice as fast. Computing k for a given task is done by reference to the current
curriculum, assuming that it allows to reach level 100%. The normalization formula is the
following:

kx>, Relative f ficiencies; « CurrentUtilizationTime; = 100

108

As a consequence, k™! is a measure of the (virtual) time that would be required to reach
level 100 if only the two-seater were used. The tasks with lowest & are therefore the most
demanding, those which are likely to be the most expensive and/or the longest ones, and
it is sensible that making decisions first on them improves performance. The improvement
is indeed very significant compared to a random order of the tasks, since execution time
is divided by a factor ranging between 10 and 50 (the greatest difference is observed with
the tests that take the longest times). In practice, tests have become handleable in a few
minutes in CHIP that would not be run to completion beforehand.

Ordering the decisions first by phases, then by tasks (eg. by increasing k), though expected
to give good results, has not proved interesting.

b) Ordering the Values

Ordering the decisions is not enough. The order in which values 0 and 1 will be tried has
to be fixed. This can be done for each decision independently, either statically (ie. once
and for all before the labelling), or dynamically, just before the decision is made. It may
consist eg. in computing the lower bound for the cost by linear optimization with both
candidate values and taking as first choice the one giving the lower cost. The experiments
carried out statically did not prove convincing, probably because the assessment of the
cost is not enough accurate before the labelling starts. Doing it dynamically on the other
hand is extremely expensive. Starting with either 0 or 1 for all the tasks is much simpler
and gives better results. The experiments have shown that starting with 0 is in general
better, for statistically the optimum curriculum are obtained by using few disjunctive
means. (Stochastic methods for value ordering have also been tried in sequential search;
they will not be explained here — see [Per94]).

Improvements to Parallel Performance

Improving the Quality and Variety of the Solutions As was mentioned above,
the first and most natural parallelizing strategy using min_maz and par_member proved to
be already a satisfactory utilization of parallel resources, yielding quasi-linear speed-ups
for the hard problem instances. The lack of improvement for the first solutions is not a
problem, since these are anyhow obtained rapidly with the ordering heuristics described
in 6. One might, however, expect to get better quality solutions, and a greater number
of them. This could be achieved to some extent by running min_maz with with a low
percentage (ie. a high accuracy), but this would be detrimental to the length of the proof
of optimality, which on hard problem instances changes of order of magnitude between eg.

10% and 5%, or 5% and 1%.

The solution was provided by Cost-Parallelism (CP) in Branch & Bound [PM94, PM95].
The idea behind CP is that a part of the parallel resources can be usefully applied to
exploring various cost bounds, instead of having all workers exploiting the parallel anno-
tations of the program. With CP, in addition to the conservative search (the one performed
with the usual minimize or min_max), optimistic searches and/or a pessimistic search are
also performed. Assume that at some time during the resolution process, there is a global
cost bound G, used by all the searches. The pessimistic search has then C'ost < (G as cost
constraint, the (possible multiple) optimistic searches use Cost < E * G — F' (where E is

109

the accuracy as a fraction of 1, and F is a fixed integer which is different for each optimistic
search), and the conservative search uses Cost < E (' in the same way as with the usual
minimize or min_maz. Whenever a solution is found by one of the searches, all of them
are given a new, tighter bound. Whenever a search fails, all searches with a tighter cost
constraint are abandoned and their workers reallocated. It is expected from the optimistic
searches that they will go quickly to very good solutions by cutting short several cost steps
and that the loss of one or more workers for the parallel annotations of the program will be
compensated by the speed-up of the search for good solutions. The task of the pessimistic
search in contrast is rather to shorten the proof of optimality by gradually improving the
solution. This tightens progressively the cost bound, which in general makes the proof
easier. It has also the effect of yielding better solutions for a given required accuracy than
would have been obtained otherwise. Let us illustrate this with an example. With a 10%
accuracy (E = 0.9), if a solution has just been found with cost 1000, the conservative
search will proceed with a cost upper bound of 900 (ie. what an ordinary min_maz or
minimize would do). The pessimistic one will simply look for solutions stricly better than
1000. An optimistic search may look for better than 800, assuming a /' = 100. If now the
pessimistic worker finds the next solution, eg. with cost 950, then the conservative search
will proceed with a cost constraint of 855 (10% better than 950), the pessimistic one will
look merely for stricly better than 950 and the optimistic one with 755 (ie. 855 minus
the fixed 100). Each time a solution is found by a conservative or optimistic search, it is
likely to be further improved by the pessimistic search. And each time a solution is found
by the pessimistic worker, the proof of optimality with the specified percentage is made
easier, since the cost constraints get tighter. Optimality is proven when the conservative
search fails (or the pessimistic search, which is rather unlikely for it is less constrained).
The experiments carried out at ECRC have shown that pessimistic search will usually pay
off with sufficiently high optimization percentages.

CP is implemented in two predicates: cp_min_maz uses a restarting strategy and has
only conservative and optimistic searches; c¢p_min uses a backtracking strategy (it is a
minimize-like predicate) and has conservative, optimistic and pessimistic searches. The
ep_min predicate has been adapted to rationals for TCO by ECRC. The sketch of the TCO
program using it is exactly the same as with min_max (5). Very little adaptation has been
necessary; this amounts practically to adding a cost-monitor argument in the labelling
procedure. After various experiments, the combination of pessimistic and optimistic search
has been found the most effective and has been extensively tested in comparison with
min_maz. The results are illustrated by the tables given below. They are very satisfactory.
With ep-min(opt, pess) and a 5% or 10% accuracy

o the whole search including the proof of optimality according to the specified accuracy
is completed for most of the tests with significant speed-ups, quasi-linear (sometimes
even super-linear) in the number of workers for the hardest instances

o a number of solutions are obtained, quite diverse in their structure, some of them
being in fact very close to the absolute optimum (this can be seen from runs with
1% accuracy).

We will now explain and comment in detail several tests that constitute consistent and
complete sequences.

110

The Tests

The example data sets are subsets of the real data. They have been chosen so as to
feature a sufficient number of disjunctions, but not too many linear equations. This has
been achieved by taking the hardest piloting tasks, in terms of number of disjunctive
means. Data t0/ features the four most difficult tasks, with a total of 21 disjunctions
(ie. a third of the disjunctions of the full problem), with no phase or curriculum duration
constraints. Data t04.50 is more realistic: the tasks are the same but maximum duration
constraints for all phases have been added. Smaller data have been also tested, consisting
of two tasks, with 9 disjunctions (taalsr.25.20.10) and 12 disjunctions (taa2sr.25.20 and
taa3sr.30.20). These smaller data have all relatively tight phase duration constraints.

All tests have been performed on SunSparc20 work stations with 4 processors. For each
test the results are given for

e sequential execution; parallel execution with 2, 3, 4 workers

e min_max and cp_min in parallel execution; in sequential mode only min_maz, since
cost-parallelism does not make sense

e optimization by 10%, 5%, 1% (except for t04 and t04.50 which take too much time
with 1%).

The tests have been executed several times (with one exception). The times measured in
sequential mode are all very similar for the same parameters and the number and quality
of solutions are always identical. Therefore, the results for sequential runs are simply

e the number of solutions found

the cost of the optimum solution (rounded)

the time taken to find this optimum (geometric mean over the different runs)

e the time taken for the whole search including the proof of optimality (geometric
mean).

For the parallel runs the number and quality of the solutions may vary from one run to the
other. To reflect this diversity, for each test (given data, optimization predicate, accuracy,
number of workers), the following results are provided:

o the list of the numbers of solutions produced during the search, for all runs

e the different optimal costs obtained, with the indication of the type of search which
led to them if the optimization predicate is ¢p-min (¢ for conservative; o for opti-
mistic; p for pessimistic)

o the geometric mean over all runs of the speed-ups for the computation of the opti-
mum solution, with respect to the sequential execution

o the corresponding standard deviation; geometric mean and standard deviation are
computed according to [Pre94a], based on [Ert94]; notice that a standard deviation
of 1 means no deviation (all results identical)

111

o the geometric mean of the speed-ups of the search including the proof of optimality

e the standard deviation.

No figure has been given for the proof of optimality alone. The reason is that this hardly
makes sense with c¢p_min, since in many cases this proof actually starts before the op-
timum is found and its bound is gradually refined as better solutions are produced by
the pessimistic search. The time when it actually starts does not seem accessible. So,
only the total time and the associated speed-up are meaningful. Note that if the time
for the proof of optimality was to be defined as the time elapsed between the moment
when the optimum is found and the end of the whole search, then many of the speed-ups
would be higher than those given in the tables. It often takes, indeed, a longer time to
the pessimistic search to produce the optimum than it does in sequential search (but the
optimum is better).

In order not to overload the tables, the times are not given for the parallel tests, the
speed-ups being more significant. (To compute the mean parallel times, simply divide the
sequential times by the speed-ups.)

112

taalsr.25.20.10 10% 5% 1%
min_max ‘ cp_min || min_max ‘ cp_min || min_max ‘ cp_min
Seq. Nbr of solutions 1 - 2 - 6 -
Optimum 933 - 871 - 861 -
Time optimum 5.1 - 22.7 - 75 -
Time optimality 42.7 - 60.0 - 135 -
2 Wkrs | Nbr of solutions 1,1,1,1, 6,6,6,6, || 2,2,2,2, 6,6,6,10, || 6,6,6,6 15,15,14,
1,1,1 6,6,6 2,2,2 6,6,6 6 14,14
Optimum (wkr) 933 893(p) | 872 861(c), | 861 855(p)
867(c)
Speedup optimum || 0.98 0.27 0.99 1.18 0.8 1.01
Std deviation 1.02 1.02 1.03 1.23 1.02 1.03
S-up optimality 1.39 1.75 1.19 1.72 0.95 1.65
Std deviation 1.04 1.02 1.02 1.03 1.01 1.01
3 Wkrs | Nbr of solutions 1,1,1,1, 5,5,5.5, || 2,2,2,2, 79,77, || 5,5,4.4, 15,15,15,
1,1,1 5,5,5 2,2,2 9,7,9 5 16,17
Optimum (wkr) 924, 908(p) | 866, 861(c), 855, 861(p)
933 871 888(¢) 861
Speedup optimum || 0.95 0.43 1.4 1.14 1.1 1.33
Std deviation 1.03 1.03 1.06 1.09 1.06 1.04
S-up optimality 1.52 2.26 1.44 1.96 1.2 1.87
Std deviation 1.02 1.02 1.05 1.1 1.04 1.03
4 Wkrs | Nbr of solutions 1,1,1,1, 5,5,5.5, || 2,2,2,2, 8,7,7,8, || 5,5,5,5, 14,19,17,
1,1,1 5,5,5 2,2,2 78,7 6 15,13
Optimum (wkr) 924, 908(p) | 866, 861(c), 855, 855(p),
933 871 893(c) 861 861(p),
862(p)
Speedup optimum || 0.93 0.41 1.43 1.17 0.99 1.38
Std deviation 1.03 1.04 1.07 1.05 1.04 1.12
S-up optimality 1.53 2.64 1.46 2.51 1.13 2.09
Std deviation 1.02 1.03 1.03 1.05 1.03 1.06

Comments on taalsr.25.20.10

This is an easy problem instance, perhaps too easy, since increasing the number of workers
to more than 2 does not pay off much, neither in terms of speed-up nor in terms of quantity

of solutions produced during the search and quality of optimum. ep_min is better than

min_maz: 1t is most of the time faster for the whole search, it always gives more solutions

during the search, it provides better optima in most cases. When compared to sequential
search, parallelism normally gives better optima, but there are exceptions (eg. here 888
in ep-min 5%). These are cases when a parallel annotation of the program has led to
an optimal solution quicker than the left-most path followed in sequential mode, but this

solution, though optimal according to the required accuracy, is worse than the sequential

one.

Note, and this is a general remark, that the speed-ups on the time taken to find the opti-

mum, are not really significant. In the cases when the first sequential solution is already
optimal according to the required accuracy (which means that the heuristics worked well),

113

then if this solution is also the first one found in parallel, the speed-up will be about 1
(slightly less due to the communications overheads), otherwise anything can be observed:
worse or better optimal solution, speed-up > 1 (as with these data) or < 1 (see the next

tests).

All these tables show only the cost as a characteristic of the various solutions. These
solutions actually have a great strucural diversity, even if the costs are similar. They

correspond to significantly different utilizations of the training means. This diversity has
two sources:

e Exploitation of the parallelism of the program is the first source. Very high in the
search tree, an alternative to the left-most path is explored in parallel and leads to

a good solution. Since the decisions with greatest impact on the curriculum are put
first, this solution is significantly different.

o When the cost bound gets close to the global optima, producing new solutions implies
backtracking rather high in the search tree, which has the same effect.

This structural diversity is present in all the tests.

taa2sr.25.20 10% 5% 1%
min_max ‘ cp_min || min_max ‘ cp_min || min_max ‘ cp_min
Seq. Nbr of solutions 1 - 1 - 3 -
Optimum 893 - 893 - 861 -
Time optimum 7.4 - 7.5 - 41.0 -
Time optimality 146.7 - 165.5 - 221.1 -
2 Wkrs | Nbr of solutions 1,1,1,1, 4,444, 1 1,1,1,1, 4,444, 1 3,3,3,3,3 | 6,6,5,5
1,1,1 4,44 1,1,1 4,44 6
Optimum (wkr) 893 861(p) | 893 861(p) | 861 861(c)
Speedup optimum || 0.98 0.51 0.97 0.52 0.93 2.0
Std deviation 1.01 1.02 1.04 1.02 1.02 1.01
S-up optimality 1.71 2.49 1.7 1.57 1.35 1.15
Std deviation 1.02 1.02 1.02 1.02 1.01 1.01
3 Wkrs | Nbr of solutions 1,1,1,1, 5,5,5,5, || 1,1,1,1, 5,5,5.5, || 3,3,3,3,3 | 6,7,7,6,
1,1,1 5,5,5 1,1,1 5,5,5 6
Optimum (wkr) 893 861(p) | 893 861(p) | 861 861(c)
Speedup optimum || 0.97 0.49 0.97 0.5 0.8 1.65
Std deviation 1.02 1.03 1.02 1.02 1.04 1.04
S-up optimality 2.1 3.35 2.19 2.51 1.42 1.37
Std deviation 1.02 1.1 1.02 1.02 1.02 1.02
4 Wkrs | Nbr of solutions 1,1,1,1, 6,6,6,6, || 1,1,1,1, 6,6,6.6, || 3,3,3,3,3, | 7,7,6,5,
1,1,2 6,6,6 1,1,1 6,6,6 5
Optimum (wkr) 893, 861(p) | 893 861(p) | 861 861(c)
885
Speedup optimum || 0.94 0.48 0.95 0.48 0.7 1.5
Std deviation 1.02 1.03 1.03 1.03 1.03 1.05
S-up optimality 2.37 4.18 2.54 3.05 1.43 1.47
Std deviation 1.03 1.03 1.02 1.03 1.02 1.03

Comments on taa2sr.25.20

Notice here that parallelism does not pay off with 1% and that with this accuracy cp_min
is not better than min_maz. Generally speaking, pessimistic search is not expected to do
well with low percentages like 1%, for the pessimistic and conservative searches will have
almost the same bound. But with 10% eg. the results can be very good, as is the case
here. They are satisfactory also with 5%. It is worth noting that the pessimistic search
with 10% and 5% has given solutions that are in fact optimal by 1% (and possibly less)!
In practice, of course, one will not normally attempt to prove this optimality by 1%, and
only 10% or 5% will ge guaranteed. But it is satisfactory to know that quite often the

solution given is actually much better than the required accuracy.

taadsr.30.20 10% 5% 1%
min_max ‘ cp_min || min_max ‘ cp_min || min_max ‘ cp_min
Seq. Nbr of solutions 1 - 2 - 4 -
Optimum 999 - 944 - 944 -
Time optimum 10.1 - 51.1 - 82.9 -
Time optimality 53.5 - 89.5 - 192.4 -
2 Wkrs | Nbr of solutions 1,1,1,1, 5,5,5,5, || 1,1,1,1, 5,5,5,5, || 3,4,4,5,3 | 7.7,7,7
1,1,1 5,5,5 1,1,1 5,5,5 6
Optimum (wkr) 980 950(p) | 980 950(p) | 944 944(p)
Speedup optimum || 1.11 0.6 5.59 3.27 0.96 1.42
Std deviation 1.03 1.02 1.02 1.03 1.13 1.03
S-up optimality 1.26 1.74 1.27 1.89 1.18 1.34
Std deviation 1.0 1.02 1.02 1.02 1.07 1.03
3 Wkrs | Nbr of solutions 1,1,1,1, 6,6,6,6, || 1,1,1,1, 6,6,6.6, || 4,3,3,4,4 | 8,7,7,8,
1,1,1 6,6,6 1,1,1 6,6,6 7
Optimum (wkr) 980 950(p) | 980 950(p) | 944 944(p)
Speedup optimum || 1.12 0.63 5.68 3.02 0.98 1.15
Std deviation 1.04 1.02 1.05 1.09 1.16 1.04
S-up optimality 1.31 2.05 1.51 2.31 1.26 1.51
Std deviation 1.02 1.02 1.02 1.04 1.1 1.02
4 Wkrs | Nbr of solutions 1,1,1,1, 5,7,7,7, || 1,1,1,1, 7,7,7,6, || 3,3,3,3,2 | 7.8,7,7,
1,1,2 76,7 1,1,1 6,7,7 8
Optimum (wkr) 980 950(p) | 980, 950(p) | 944 944(p)
955
Speedup optimum || 1.11 0.6 5.7 3.16 1.27 1.03
Std deviation 1.04 1.08 1.03 1.03 1.09 1.02
S-up optimality 1.34 2.0 1.72 2.92 1.5 1.78
Std deviation 1.02 1.14 1.15 1.03 1.05 1.02

Comments on taa3sr.30.20

ep_min is significantly better here than min_maz in all respects. Parallelism pays off with
10% and 5% (the speed-ups are less than linear, but still significant). Note that the
parallel Tuns by 5% lead to solutions that are worse than that of the sequential search,
a phenomenon already observed on taalsr.25.20.10. It is interesting to explain in detail
what happened in the sequential executions and the ones with eg. 2 workers:

115

e Sequentially, the first solution produced is 999. It is not optimal by 5%. The next
one has cost 944 and is optimal.

o With min_max and 2 workers, the exploitation of a parallel annotation leads quickly
to an optimal solution with cost 980. But the proof of optimality is slow (total
speed-up only 1.27), for 980 is a bound significantly less stringent than 944.

e With ¢p_min the unique worker of the conservative search (the other worker being
used by the pessimistic search) finds the sequential solution with cost 999. Then the
pessimistic search achieves a progressive refinement of the optimal cost (5 solutions
are produced). As a consequence, the cost constraint of the conservative search is
gradually strengthened and this results in a greater speed-up for the whole search
than with min_max (speed-up 1.89).

t04 10% 5%
min_max ‘ cp_min | min_max ‘ cp_min

Seq. Nbr of solutions 1 - 1 -
Optimum 1437 - 1437 -
Time optimum 7.2 - 7.3 -
Time optimality 612.8 - 14803.5 | -

2 Wkrs | Nbr of solutions 1,1 7,7 1 7,7
Optimum (wkr) 1437 1414(p) || 1437 1414(p)
Speedup optimum || 0.83 0.06 1.04 0.06
Std deviation 1.27 1.21 1.0 1.2
S-up optimality 1.73 1.76 2.06 1.49
Std deviation 1.19 1.19 1.0 1.01

3 Wkrs | Nbr of solutions 1,1 8,8 1,1 8,8
Optimum (wkr) 1437 1414(p) || 1437 1414(p)
Speedup optimum || 0.89 0.05 0.92 0.06
Std deviation 1.12 1.13 1.12 1.16
S-up optimality 2.43 3.04 2.56 2.5
Std deviation 1.15 1.15 1.2 1.17

4 Wkrs | Nbr of solutions 1,1 9.9 1,1 9.9
Optimum (wkr) 1437 1414(p) || 1437 1414(p)
Speedup optimum || 0.76 0.05 0.74 0.05
Std deviation 1.15 1.18 1.28 1.25
S-up optimality 2.82 3.62 3.1 3.16
Std deviation 1.23 1.21 1.25 1.29

Comments on t04

This test and the next one are harder. The speed-ups of the total search time with
cp_min are quasi-linear with 10%, a little less with 5% but still good. The 1414 solution
is actually optimal by less than 0.1% (this was shown by separate tests, not shown here).
And, as usual, several solutions are produced during the search (all of them in this case
being already optimal by the required accuracy). Note once again that the speed-ups on
the optimum are meaningless, for the optimum eventually found is not the same as in
sequential mode.

116

t04.50 10% 5%
min_max ‘ cp_min | min_max ‘ cp_min

Seq. Nbr of solutions 1 - 1 -
Optimum 1475 - 1475 -
Time optimum 27.3 - 27.6 -
Time optimality 1306.7 - 14865.9 | -

2 Wkrs | Nbr of solutions 1,2 5,5 1,1 5,5
Optimum (wkr) 1475, 1440(p) || 1475 1440(p)

1470

Speedup optimum || 0.9 0.28 0.95 0.27
Std deviation 1.31 1.24 1.26 1.27
S-up optimality 1.86 6.98 1.84 1.13
Std deviation 1.15 1.24 1.22 1.25

3 Wkrs | Nbr of solutions 1,1 6.6 1,1 6.6
Optimum (wkr) 1470 1440(p) || 1470 1440(p)
Speedup optimum || 1.26 0.24 1.31 0.24
Std deviation 1.29 1.35 1.25 1.35
S-up optimality 2.68 8.03 2.55 2.02
Std deviation 1.31 1.23 1.33 1.33

4 Wkrs | Nbr of solutions 1,1 7,7 2,1 7,6
Optimum (wkr) 1470 1440(p) || 1470 1440(p)
Speedup optimum || 1.49 0.31 1.05 0.24
Std deviation 1.03 1.02 1.45 1.3
S-up optimality 4.04 11.25 3.07 2.6
Std deviation 1.04 1.03 1.39 1.47

Comments on t04.50

The interesting point here is 10% with c¢p_min which shows super-linear speed-ups of the
whole search.

General Conclusions on the Tests

ep_min with optimistic and pessimistic search, together with parallel annotations in the
labelling procedure, is a very good parallelization strategy when optima are sought with
a 5% or 10% accuracy. It is better than min_max with parallel annotations. The benefits,
compared to sequential executions, are:

o better solutions for a given required accuracy, often close to the absolute optimum;
this is not guaranteed, but it seems to be a general tendency

e much more solutions produced during the search, structurally different, a number of
them being actually optimal by the required accuracy

o a speed-up of the whole search which is of the order of magnitude of the number of
workers.

From the TCO user’s point of view, the structural diversity of a set of solutions close
to the optimums is extremely important. There is not one solution to the curriculum

117

optimization problem, but several, with possibly similar financial costs but quite different
pedagogical and organizational implications. The user has to be given as many of these
solutions as possible and it is up to him to choose the most appropriate one.

Other Possible Tests A number of potentially interesting experiments could not be

carried out before the end of APPLAUSE:

e minimize could be tried instead of min_maz (see 4). This would require a specific
adaptation of the predicate to the rationals, as was done for ep_min.

o A time-out was implemented for min_maz. Once it is available also for e¢p_min, one
could measure the number and quality of the solutions generated within a given
time-limit. It is already clear from our experiments that cp_min bears a definite
advantage over min_maz, but this could be quantified.

e Once the optimum cost has been assessed, by 5% eg., one could search for all solu-
tions not worse than eg. 5% of the optimum found (which would mean solutions not
worse than roughly 10% of the absolute optimum) and measure the speed-up as a
function of the number of workers. This is no longer minimization but a findall-type
search, and quasi-linear speed-ups are expected.

e Other hardware platforms will have to be tried, with more processors. This will
allow a better exploitation of the parallelism of the program (with only 4 processors,
one is used for the pessimistic search, one for the optimistic, and only two remain
for the parallel annotations, which is very little).

7 Conclusion

In sequential execution CLP had proved adequate in the search for good solutions, since
efficient (though simple) heuristics could be designed. Parallel execution, with cost-
parallelism and pessimistic search, has made it possible to produce in a shorter time
a much greater number of good quality solutions of quite different structures. When the
proof of optimality is required, this is achieved with a speed-up of the total search which
is of the order of magnitude of the number of workers. The difficulty encountered in the
parallelization process proper have been very small and the time spent for parallelization
is significantly less than for each of the other phases: specification, modelling, expression
of the constraints, sequential optimization. The main conclusion is that parallel resources,
when available, can be efficiently and easily exploited in ECL'PS¢for this kind of applica-
tion.

It is interesting to note that the results are rather predictable, not for individual runs of
course, but as to the general tendencies. The fact that ¢p_min with pessimistic search
would pay off for the proof of optimality and the quality of the solutions had been indeed
predicted by the ECRC team before the tests were actually performed. It seems that some
confidence can be attached to a few general rules. A useful methodological advance would
probably consist in presenting these rules (with ‘confidence intervals’) in a systematic way
and making them accessible to the average Parallel CLP programmer.

118

TCO has induced the development in the ECL‘PS¢system of several general purpose fea-
tures, like time-out and adaptation of the minimization predicates to rationals. We hope
that at a more general level the work on this application has contributed to the under-
standing of the potential benefits of parallel CLP.

8 Acknowledgments

Jean-Marie Saget, as an acknowledged expert of the domain, laid the foundations of
the study on pilot training optimization. He provided the basic model of the problem
and the data. Together with Jacques Louis and Grégoire Veber, he welcomed our work
with a constant interest and support. The developement of the sequential CLP system
is a common work of Annie Fischler and the author of this report. Denis Béja and
Grégory Perrat did hard work on this problem when they were at Dassault. Thanks to
the APPLAUSE partners for the very fruitful and friendly atmosphere in the project, to
the ECL‘PSteam at ECRC in particular for their highly qualified help.

119

Chapter 5.

A Decision Support System for the
Venice Lagoon

Giuditta Festa, Giuseppe Sardu
and Roberto Felici

120

1 Problem description

The main role of EDS-Systems & Management in the APPLAUSE project was that of
investigating the suitability of the ECL!PS® environment for the development of Decision
Support Systems. The Decision Support field represents a commercially important class
of applications which is meeting remarkable interest and is subject of research efforts. In
particular, our application addresses a social and economical critical aspect: environmental
monitoring and control. The availability of information on the natural environment is
increasing much more rapidly than the development of tools for the interpretation and
the use of such information. Furthermore, more and more crucial is becoming the need
for systems which will support effective management of the ecosystem. Particular features
that must be supported include the timely availability of data on the dynamic changes in
the ecosystem, the ability of the system to provide decision support tailored to a particular
legislative framework and also the ability to provide forecast of the outcome of particular
decisions taken by the managing authority. We have planned the Venice Lagoon DSS,
trying to meet these requirements. In the following we shall outline the DSS development
and the experiences we have gathered working in the ECL'PS® environment.

1.1 The Venice Lagoon and its safeguard

The unique character of Venice mainly derives from its tight relation with the Lagoon on
which it dominates. Alas, the Lagoon, though conferring a charming look to the city, is
afflicted by the growing environmental pollution effects.

The ecosystem of the Venice Lagoon is a complex system involving a number of different
elements (cities, rivers, tides,...) and a wide territory which even includes regions distant
from the Lagoon but having significant effects on it, because of the action of rivers or other
diffusion means. An index of the complexity of such an ecosystem is the great extension
of the geographical area which affects the Lagoon environment; it is composed by:

o the proper Lagoon territory, whose borders can be demarcated by the Brenta mouth
on the south and the town lesolo on the north;

o the whole hydrological basin connected to the Lagoon. It concerns a wide area
crossed by rivers, channels but also underground streams which will flow in the
Lagoon;

o the range of sea bordering the Lagoon. The water coming from the sea, through the
tides, interacts with the Lagoon environment by activating exchange and dilution
mechanisms.

Trying to categorize the different pollution sources, three main classes can be identified:
agricultural, urban and industrial. The agricultural pollution is mainly due to the in-
troduction in the Lagoon of polluting substances by rivers coming from other regions
intensively cultivated. As for the urban pollution, it mainly consists of organic pollu-
tion arising from the presence of inhabited areas, hospitals, tourist accommodations; it
is noteworthy that Venice doesn’t have sewers nor it is possible to build them. The in-
dustrial pollution originates from the discharges of the industrial plants. The Lagoon is

121

home to some of the most important chemical and oil-refinery sites of northern Italy. The
effects arising from the discharges of such a relevant quantity of polluting substances in
the Lagoon are of great danger for the balance of the whole ecosystem but even for the
inhabitants’ health and the state of preservation of the Venetian historic buildings. It is,
therefore, easy to understand the relevance of the Lagoon safeguarding problem.

The necessity to efficiently carry out a controlling activity affecting the levels of pollution
in the Lagoon was already felt during the bygone centuries. To this end, the Venice Water
Magistracy was founded in 1501. Its institution originated from the need to acquire an
intimate knowledge of the issues connected with the whole Lagoon environment, to ensure
timely and efficient actions aimed at safeguarding the Lagoon and its inhabitants. The
Water Magistracy was in charge of the centralized management of all matters which might
have had effect on the Lagoon hydraulic system: the state of the channels which cross
the city, the control of the discharges in the Lagoon. Over the centuries, the duties of the
Water Magistracy have not been basically modified, but the conditions affecting the area
constituting the environment of the Lagoon changed substantially. Suffice it to mention
the growth of the population, the creation of the industrial site of Porto Marghera, the
changeover, for both nature and quantities, of the substances discharged in the Lagoon.
Nowadays the Venice Water Magistracy has to keep control on thousands of discharges,
besides facing the analysis of an increasing number of factors, which the most recent
studies in the field of anti-pollution have turned out to be of great interest.

The activity of the Venice Water Magistracy is carried out in compliance with a number
of regional, national and European laws and directives. Such regulations state the inspec-
tions that have to be performed, but also prescribe threshold values to which pollution
parameters must conform. One of the most important tasks which is in charge of the
Water Magistracy is the management of the granting of licenses for new discharges. As
each single new emission of polluting substances must obtain a specific authorization, the
natural or legal persons who are involved with the emissions are requested to supply the
Water Magistracy with data broadly regarding:

o the quantity and the nature of the discharged substances;

o the treatment plants which will be performed to reduce the polluting effects of the
discharged substances.

The Water Magistracy staff have to check that the substances discharged from the new
emission point do not cause a threshold value violation. For this they have to compare the
declared values with the ones indicated by the different laws and directives which regulate
this scope. Of course, they are also in charge of the checks related to the authenticity
of the declared data; this involves an activity of water sample collection and analysis.
Against detected irregularity the Water Magistracy can force the culprit of the offending
emissions to introduce more effective treatments and, in very critical situations, it can
even revoke the license.

Since recent, this time-consuming administrative activity has been supported by an auto-
mated system which deals with the whole bureaucratic procedure relative to the granting
of the emission licenses. This system essentially consists in a database storing information
(emitted substances and declared quantities, location of the polluting source, depura-
tion treatments, status of the file in the bureaucratic procedure and so on) relative to

122

each discharge for which a license has been requested. Objective of such an operational
environment is that of responding to the pollution effects instead of acting to prevent
contamination, and as such it does not allow to evaluate the effects of a new discharge on
the Lagoon ecosystem. Even the granting of a new emission license is, at present, only
subordinated to the observance of some static threshold values. Such values are stated by
laws and are relative to the maximum allowed concentration values of substances in the
emissions, but don’t take into account the actual pollution in the location where the sub-
stances are to be discharged. A further refinement for supporting the Water Magistracy
decision making activity may concern an optimization phase, as in fact, besides obtaining
a complete overview of the pollution state, this institution is interested in finding the best
solution to face critical situations.

Considering the requirements suggested by the Venice Water Magistracy experts we have
envisaged a number of problems which seemed suitable to be tackled with the method-
ologies put at our disposal by ECL‘PS®. We intended to develop a decision support tool
whose aim is not in totally substituting the human responsible and expertness but rather
in improving its ability by a thorough analysis of the possible technical solutions. This has
been the origin of the Venice Lagoon DSS; we will now describe the DSS functionalities
and its implementation.

1.2 A DSS for the Venice Lagoon

Two different phases can be identified in the decision making process: a first data interpre-
tation phase and a further decision making phase. In our context, the data interpretation
phase consists in getting the pollution status of the Lagoon and comparing it with an
acceptable one, in order to point out alarming discrepancies. The decision-making phase
consists in planning technical interventions aimed at restoring an acceptable state at “as
low a cost” as possible. To cover such two phases the Venice Lagoon DSS is composed by:

e a database containing environmental data;

a hydrodynamic model of the Lagoon;

a knowledge-based core;

an interface module for the end-user.

Its structure together with the interactions is depicted in the figure 1.1.

Here is a brief description of the DSS components and of their relationship.

The environmental database

The environmental DB provides information on polluting sources and polluting substances
which are necessary for the evaluation of the pollution states in the Lagoon. The input
data for the DSS is described by a set of predicates that supply it with the knowledge on
the physical state of the Lagoon, the bounds imposed by government regulations, and the

123

Figure 1.1: The components of the Venice Lagoon DSS

cost parameters necessary for the optimization problems. The most important predicates
are listed in the following:

source(Id_No, X, Y) which describes the positions of the pollution emitting sources;
substances(Id_No, Name) describing each substance name;

emission(Source, Substance, Quantity) indicating the Quantity of Substance emit-
ted by Source;

e_bound (Substance, Bound) stating the maximum concentration value allowed for Sub-
stance in the Lagoon;

cost_redc(Source, Substance, List_of_Costs) indicating the cost necessary to re-
duce the quantity of Substance emitted by Source;

cost_relc(Active_source, Inactive_source, Cost) indicating the cost necessary to
relocate the emission of the Active_source on the Inactive_source;

concentrationFactor(Source, X, Y, Factor) representing the factors which, multi-
plied by the quantity of substance emitted by Source, return the expected concentration
value for the substance in point (X,Y).

The DSS prototype we have developed for the APPLAUSE project considers 12 different
polluting substances and up to 80 polluting sources.

Unlike the objective nature of the data relative to the quantities emitted by the sources and
the allowed bounds, the costs are dependent from subjective evaluations. In this context,
in fact, costs do not represent “simple” monetary values, rather they denote a more

124

complex evaluation of social, economical and technical factors whose “value assessment”
can only arise from the experience gathered daily “on the field” by the staff which is
involved with the Lagoon safeguard.

The hydrodynamic model of the Lagoon

The role of an hydrodynamic model in such a DSS consists in describing the Lagoon
hydrodynamic behaviour to simulate the diffusion of polluting substances and, therefore,
to forecast their concentration values in the Lagoon.

The implementation of a mathematical model, tailored for a complex ecosystem such as
the Lagoon environment and designed to meet a high degree of accuracy, should have
required remarkable efforts; so, for the current phase of prototyping, we have deemed to
be sufficient to build a simplified model, which anyway could generate the necessary inputs
to the interpretative knowledge-based system.

Such basic hydrodynamic model accepts as input the following data:

e a polygon broadly describing the Lagoon morphology:;
o a list describing the positions of the three Lagoon access points to the sea;

e a list describing the positions of the polluting sources in the Lagoon.

Considering the physical equations relative to the diffusion of substances in a liquid and a
number of simplified hypothesis (no viscosity, two dimensional movements,...), the model
produces as output a matrix, whose coordinates represent physical lagoon coordinates
and cells contain lists of Source, Factor couples indicating the emitting sources and the
concentration factor relative to the emitting source Source in point (X,Y). This matrix is
then converted into the set of

concentrationFactor(Source, X, Y, Factor)
statements required as input by the DSS.

Due to the large amount of calculations necessary, we have implemented the hydrody-
namic model using the C language. We have decided to use ASCII files to implement the
communication between the model and the DSS optimization core written in ECLIPSe.
This means that the model reads an ASCII file to obtain its input data and, in turn,
puts the resulting concentration factors in another ASCII file, which will then be read
to produce the ECL'PS® concentrationFactor/4 predicates. We have opted for such a
solution to make the model as much as possible independent from the DSS optimization
core; in such a way, the simplified model can be easily replaced by a more sophisticated
one as soon as it becomes available.

As the concentration factors depend on the position of the sources, it is necessary to re-run
the hydrodynamic model to obtain new concentration factors each time the number or
the location of the polluting sources change. This can be done directly from the DSS.

125

The knowledge-based core

The logic core of our DSS is composed of several conceptual modules, corresponding to
different problems and phases which can be activated independently. As said, they have
been conceived to meet the requirements of the DSS potential end user: the Venice Water
Magistracy. The modules consist essentially of constrained search and optimization tasks,
so the use of ECLPS® for their realization has allowed to exploit the main features of this
language concerning parallel programming and constraint handling. The tasks covered by
the modules are explained in the following:

Analysis: It calculates the concentration values for the polluting substances in the La-
goon, compares such values with the maximum bounds that are imposed by law,
and gives as result a list of points where the bounds are exceeded.

Reduction: It aims at restoring the pollution back to legal values in the locations in
which the previous Analysis has discovered violations. To obtain such a result,
the most cost effective reduction plan for the emissions of the polluting sources is
suggested.

Relocation: The relocation strategy constitutes an alternative solution to the problem of
the excessive concentration levels. To reduce the concentration values in the points
detected by Analysis, the emissions are not reduced, but they are partially relocated
in some other admissible areas (inactive_sources). The problem aims at minimizing
the global cost arising from the relocation of the emissions.

Monitoring: This task aims at planning a monitoring network. It finds a plan for dis-
locating the minimum number of monitoring stations which allow to have each pol-
luting source controlled by a monitoring station.

Detection: It compares the concentration values collected by a monitoring campaign
with the ones predicted by the hydrodynamic model. As a result it returns a list of
polluting sources which may emit more than they have declared.

The user-interface

A considerable part of our development efforts has been devoted to supply the DSS with
an efficient and user friendly interface. The user interface constitutes an important
feature for a DSS whose target user is not necessarily skilled in the computer science field.
We have used graphical displays as much as possible to give the user an immediate and
intuitive grasp of the situation of the Lagoon. All the tasks performed by the DSS are
made accessible by a menu-bar which, in turn, shows tiled-menus. On the screen a map
of the Venice Lagoon is always visible; the results of the requested tasks are superimposed
over it. An on-line help has been conceived to support the user in the DSS navigation;
it supplies brief explanations of the tasks included into the system and detect sequences
of not allowed operations and wrong inputs introduced by the user. Furthermore, the
user-interface, allows to graphically update the data (costs, emissions, polluting source
location, ...) which define the Lagoon environment.

126

As for the user-interface implementation, we have used a public domain graphic tool:
Tecl/Tk. Tcl and Tk are two software packages providing a programming system for
easily developing and using graphical user interfaces. In particular, Tk is an extension
to TCL allowing to construct Motif-like user interfaces. The connection between Tcl/Tk
and ECLPS® is supported by Pro_Tcl, a Prolog interface to the Tcl/Tk toolkit, which
has been built by ECRC. Tcl/Tk commands are made accessible from ECL‘PS® through
the tcl_eval/2 predicate (which accepts any Tecl expression and passes it to the Tcl
interpreter; Pro_Tcl also allows to call ECL'PS® predicates from a Tcl command or script
and to get back the value of variables. Pro_Tcl frees the ECL!PS® user from the burden of
plunging into the interconnection issues, in fact it does the job in a user transparent way.

2 Characterization

As explained in the previous section, the Venice Lagoon DSS is an experimental application
whose realization has started within the APPLAUSE project. The problems composing
the DSS have been studied and jointly pointed out with the Venice Water Magistracy staff.
Even though such problems arise from the daily controlling activity, and therefore refer
to existing needs, no previous attempts to scientifically solve them had been made. Our
first investigation concerned in particular the feasibility of an ECL'PS® - based approach
to the handling of the tasks that our DSS was intended to cover. The question was: “Is
(Parallel) CLP adequate for our application field?”.

From a general viewpoint, an ecosystem is a dynamic system, intrinsically non-linear,
in which every decision can either have no consequence, by virtue of the homeostatic
power of the system, or induce dangerous degeneration because of the priming of pro-
gressive concatenations of damages to the whole system. On the other hand, part of
the decision process (e.g. minimizing costs of planned reductions of polluting emissions)
can be viewed as the activity of solving optimization problems. In particular, the Water
Magistracy decision-making activity, even though relying on quantitative estimations, is
based on logical definitions of casual relations, laws, regulations and technical knowledge;
such further characteristic advised us to investigate other techniques than the traditional
mathematical ones (e. g. Operations Research) having a consolidated history in the prob-
lem solving world. An interpretative model, therefore, inspired by mathematical logic
rather than by classical analysis, seemed to best support the knowledge processing and
qualitative reasoning. Actually, in the context of our application, the constraint logic pro-
gramming paradigm has been adopted to bridge the gap between knowledge processing
and optimization problems.

The problems we had to tackle were characterized, among other things, by a large amount
of computation required to generate, compare and combine the large amount of hypotheses
representing all the possible solutions to reduce the pollution levels. Constraints allowed
the knowledge representation and execution, but only a parallel exploration of such large
search spaces could obtain the performances levels necessary to achieve reasonable execu-
tion times.

The initial set of problems (mainly Reduction and Relocation) constituting the DSS were,
therefore, characterized by:

127

e a non-linear nature

e a large search space (just to give an order of magnitude: the search space of Reduc-
tion for 80 sources is 11%!)

and the joint action of constraints and parallelism put at our disposal by the ECL‘PS®
environment seemed to be a valid candidate to efficiently tackle them.

During the project development, we have worked to achieve a correct and efficient mod-
elling for our problems in terms of variables and constraints. To this regard, it must be
pointed out that the declarative nature of ECL‘PS® has made the introduction of addi-
tional constraints in the programs an easy task. In some cases (e. g. for the Analysis
problem), we got aware of the fact that the nature of the problem (Analysis is essentially
an unconstrained search problem on a large data set) discouraged the use of a logic pro-
gramming approach and we have exploited the possibility, given by ECL'PS®, to use an
imperative language (“C”) to give an alternative representation of it.

Unlike Reduction and Relocation, the other two problems (Monitoring and Detection)
don’t require the joint action of constraints and parallelism; for both of them, the set of
constraints which defines the problem succeeds in heavily pruning the search space so that
even the sequential version works with low execution times. It must be pointed that the
use of constraints has made the representation of such two problems simple and intuitive.

3 Constraint Modelling and Prototyping

In this section we shall describe, in a more detailed way, the problems that constitute the
logic core of the Venice Lagoon DSS. During the DSS development, our main efforts have
been spent in finding the most adequate constraint modelling to represent the different
modules. The selection of constraints able to prune the search space as much as possible
has turned out to be fundamental to obtain acceptable execution times for problems with
a large search space, as are the ones composing our DSS.

As already stated, our optimization problems are characterized by non-linear relations
and high complexity. The Propagation over integers with Finite Domains, provided by
ECL‘PSe, has allowed to efficiently face the non-linearity and the combinatorial nature of
the problems. Where a linear representation of the problem was possible, we have tested
the ECLPSe linear solver over rationals, which uses the Simplex algorithm. The conclu-
sion we can draw on this comparison, which of course only refers to linear or linearizable
problems, are the following: when the number of constraints is too low to ensure a valid
pruning of the search space, the Simplex method turns out to be far more efficient than
the enumerative method; whereas, when the set of constraints is meaningful enough, the
two methods have comparable performances.

3.1 Constraint modelling for the DSS modules

The modelling of a problem is always an exacting job. We have introduced constraints
in a progressive manner, stating initially only the most obvious ones necessary to supply

128

a preliminary formalization of the problem, and then trying to adopt more specific and
complex constraints, suitable for a more efficient and complete pruning of the search space.

In the following, each module composing the DSS will be described in terms of variables
and constraints.

The Analysis problem

The Analysis module covers the data interpretation phase of the decision making process.
It aims at detecting the points in the Lagoon where the concentration value for a given
substance exceeds the maximum allowed bound.

In a point (X,Y") the concentration value for a substance Sub is given by:

Cone(Sub, X,Y) = fa(X,Y) * €s,5u + -+ fon(X,Y) ¥ eon 5w
where:

fs:(X,Y) is the concentration factor for the source si in the point (X,Y) (given by the
concentrationFactor(Source, X, Y, Factor) fact in the database).

€sisub 18 the quantity of the substance Sub emitted by the source si (given by the
emission(Source, Substance, Quantity) fact in the database)

sl,...,sN are the active sources

Y

Our first modelling of the problem consisted in collecting (via the findall/3 predicate)
the (X,Y) points for which the disequation

Cone(Sub, X,Y) > Bound(Sub)
was verified. Such points were then recorded in a Prolog fact
violations(Sub, [(X1, Y1, Gapl), ..., (Xn, Yn, Gapn)].

The resulting execution times were unacceptable (for 80 sources we obtained execution
times of 6600 sec.!).

A further and more thorough study about the nature of the Analysis problem has definitely
shown that a logic programming approach was not the best candidate to tackle this prob-
lem. In fact, Analysis is essentially an unconstrained search problem on a large data set,
whose goal is to calculate the pollution concentration values for a relevant number of points
in the lagoon. Analysis spends most the time accessing the concentrationFactor/4 pred-
icates, which represent the concentration factor for a point and an emitting source in the
Lagoon. To reduce such access times we have decided to exploit the possibility of using
the “C” language to imitate the action of a Prolog predicate. So we have used the C

129

language to insert the concentration factors in a C table in order to make them accessible
using the source number and the coordinates of the point as indexes.

The introduction of these C procedures has not compelled us to rewrite the Analysis
program, we have just had to declare the predicate concentrationFactor/4 as external
in order to link it to the correspondent C function (p_get_factor); in such a way, a
reference to the concentrationFactor/4 predicate in the Analysis program results in a
call to the p_get_factor function whose code has been previously compiled and loaded.

Using this access strategy we have reduced the execution time by a factor of 20.

The Reduction problem

The Reduction procedure computes a reduction plan for the sources emissions in order to
bring the concentration values relative to the violation points back to the allowed ones.
The violation points are those detected by a previous running of the Analysis procedure.

For a given substance Sub and for each violation point (X, Y, Gap) listed in the fact
violations(Sub, [(X1, Y1, Gapl), ..., (Xn, Yn, Gapn)].
the constraint stated is:

Fsa(XoY) weg gu* Vi + - + fon (X, Y) * egn sup * Viy > Gap(X,Y)
where

fs:(X,Y) is the concentration factor for the source si in the point (X,Y)
€si,sub 15 the quantity of the substance Sub emitted by the source s:
sl

,...,sn are the active sources

Vi 1s a domain variable which represents the percentage of necessary reduction relative
to the source si. The domain for such variables is composed of the integers in the
interval between 0 and 10. This means that the emissions can be reduced by 0%,

10%, 20%....... 100%.

Reduction is an optimization problem and it aims at minimizing the following cost func-
tion:

Ca,suwvst + Cszsubvsz + - + Csnosub,vsn

being Cy; sup,vsi the cost to reduce the emission of the source si by the percentage indicated
by the variables V;;. Such costs are given by facts as:

cost_redc(Source, Substance, [CO, C10, C20, ..., C100]).

130

The parameters for the Reduction problem are:

e the number of active sources
e the number of violation points

e the domain cardinality for V; variables.
The dimension of the search space is given by:

domain card. for Vi variables™mber of active sources

and can become really large. Just to give an idea: with 11 values in the domain (from 0
to 10) and 80 sources, it becomes 11%°.

Reduction is therefore a non-linear minimization problem with a large search space, so
it is particularly suited to be tackled by CLP. The non-linear nature of the problem is
inherited by the non-linearity of the reduction costs. According to the Water Magistracy
experts’ opinion, non linear costs may best represent the combination of economical, social
and technical factors which are affected by a reduction of the emissions.

The resulting execution times are highly sensitive to data in the sense that some sets
of violation points (and therefore of constraints) cause a strong pruning of the search
space, whereas in some other cases the pruning action is not sufficient and the consequent
exploration of the search space by enumeration results in a time-consuming activity (more
than 3 hours for 80 sources).

Of course, we have aimed at reducing the execution times for the worst case.

Our attempts to find further constraints for a stronger pruning of the search space has not
be completely successful, so we have tried to reduce the execution times by other means.

In a first version of the Reduction procedure we stated a constraint for each violation
point detected by Analysis. Here is a set of execution times we have obtained:

20 sources ‘ 40 sources ‘ 80 sources
Violations cpu time
50 - 180 2.1 sec 5.98 sec + 2h
100 - 500 2.5 sec 15.17 sec + 3h
380 - 800 5.9 sec 46 sec + 3h

Such results were, in a certain sense, unexpected. In fact one could think that with a
higher number of violation points (and, consequently, a higher number of constraints)
lower execution times would have resulted as a consequence of a stronger pruning of the
search space. As a matter of fact, a logic explanation exists for the rise in the execution
times: if a subset of violations points are contiguous, they have very similar concentration
values, and therefore, the resulting constraints do not cause further pruning of the search
space, but only increase the computational efforts required for the propagation method on
a large number of constraints. Following this observation, we have grouped the violation

131

points by locality; this means that, if a subset of violation points are contiguous, we state
the constraint only on the one amongst them having the highest concentration value.

A further action to obtain acceptable execution times has consisted in making a smaller
search space by reducing the cardinality of the V;; domain variables (it represents the
base for the dimension of the search space). We have considered 6 values in the domain
(instead of 11) obtaining a remarkable reduction for the execution times (60 sec. vs. 2h
for 80 sources).

The Relocation problem

Like Reduction, the Relocation procedure aims at reducing the concentration values in the
violation points pointed out by a previous running of the Analysis procedure. To obtain
such a result, it devises a transfer plan of emissions from some active sources to other
inactive ones.

With the term “inactive source” we indicate potential places where polluting substances
can be discharged without causing critical levels of pollution. Obviously those areas should
be characterized not only by current low pollution levels. Firstly, they must be “law
eligible”, meaning that they should not, explicitly or implicitly, be “emission restricted”
areas, as an example mussels cultivation areas (hopefully!) low pollution levels, but it
is forbidden to locate a polluting source in their premises. Moreover, there are certain
technical and socio-economical considerations which must be taken into the due account,
a shallow water area, is not, from the technical viewpoint, a candidate as an alternative
discharge place. Similarly, there are places either too close to critical areas, monuments
or historical palaces, or interested by water streams flowing towards critical areas which
are not obviously admissible. So, as one can easily understand, inactive sources selection
is a very complex task requiring a deep knowledge of several Lagoon aspects, and as such
is conducted on ad hoc basis by the Water Magistracy staff.

For a given substance Sub and for a violation point (X, Y, Gap) listed in the fact
violations(Sub, [(X1, Y1, Gapl), ..., (Xn, Yn, Gapn)].
the constraint stated is:

Fo 1s0(X,Y) % €51 500 * Percg + -+ Fon 1sn (X, Y) % ey, 5up * Peresn > Gap(X,Y)

where:

Fai1i(X,Y) = fou(X,Y) — fri(X,Y) is the difference between two concentration factors
and can be seen as representing the convenience in transferring a percentage of the
emissions from the active source si to the inactive source indicated by the variable

]si
€si,sub 15 the quantity of the substance Sub emitted by the source s:

sl,...,sN are the active sources

132

Percg; is a domain variable which represents the percentage of emission relocation for the
source si. The domain for such variables is between 0 and 10. This means that the

emissions can be relocated by 0%, 10%, 20%....... 100%.

I 1s a domain variable which indicates which is the inactive source to which part of the
emissions of the active source sz must be relocated. The domain for such variables
is the set of the inactive sources.

Relocation is an optimization problem and it aims at minimizing the following cost func-
tion:

Percsl * Csl,[sl + -+ PGTCSN * CSN,ISN

being C; s the linear cost to relocate the 10% of the emission of the source si to the
inactive source indicated by the variable Iy;. Such costs are given by facts as:

cost_relc(Active_Source, Inactive_Source, Cost).

A further kind of constraint is imposed for each inactive source. It states that the sum
of the emissions relocated to an inactive source must be lower than the allowed value

(Bound):

N

Z €si,sub ¥ Percyg < Boundgy
=1

The parameters for the Relocation problem are:

the number of active sources

the number of inactive sources (it is the domain cardinality for I variables)

e the number of violation points

the domain cardinality for Pere, variables.

The dimension of the search space is given by:

(num of inact. sources * domain card. for Percy vars)"m o act-s ources

considering 11 values for the domain, 15 active sources and 2 inactive sources the cardi-
nality for the search space becomes (2% 11)!

The non-linear nature of the Relocation problem appears in the structure of the constraints
which define it. Each constraint involves two kinds of domain variables: the first one
(Percs;) indicating the percentage of emission that must be relocated, the second one
(Is;) representing the inactive source where the relocation must be routed. The choice of

133

considering only linear costs for the relocation problem arises from the need of avoiding a
further increase in the problem complexity.

No further constraints have been pointed out for a stronger pruning of the search space,
so we have worked on the above described ones to reduce the execution times as much
as possible. Such times have turned out to be very high even for a low number of active
sources and a small set of violations:

20 sources ‘ 40 sources
Inactive sources cpu time
2 26.1 sec 1741 sec
3 559 sec +3 h
4 6052 sec +3 h

The presence of non-linear terms in Relocation has made necessary the introduction of
a user-defined constraint. This type of constraint forces the propagation even where the
ECLPS® automatic propagation over linear terms cannot not deduce any new information.
We shall relate about it in the section 5.2.

In order to obtain lower execution times we have tried:

o to reduce the search space by considering a smaller domain for the Perc,; variables.
The resulting computation times are shown in the below:

11 domain values ‘ 6 domailn values ‘ 4 domain values
Inactive sources cpu time
2 26 sec 20 sec 9 sec
3 559 sec 190 sec 20 sec
4 6052 sec 5400 sec 104 sec

e to introduce pre-computation rules aiming at detecting, in a preliminary phase,
the violations which can’t be solved by the relocation strategy. Such rules will be
addressed in section 5.1.

The Monitoring problem

The Monitoring problem devises a dislocation plan for the monitoring stations in order
to obtain information about the effective concentration of polluting substances in the
Lagoon.

A monitoring station is a tool having its own technical range; this means that a source is
controlled by a monitoring station if it is located within the technical range of the station.
Our aim was to minimize the number of monitoring stations (whose cost is relevant) by
placing them in the potentially most dangerous points in the Lagoon. Since concentration
factors in a point P decays with an exponential law which is function of the distance from
the polluting sources, we can consider the polluting sources as the most dangerous points.
According to this consideration we have only considered the positions of the polluting
sources as potential locations for the monitoring stations.

134

Monitoring aims at minimizing the number of necessary monitoring stations, in a way
such that each source will be within a radius R of a monitoring station. For each polluting
source st, a domain variable C; has been created. This will contain the identification
number of the source in correspondence of which the monitoring station controlling the
source st is placed. The domain for Cy; is therefore composed of the sources which are
located within a range R centred on st

domCs; = {7 | S; in arange R centred on S;}

The constraints imposing that each source must be controlled by a monitoring station are
quite simple. For each pair of source si, sj they state that:

if two variables have the same element in their domains then they must have the same
value

domCy; N domCy; = Cyi =cy;

The cost function is given by the number of different values given to the C; variables.
The predicate which builds the cost function constitutes a good example of the ECL!PS¢
expressive power; it is:

state_cost([Csl, Cs2, ..., Csn], Cost]):-
prune_instances([Csl, Cs2, ..., Csn], Pruned),
length(Pruned, Cost).

where prune_instances/2 and length/2 are both built-in predicates; the first one pro-
duces a list without any duplicated element, the second one calculates the length of a
list.

The above described constraints well represent the problem, in fact we have obtained
low execution times even with a high number of sources. Monitoring is an optimization
problem with a small search space. Its CLP modelling has turned out to be efficient and
intuitive.

The Detection problem

The Detection procedure compares the concentration values collected by a monitoring
campaign with the ones predicted by the hydrodynamic model. Its aim is in detecting
the polluting sources which are emitting more than they have declared. The principle
which underlies such procedure is the following: assuming that the hydrodynamic model
simulates correctly the hydrodynamic behaviour of the Lagoon, if the actual values differs
from the values forecasted by the hydrodynamic model, then some sources are emitting
more than they have declared.

The collected data are in the form (X, Y, Act_val) where Act_val is the concentration value
(for a given substance) in the point (X,Y’). For each of such points the constraint stated

182

135

Actval — G < fa(X,)Y)« Dy + -+ fon(X,Y) * Dy < Actval + G
where:

fsi(X,Y) is the concentration factor (the one given by the hydrodynamic model) for the
source st in the point (X,Y)

sl,..., SN are the active sources

D,; is a domain variable which represents the actual emission for the source si. Supposing
that it is not likely that a source may emit less than it has been declared, we have
stated the domain for the Dy; variables to be between ey g and 3 * ey g4, being
esi,sup the declared value for the source si.

(G is a “tolerance value” which takes care of possible deviations for the data calculated by
the hydrodynamic model.

Detection is a search problem. It looks for a set of emission values that may explain the
actual concentration values. The role of the above described constraints is not in finding
a precise single value for the D, variables, but in reducing their domains to obtain the
emission values intervals which may cause the measured concentration values.

Detection gives as results two lists of sources:

Lying sources: contains the sources whose actual emissions are surely higher than the
declared one. The minimum value in the domain for the D,; variables associate to
such sources is higher than the declared value.

Maybe _lying sources: contains some sources that are likely to be emitting more than
they have declared. The minimum value in the domain for the Dy; variables associate
to such sources corresponds to the declared one, while the maximum value is higher.

Execution times have proved to be very low.

3.2 Some general remarks

Our search for an efficient representation of the problems composing the DSS has been
driven by the need to obtain acceptable execution times. The indication regarding the
limit under which an execution time can be considered “acceptable” has been indicated by
the end users: the Water Magistracy staff. Their opinion is that computation times higher
than a few hours (two or three at the most) should not be considered. When the problems
are very complex and have a large search space, just the joint action of constraints and
parallelism can obtain reasonable execution times.

One of the weakness of the CLP approach is, undoubtedly, the sensitivity to data and
therefore the impossibility to predict execution times. We have often incurred into sets

136

of data which caused high execution times even with a problem formalization that, up
to then, had been considered efficient enough. Anyway, an accurate analysis of the na-
ture of such data has helped us to point out some principles which, translated into pre-
computation rules or further constraints, have improved the problem modelling (the pre-
computation rules for the Relocation problem have been generated in such a way).

The declarative nature of the ECL'PS® language has made the introduction of additional
constraints in the programs an easy task. ECL'PS® makes the expression of constraints
as simple as possible, and the wide range of powerful tools at the user’s disposal can help
to obtain remarkable results in terms of performance even with very complex problems.

The expressive power of ECLIPS® is undoubtedly valuable, but the best way of achieving
an efficient computation for a problem consists in finding an appropriate formalization of
it in terms of variables and constraints. The complexity of such a task is not ascribable
to ECL‘PS® or to any other programming language, but it arises from the more general
and complex field of modelling. We have often been forced to restate our problems and
the improvements obtained, when the new formalization has proved to be more suitable
than the previous one, have sometimes turned out to be remarkable.

3.3 A foreseeable evolution for the DSS

The realization of the Venice Lagoon DSS within the APPLAUSE project has been a
means of assessing the parallel programming system ECL!PS®. Nevertheless, our efforts
have been aimed at building a prototype which reflects the topics of the operative envi-
ronment to which it is dedicated. The prototype version of the DSS considers 12 different
polluting substances and up to 80 polluting sources. Even though, for legal reasons,
the Venice Water Magistracy has to trace each discharge in the Lagoon (at the moment
something as 2500 sources are traced), just a few tens of these, the most important and
dangerous ones, are taken into consideration by the Water Magistracy for the Lagoon
safeguarding. The dimensioning of the prototype is, therefore, not so far from considering
a realistic scenario.

Thinking of a possible evolution for the prototype, we have considered a two-level structure
to raise the number of polluting sources considered by the DSS. This two-level approach
consists in grouping a number (20 or 30) of real polluting sources (Low Level Sources) by
locality, to constitute a “virtual” polluting source (High Level Source). The data relative
to the High Level Sources are intended to summarize the polluting contribution of the
composing Low Level Sources: the high level emissions are given by the sum of the low
level emissions, while the high level costs are the average of the low level costs. The logic
core of the DSS should remain essentially unchanged, but for the Reduction and Reloca-
tion problems (the most time-consuming ones) two levels of computations are allowed. A
first level of computation considers just the High Level Sources and obtains the percentage
of reduction or relocation for the emissions. The second level, if activated, redistributes
the results obtained for a given High Level Source on the Low Level Sources which com-
pose it. In our context, “to redistribute” a percentage of reduction (relocation), relative
to a High Level Source, means to find a reduction (relocation) plan for the emissions
of the composing Low Level Sources; the sum of the quantities reduced (relocated) on
the Low Level Sources must be equal to the global reduction (relocation) indicated from

137

the first level of the computation. We have created a first version of the two procedures
(Low-Level-Relocation and Low-Level_Reduction) which have to perform the redistribu-
tion. Both are optimization problems in that they minimize the cost arising from the
reduction (relocation) plan. Low-Level-Relocation and Low-Level_Reduction are a simpli-
fied version of the correspondent high-level problems; they don’t deal with concentration
factors nor violation points and, therefore, a low number of constraints are involved. The
simplifications introduced in Low-Level-Relocation have made it a linear problem and we
have obtained an efficient solution by using the simplex method adopted by the ECL‘PS®
rational solver.

The implementation of the two-level structure has been just outlined during the Applause
project, but it constitutes the guideline for a further evolution of the Venice Lagoon DSS.

4 Parallelization

Three distinct modes of parallelism are supported by the ECL'PS® environment: OR-
parallelism, independent AND-parallelism and data parallelism. Our experience is mainly
related to data parallelism which turned out to meet the requirements of our application.
The DSS logic core description, which has been supplied in the previous section, makes
it clear that not all the DSS modules needed a parallel approach. As for Detection,
Monitoring and Analysis, the small search space (specially Monitoring), the nature of
the problems and an efficient representation of these have allowed to obtain satisfactory
performances even in the sequential version. So we have invested our efforts in exploiting
parallelism in the Reduction and Relocation procedures, whose large search spaces required
the joint action of constraints and parallel executions.

4.1 “Our parallelism”

Reduction and Relocation essentially consist of constrained search and optimization tasks;
they compute the reduction/relocation plan for the source polluting emissions in order to
bring the concentration values back to an allowed bound at the minimum cost. For both
these procedures we have a two-level parallelism: a larger grain one, which originates a
parallel computation for the substances considered by the DSS:

par_member (Substances, List)

and a finer one on the domain of domain variables representing the percentages of reduc-
tion /relocation:

par_indomain(Dom_variables).

The size of the search space for these problems is quite large, and the benefits coming
from parallel annotations grow when the number of pollutant sources increases. The
graph shown below refers to the Reduction problem; it displays good speed-ups (even a
super-linear speed-up with 80 sources) arising from the independence of computations and
a coarse-grained parallelism which outweigh the overhead of starting parallel processes.
Although the Relocation problem is more complex than the Reduction one, its parallel

138

Figure 4.1: Speed-ups for the reduction problem

implementation has shown a speed-up which is closer to being linear. The speed-up figure
for the reduction problem is given in figure 4.1.

4.2 Some general remarks about parallelism

When the APPLAUSE project started, we were perfectly aware of the importance of
exploiting the benefits arising from parallelism, anyway the first most natural formulation
of the modules composing the DSS was a sequential implementation. The following task
consisted in introducing parallelism. The migration from the sequential version towards a
parallel one required a minimal effort, in fact ECL‘PS® enables the programmer to express
parallelism very easily, simply using parallel predicates or annotations.

To introduce data-parallelism we didn’t have to rewrite the code, it was sufficient to
substitute some sequential predicates (member/2, indomain/2) with the parallel ones
(par_member/2, par_indomain/2). In fact this data-parallelism is exploiting

OR-parallelism of ECLIPSe.

In this way we obtained a parallel version for our application; a noteworthy effort has
then been required to tune the application to obtain an efficient parallel version, in order
to best exploit the benefits of parallelism.

ECL‘PS® has been planned to support coarse-grained parallelism, so the most important
problem was to estimate the ideal grain size for our modules. Our first approach to this
problem was a “trial and test” approach, in fact we started introducing parallelism at
the highest level (substances) and then we tried to add finer grained parallelism until
the growing overhead caused the parallel execution to become inefficient. Enhancing our
experience in parallelization issues, it has been more and more easy to identify the points
where it was convenient to introduce parallelism, so some useless and time-consuming
attempts have been avoided.

ECLPS® allows the user to define the number of processes (also called workers) that jointly

139

execute the program in parallel; on this topic, our experience validates the suggestion given
by the language developers: the number of workers should match the number of physical
processors available on the machine.

5 Performance debugging and optimization

The whole DSS development has been characterized by a continuous search for perfor-
mance improvements. To obtain such a result we have investigated about a number of
factors which might affect the computation, ranging from considering pre-computation
rules, to testing the effects of the different search algorithms provided by ECL‘PS. In the
following we report about our experience in this optimization process.

5.1 About pre-computation

The pre-computation rules often have originated by the analysis of sets of data which
caused particularly high computation times. Such data helped us in detecting some logical
rules which, at first sight, had not been pointed out or considered important for the
formalization of the problem.

There are two examples of pre-computation rules relative to the Reduction and Relocation
problems:

The involved-sources rule

The principle which underlies this rule is valid for both the Reduction and the Relocation
problems. It is very simple and sounds as follows: “If the emissions of a source S don’t
affect any violation point (X,Y’) (this is true if the concentration factor for the source
is equal to zero in every point where the concentration value is higher than the allowed
bound) then, reducing the emissions of the source S, no reduction of the concentration
values in the violation points will follow”.

In the first version of Reduction and Relocation procedures we created a domain variable
for each source considered by the DSS, but we soon realized that, if the number of the
violation points were low, the execution times were often high. Such a result is explainable
considering that with a low number of violation points, we had a low number of constraints
(as many as the number of violation points present) and a large search space (the number
of sources is the exponent for the cardinality of the search space both for Reduction and
Relocation). To efficiently deal with a low number of violation points, we have created
a predicate involved_source/3 which, before stating the constraints and entering the
minimization phase, inserts in a list only the sources whose emissions affects at least one
violation point. The computation time for this predicate is negligible, but the effects on
the cardinality of the search space are remarkable.

As an example, using the involved-sources rule in the Reduction problem: with 40 polluting
sources considered by the system and 4 violation points, the cardinality of the search

140

space has been reduced from 11° to 11%, where 8 is the length of the list returned by the
involved_source/3 predicate.

The non-solvable points rule

This second rule affects the Relocation problem. The principle on which the rule is based is:
“A violation point can’t be solved by relocating a quantity equal or greater than the bound
(for a given substance) from an active source to an inactive one. In fact, in such a case, the
inactive-source would, in turn, become a violation point”. Such a consideration has allowed
to reduce, a priori, the domain of the variables Percy;, representing the percentage of
emission that must be re-routed for the active source si. In a first version of the Relocation
problem, each Perc,; variable had the interval between 0 and 10 as domain; after inserting
the non-solvable points rule, the maximum value for the domain (Max_dom_Percs;) is
calculated as follows:

Max_dom_Percy; = Bound * 10/es; sy

(where e sup 18 the quantity of the substance Sub emitted by the source si)

in fact the disequation

€si,sub ¥ Max_dom_Percg + 10/100 < Bound

must be verified. This, in a way, can be seen as pruning the domain “from the top”.

An accurate analysis of the above mentioned principle has allowed us to prune, further-
more, the domain of the Percg; variables from the bottom. The reasoning is the following:
the concentration value (Conc_val) in a point (X,Y') is given by

Conc_val(X, Y) = fsl(X7 Y) * €s51,5ub+ -0+ fsN(X7 Y) * €sN,Sub

that is the sum of the contributions arising from the emitting sources whose concentration
factor in the point (X,Y") is not zero. If the contribution of a single source si in point

(X,Y) (Cone_Si(X,Y)) is greater than the allowed Bound, then the emissions of the

source st have to be relocated by a percentage which is equal or greater than:

Min_dom_Percs; = (Cone_Si(X,Y) — Bound) % 100)/(Conec_Si(X,Y) % 10)

Min_dom_Perc,; is the minimum value for the domain of the Perc,;.

If for a domain variable Pere,;, it results that

Min_dom_Percy, > Max_dom_Percg;

then the point (X,Y) cannot be solved by the Relocation strategy, but the only way to
reduce its concentration value is by the reduction of the emissions.

141

Min_dom_Percy; and Max_dom_Percg; are worked out before stating the constraint and
entering the minimization phase, so the non-solvable points rule immediately detects sets
of violation points for which there is not a solution by Relocation.

5.2 User-defined constraints

The non-linear nature of the constraints defining the Relocation problem has made nec-
essary to create a predicate (qeq/3), in order to force the propagation mechanism in the
non-linear terms.

As stated in 3.1, the Relocation problem involves two different kinds of domain variables:

o the Perc, variables which represent the percentage of emission relocation for the
source st.

e the [, variables that indicate which is the inactive source to which part of the
emissions of the active source sz must be relocated.

Such variables are used in the definition of both the constraints and the cost function.
Let’s consider the cost function. This is defined as:

Percsl * Csl,[sl + -+ PGTCSN * CSN,ISN

where Cy; 15 is a domain variable representing the linear cost to relocate the 10% of the
emission of the source si to the inactive source indicated by the variable I;. The domain
for Cy; 15 is composed by all the relocation costs associated to the active source si (there
exists a relocation cost for each inactive source). Each term of the cost function is therefore
given by the product between two domain variables. In such a case (non-linear terms)
the ECL'PS® automatic propagation mechanism doesn’t work, that is the updates on the
domain of a variable don’t automatically cause the updates on the domains of the other
variables linked to the modified one by the constraints. gqeq/3 aims at forcing such a
propagation. The principles on which qeq/3 is based are the following:

if A and B are two domain variables and C' = A* B, then C' is, in turn, a domain variable

A, B,C >0 and
L. minC > minA « minB (minA, minB, minC are the minimum values for the vari-
ables A, B, and C respectively)

2. maxC < maxAx maxB (maxA, max B, maxC are the maximum values for the
variables A, B and C respectively)

so the values higher than maxC and lower than minC must be eliminated from the domain

of C.
Considering that ¢ = A x B can be expressed also as A = (/B and B = C/A, the

following relations can be stated:

142

3. maxA < maxC/minB (and maxB < maxC/minA)

4. minA > minC/maxB (and minB > minC/mazxA)

From relations 1. 2. 3. and 4., it is manifest that each change involving the domain limits
of a variable affects the domains of the other variables, so the qeq/3 predicate must be
woken as soon as a domain variable limit is updated.

In the following the definition of the predicate qeq/3 is given. The predicates propmax/5,
propmin/5 and ntimes/3 are user-defined predicates, the remaining ones are ECL/PS®
built-in predicates. propmax/5 and propmin/5 refers to the relations 3. and 4. respec-
tively, while ntimes/3 refers to the case in which the variables are equal to zero.

qeq(Perc,CP,C) :-

dvar_domain(Perc,DomPerc),

dvar_domain(CP,DomCP),

dvar_domain(C,DomC),

dom_range (DomPerc,MinPerc,MaxPerc),

dom_range (DomCP,MinCP,MaxCP) ,

dom_range (DomC,MinC,MaxC) ,

Min is MinPerc*MinCP,

Max is MaxPerc*MaxCP,

(Min > MinC ->
dvar_remove_smaller(C,Min),
Upd = 1

true

),

(Max < MaxC ->
dvar_remove_greater(C,Max),
Upd = 1

true
),
propmax (MaxC,MinPerc,MaxCP,CP,Upd),
propmax (MaxC,MinCP,MaxPerc,Perc,Upd),
propmin(MinC,MinPerc,MaxCP,Perc,Upd),
propmin(MinC,MinCP,MaxPerc,CP,Upd),
(nonvar (Upd) ->

qeq(Perc,CP,C)

Vars = p(C,Perc,CP),

term_variables(Vars,VL),

length(VL,N),

(N =3 ->
make_suspension(qeq(Perc,CP,C) ,4,Susp),
insert_suspension(Vars,Susp,min of fd,fd),
insert_suspension(Vars,Susp,max of fd,fd)

143

N=2 ->
ntimes (Perc,CP,C)
times(Perc,CP,C)
),

wake

The introduction of geq/3 has proved to be determinant in obtaining acceptable execution
times. In the previous version, when the propagation for the non-linear terms was not
active, the constraints didn’t succeed in reducing dynamically the domain variables and
this resulted in ineffective performances.

5.3 min_max and minimize

The logic core composing the Venice Lagoon DSS deals mainly with optimization problems,
so we have made an intensive use of the built-in predicates minimize/2 and min_max/2,
which ECL'PS® provides for minimization purposes. min_max and minimize have different
search strategies (local backtracking for minimize vs. recomputation for min_max), and we
have tested both of them in each of our optimization problems to choose the most effective
one. As for our experience, min_max has always proved to provide the best performances.

We have found the min_max/5 and minimize/5 predicates very useful. These predicates
allow to define a minimum and a maximum value for the cost function and a percentage
Perc of tolerance. The predicates with arity 5 consider equivalent the solutions within the
range of Perc% and, therefore, start the search for the next better solution with a mini-
mized value Perc% less than the previously found one. Even by indicating low percentage
of tolerance (5%) we have obtained remarkable improvements for the execution times.
A 5% approximation, on the other hand, doesn’t affect the relevance of the optimization
process, in fact, in the context of such complex modelling problems, it is often sufficient to
find a solution which is close enough to the best one instead of searching for the optimum.

6 Conclusions

The development of the Venice Lagoon DSS has constituted one of the test benches on
which the APPLAUSE project aimed at assessing the suitability of ECL'PS® as a valid
programming environment. ECL!PS® has been designed to exploit the combined potential
of parallelism and Constraint Logic Programming. The joint action of both such ap-
proaches was promising in efficiently tackling the complex field of the environmental DSS.
The decision-making activity the DSS intends to support is affected by a relevant num-
ber of different factors: regulations, laws, hydrodynamic principles, social and economical
interests. As a consequence of such a complexity, the problems composing the DSS logic
core have turned out to be mainly characterized by a non-linear nature which makes it
necessary to consider a large amount of possible solutions. The constraint logic program-

144

ming paradigm and its declarative nature have eased the knowledge representation, while
parallelism has allowed to face the involved large search spaces.

The DSS development has required a noteworthy effort, but it has led us to gather expe-
rience both in knowledge based systems and constraints logic programming.

The search for an efficient modelling of the DSS problems in terms of variables and con-
straints has proved to be the most challenging activity during the development process.
We have found that the constraint handling of ECL'PS® and its expressive power well
support the formalization of even the most complex relations and knowledge. The use of
parallelism has been fundamental to deal with search spaces which were not pruned heav-
ily enough by the constraints. ECL'PS® enables the programmers to express parallelism
very easily, but a tuning activity has been necessary to exploit it at its best.

As for the user-interface development, ECLIPS® provides the access to an external public
domain graphic tool: Tcl/Tk. Tcl/Tk has been especially planned to support the creation
of graphic interfaces, so it has been quite easy to supply the DSS with an efficient and
user-friendly interface.

Concluding, our contribution for the assessment of ECL'PS® as a programming environ-
ment results in a positive judgement. Of course, parallel CLP may not be adequate for
some kinds of problems, but the winning strategy of ECL!PS® consists in allowing the
use of the most adequate approach for the problems by integrating or interfacing existing
systems.

145

Chapter 6.

Decision Support in Molecular Biol-

ogy
Chris Rawlings and Dominic Clark

146

1 Problem Description - Predicting Protein Struc-
ture

Proteins mediate most biological activities in the body including respiration, cell growth
and cell differentiation. The success of many aspects of medical science and the biotech-
nology industry is dependent on a detailed understanding of the structure of proteins and
in particular how changes in structure influence the function and biological role of the
protein in the cell. Many aspects of cancer research also rely on knowledge about protein
structure and function at the molecular level.

In general, a complete characterization of the function of a protein depends upon know-
ing its precise three dimensional atomic structure. Solving the 3D structure by x-ray
crystallography or by nuclear magnetic resonance is, however, time consuming and of-
ten technically very difficult. Methods for predicting the structure of a protein from the
sequence of amino acids therefore has a significant potential for resolving the cost and
complexity of protein crystallography.

The most successful developments in protein structure prediction have used model building
[BSST87]. These methods rely on aligning the amino acid sequence of the protein of
unknown structure with another from a protein with known 3D structure and using this
as the structural model. However, although prediction based on model building from an
analogous 3D-structure is likely to yield the most reliable structures there is a requirement
that the amino sequences be very similar (25% or more). Unfortunately, for many of the
proteins in the protein sequence databases, there is no analogous sequence present in the
protein structure database. Alternative methods for predicting protein structure from
sequence data that complement model-building are therefore required.

1.1 Protein Topology Prediction

Protein topology denotes a level of protein structural organization that is intermediate
between the secondary and tertiary levels. A topological description uses spatial and order
relationships among protein secondary structures (a-helices and (-strands in [(-sheets)

(Figure 1.1).

A prediction of the topological structure of a protein can be used to identify proteins with
a similar topological structure where the similarity is not detectable at the sequence level
and in the more general case, should provide sufficient structural information to guide
the selection of experimental investigations to verify the prediction or to help elucidate
its biological function. Figure 1.2 illustrates how we represent the structure of all 5 and
a/ B proteins at the topological level. The essentially planar structure of 3-sheets enables
a simple list data structure to be used.

Unlike § proteins whose general folding architecture has been accepted since the first
public databank of protein structure [BKW*77] and has come to be a fundamental part
of the way in which information about (-structures is stored in public domain databases,
a general architecture (or parameterization) of the a-helical globule has only recently
been proposed[MF88]. In this description the a-helical globule can be modelled by fitting
the core regions of helices on the ribs of quasi-spherical polyhedra (henceforth deltahedra

147

Figure 1.1: Regular local protein structures.
A schematic representation of the two most important classes of secondary structure ob-
served in proteins: (a) a-helix and (b) a (-pleated sheet composed of antiparallel (-
strands. Parallel 3-sheets are also found, but are not shown here.

(Figure 1.3) such that only one helix occupies any one vertex. The cores of individual
helices can then be though of as packing along the ribs of these polyhedra.

The prediction of protein topology relies on the availability of an assignment of secondary
structure that must be predicted from the protein amino acid sequence. Despite well
known problems with the accuracy of secondary structure prediction methods, it is never-
theless possible to predict topology from secondary structure using rules of protein folding.
So long as the secondary structure of the protein is accurate at a segmental level (i.e. the
predicted secondary structural regions roughly overlap the true ones allowing some error
in the specification of termini) many topological folding rules (relating to handedness of
connections, orientation, strand positions etc.) can still be applied to the predicted sec-
ondary structure. Furthermore, uncertainty in secondary structural assignments can be
accommodated to some extent by relaxing the applicability conditions of some folding
rules.

In this chapter we describe three different programs that we have developed using parallel
constraint logic programming tools to experiment with new methods for predicting the
topology of proteins. The first, CBSle addresses the problem of predicting the (-sheet
topology of a/f3 proteins, the second CBS2e extends CBSle to deal explicitly with the
problem of representing soft (non-categorical) constraints and the third, HFE, explores
the problem of representing the fold topology of all-a proteins.

148

(b)

[position(1,1,u,
(c) .Pposition(2,2,u,
,position(4,3,u,r
,position(3,4,d,
Figure 1.2: Representation of the topological structure of an o/ sheet:
Panels (a) and (b) show alternative diagrammatic representations of protein topology. In
panel (a) a simple 3-sheet with a-helices packed against the upper surface is shown with
the a-helices drawn as cylinders and the (-strands as solid arrows which indicate their
relative orientations in the sheet. Such sheets are often referred to as «/3-sheets. Panel
(b) shows the same structure re-drawn in a planar topology diagram with (-strands drawn
as triangles and a-helices as circles. In (b) the sheet has been drawn looking from above
and then subjected to a single (topologically neutral) rotation so that the positions of
the strands align. In panel (c¢), the list of position/4 terms for the sheet show how this
topology is represented in CBSle and CBS2e.

2 Qualification

2.1 «/3 Sheets

The principal difficulty when predicting protein topology from secondary structure is that,
in the absence of other constraining information, a vast number of topological conforma-
tions can potentially result from a single set of secondary structure assignments. Specif-
ically, we showed in [DSR91] that, after making simplifying assumptions and considering
only:

e neighbourhood relations between strands

e left or right handed parallel (crossover) connections

e one type of antiparallel (hairpin) connection between strands

For an a/3-sheet of n strands (n > 1) the number of possible strand topologies, p, is given

by:

p:n!(3”_1)/2 (0.1)

149

09301< o

NN
&)

c

Figure 1.3: Representation of the topological structure an a-helical globule:
A deltahedral representation of a-helical proteins redrawn from [MF88] for packing of
globular helical motifs with 3 (a), 4 (b), 5 (¢) or 6 (d) helices. All deltahedra are composed

of equilateral triangles.

‘ No. of strands ‘2‘3‘ 4 ‘ 5 ‘ 6 “ 10 ‘
| No of topologies | 4 | 48 [768 | 15,360 | 368,640 | ... [4.75210'" |

Table 2.1: Values for p and n derived from equation 2

If left and right handed hairpin (antiparallel) connections are also distinguished, adding a
fourth type of connection, then the number of topologies, p, for a given sheet of n strands
is given by:

p=nl(4"")/2 (0.2)

Typical values for equation 0.2 are given in table 2.1.

The first program to explicitly view protein topology prediction as constraint satisfaction
and to use techniques from Logic Programming was CBS1 (Constraint Based Search,

version 1, [DSRI1]).

CBS1 demonstrated that using the LP language Prolog it was possible to succinctly im-
plement both protein topological folding rules and a protein topology prediction algorithm
based on constraint satisfaction. Two key factors suggested that CBS1 should be extended
and that it would be important for the basic approach be made more computationally effi-

150

‘ No. helices ‘ No. of windings ‘ Elapsed time/s ‘

3 16 0.136
4 816 3.200
3 19200 89.600
6 96000 410.000

Table 2.2: Number of windings as a function of number of helices versus elapsed times on
1 SUN Sparc2 processor

cient. Firstly, in a practical protein topology prediction system it is necessary to consider
either multiple secondary structure predictions or to use more detailed representations
of the protein structure. Fither of these developments would greatly increase the combi-
natorics of the search space. Secondly, because exceptions can be found to many of the
proposed general protein folding rules the approach to constraint satisfaction in CBS1
needed to be extended from one which views all constraints as categorical to one which
manages both categorical and partial (uncertain) constraints. Again it was anticipated
that there would be performance penalties incurred when extending CBSle to accommo-
date uncertain constraints.

It was decided that parallel CLP would be an ideal environment to develop the new
versions of the protein topology prediction programs. The main reason for thinking that
parallelism would be useful was the belief that the known protein folding rules would not
fully constrain the search space and thus there would always be a considerable amount of
search to find topologies that were consistent with the data and constraints.

2.2 all-a proteins

Quantifying the problem space for the folding of a-helical bundles from first principles
is not so straightforward. We therefore chose to determine the size of the problem space
empirically from an implementation of the deltahedral framework as a CLP program. The
problem space is characterised as the number of ways in which the protein chain can wind
around the deltahedral framework.

Table 2.2 shows the number of windings as a function of the number of helices along with
elapsed times on a Sun MP /630 with one processor (Sparc2) and in Figure 2.1 it is clear
that the search space grows less than exponentially with respect to the number of helices in
the globule. Although the execution times for this problem were not inordinately long, it
was considered important that any developments that should stem from this work should
be founded on an efficient and scalable implementation.

151

100000

10000

1000

Number of windings

100

10

3 4 5 6
Number of helices

Figure 2.1: Quantifying the problems space for a-helix folding
The number of possible windings of the protein backbone as determined by the HFE
program. The increase in the problem space is less than exponential with respect to the
number of helices.

3 Constraint Modelling and Prototyping

3.1 «/f sheets topology - CBSle/2e

The topology of a 3 sheet of N strands is represented in CBSle as a list of N terms each of
the form position(F,Y,Z,C), where F is the position of that strand in the sheet template
in the range [1,N], Y refers to the sequential position of the strand in the sequence in the
range [1,N], Z is the orientation of the strand (up or down) and C is the chirality of the
connection to the preceding strand (left, right or undefined). See Figure 1.2c.

Search strategy and use of CLP features

In general the most natural was to express a program in a CLP language is to (a) de-
fine the hypothesis space, (b) specify the constraints on that hypothesis space and (c)
initiate a search (or labelling) procedure. In the following, we distinguish between logical
constraints which are part of the problem specification and empirical constraints which
are independent of the problem specification per se, but which are selected by the user
or program to constrain the hypothesis space. The empirical protein folding constraints
used in CBSle come from a paper in which Taylor and Green predicted the topology of
a cation transporting ATPase (an enzyme involved in the transport of magnesium or cal-
cium ions) [TG89]. They are listed in Table 3.1. The top level goals of CBSle are shown
in Figure 3.1.

The CBSle algorithm operates as follows
1. Creation of a sheet template with the appropriate number of strand slots. The call

create_strands_template_with_N_slots(4,Solution) causes ECL‘PS® to unify
the logical variable Solution with a list of finite domain terms which represents

152

‘ Name ‘ Description

cl For parallel pairs of F-strands, #-a-3 and [-coil- connections are right handed.
c2 The initial B-strand in the amino acid sequence is not an edge strand in the sheet.
c3 Only one change in winding direction occurs.

cd The f-strands associated with the conserved patterns lie adjacent in the sheet.

ch All strands lie parallel in the -sheet.

c6 Unconserved strands are at the edge of the sheet.

2 Parallel 3-coil-# connections should contain at least 10 residues in the coil.

Table 3.1: Protein Folding Constraints used by CBSle

the possible assignment of (in this case) a $-sheet with 4 strands. This is thus the
situation before the finite domains (variable lists of possible values of a variable as
a list in curly braces “{}”) have been reduced by the application of any constraints:

Solution=[

position(_{1,2,3,4},_{1,2,3,4},_{u,d}, _{1,r,a,u}),
position(_{1,2,3,4},_{1,2,3,4}, {u,d}, _{1,r,a,ul}),
position(_{1,2,3,4},_{1,2,3,4}, {u,d}, _{1,r,a,ul}),
position(_{1,2,3,4},_{1,2,3,4}, _{u,d}, _{1,r,a,u})
1.

. Application of logical (structural) constraints. In this formulation of 3-sheet topol-

ogy the first strand is arbitrarily assigned to the left hand side the sheet and oriented
up (with undefined handedness). This constrains two independent degrees of rota-
tional invariance. The other strands have either left or right handed connections.
A further logical constraint ensures that all strands are assigned different template
positions and that the solution gives the strand numbers in sequence order. The
hypothesis space is therefore reduced through propagation to:

Solution=[

position(_{1,2}, 1, u, u),
position(_{1,2,3,4}, 2, _{u,d}, _{1,r,a}),
position(_{1,2,3,4}, 3, _{u,d}, _{1,r,al}),
position(_{1,2,3,4}, 4, _{u,d}, _{1,r,a})]

Note that this provides the most general representation of the hypothesis/solution
space.

Constraint Ordering.

In general the order in which constraints are applied in a search algorithm can affect
the performance of that algorithm. In CBSle, the empirical constraints are ordered
such that those which are non-deterministic (contain choice points) are evaluated
last, in this case c3. The rationale for this is to maximize the amount of resolution
(propagation) that the system performs to minimize the search space. To take a
trivial example, if A and B are finite domain variables {1,2,3} and 2 * A #= B,
then ECL'PS® immediately infers A=1, B=2. There is no search.

153

generate_topologies(N,Constraint_list,Topologies_List):-
create_strands_template_with_N_slots(N,Topologies_List),
apply_unary_logical_constraints(Topologies_List),
extract_lists(Topologies_List,List_of_lists),
apply_set_theoretic_logical_constraints(N,List_of_lists),
order_empirical_constraints(Constraint_List,0C_List),
apply_empirical_constraints(0C_list,N,Topologies_List,List_of_lists),
instantiate(Topologies_List).

apply_unary_logical_constraints([]).

apply_unary_logical_constraints([position(F,Y,Z,C)|T]):-
first_strand_is_orientation_up(Y,Z),
first_strand_is_of_undefined_chirality(Y,C),
apply_unary_logical_constraints(T).

apply_set_theoretic_logical_constraints(N,Lists):-
all_different_template_positions(Lists),
strictly_orderedYs(Lists),
first_strand_is_on_the_left(N,Lists).

Figure 3.1: The top level goal of CBS1e:
The basic strategy exploits the constrain and generate paradigm of CLP i.e. defining
the hypothesis space by producing a solution template, applying logical constraints to
this template which are part of the problem structure, then ordering applying empirical
constraints selected by the user or program which are not part of the problem structure
then finally instantiating any solution templates with domain variables.

4. Application of Empirical Constraints
The empirical constraints are then applied and their effects propagated through the
search tree, with the following partial solution generated as constraints are added:

With constraints ¢2 only (the first strand is non edge) we have:

Solution=[

position(2, 1, u, u),
position(_{1,3,4}, 2, _{u,d}, _{1,r,a}),
position(_{1,3,4}, 3, _{u,d}, _{1,r,a}),
position(_{1,3,4}, 4, _{u,d}, _{1,r,a})]

With constraints ¢b (all strands are parallel), cl (all parallel connections are right
handed), and ¢2 we have:

Solution=[

position(2, i1, u, u),
position(_{1,3,4}, 2, u, 1),
position(_{1,3,4}, 3, u, 1),
position(_{1,3,4}, 4, u, r)]

With constraints cl,c2, ¢5 and ¢3 (at most 1 change in winding direction) and only
now introducing labelling/search, we have the following set of solutions:

154

Solutioni=[

position(2, 1, u, u),
position(1, 2, u, r),
position(3, 3, u, r),
position(4, 4, u, r)l;
Solution2=[

position(2, 1, u, u),
position(3, 2, u, r),
position(4, 3, u, r),
position(1l, 4, u, r)]l;
Solution3=[

position(2, 1, u, u),
position(4, 2, u, r),
position(3, 3, u, r),
position(1, 4, u, r)]

There are four essential differences between the ECL'PS® specification of constraints and
the Prolog specification in the prototype Prolog version (CBS1). The ECL'PS® represen-
tation of rule ¢3 can be found in Figure 3.2. This representation differs from the Prolog
specification since (a) all predicates must be defined (e.g. nonmonotonic/3) rather than
relying on negation as failure (not (monotonic/3)), (b) predicates with choice points can
be defined as parallel (e.g. changes_in_winding/2, monotonic/3, nonmonotonic/ 3),
and (c) using arithmetic constraint operators certain predicates can be made to ‘de-
lay’. In this case the predicates monotonic/3 and nonmonotonic/ 3 can be made to
delay until all their arguments are ground either by explicit finite domain relational con-
straints, or through mode declarations (e.g. here commented out for monotonic/3 and
nonmonotonic/3 where all three arguments are specified as ground).

In ECL'PS®, all equalities and disequalities are specified as arithmetic constraints which
are not simply instantiated and then checked, but which are implemented using a look
ahead inference rule. The predicate nonmonotonic/3 is explicitly defined rather than
relying on negation as failure on the predicate monotonic/3.

In ECL‘PS®, the predicates with choice points (changes_in_winding/2, monotonic/3
and nonmontonic/3) can be executed in parallel. Finally, the goal suspension mechanism
specified either by the mode declaration for monotonic/3 and nonmonotonic/3or by using
arithmetic constraints on finite domains has the effect of causing the constraint to delay
if called with the inappropriate instantiation. It will, however, subsequently be “woken
up” and evaluated if the right instantiation of variables later occurs.

The standard execution strategy of Prolog like systems is the so called “fixed left to right
depth-first” strategy in which predicates described in the body of a clause are executed in
the order specified. This is fine for some aspects of programming however for constraint
checking it imposes the additional burden upon the programmer of ensuring that all
variables are of the right level of instantiation when checked (i.e. A > 1 will fail if A is
variable). This often has the result of reducing the declarativeness of programs.

In ECL'PS®, the delay feature is a way of changing this execution model so that it de-
pends on the state of instantiation of the arguments rather than their textual position in
the source code.There are many potential advantages provided by this feature including

155

constraint(c3,PositionList):-
max_changes_in_winding(Atmost),
changes_in_winding(PositionList,Current),
Current #<= Atmost.

max_changes_in_winding(1).

?- parallel changes_in_winding/2.

changes_in_winding([P1,P2,P3|T], 0 + Current):-
monotonic(P1,P2,P3),
changes_in_winding([P2,P3|T],Current).

changes_in_winding([P1,P2,P3|T], 1 + Current):-
nonmonotonic(P1,P2,P3),

changes_in_winding([P2,P3|T],Current).

changes_in_winding([],0).
changes_in_winding([_],0).

changes_in_winding([_,_]1,0).
?- parallel monotonic/3.
monotonic(P1,P2,P3):-

P1 #> P2, P2 #> P3.

monotonic(P1,P2,P3):-
P1 #< P2, P2 #< P3.

?- parallel nonmonotonic/3.
nonmonotonic(P1,P2,P3):—

P1 #> P2, P2 #< P3.

nonmonotonic(P1,P2,P3):—
P1 #< P2, P2 #> P3.

Figure 3.2: ECL'PS® representation of rule c3:

greater declarativeness and more efficient programs through simulated co- routining.

CBS2e
CBS2e is an extension of CBSle that deals with weighted constraints. Its operation is
similar to CBSle except that:

The failure conditions of each constraint must be each specified in addition to the success
conditions. Each constraint is also assigned a pair of values (weights or penalties) corre-
sponding to the truth functional states of the constraint (i.e. a value for the constraint
being true and a value for the constraint being false) which are each > 0.

These weights come from our empirical analysis of 8 nucleotide binding proteins [DSR91].

156

Constraint | Penalty if false [0,8] | Penalty if true [0,8]
cl 8 0
c2 7 1
c3 6 2
ch 5 3
2 6 1

Table 3.2: Weights for Topological Folding Constraints

Cost function definition

The cost assigned to any set of topological hypotheses is defined as the sum of the weights
(penalties) corresponding to the truth conditional states of the constraints to which it
corresponds. In Table 3.2, for example, the set of topologies for which all constraints are
true would have a total cost of 9 assuming a simple cost function.It should be emphasized
that although adoption of a linear cost function makes the assumptions that the constraint
weights can be combined independently and additively, many more complex weighting
procedures can be reduced, via the appropriate transformation, to a linear cost function
(e.g. probabilities though the use of a function such as mod(-Klog(odds))).

Cost minimization

A minimum value for this penalty sum is then determined using a branch and bound search
using the in built search predicate minimize/3. This algorithm operates by pruning all
branches of the search tree for which the linear cost function cannot be less than the
current minimum. Here it may be the case either that the value already exceeds the
minimum or that the remaining choices are such that under no combination can a value
less than the minimum be found.

Finally all topologies with this minimum value are generated using the same search proce-
dure called without the minimization function but with the additional explicit constraint
that the precise value of the cost function be equal to the minimum already determined.

More details of CBS2e and it’s implementation can be found in references [CRS193a,
CRS193b].

3.2 all-helix bundle topology

The representation of a-helical bundles as deltahedra uses connectivity graphs where
the qualitative spatial relationships in each deltahedra are represented as a set of con-
nectivity relations (Figure 3.3). Here each deltahedra is represented as a set of clauses
conn(N,V,ListV)/3 where N is the number of helices in the globule, V is a vertex number
and ListV are the vertices connected to that vertex.

The precise implementation of HFE uses both the finite domains mechanism of ECL'PS®,
goal suspension, and a number of the built-in constraints. Figure 3.4 and Figure 3.5 show

157

conn(3,0,[1,2,3,4]). conn(4,0,[1,3,4,5]).

conn(3,1,[0,2,4,5]). conn(4,1,[0,2,5,3]1).

conn(3,2,[0,1,3,5]). conn(4,2,[1,3,5,6,7]).
conn(3,3,[0,2,4,5]). conn(4,3,[0,1,2,4,7]).
conn(3,4,[0,1,3,5]). conn(4,4,[0,3,5,6,7]).
conn(3,5,[1,2,3,4]). conn(4,5,[0,1,2,4,6]).

conn(4,6,[2,4,5,71).
conn(4,7,[2,3,4,6]).
conn(6,0,[1,2,3,4,5]).

conn(6,1,[0,2,5,6,7]). conn(5,0,[1,2,3,4]).

conn(6,2,[0,1,3,7,8]). conn(5,1,[0,2,4,5,6]).
conn(6,3,[0,2,4,8,9]). conn(5,2,[0,1,3,6,7]).
conn(6,4,[0,3,5,9,10]). conn(5,3,[0,2,4,7,8]).
conn(6,5,[0,1,4,6,10]). conn(5,4,[0,1,3,5,8]).
conn(6,6,[1,5,7,10,11]). conn(5,5,[1,4,6,8,9]).
conn(6,7,[1,2,6,8,11]). conn(5,6,[1,2,5,7,9]1).
conn(6,8,[2,3,7,9,11]). conn(5,7,[2,3,6,8,9]).
conn(6,9,[3,4,8,10,11]). conn(5,8,[3,4,5,7,9]).
conn(6,10,[4,5,6,9,11]). conn(5,9,[5,6,7,8]1).

conn(6,11,[6,7,8,9,10]).

Figure 3.3: Connectivity matrices for deltahedra:
Numbers refer to vertices as labelled in Figure 1.3. In conn(+N,+V,+ListV)/3, N is the
number of helices in the globule, V is a vertex number and ListV are the vertices connected
to that vertex. Thus, for example, in the six helical case, vertex 0 is connected to vertices

1, 2, 3, 4 and 5.

the top level goals which generate either all windings with short connections (a and b) or
with any connections (¢ and d) either in a failure driven (a and c¢) or list collection style

(b and d).

Intermediate models are also possible (e.g. at most one long loop extension), though these
are arguably best modelled as constraints on the more general models in Figure 3.5d. As

with other ECLPS® programs produced at the [CRF under APPLAUSE the basic strategy

is one of constrain and generate as embodied in the strategy of:

o defining the hypothesis space
o defining the structural constraints, and

e labelling/search

Windings and Motifs: defining the hypothesis space.

The test query is based on finding all motifs and windings for a particular helical bundle.
The definition of motif taken is that implicit in [MF88]. Namely, a motif is a rotationally
distinct assignment of helices to ribs in a deltahedra which (a) ignores connections between
helices; (b) ignores the orientation of helices and (c) prohibits rotational, though not
mirror, symmetries. The number of motifs associated with each deltahehra by Murzin

and Finkelstein[MF8§] is shown in Table 3.3.

158

(a)

all_windings_with_short_connections(N):-% N exists in {3,4,5,6}
set_up_FDs(N,ListFD),
apply_structural_constraints(N,ListFD),
find_windings_with_short_connections(N,ListFD),
write_out(ListFD),
fail.

all_windings_with_short_connections(_).

(®)
all_windings_with_short_connections(N,ListWindings):-
setof (Winding,one_winding_with_short_connections(N,Winding),ListWindings).

one_winding_with_short_connections(N,Winding):-
set_up_FDs(N,ListFD),
apply_structural_constraints(N,ListFD),
find_windings_with_short_connections(N,ListFD),
Winding = ListFD.

Figure 3.4: Top Level goals (a) and (b) of HFE:

No. Helices | No. Vertices | No. Motifs
3 6 2
4 8 10
5 10 10
6 12 8

Table 3.3: Number of Motifs as a function of the Number of helices and vertices (Murzin

and Finkelstein, 1988)

As the number of motifs is quite small, categorizing helix folding in terms of motifs provides
a useful basis for grouping the folded structures. Several definitions of the concepts of
winding are possible. In this document a winding is viewed as an ordered set (or list) of
distinct vertex numbers v1, v2 ...v2n for n helices, where v1 is the number of the vertex
occupied by the n-terminus of the first helix, v2 is the vertex number of the vertex occupied
by the c-terminus of the first helix, v3 is the vertex number of the vertex occupied by the
n-terminus of the second helix and so on, the cardinality (or length) of the set being 2n

for n € {3,4,5,6} helices.

The ECL'PS® definition of the hypothesis space is based on the use of finite domain
variables representing vertex numbers. Each winding is represented as an ordered list of
2n elements each element being a finite domain variable in the range [0..m] where m is
2n-1, following the vertex naming convention in Figure 1.3.

159

(c)

all_windings_with_any_connections(N):-
set_up_FDs(N,ListFD),
apply_structural_constraints(N,ListFD),
find_windings_with_any_connections(N,ListFD),
write_out(ListFD),
fail.

all_windings_with_any_connections(_).

(d)
all_windings_with_any_connections(N,ListWindings):-
setof (Winding,one_winding_with_any_connections(N,Winding),ListWindings).

one_winding_with_any_connections(N,Winding):-
set_up_FDs(N,ListFD),
apply_structural_constraints(N,ListFD),
find_windings_with_any_connections(N,ListFD),
Winding = ListFD.

apply_structural_constraints(N,ListFDVertices):-
alldistinct(ListFDVertices),
fix_first_helix(N,ListFDVertices).

Figure 3.5: Top Level goals (¢) and (d) of HFE:

Thus for example, prior to any structural constraints being applied, the most general
description of the hypothesis space of windings for 3 packed helices is given as:

Winding3 = [_fdavi{0,1,2,3,4,5}, _fdv2{0,1,2,3,4,52},
_fdvs{o,1,2,3,4,5}, _fdv4{0,1,2,3,4,5}%, _£dvs{0,1,2,3,4,5%},
_fdve{0,1,2,3,4,5}].

Structural Constraints on Windings

Three types of structural constraints are applied to windings (Figure 3.6). Firstly, all
vertices in a winding must be distinct. This is a very powerful constraint for pruning the
hypothesis space using the consistency methods built into the ECLiPS® inference engine.
Secondly, the position of the first helix is fixed along some rib to prohibit rotationally
symmetric windings from co-occurring. The third type of structural constraint concerns
adjacency. Given the definition of a winding above, it follows that there is a requirement for
adjacency between pairs of vertices in the vertex list when the pair of vertices correspond
to the n-terminus and c-terminus of the same helix and (assuming only short connections)
between pairs of vertices which link the c-terminus of one helix with the n-terminus of the
next.

Figure 3.6 explains the use of finite domain constraints in HFE: In (a) the use of finite
domains in the representation of globular helical windings. Nhelices is an integer in
the domain {3,4,5,6}. Structural constraints on windings are: (b) all vertices must be
distinct (¢) the position of the first helix is constrained to generate all and only rotationally
distinct windings (d) and adjacency constraints.

160

(a)

set_up_FDs(Nhelices,Winding):-% (+integer,-ListFD).

Vertices is 2*Nhelices,
MaxVertex is Vertices-1,

set_up_FDs(Winding,MaxVertexNo,Vertices).

set_up_FDs([],_,0):-"'.

set_up_FDs([Vertex|RestVertices],MaxVertexNo,VertexCount):-

Vertex: 0.MaxVertexNo,

VertexCount2 is VertexCount-1,
set_up_FDs(RestVertices,MaxVertexNo,VertexCount2).

(b)

apply_structural_constraints(N,ListFDVertices) :-
alldistinct(ListFDVertices),
fix_first_helix(N,ListFDVertices).

(c)

?- parallel fix_first_helix/3.
fix_first_helix(3,[0,1]_]1).
fix_first_helix(4,[0,1]_]1).
fix_first_helix(4,[0,3]_]).
fix_first_helix(4,[3,0/_]1).
fix_first_helix(4,[2,3]_]1).

fix_first_helix(5,[0,1]_]).
fix_first_helix(5,[1,0]/_]).
fix_first_helix(5,[1,2]_]1).
fix_first_helix(5,[2,1]_]).
fix_first_helix(5,[1,5/_]1).

fix_first_helix(6,[0,1]_]1).

(d)

find_windings_with_short_connections(_,[_]).

find_windings_with_short_connections(N, [V1,V2[T]):-
adj(N,V1,v2),
find_windings_with_short_connections(N,[V2[|T]).

find_windings_with_any_connections(_,[]).

find_windings_with_any_connections (N, [V1,V2|T]):-
adj(N,V1,v2),
find_windings_with_any_connections(N,T).

Figure 3.6: Use of finite domain constraints in HFE
4 Parallelization Strategy

Parallelism in ECL!PS® gives the user access to parallel enumeration and search facilities
which can be used to boost the efficiency of algorithms involved in optimization and search
problems. The ability to employ parallelism in CLP applications is dependent upon non-
determinacy in the application program. In the ECL‘PS® language as with other logic
programming languages such nondeterminacy is manifested in code for which more than
one clause can match a given goal potentially producing backtracking on a sequential
device. When parallelism is introduced into an application, however, an appropriate level
of granularity must be chosen such that the overhead of initiating parallel processing is
outweighed by the resulting increase in efficiency.

For CBSle the effects of parallelism were investigated with a benchmark which finds all
the solutions for a 10, 12 and 14 stranded sheet using constraints cl, c2, ¢3, ¢5 and
c6 with strand 3 designated arbitrarily as unconserved giving 28, 45 and 66 solutions
respectively from. In the case of the 10 stranded sheet the problem space is 4.75.1011

161

possible topologies. This was done using the predicates marked as parallel in Figure 3.2
and by replacing the definition of instantiate/2 with a call to par_member/2 in the code
listed in Figure 3.1 using a Sequent Symmetry with up to 12 Intel 86386 processors.

The strategy for parallelization adopted with CBSle and CBS2e was to simply identify
obvious sources of indeterminacy in a serial ECL‘PS® implementation and then as men-
tioned above, specific predicates were marked as parallel. The benchmarks were then
used to investigate the effectiveness of the parallelization. At the time that this work was
completed, a tool called PARTRACE, which illustrated the allocation of goals to different
workers was used to visualize the effects of the parallelism.

It did not prove at all difficult to achieve creditable increases in performance using a
simple parallelization strategy and no serious problems were encountered in debugging the
parallel versions. The important factor, was however, choosing an appropriate benchmark
to assess the value of the parallelization. If the benchmark does not provide a sufficiently
large problem space, then the effects are not obvious. It is also important to use a well
designed benchmarking methodology and compare results for returning all solutions.

4.1 Benchmarking methodology

For each of the three queries (10-strands, 12-strands and 14-strands), 3 times were recorded
with each of 1, 2, 4, 8 and 12 processors (12 being the maximum on this particular
machine).

The methodology for measurement of ECL‘PS® program performance time evolved during
the project until it settled upon an approach guided by the statistical principals of sampling
theory. Essentially each goal is run number of times (approximately 10N, where N is the
maximum number of workers) with the precise number of workers (processors) selected
randomly for each run. Then each of the following time measures is computed: the elapsed
time, the user cpu time, the system cpu time.

Ideally the sum of user cpu time and system cpu time should be approximately equal to
the elapsed time, though the latter will include time for disk access, or time that other
processes are occupying the cpu.

5 Performance Debugging and Optimization

In all measurements of speed-up, benchmarks were run on at least two different parallel
computer systems; A SUN MicroSystems dual processor 630MP (Sparc Il processors),
a Sequent Symmetry (12 Intel 386 processors) or a 4 processor ICL DRS6000 (Sparc II
processors). The speed-up results we obtained were all essentially the same, but there
were of course differences in the absolute performance due to the different speeds of the
individual processing elements.

Measurements made using CBSle exhibit almost ideal behaviour (Figure 5.1). By increas-
ing the number of strands in the sheet the problem space could be extended to show that
as the problem space increases, the benefits of parallelism become close to linear with

162

respect to the number of processing elements. With such results, there is little scope for
significant optimisation.

T T T T T T
8 - 14 strands —
S
56 .
S
W= 12 strands
o m— |
=}
54 r]
o
)= 10 strands
%) 0
2 — —
1 1 1 1 1 J.
2 4 6 8 10 12

Number of Processors

Figure 5.1: The benefits of parallelism as a function of problem space in CBS1e.
The speed-up due to parallelism corresponding to three example 3-sheets of increasing pro-
tein size (10, 12, 14 strands). All solutions were obtained and the elapsed time measured
for up to 12 processors on a Sequent Symmetry.

Analysis of the performance of CBS2e and HFE however, illustrated two different ways in
which program structure can affect the ability to exploit parallelism.

With CBS2e, the initial benchmarking used the same data as we had utilised with CBSle.
However, the initial data analysis (not shown) revealed a super-linear speed-up for 2
processors (18-fold) but no additional gain from the addition of further processors on
the Sequent Symmetry. A possible explanation for the super-linear speed-up was that
the problem space was small and the solutions unevenly distributed (in the search space
seen by the second PE). Consequently, a further benchmark query was run employing an
alternative hypothetical set of costs allocated to the CBS2e constraints. In this new cost
table all constraints were given lower penalties for being false with the result that there
were 450 minimum cost solutions each of cost of 24 taking approximately 5 minutes to
run with one processor on the Sequent Symmetry.

An analysis of this query again showed good speed-up with the addition of the second
processor (a speed-up factor of 2.14) but no additional performance enhancements with
the addition of further processors. Indeed, the overall elapsed time got worse (Figure 5.2).
This behaviour suggested that there was a potential bottleneck in the program and ef-
forts were made to identify the source of the problem. After experimenting with the
PARTRACE tool for visualizing the scheduling of goals to processing elements, and ex-
amining the structure of the program, a close coupling between subgoals responsible for
cost minimization and solution generation was identified.

Creating a new version of CBS52e ensured that minimization was clearly separated from
the solution generation (search and labelling) subgoals and led to an overall improvement
in performance. By measuring the time taken in the different stages (minimization and
generation) it is possible to see how the minimization procedure is interfering with other
parts of the program performance. In Figure 5.3 execution time data were collected
on the minimization and generation subgoals. The generation subgoal shows essentially

163

0 2 4 6 8 10 12 14

Number of processors

Figure 5.2: The speed-up performance of CBS2e:
Using a modified cost table for CBS2e, the benefits of parallelism were measured on a 12
processor Sequence Symmetry. The data shows that a bottleneck exists in the program
structure.

ideal behaviour with near-linear speed-up, however, this is degraded by the asymptotic
performance of the minimization subgoal. The overall performance is thus a compromise
between the performance of the two predicates.

The helix folding program HFE is a much simpler program than CBSle or CBS52e and it
was thus possible to use it to evaluate whether introducing parallelism at two independent
points provided truly additive benefits. The benchmark we used to test this with was the
generation of all windings with short connections for 5 helices (1,205 solutions, from a
problem space of 19,200 windings).

Benchmarks were run using ElipSys version 0.6.2 with the default stacks on a quiet Sequent
Symmetry. Each benchmark was run on approximately 100 trials with the number of
workers randomized on each trial.

In this experiment, the two predicates chosen for parallelism were adj/3 and
fix_first_helix/2. They were both non-deterministic and had five possible clause
matches for bH-helical bundles. The difference between the predicates was that
fix_first_helix/2is only ever called once, whereas adj/3 is used as both a constraint
and in the search and labelling phase of HFE. It would therefore be expected that adj/3
has a greater potential for parallelization and this is demonstrated in Figure 5.4 where the
curve shows an almost ideal speed-up pattern with a near-linear increase in performance
with the number of processors. In panel b, the dependency between inherent parallelism
and nondeterminacy is well illustrated with fix_first_helix/2 as the only parallel pred-
icate. Since this predicate is called only once, it follows that more than five processors
should not lead to speed-up when this is the only parallel predicate. In fact the speed-
up curve shows a strong linear trend with a gradient of about 0.8 up to five processors
(Figure 5.5) but then is perfectly level. This shows that fix_first_helix/2 is a use-

164

10

2 4 6 8 10 12

Number of processors

Figure 5.3: The speed-up performance of a modified CBS2e:
CBS2e was modified to separate out the cost minimization and solution generation parts
of the program and the contribution of the different aspects factored out in the measure-
ment of speed-up. The contribution of the minimization phase (solid circles) effectively
limits the overall speed-up (open squares) although the solution generation exhibits good
performance characteristics (solid squares).

ful predicate to declare as parallel in isolation with up to five processors. When other
predicates are parallel no such limitation exists of course. Figure 5.6 shows the speed-up
curve with both adj/3 and fix_first_helix/2 parallel. This gives the best speed- up
figures of all for this benchmark (a median factor of about 9 for 12 processors), illustrat-
ing that some combinations of parallel predicates do lead to essentially additive levels of
parallelism.

6 Conclusions

The work described in this chapter has reviewed the way in which we have exploited
parallel CLP in applications of protein topology prediction. Our initial motives for using
parallel CLP were that it would provide a technology for building CLP applications that
would scale well when applied to real scientific problems. In the domain of protein topology
prediction, this was indeed the case. The parallelization of CBSle enabled us to consider
extensions to encompass uncertainty in the definition of protein folding rules without
significant loss of performance. This was a significant advantage from a scientific point
of view and we are now in a position to exploit these programs and make them available
through a graphical interface and a World Wide Web service.

One of the reasons that the application of parallel CLP to protein topology prediction
was that we had a rich set of constraints which applied to both local and global aspects of
the problem space. Since, however, the problem space was not fully constrained by these
constraints, the solutions must eventually be found by search which could be executed

165

Benchmark 1b on Sequent Symmetry

12 T T T T T T T T T T
‘points’ ¢
‘medians’ — -
10 + —
4
ot ;o
o — /g
é /g/
s 6 X 3 J
2] -
8
_ ~
~ - /6
4 F e R
/o/
e
2 p/ B
-
-
b
1 1 1 1 1 1 1 1 ? 1
1 2 3 4 5 6 7 8 9 10 11 12

Number of processors

Figure 5.4: The speed-up performance for HFE with
adj/3 only set parallel.

very effectively in parallel. In a second application domain, the assembly of large scale
physical genetic maps of human chromosomes [CRD94| we observed similar benefits from
parallelism (i.e. performance increased essentially linearly with respect to the number of
processors used).

Excluding the development of user interfaces, the major effort in all these applications was
the development of the appropriate constraint representation. The initial introduction of
parallelism was largely straightforward. However, In the case of CBS2e and HFE, more
effort was needed to quantitatively analyse both interference (CBS2e) and complimentarity
(HFE) between parts of our programs. These issues were identified by a combination
of performance profiling, a knowledge of the program structure and empirical analysis
based on a sound benchmarking methodology. Our experience with parallelism is that the
potential arises directly from non-determinacy in all our ElipSys/ ECL!PS® applications,
so that a modest amount of informal experimentation can lead to some speed-up. This
process can then be substantially extended by the use of parallel performance debugging
tools and procedures.

The next generation of performance debugging tools should address the issues of providing
a wide view of program performance, particularly with a view to rapidly identifying serial
bottlenecks and interference between predicates (probably because of inappropriate use of
parallelism at too fine a granularity).

A major advantage for the molecular biology applications has been the ease of moving
between different hardware platforms (SUN, ICL, Sequent).

166

Benchmark 1b on Sequent Symmetry
T T T

12

10

Speedup

A —o— - 0 - - @ —— ¢ ——& - -~ — -

1 2 3 4 5 6 7 8 9 10 11 12
Number of processors

Figure 5.5: The speed-up performance for HFE with
fix_first_helix/2 only set parallel

Chapter 7.

A Tourist Advisory System
for Greece

Panagiotis Stamatopoulos and
Isambo Karali

167

Benchmark 1b on Sequent Symmetry

12 T T T T T T T T T T
‘points’ ¢
‘medians’ — —
10 | b
©
- <
- ©
8 I /g _ g 1
o ~
~
g -~
% 4
-0
;’.J_ 6 | g 1
~
~
p
e
4 Y - B
/o/
-
2+ ' g
e
-
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

Number of processors

Figure 5.6: The speed-up performance for HFE with both
adj/3 and fix_first_helix/2 set parallel.

1 Introduction

MaTourA [HSK*94] is an ECL'PS® [ECL95] application from the area of tourism, devel-
oped by the University of Athens and Expert Systems International S.A. in the context
of the ESPRIT project APPLAUSE [LRST93b, LRS*93a]. The purpose of MaTourA,
which is a Multi-agent Tourist Advisor about Greece, is to leverage the services offered
by travel agencies by providing an interactive way to construct personalized tours and
handle the complex underlying tourist information. Given the preferences of a tourist for
his/her holidays in Greece, MaTourA produces a personalized tourist plan, taking into
account the constraints of the tourist and information about potential visits, upcoming
events, particular sites, accommodation and transportation.

MaTourA demonstrates the different technologies integrated in the ECL'PS® system in
one application, i.e. parallel CLP, the embedded database functionalities and the WWW
server support, and couples them with the technology of multi-agent systems. The latter
is a major research area of Distributed Artificial Intelligence (DAI) [Huh87, BG88]. In a
multi-agent system, the idea is to have agents of various types and capabilities to cooperate
in problem solving. The cooperation among the agents is achieved in various ways, for
example by using a blackboard [HR85, EM88], contract net [Smi80, DS83] or actor [AHS5,
HewS88] model. In the MaTourA case, a blackboard approach has been adopted.

2 MaTourA Architecture

The MaTourA system comprises a set of autonomous agents reflecting the procedures
involved in a tourist advisory environment. These agents are:

168

Tour Generation Agent: It is responsible for the construction of personalized tours,
taking into account user wishes. These tours are time/location schedules providing,
for each day, a specific timetable. This agent is the most computationally intensive
among the MaTourA agents. It is the one where the parallel CLP technology is
exploited in the MaTourA system. This chapter deals with the problem faced by
the Tour Generation Agent and how it is tackled in ECL‘PSe.

Activity Agent: It holds information about activities and is able to answer requests
coming from other MaTourA agents. Activities are possible tourist’s visits to various
spots, such as museums, galleries, archaeological sites, beaches etc.

Event Agent: It holds information about events and, as is the case with the Activity
Agent, it answers requests relevant to this information. Events differ from activities
in that they are short term shows with rather temporary nature, such as exhibitions,
music concerts, theatre performances etc., while activities are more permanent in
time.

Site Agent: This agent deals with the sites of Greece, i.e. the geographical entities of the
country, such as villages, cities, islands, regions etc., which are organized in a site
inclusion relation. The concept of sites is an important one for MaTourA, since the
whole tour generation facility works considering the sites as a fundamental starting
point.

Accommodation Agent: It handles information about lodgings where a tourist may be
accommodated and supplies it after the appropriate requests are made.

Transportation Agent: Information about connections between sites via different trans-
portation means is managed by this agent. All possible transportation means are
covered, that is private car, bus, train, boat and airplane. Besides the support of
plain information retrieval, this agent is capable to solve various routing problems.

Ticketing Agent: This agent holds information about connections which are established
between different sites all over Greece by public transportation means. Information
relevant to prices, timetables, facilities etc., is maintained.

Package Tour Agent: It is responsible for handling package tour information. A pack-
age tour is a precompiled tour, as it has been constructed by a travel agency.

User Interface Agent: This agent controls all user interaction with the MaTourA sys-
tem. It acts as an intelligent front-end to the functionality provided by the other
MaTourA agents.

The MaTourA agents, except the User Interface Agent, have a common property. They
all accept requests for processing, one at a time, do some computation for their resolution
and, then, send back the results. For this reason, these agents are called “computation
agents”. The requests sent to the computation agents are formulated as messages following
a formal Prolog term syntax. Moreover, the computation agents, except the Tour Gen-
eration Agent, perform direct processing of raw data contained in their local databases.
Actually, these are information servers and they are called “database handling agents”.

The database handling agents exploit the BANG file functionality provided by ECLiPSe.

169

Earlier versions of the MaTourA system were implemented in the predecessor of ECL‘PS®
as far as parallelism is concerned, the ElipSys language [BBDR 190, Eli93]. Now, the whole
application has been ported to ECL'PS®, so as to profit the most from the language’s
advanced features.

As far as the interaction among the MaTourA agents is concerned, a three-layered com-
munication framework has been developed for this reason [SMH94]. This framework is
a library of ECL'PS® (formerly of ElipSys) which, at the higher level, provides a set of
point-to-point communication predicates for message exchange between two agents. This
layer is based on a Linda-like blackboard architecture [CG90] which, in turn, is supported,
at the lower level, by a set of primitives for handling stream sockets in the Internet do-
main [Ste90]. The experience from the implementation of the MaTourA system is that
the structuring principle of multi-agent systems, as this is supported by the developed
communication framework, enhances the horizon of ECL'PS® to directions where large
scale development and distributed computing are central issues.

Besides the structuring of the MaTourA system as a set of cooperating high-level agents,
the concept of subagents has been introduced as well. A subagent may be viewed as
an entity which carries out one of the subtasks that a high-level agent has to accomplish.
However, while the high-level agents are, more or less, complete processing elements, which
might be also spatially distributed, the subagents of a high-level agent are tightly coupled
problem solvers that share a common computing environment and exchange information
through logical variables, rather than using network facilities.

The rest of this chapter is devoted exclusively to the Tour Generation Agent. The reason
is that the other MaTourA agents are rather simple “computing machines” where there is
no need for exploitation of parallel CLP. On the other hand, the Tour Generation Agent is
the most computationally intensive agent of MaTourA, since it has to solve an extremely
hard combinatorial problem. The focus of the following discussion will be on this problem
and the way it is tackled in the parallel CLP environment of ECLiPS®. Other interesting
issues, such as the communication framework for the high-level agents, the concept of
subagents, the functionality and the structure of the other agents etc., are presented

elsewhere [PA92, HSP193, HSM*93, HKS*94, XSG194, HSKG95].

3 Problem Description

In a tourist advisory environment, a common problem is to construct tours, that is se-
quences of visits to various places, spots etc., which accommodate the preferences of
individual tourists. In the MaTourA system, this functionality is provided by the Tour
Generation Agent (TGA).

As it is the case of every MaTourA agent, the TGA accepts requests which express specific
user requirements. There are four types of such requests whose main characteristics are
given in the following in increasing degree of complexity:

1. A full time/location schedule is provided to the agent, e.g. 15 Jul 95 — 19 Jul 95 in
Athens, 19 Jul 95 — 25 Jul 95 in Rhodes, 25 Jul 95 — 31 Jul 95 in Heraklion.

170

2. The visit period of the tour is given, but not the very locations. However, a wider
area is supplied or, alternatively, a starting location for the tour, e.g. 15 Jul 95 — 5

Aug 95 in Cyclades.

3. Specific locations are given but no information about time, e.g. a tour in Thessa-
loniki, Edessa, Kavala, Alexandroupoli.

4. Neither specific locations nor information about time is provided, but a tour with
a given starting location or in a wider area is requested, e.g. a tour starting from
[oannina.

For each type of request, cost criteria as well as interest preferences are given to the agent.
Moreover, acceptable transportation means and accommodation constraints are taken into
consideration. Finally, a set of Daily Plan Templates (DPTs) are also supplied. Each DPT
corresponds to a typical day that the tourist would like to spend on a specific location. A
DPT consists of time period/action pairs, e.g. 10:00 — 14:00 swimming, 18:00 — 21:00
sightseeing.

Although the requests of type 1 are the simplest ones, they are quite complex and difficult
to cope with. For the requests of other types, heuristic procedures have been developed
which transform such requests to requests of type 1. These procedures do not exploit
parallel CLP, thus their presentation is not relevant to the current context.

A scenario is that after an interaction between the user and the system, through the User
Interface Agent, the latter constructs a specific request and sends it to the TGA. Then,
the result is computed by this agent and sent back to the User Interface Agent, so as
to be presented to the user in a friendly way. As far as performance is concerned, the
requirement is that a request should be answered in no more than 3-4 minutes, since
MaTourA is an interactive system and, thus, it is not meant to be used in some kind of
batch mode.

A typical (type 1) request to the TGA is the following:

tourgen_reql([culture, history],
100000,
accom([hotel], ’C’),
[flight],
[local_tour(from_to(5/8/95, 9/8/95),
’Athens’,
[template([time_act(10:00, 13:00, [sightseeing]),
time_act(15:00, 16:00, [learn])])]),
local_tour(from_to(9/8/95, 12/8/95),
’Heraklion’,
[template([time_act(13:00, 14:00, [sightseeingl)]),
template([time_act(16:00, 18:00, [learn])])1)],
no_opt/10)

In this request, the TGA is asked to construct a tour in two sites, i.e. in Athens from

5/8/95 to 9/8/95 and, then, in Heraklion from 9/8/95 to 12/8/95. For Athens, one DPT

171

is provided which states that, for each day, the tourist wants to do some sightseeing
from 10:00 to 13:00 and to learn things from 15:00 to 16:00. For Heraklion, there are
two alternative DPTs for every day, one requesting sightseeing from 13:00 to 14:00 and
another for learning from 16:00 to 18:00. The terms “sightseeing” and “learn” are actions
which have to be analyzed to activities and events of specific categories that may fall
under these actions. In addition, in this request, it is stated that the tour should contain
activities and events that present “culture” and “history” interests, the cost of the tour
should be around 100,000 drachmas, the accommodation should be at hotels of at least
“C” class and the transportation should be by air. Finally, a maximum number of 10
tours is requested which have to be computed without using any optimization facilities.

In the following, since requests of types 2, 3 and 4 are mapped to type 1 requests, only the
processing of the latter is discussed. Moreover, this processing involves some “satellite”
tasks, such as:

o distributing the available budget among accommodation, transportation and visits

e preprocessing of requests for lengthy tours to allow replication of visits to the same
activities and events

e expanding the interest macros to basic interests

e communicating with the Transportation and the Accommodation Agents to request
the satisfaction of the corresponding constraints stated by the user

e communicating with the Site Agent to get the site keys of the involved sites

These tasks do not fall into the scope of the presentation of this chapter, since they do
not exploit parallel CLP as well, thus, they will not be discussed any further.

So, the problem that will be considered from now on is the filling of DPTs, for every
site and every day, with specific activities and events which are qualified for this purpose,
that is they satisfy the stated constraints. Actually, this is the computationally intensive
combinatorial problem faced by the whole application. Dealing with this problem is the
most time consuming part of the MaTourA system.

Referring again to the previously presented example, the main input to the problem is
the fifth argument of tourgen_reql/6, which is a list of “local tour” structures. Each
structure of this kind corresponds to a specific site and a specific time period to be spent
by the tourist in this site. For each site, a list of alternative DPTs is given to use them
for the construction of the day schedules. Such schedules are not constructed for the
transportation days, i.e. the day that the tourist arrives at the first site, the days of
travelling from one site to another and the day the tourist leaves from the last site. In
this example, it is requested to create tours for the dates 6/8/95, 7/8/95 and 8/8/95 (in
Athens) and the dates 10/8/95 and 11/8/95 (in Heraklion). One of the tours that have

been computed as solutions to this request is:

6/8/95 --- Athens
10:00 - 13:00 --> Acropolis

172

15:00 - 16:00 --> Keramikos
7/8/95 --- Athens
10:00 - 13:00 --> Acropolis Museum
15:00 - 16:00 --> Gennadios Library Collections
8/8/95 --- Athens
10:00 - 11:30 --> Physics Collection of Evgenidis Institute
11:30 - 13:00 --> Ancient Market
15:00 - 16:00 --> Ag. Apostoloi

10/8/95 --- Heraklion
13:00 - 14:00 --> Koules
11/8/95 --- Heraklion

13:00 - 14:00 --> Venetian Wall

In the following, the Tour Construction Problem (TCP) just presented will be considered
and analyzed from various points of view and the way the parallel CLP technology of
ECLPSe is used to deal with it will be presented in detail.

4 Characterization

A major characteristic of the TCP which has strongly influenced the adopted approach
is the very dense solution space of the problem. It is not possible, and, certainly, not
meaningful, to compute all, in the mathematical sense, solutions to a given request. The
reason 1s that there is a large number of such solutions, among which there exist tours
which are almost identical except of a single activity or event. In addition, the almost
independent subproblems for each site imply the computation of the Cartesian product
of the sets of solutions for each site to create the set of global solutions. This is another
source of the huge number of solutions. What is needed, then, is to present to the user a
reasonable set of sufficiently different tours, so as to give him/her the opportunity to make
the final decision. This concept of “sufficiently different tours” is modelled appropriately
and incorporated into the system. Of course, the user may ask for a single solution, which
makes the whole computation simpler.

As far as searching for an optimum solution is concerned, unfortunately, the raw data
provided by the Activity and Event Agents do not distinguish between “good” and “bad”
activities and events. However, an interest attribute has been introduced virtually with the
aim to quantify the quality of a potential visit and, thus, to contribute accordingly to the
tour it participates. This interest has been defined as a heuristic function of the duration
of a visit and the number of different interest types it presents. With this formulation, an
optimization TCP is considered as well.

Another issue that has to be discussed is whether the nature and the size of the system
databases have affected the design of the system. Even from the very beginning of the
development of MaTourA, databases with real data have been used, though incomplete
and not from every region of Greece. There has not been any attempt to start with
some kind of randomly created data, since this might result to wrong design decisions.
However, the initial data have not been sizeable enough and, thus, the developed prototype

173

has been proved inadequate later on, due to the simplicity of the encountered methods.
The prototype implementation has been radically changed since then, and, now, it may
be said that the system performs really well. In addition, the databases, at their current
state, contain the full data from Athens and the Crete island and it is foreseen that in
the very near future the full data from the Peloponnese region will be available. The
incorporation of data from other regions will add only to the functionality of MaTourA
without increasing the complexity of the problems that have to be solved. This is due
to the geographic modularity which is reflected both in the design of the system and the
provided functionality for tour construction.

The TCP, as it was presented in the previous paragraph, has not been tackled by any
method in the past. A similar, though much simpler, problem to this was faced in the
PETINA application [HSKM92, SKH92, SKH93], which was developed by the University
of Athens in the context of the EDS project [SHL192]. PETINA was implemented in the
ElipSys language and it was the first attempt to employ the parallel CLP technology in
solving combinatorial problems from the area of tourism. The results were quite satisfac-
tory, both as far as the exploitation of constraints and the performance gain on parallel
platforms are concerned. To this direction, it was decided to tackle the TCP of MaTourA
using the same technology. The reason is that, apart from the experience gained from
the development of PETINA, there was much evidence that the combinatorial nature of
the TCP would lead to a significant profit from parallel CLP. The whole TCP might be
faced as a very large constraint satisfaction problem exploiting parallelism at the labeling
phase or it might be broken down into smaller constraint satisfaction subproblems which
could be solved in parallel and have their results combined afterwards. The first approach
would certainly require the employment of very efficient labeling strategies, in order to be
reasonable. Thus, it was decided to follow the second approach and the results, as it will
be shown next, are very good.

5 Constraint Modelling and Prototyping

From a theoretical point of view, the TCP is a huge constraint satisfaction problem. It
might be modelled as such, but it is doubtful whether a global formulation like that would
lead to the desirable results. For this reason, it has been decided to divide the problem
into subproblems and deal with them, instead. As it will be explained in the following,
this division facilitates also the exploitation of parallelism.

At the first level of problem partitioning, a tour is considered as a sequence of subtours,
each one corresponding to a specific site. At the next level, each site subtour is a sequence
of day subtours, one for each day that is being spent to the given site. More on this
decomposition of the original TCP will be said in the next paragraph, where parallelism
issues are discussed.

So, what has to be solved now is the generation of a given number, say N, of sufficiently
different subtours for a specific day at a specific site. These subtours have to be instanti-
ated DPTs from the available ones for the given site. This instantiation has to be done
with activities and events taken from a pool that has been created for this reason. The
pool contains candidate visits for every possible time period of each template for all days
in all sites of the original request. These visits have been chosen so as to satisfy the

174

interest constraints of the request and to belong to an activity or event category that
corresponds to the action(s) of the time period into consideration. This pool is created at
a pre-processing phase by sending appropriate requests to the Activity and Event Agents.
The only thing that has to be checked when putting a visit into a DPT is the time periods
when it is active. Moreover, the duration attribute of the visit has to be respected.

The construction of the N sufficiently different subtours is carried out by a recursive
procedure which, at each iteration, computes a new subtour which has to be a filled DPT
from the available alternative ones. In addition, this subtour has to be not very similar
to any other already constructed subtour. These properties of a subtour are expressed in
terms of constraints on finite domains in a way that is presented below. One thing that
has to be mentioned also is that it is not guaranteed that it is possible to find exactly
N sufficiently different subtours. Actually, N acts as an upper limit for the number of
subtours to be computed.

A day subtour, as it has been already said, corresponds to a DPT. Thus, a DPT is chosen
non-deterministically and for each time period in this DPT it is decided how many visits
will be inserted there. This number of visits is computed heuristically from a formula that
involves the duration of the time period to be filled and the average duration of candidate
visits. Actually, not only the result M of this formula is considered, but M +1 and M —1
in a non-deterministic way as well. Thus, there is a reasonable variety in the number of
visits in each time period of the DPT. However, in order to reduce the complexity of the
problem, if more than 5 visits have to be inserted into a given time period, this period is
split into shorter ones where less than or equal to 5 visits are put. This is equivalent to
fixing the time of the transition between two visits in the original problem. Now, having
decided on the number of visits, say K (= M or M + 1 or M — 1), in a time period, 3
domain variables are defined for each one of the K visits (a total of 3- K variables), one for
the starting time of the visit, one for the ending time of the visit and one that represents
an index to the pool of candidate visits. The duration, the opening time and the closing
time of a visit are also domain variables which are related to the index and, thus, to each
other through element/3 constraints. The other constraints which are put are:

o The starting time of the first visit has to be equal to the starting time of the time
period that is being filled.

o The starting time of the other visits have to be equal to the ending times of the
previous visits.

o The ending time of the last visit has to be equal to the ending time of the time
period that is being filled.

e Fach visit has to be put in a time period, say (f1,?2), when it is really active, that
is t; has to be greater than or equal to the opening time of the visit and ¢; has to
be less than or equal to the closing time of the visit.

e For each visit, its duration has to be respected, that is it has to be equal to t; — t;.

In order to make things more clear, the following are in ECL'PS® syntax the constraints
which are stated for a single visit.

175

element(Ind, Durs, Dur),
element(Ind, O0Times, 0Time),
element(Ind, CTimes, CTime),
STime #= PrevETime,

ETime #= NextSTime,

STime #>= 0Time,

ETime #<= CTime,

Dur #= ETime - STime,

STime and ETime are the starting and ending times of the visit respectively (ranging
over 0..1440) and Ind is the index to the pool of candidate visits that points to this
visit. Ind ranges over a list of indices to legal visits, which are the ones that satisfy the
interest preferences of the tourist and the action requirements for the time period into
consideration. Durs, 0Times and CTimes are the lists of the durations, opening times and
closing times respectively of all candidate visits. Thus, Dur, 0Time and CTime represent
the duration, opening time and closing time respectively of the visit to which Ind points
to. Finally, PrevETime is the ending time of the previous visit and NextSTime is the
starting time of the next visit.

The resulting subtours for each time period in a DPT are concatenated to form the day
subtour. At the day subtour level, another set of constraints which is stated is that all visits
have to be different to each other. Finally, each day subtour has to be sufficiently different
from the already computed ones. The latter constraint is expressed in the following way.
If a day subtour contains L visits, L random numbers are generated in the range [1, L].
For each random number R, the R-th visit of the day subtour is stated to be different from
all visits in the day subtours computed so far. This results to having a reasonable number
of visits of a subtour different from the visits in the previous subtours, which implements
the idea of “sufficiently different tours”. As far as implementation is concerned, if for two
visits, that correspond to indices Ind1 and Ind2 to the pool of candidate visits, it has to
be stated that they are different, the following constraints are set.

element(Indl, Ids, Id1),
element(Ind2, Ids, Id2),
Id1 ## Id2,

Ids is the list of identifiers of all candidate visits and, thus, Id1 and Id2 are the identifiers
of the two visits into consideration.

The total virtual interest of the visits in a day subtour may act as a cost function which
has to be maximized. This is an option of the system which, with the overhead of a
more heavy computation, results to “good” tours. The problem is that the randomness
which has been introduced in the selection of visits for stating the “sufficiently different
tours” requirement and the decomposition of the original TCP into smaller subproblems,
do not lead necessarily to the N most interesting subtours. It may be the case that the

176

one computed at the i-th iteration is less interesting than that of the (i + 1)-th iteration.
Thus, the optimization feature supported by MaTourA is oriented more to the assessment
of the technology rather than to the provision of a useful functionality for the end-user.

The formulation of the problem, as it is presented in this paragraph, has been adopted after
a long way of experimentations and development of prototype versions. From the very
beginning of the design of MaTourA, the aim has been to couple the user appreciation,
as far as the tour generation facility is concerned, with the required efficiency. Many
attempts have been done with different formulations in the direction of the exploitation
of other facilities of the employed language platforms. FEven the contigs/5 constraint
has been used, during the ElipSys era of MaTourA, but without having the expected
benefits. In order not to commit to a specific number of visits in a given time period,
various formulations had been employed with the disadvantage of having a huge number of
domain variables and constraints on them. For example, in such a formulation, the number
of the defined domain variables is proportional to the total tour time, in minutes. For the
example given in this chapter, this is something like 1000, while with the adopted approach,
the number of introduced domain variables is proportional to the number of visits, i.e.
around 10. This, in conjunction with the powerful constraint mechanism provided by
ECL‘PS® has lead to significant performance gains.

6 Parallelization

As far as parallelism is concerned, this facility has been exploited in various points of the
solution of the TCP. Since MaTourA is a new application, parallelism has been considered
from the beginning of the development and, thus, the well-known problems of parallelizing
existing sequential programs have not been faced.

One major source of parallelism is related to the concept of subagents which have been im-
plemented through the introduced generalized AND-parallelism (gAND-parallelism) con-
struct (&/1). The gAND-parallelism is a variation of the normal AND-parallelism of
ECLPS® (&/2 predicate) which is based on a data-parallel like execution of more than
two goals. These ideas have been applied successfully in two cases, where independent
subagents are employed:

o Global tours, that is the required solutions, are computed by generating a set of site
subtour subagents which work in parallel for the construction of subtours for each
site. The subproblems that the subagents have to solve are not really independent,
since the cost of the global tour, which is the sum of the costs of the subtours, has
to be less than a certain limit. However, these subproblems are made independent
by distributing a priori the available budget to the sites proportionally to the time
periods the tourist is going to stay at each site. Now, if N tours are required,
each site subtour subagent is requested to compute N subtours for each site. The
actual number of computed subtours may be less than or equal to N for each site.
Then, at a post-processing phase, an algorithm is applied, which constructs M global
tours, where M is the maximum number of subtours computed for a site by a site
subtour subagent (M < N). This combination of subtours to construct tours is
computationally cheap.

177

e A number of site subtours is computed by assigning to especially created for this
reason day subtour subagents, one for each day to be spent in the specific site, the
construction of the same number of day subtours. That is, if N site subtours are
required, each day subtour subagent is requested to create N day subtours. In this
case also, 1t is not guaranteed that the day subtour subagents will be able to compute
exactly N subtours each. The subproblems faced by the day subtour subagents are
highly interdependent, since it is not only the cost issue that has to be considered
again, but it is not desirable to propose to the tourist to visit the same activities
and events more than once. However, it has been decided to let the day subtour
subagents work independently in parallel and then, at a post-processing phase, take
care of these limitations for the construction of site subtours. In this phase, it is tried
to combine day subtours for every day in a site which contain completely different
visits, in order to formulate a site subtour. This is repeated until it is not possible to
create a new site subtour. The number of site subtours that may be created cannot
exceed the minimum number of day subtours that have been produced for every
day, which is, certainly, less than or equal to N. This post-processing phase may
be proved time consuming in some cases, but experiments have shown that, on the
average, the adopted approach is relatively efficient.

There are two more points where exploitation of parallelism has been introduced and
tested. One is the data-parallel processing of alternative DPTs for the construction of one
day subtour. The other is the data-parallel consideration of the three different numbers
of visits in one time period of a DPT (M, M + 1 or M — 1 of the previous paragraph).

As a last comment on the parallelization issues, it has to be mentioned that it seems
that the additional effort that someone has to put on the simultaneous consideration of
parallel execution when developing from scratch an ECL'PS® application is significantly
less than the performance benefits obtained from using this facility. What is more is that
it is not always the case that difficult debugging may be needed due to the introduction
of parallelism. Actually, in the MaTourA case, parallelism helped to locate a serious
“design” bug that existed in the employed communication framework for the support of
the development of multi-agent systems.

7 Performance Debugging and Optimization

The MaTourA system, more precisely its TGA, has been evolving during the last two
years continuously. While the prototype versions have employed methods which have been
rather simplistic, the current state of the application is satisfactory, since the functionality
and performance targets have been achieved.

The most serious and most profitable sequential optimization that has been carried out
since the beginning of the development of the TGA has been the minimization of the
communication transactions between this agent and the other MaTourA agents, i.e. the
Activity, Event, Site, Transportation and Accommodation Agents. These transactions
have been proved very inefficient and have been a real bottleneck of the TGA. For example,
at the initial versions of the system, a highly declarative formulation of the TCP has led to
an unnecessary multiplicity of the requests sent to the Activity and Event Agents, actually

178

through backtracking. This, in conjunction with a trivially straightforward modelling of
the involved constraint satisfaction problem, has given unacceptable performance results
even with small subsets of the required raw data.

Much of the effort to improve the sequential performance has been put on the investigation
of the efficiency of various formulations of the TCP. Many alternatives have been tested be-
fore committing to the approach that has been finally adopted. These alternatives include
user-defined constraints, 0-1 formulations, disjunctive constraints, generalized propagation
etc.

As far as parallel optimizations are concerned, no much work has been done related to this
topic. The reason is that from the beginning of the design and the implementation, the
parallel world has been the aimed execution environment and, thus, the whole development
has been carried out having this in mind. There have been done a few experiments related
to whether parallelism might be profitable in specific points of the adopted method, but
this cannot be considered as real work on what is called “parallel programming”. Taking
into account the really good behavior of the TGA on parallel platforms, as it will be seen
later, the credit has to be given to the way the ECL'PS® language supports the concept
of parallelism.

This paragraph concludes with some performance results for the TCP as it tackled by
the TGA of the MaTourA system. Two parallel platforms have been used, a Sun Sparc
Server 1000 at the University of Athens and an ICL DRS 6000 at ECRC. The results refer
to 14 representative non-optimization requests given to the TGA and the elapsed times
correspond to the processing of the TCP. On the Sun platform, for each request, 4 runs
have been measured with 1 worker and 12 runs with 2 workers. On the ICL platform,
there have been measured 2 runs with 1 worker, 6 runs with 2 workers and 6 runs with 3
workers, for each request as well.

For each platform, the speedups S and the quasi standard deviations D are also given,
as they are computed via the method proposed in [Pre94b], which is summarized in the
formulas

and

The results are presented in the Tables 7.1, 7.2 and 7.3. As it may be seen, there are
quite satisfactory speedups for most requests. This is true mainly for cases where there
is potential for exploitation of parallelism, which comes from large numbers of sites to be
visited, days to be spent at each site and alternative DPTs to be filled for each day. In
case these characteristics are not met, e.g. in “req10” and “reql13”, the worker communi-
cation overhead may result in no additional gain when increasing the number of workers
(compare for “reql0” and “reql3” the speedups with 2 and 3 workers on the DRS 6000

179

platform). However, for really computationally intensive requests, there may be consider-
able exploitation of parallel machines.

H H 1 worker ‘ 2 workers H

req01 || 6112 6491 | 3256 3235 3420 3760 3245 3159
5582 6013 | 3239 3294 3879 3589 3420 4098
req02 || 2794 2805 | 2198 2294 2320 2328 2142 2323
2671 2945 | 2332 2194 3371 2389 2473 2227
req03 || 2901 2802 | 1759 1812 1840 1807 1814 1981
2805 3311 | 2048 1882 1893 2360 1945 2072
req04 || 4715 4632 | 3115 3122 3039 3210 2754 3115
4084 5062 | 3321 3202 2957 3457 2771 3252
req05 || 18176 18453 | 11354 10891 11893 11756 10537 11820
17247 18669 | 12677 11219 10581 11266 10590 11919
req06 || 13730 13065 | 8837 9845 9568 9342 8934 9712
13013 13710 | 9485 6850 8489 9425 8615 8534
req07 || 52357 51935 | 26489 28329 28976 29078 25858 30006
50673 53418 | 29421 28495 27889 27963 27860 27603
req08 || 3528 3619 | 2254 2376 2144 2474 2318 2226
3588 3935 | 2531 2145 2147 2361 2114 2140
req09 || 5650 5489 | 2357 4784 2244 2343 2253 2237
5188 5900 | 2285 2177 2705 3943 2181 4211
reqlO || 6273 6353 | 3412 3450 4444 3475 3469 3530
6055 6815 | 3555 3557 3881 3891 3477 3363
reqll || 16485 17126 | 10093 9371 9827 10339 9854 9858
16073 17122 | 10449 9239 10521 10203 9367 10306
reql?2 || 17659 18316 | 9766 10118 11122 10346 10183 10008
17223 19206 | 11008 10163 10499 11733 11145 10554
reql3d || 7351 7419 | 3765 3299 4135 4101 3651 3653
6482 7485 | 4213 3126 4503 4214 4032 3838
reql4 || 14058 15070 | 8058 8094 7785 8144 7371 7712
13886 15580 | 8590 8061 8185 8861 8062 9075

Table 7.1: Elapsed times (ms) on a Sun Sparc Server 1000

& Conclusions

In this chapter, the computationally intensive problem, namely the TCP, faced by the
TGA of the MaTourA system has been discussed and the way this problem has been
tackled using the parallel CLP technology of ECL'PS® has been presented. It has been
proved that a parallel CLP environment may help to master combinatorial problems from
the area of tourism. In addition, if this technology is combined with the structuring
principle of the multi-agent systems, the “programming in the large” concept is supported
in an elegant, structured and efficient way.

180

H H 1 worker ‘ 2 workers ‘ 3 workers H

req01 20170 | 10820 9840 10070 | 10910 9130 10910
20340 | 10950 10160 11460 | 11340 10220 9560

req02 8910 | 6970 7190 7250 | 7570 7390 7350
8880 | 8620 8690 7540 | 7530 7430 7220
req03 9350 | 6100 6040 6000 | 4150 4170 4210

9390 | 6040 6040 6040 | 4190 4170 4180
req04 13410 | 9200 9140 9260 | 6730 6290 6900
13450 | 9220 9280 9220 | 6760 7290 7230
req05 56290 | 38370 38500 37910 | 28100 27120 24320
56550 | 38470 38560 38330 | 27430 28910 26500
req06 44500 | 22500 22640 28530 | 22030 22310 22500
44530 | 29680 30620 22600 | 23100 22840 22170
req07 168290 | 92600 92350 86290 | 65330 63880 63930
168500 | 90580 92850 92280 | 63860 64440 65620
req08 11630 | 6790 6850 6910 | 5800 5780 6200
11640 | 6920 6950 6760 | 5970 5550 5260
req09 17950 | 10120 10250 14650 | 5060 10400 8500
18060 | 11990 13750 10120 | 9890 5130 9960
reql0 14050 | 5740 5770 5770 | 11840 10280 13650
13910 | 9800 11110 5790 | 11210 8640 8730
reqll 48550 | 28290 28920 29210 | 21320 22770 23790
48500 | 29560 28370 28680 | 21460 22370 22700
reql?2 63790 | 34740 34600 34130 | 26210 26820 22640
63760 | 34360 35010 34540 | 27240 27190 27210
reql3 17710 | 11860 10880 10700 | 12030 11910 11430
17770 | 12480 10080 9290 | 11250 10860 10590
reql4 44880 | 25670 27100 25180 | 21080 17480 18580
45010 | 25730 25200 26550 | 20020 21880 19890

Table 7.2: Elapsed times (ms) on an ICL DRS 6000

The framework for cooperation among high-level agents that has been developed for the
MaTourA paradigm is a general purpose one which, although it doesn’t profit from par-
allel CLP, may be considered as orthogonal to the latter. It has to be noted, though,
that the lower level structuring technique of subagents is clearly based on parallel logic
programming execution.

As far as possible extensions of the present technology are concerned, perhaps, a more
transparent mechanism for interaction among agents, without explicit message passing,
might be more friendly to the application developer. However, this is an issue that needs
careful study of what is required and how it may be combined with a parallel CLP envi-
ronment.

Summarizing the history of the development of MaTourA, it has to be said that most of
the effort has been put on the TGA, mainly on the modelling of the constraint satisfaction

181

Sun machine ICL machine
So ‘ Dy So ‘ Dy ‘ S3 ‘ D3
req01 || 1.749 | 1.102 || 1.923 | 1.055 | 1.964 | 1.081
req02 || 1.184 | 1.126 || 1.158 | 1.092 | 1.200 | 1.016
req03 || 1.529 | 1.110 || 1.550 | 1.005 | 2.243 | 1.005
req04 || 1.485 | 1.106 || 1.457 | 1.005 | 1.958 | 1.051
req05 || 1.596 | 1.065 || 1.471 | 1.006 | 2.088 | 1.056
req06 || 1.497 | 1.102 || 1.722 | 1.147 | 1.979 | 1.017
req07 || 1.851 | 1.046 || 1.848 | 1.026 | 2.611 | 1.011
req08 || 1.618 | 1.075 || 1.695 | 1.010 | 2.023 | 1.054
req09 || 2.061 | 1.326 || 1.542 | 1.163 | 2.307 | 1.361
reqlO || 1.762 | 1.091 || 1.989 | 1.326 | 1.321 | 1.177
reqll || 1.679 | 1.052 || 1.683 | 1.016 | 2.168 | 1.038
reql2 || 1.716 | 1.068 || 1.845 | 1.008 | 2.438 | 1.068
reql3 || 1.858 | 1.125 || 1.638 | 1.103 | 1.565 | 1.047
reqld || 1.794 | 1.076 || 1.736 | 1.027 | 2.274 | 1.078

TCP. It is estimated that almost 40% of the total effort has been given to this issue. Less
time, say 20% of the total, has been devoted to other issues, such as problem specification,
parallelization, performance debugging and optimization. The remaining 40% of the time
has been used for the design and development of the other agents and of the communication

Table 7.3: Speedups/Deviations

framework for the support of the multi-agent systems.

Finally, since sometimes portability is a desirable feature of a system, it should be men-
tioned that porting MaTourA from one hardware platform to another (e.g. from Sun Sparc
machines under SunOS or Solaris to the ICL DRS 6000) has required absolutely no effort.
Moreover, during the span of the APPLAUSE project, it has been required to port the
application from ElipSys to ECL‘PS¢. This has been achieved with surprisingly minimum

effort.

182

Bibliography

[AHS5]

[B94]

[BBDR+90]

[BC94]

[BCF95]

[BCPY2]

[BGSS]

[BKW*77]

[BS8T]
[BS93]

[BSSTST]

G. Agha and C. Hewitt. Concurrent Programming Using Actors: Exploiting
Large-Scale Parallelism. AT Memo 865, Massachusetts Institute of Technol-
ogy, 1985.

D. Béja. Recherche d’Optimisation d’une Formation, Ftude de Faisabilité.
Technical report, Dassault Aviation, Université Paris 6, 1994.

U. Baron, S. Bescos, 5. A. Delgado-Rannauro, P. Heuzé, M. Dorochevsky,
M. Ibanez-Espiga, K. Schuerman, M. Ratcliffe, A. Véron, and J. Xu. The
ElipSys Logic Programming Language. Technical Report DPS-81, ECRC,
December 1990.

N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP.
Journal of Mathematical and Computer Modelling, 20(12):97-123, 1994.

J. Bellone, A. Chamard, and A. Fischler. Constraint Based Decision Support
Systems for Planning and Scheduling Aircraft Manufacturing at Dassault
Aviation. In Proceedings of the International Conference on Improving Man-
ufacturing Performance in a Distributed Enterprise: Advanced Systems and

Tools, pages 109-118, 1995.
J. Bellone, A. Chamard, and C. Pradelles. PLANE, An Evolutive Planning

System written in CHIP. In Proceedings of the International Conference on

the Practical Application of Prolog (PAP’92), 1992.

A. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann Publishers Inc., San Mateo, California, 1988.

F.C. Bernstein, T. Koetzle, G.J.B. William, E. Jr. Meyer, M.D. Brice, J.R.
Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi. The Protein Data

Bank: a Computer-Based Archival File for Macromolecular Structures. Jour-

nal of Molecular Biology, 112:535-542, 1977.

W. Buettner and H. Simonis. Embedding Boolean Expressions into Logic
Programming. Journal of Symbolic Computation, 4:191-205, October 1987.

J. Bellone and V. Sarrancanie. Complexity analysis of psap. Dassault ap-
plause background document, Dassault Aviation, June 1993.

T.L. Blundell, B.L. Sibanda, M.J.E. Sternberg, and J.M. Thornton.
Knowledge-Based Prediction of Protein Structures and the Design of Novel
Molecules. Nature, 326:347-352, 1987.

183

[CF94]

[CF95]

[CFGGY5a]

[CFGGI5b]

[CGYO]

[CHI94]

[Col87]
[CRDY4]

[CRST93a]

[CRS+93b]

[DBHY3]

[Ding6]

[DS83]

A. Chamard and A. Fischler. MADE, A Workshop Scheduler System writ-
ten in CHIP. In Proceedings of the Second International Conference on the
Practical Application of Prolog (PAP’94), pages 123-136, 1994.

A. Chamard and A. Fischler. Applying CLP to a Complex Scheduling Prob-
lem — The MADE System. ESPRIT Project 5291, CHIC, Deliverable D6.5.3.
Technical report, Dassault Aviation, 1995.

A. Chamard, A. Fischler, A. Guillaud, and D. Guinaudeau. CHIC Lessons
on CLP Methodology. ESPRIT Project 5291, CHIC, Deliverable D2.1.2.3.
Technical report, Dassault Aviation, Bull, 1995.

A. Chamard, A. Fischler, B. Guinaudeau, and A. Guillaud. CHIC Lessons on
CLP Methodology. Public CHIC Deliverable Month 48 D.2.1.2.3, Dassault
& BULL, February 1995.

N. Carriero and D. Gelernter. How to Write Parallel Programs: A First
Course. MIT Press, Cambridge, 1990.

CHIP 4.1 Reference Manual. Cosytec SA, Parc Club Orsay Université, F-
91893 Orsay Cedex, France, 1994.

A. Colmerauer. Opening the PROLOG III Universe. Byte Magazine, 1987.

D.A. Clark, C.J. Rawlings, and S. Doursenot. Genetic Map Construction with
Constraints. In R. Altman, D. Brutlag, P. Karp, Lathrop., and D. Searls,
editors, Proceedings of the Second International Conference on Intelligent

Systems for Molecular Biology, pages 78-86. AAAI/MIT Press, 1994.
D.A. Clark, C.J. Rawlings, J. Shirazi, L-L. Li, K. Schuerman, M. Reeve,

and A. Véron. Solving Large Combinatorial Problems in Molecular Biology

Using the ElipSys Parallel Constraint Logic Programming System. Computer
Journal, 36(4):690-701, 1993.

D.A. Clark, C.J. Rawlings, J. Shirazi, A. Véron, and M. Reeve. Protein
Topology Prediction through Parallel Constraint Logic Programming. In
L. Hunter, D. Searls, and J. Shavlik, editors, Proceedings of the First In-

ternational Conference on Intelligent Systems for Molecular Biology, pages
83-91. AAAT Press, 1993.

B. De Backer and Beringer H. A CLP Language Handling Disjunctions of
Linear Constraints. In Proceedings of the Tenth International Conference on
Logic Programming, pages 550-563, 1993.

M. Dincbas. Constraints, Logic Programming and Deductive Databases.
In Proceedings of France-Japan Artificial Intelligence and Computer Science
Symposium, pages 1-27, Tokyo, Japan, October 1986. ICOT.

R. Davis and R. Smith. Negotiation as a Metaphor for Distributed Problem
Solving. Artificial Intelligence, 20(1):63-109, 1983.

184

[DSRY1]

[DSVS7]

[DVS*88al

[DVS*88b]

[ECL94]

[ECLO5]
[E1i93]
[EMSS]

[Ert94]

[FHK+92]

[Fru9s]

[Gal85]

[Ger94]

[Hew88]

Clark. D.A., J. Shirazi, and C.J. Rawlings. Protein Topology Prediction
through Constraint Based Search and the Evaluation of Topological Folding
Rules. Protein Engineering, 4:751-761, 1991.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Extending Equation Solv-
ing and Constraint Handling in Logic Programming. In Proceedings of Col-
loquium on the Resolution of Fquations in Algebraic Structures (CREAS),
Austin, Texas, USA, May 1987. MCC.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. Ap-
plications of CHIP to Industrial and Engineering Problems. In First Inter-
national Conference on Industrial and Engineering Applications of Artificial
Intelligence and Fzxpert Systems, Tullahoma, Tennessee, USA, June 1988.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. In Proceed-
ings on the International Conference on Fifth Generation Computer Systems

FGCS-88, Tokyo, Japan, December 1988.

ECL'PS® Extensions User Manual. ECRC GmbH, Arabellastr. 17, D-81925
Minchen, Germany, July 1994.

ECLIPS® 3.5: User Manual, February 1995.
ElipSys User Manual for Release Version 0.7, December 1993.

R. Engelmore and T. Morgan, editors. Blackboard Systems. Addisson-Wesley
Publishing Company, Wokingham, England, 1988.

W. Ertel. On the Defintion of Speedup. In Proceedings of the 6th International
PARLE Conference (Parallel Architectures and Languages Furope), number
817 in LNCS, pages 180-191. Springer-Verlag, 1994.

T. Fruhwirth, A. Herold, V. Kiichenhoff, L. Le Provost, P. Lim, E. Monfroy,
and M.G. Wallace. Constraint Logic Programming - An Informal Introduc-
tion. In G. Comyn, N.E. Fuchs, and M. Ratcliffe, editors, Logic Program-
ming in Action, Second International Logic Programming Summer School,
LPSS’92, volume 636 of Lecture Notes in Artificial Intelligence, Zurich,
Switzerland, September 1992. Springer Verlag.

T. Fruehwirth. Constraint Handling Rules. In A. Podelski, editor, Con-
straints: Basics and Trends. Springer LNCS, 1995. to appear 1995.

H. Gallaire. Logic Programming: Further Developments. In Proceedings of
the IEEE Symposium on Logic Programming, Boston, USA, July 1985.

C. Gervet. Conjunto: Constraint Logic Programming with Finite Set Do-
mains. In M. Bruynoghe, editor, Proceedings of ILPS’94. International Logic
Programming Symposium, 1994.

C. Hewitt. Offices Are Open Systems. ACM Transactions on Office Infor-
mation Systems, 4(3):271-287, April 1988.

185

[HIKST94]

[Hol95]

[Hon92]

[HRS5]

[HSK+94]

[HSKGY5]

[HSKM92]

[HSM*93]

[HSP+93]

[Huh87]
JL8T]

[JMO4]

[LRST93a]

C. Halatsis, I. Karali, P. Stamatopoulos, C. Mourlas, D. Gouscos, and C. Fou-
skakis. ElipSys Assessment. APPLAUSE Project Deliverable D.WP3.6, Uni-
versity of Athens, June 1994.

C. Holzbaur. OFAI clpq(Q, R) Manual, Edition 1.3.3. Technical report,
Austrian Research Institute for Artificial Intelligence, 1995.

H. Hong. Non-linear Constraint Solving over Real Numbers in Constraint
Logic Programming (Introducing RISC-CLP). Technical Report D.1.1, RISC,
Linz, February 1992.

B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence,
26:251-321, 1985.

C. Halatsis, P. Stamatopoulos, I. Karali, C. Mourlas, D. Gouscos, D. Margari-
tis, C. Fouskakis, A. Kolokouris, P. Xinos, M. Reeve, A. Véron, K. Schuerman,
and L.-L. Li. MaTourA: Multi-agent Tourist Advisor. In Proceedings of the
International Conference on Information and Communication Technologies
in Tourism, pages 140-147. Springer-Verlag, 1994.

C. Halatsis, P. Stamatopoulos, [. Karali, and D. Gouscos. ElipSys
(ECL'PS®) Support of Multi-agent Systems. APPLAUSE Project Deliver-
able D.WP3.8B, University of Athens, August 1995.

C. Halatsis, P. Stamatopoulos, 1. Karali, and C. Mourlas. PETINA — PEr-
sonalized Tourist INformation Advisor: Final Report. EDS Project Deliver-
able EDS.WP.9E.A009, University of Athens, July 1992.

C. Halatsis, P. Stamatopoulos, D. Margaritis, [. Karali, C. Mourlas, D. Gous-
cos, and C. Fouskakis. Tool Assessment. APPLAUSE Project Deliverable
D.WP3.4, University of Athens, May 1993.

C. Halatsis, P. Stamatopoulos, 7. Palaskas, I. Karali, C. Mourlas, D. Gous-
cos, D. Margaritis, and C. Fouskakis. MaTourA Specification. APPLAUSE
Project Deliverable D.WP3.2, University of Athens — Expert Systems Inter-
national, May 1993.

M. Huhns, editor. Distributed Artificial Intelligence. Pitman, London, 1987.

J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In POPL’87,
1987.

J. Jaffar and M. Maher. Constraint Logic Programming: A Survey. Journal
of Logic Programming, pages 503-581, 1994.

L.-L. Li, M. Reeve, K. Schuerman, A. Véron, J. Bellone, C. Pradelles,
A. Kolokouris, T. Stamatopoulos, D. Clark, C. Rawlings, J. Shirazi, and
G. Sardu. APPLAUSE: Application & Assessment of Parallel Programming
Using Logic. In Proceedings of the 5th International PARLFE Conference,
pages 756-759, 1993.

186

[LRS*93b]

[LWO3]

[MESS]

[MS92]

[MS94]

[Mud94]

[PA92]

[Per94]

[PM94]

[PM95]

[Pre92]

[Pre93a]

[Pre93b]

[Pre94a]

L.-L. Li, M. Reeve, K. Schuerman, A. Véron, J. Bellone, C. Pradelles,
7. Palaskas, T. Stamatopoulos, D. Clark, S. Doursenot, C. Rawlings, J. Shi-
razi, and G. Sardu. APPLAUSE: Applications Using the ElipSys Parallel
CLP System. In Proceedings of the 10th International Conference on Logic
Programming, pages 847-848, 1993.

T. Le Provost and M.G. Wallace. Generalised constraint propagation over
the CLP Scheme. Journal of Logic Programming, 1993.

A.J. Murzin and A.V. Finkelstein. General Architecture of the a — Helical
Globule. Journal of Molecular Biology, 204:749-769, 1988.

Micha Meier and Joachim Schimpf. An Architecture for Prolog Extensions.
In Proceedings of the 3rd International Workshop on FExtensions of Logic
Programming, Bologna (Italy), 1992.

S. Mudambi and J. Schimpf. Parallel CLP on Heterogeneous Networks. In
MIT Press, editor, Proceedings of the International Conference on Logic Pro-
gramming [CLP’94, Santa Margherita Ligure, Italy, June 1994.

S. Mudambi. ElipSys Evaluation II. Restricted APPLAUSE Deliverable
Month 24 - D.WP4.ECRC.4C1.3, ECRC, June 1994.

7. Palaskas and T. Athanasopoulos. MaTourA User Requirements. AP-
PLAUSE Project Deliverable D.WP3.1, Expert Systems International,
November 1992.

G. Perrat. Optimisation de cursus de formation a I’aide de la Programmation
Logique avec Contraintes. Technical report, Dassault Aviation, Fcole des

Mines de Nancy, 1994.

S. Prestwitch and S. Mudambi. Cost-parallel Branch and Bound in CLP.
In Proceedings of ILPS 1994 Post-conference Workshop on Constraint Lan-
guages and Systems, pages 141-149, 1994.

S. D. Prestwich and S. Mudambi. Improved Branch and Bound in Constraint
Logic Programming. In U. Montanari, editor, Proceedings of Constraint Pro-

gramming 95, LNCS. Springer Verlag, September 1995. (appeared also as
ECRC Technical Report ECRC-95-19).

S. Prestwich. ElipSys Programming Tutorial. Public APPLAUSE Deliverable
Month 6 - D.WP4.ECRC.4.4a, ECRC, November 1992.

S. Prestwich. ElipSys Programming Tutorial. Technical Report ECRC-93-2,
ECRC, January 1993.

S. Prestwich. Parallel Speedup Anomalies and Program Development. Tech-
nical Report ECRC-93-12, ECRC, September 1993.

S. Prestwich. A Note on Calculating Parallel Speedup. Technical report,
ECRC GmbH, Arabellastr. 17, D-81925 Munchen, Germany, 1994.

187

[Pre94b]

[Pre94c]

[SHL*+92]

[SKH92]

[SKH93]

[SMH94]

[Smi80]

[Ste90]

[Sys88]

[TG8Y]

(V93]
[Van89al

[Van89b]

[vHS9]

S. Prestwich. A Tutorial on Parallelism and Constraints in ECL‘PS¢. Tech-
nical report, ECRC, 1994.

S. Prestwich. On Parallelisation Strategies for Logic Programs. In Proceedings
of the International Conference on Parallel Processing '94, number 854 in

LNCS, pages 289-300. Springer-Verlag, 1994.

C. Skelton, C. Hammer, M. Lopez, M. Reeve, P. Townsend, and K.-F. Wong.
EDS: A Parallel Computer System for Advanced Information Processing. In
Proceedings of the jth International PARLE Conference, pages 3-18, 1992.

P. Stamatopoulos, I. Karali, and C. Halatsis. PETINA — Tour Genera-
tion Using the ElipSys Inference System. In Proceedings of the 1992 ACM
Symposium on Applied Computing, volume 1, pages 320-327, 1992.

P. Stamatopoulos, I. Karali, and C. Halatsis. A Tour Advisory System Using
a Logic Programming Approach. Applied Computing Review, 1(1):18-25,
1993.

P. Stamatopoulos, D. Margaritis, and C. Halatsis. Extending a Parallel CLP
Language to Support the Development of Multi-agent Systems. In Proceed-
ings of the 1994 ACM Symposium on Applied Computing, pages 410-414,
1994.

R. Smith. The Contract Net Protocol: High-Level Communication and Con-
trol in a Distributed Problem Solver. [KEE Transactions on Computers,
(C-29(12):1104-1113, December 1980.

W. R. Stevens. UNIX Network Programming. Prentice Hall, Englewood
Cliffs, New Jersey, 1990.

Metier Managment Systems. Introduction dans la gestion de project. Tech-
nical report, Metier Managment Systems, November 1988. ARTEMIS is now
a product of Lucas Management Systems.

W.R. Taylor and N.M. Green. The Predicted Secondary Structure of the
Nucleotide Binding Sites of six Cation Transporting ATPases Leads to a
Probable Tertiary Fold. Journal of Biochemistry, 179:241-248, 1989.

A. Véron. Disjunctive Scheduling in Elipsys. Technical report, ECRC GmbH,
Arabellastr. 17, D-81925 Munchen, Germany, 1993.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic

Programming Series. MIT Press, Cambridge, Ma, 1989.

P. Van Hentenryck. Parallel Constraint Satisfaction in Logic Programming:
Preliminary Results of CHIP within PEPSys. In Sizth International Confer-
ence on Logic Programming, Lisbon, Portugal, June 1989.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, Cambridge, Massachusetts, 1989.

188

[VSRLO3]

[XSG*94]

A. Véron, K. Schuerman, M. Reeve, and L-L. Li. Why and How in the
ElipSys OR-parallel CLP system. In Reeve Bode and Wolfe, editors, PARLF
93, Parallel Architectures in Furope, pages 756-759. Springer-Verlag, 1993.

P. Xinos, P. Stamatopoulos, D. Gouscos, 1. Karali, and J. Paine. MaTourA
Description Manual. APPLAUSE Project Deliverable D.WP3.7B, Expert

Systems International, December 1994.

189

