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Abstract

The efficiency of Prolog compilers is increasing rapidly but the Prolog
programs still cannot compete with traditional languages when executing
simple conditionals. In this paper we present a possibility to increase Prolog
performance by exploiting the shallow backtracking. Shallow backtracking is
initiated when a call fails to unify with the head of a clause and it backtracks to
another clause in the same procedure, as opposed to deep backtracking which
requires going back in the search tree and trying an alternative of a previous
goal. We introduce modified OR-level instructions and data management and
discuss the impact on performance of Prolog programs.
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Introduction

One of the outstanding features of Prolog is the ability to yield multiple
solutions of a procedure call by backtracking to a previous OR-node and trying
another, not yet explored alternative. One of Prolog’s drawbacks is that
backtracking is the only means to solve a failure of any kind, even a failure of
a simple arithmetic test, e.g. inequality of two numbers. Backtracking is such a
powerful and general tool that, when used inappropriately, it can significantly
degrade the performance of even simple procedures. Although partial
evaluation might cure some of the drawbacks, there still remain cases where
backtracking must be used.

The concept of shallow backtracking has been introduced in [15] to make the
distinction between two types of backtracking, one of which can be handled in
a simpler way than the other one. Shallow backtracking occurs when the
unification of a call with a clause head fails but there still are other untried
alternative clauses for it. In terms of AND/OR tree traversal, which is what
Prolog does during the execution, the shallow backtracking occurs while
expanding the immediate AND successor of an OR node. The other type of
backtracking is deep backtracking and it occurs when a call to a procedure fails
to unify with a clause and there is no other alternative to try. In this case the
system has to go back and try an alternative of a previous goal. In the later
version of Prolog machine [16] the concept of shallow backtracking is no
longer present, which we consider as a drawback, as it may improve the
performance of many procedures significantly. Our approach to perform
shallow backtracking differs from [15] where the system does not try to
postpone the creation of a choice point, it only does not restore the
information from the choice point when shallow backtracking occurs.

We suppose that the reader is familiar with the principles of WAM ([16], for
more detailed explanation see [17] or [4]) we will nevertheless describe its stack
and register management in order to express the impact of backtracking. The
environment stack in WAM corresponds to the procedure invocation stack in
traditional languages however its structure and management is more
complicated to allow backtracking, i.e. restoring a previous execution state in
order to try another alternative. The stack contains two types of frames,
environments and choice points. Environments are the classical procedure
invocation frames containing permanent (local) variables and control
information whereas choice points contain arguments of the procedure call and
the values of several state registers. In the AND/OR tree which is expanded
during the execution of a Prolog program, the environments represent the AND
nodes and choice points the OR nodes [10]. Whenever a procedure is called
which has several clauses that potentially match the call, a choice point is



pushed on the stack. The important registers used in the WAM are the
environment pointer E which points to the current environment, the B pointer
pointing to the last choice point, the CP pointer representing the return code
address; the virtual machine which was used to incorporate shallow
backtracking slightly differs in some registers but the suggested optimizations
apply to the original concept as well. The main difference is that the machine
maintains the register TE which points to the top of the environment stack
rather than to compute the stack top dynamically. Apart from that, some
registers have different (we hope more consistent) names : TG (top of the
global stack), GB (global stack backtrack point) and TT (top of the trail).

Each choice point contains argument registers, which are used to pass
arguments to the called procedure, and state registers : TT, TG, B, E, CP
and a slot for the address of the alternative clause BP(B). When backtracking
occurs, the argument registers are refreshed from the choice point and the
control registers are used to restore the state of the stacks. Yet the two actions
may be redundant, e.g. if the argument registers still have the right value or if
the stacks did not change since the creation of the choice point. We will show
in an example what are the drawbacks of the Prolog machine that concern
condition testing.

Example:

Let us define a procedure memberchk that will be used to add an
element to a set represented by an open-ended list. It checks
whether the list contains the element and inserts it at the end if it is
not found. Its Prolog code is

memberchk(Item, [Item|]) :- .

memberchk(Item, [_|Rest]) :- memberchk(Item, Rest).

When this procedure is called, the first argument is always a nonvariable and
the second is either a variable representing the empty set, or a list ended by a
free variable rather than by nil. It is clearly deterministic, only one clause will
match the call. However, it is not possible to make any compile-time decisions
as to which clause will match the call, particularly no indexing is possible.

During the execution of this procedure the following will be done :
(O a choice point is created on the stack - two argument registers and 6
control registers are pushed on it

(O the second argument register is unified with [Item|_], Item being the
first argument

(O if the unification succeeds, the choice point is popped, some registers are
restored (GB, B) and the procedure exits



(O if the unification fails, the argument registers and control registers are
restored from the choice point, the choice point is removed and the
execution continues at the alternative clause whose address was stored in
the choice point

(O the second argument register is unified with [_|Rest] and the procedure
calls itself with a new second argument, Rest.

The same procedure written in a C-like language would be

memberchk(item, list)
term item;
cons *1list;

{
while (*xlist != VAR)
if (list->car == item)
return;
else
list = list->cdr;
*1ist = new_cons(item, VAR);
t

The difference between the two approaches is tremendous.

This is of course a special example where no structures are created on the
global stack that would have to be erased on backtracking and no variables are
bound that would have to be unbound. Still most of what the Prolog machine
does when executing this procedure is redundant: the argument registers do
not change during the unification of the first clause, most of the control
registers are unchanged as well. Moreover, since memory accesses are costly,
pushing a choice point on the stack and popping it right after causes a
significant loss of performance.

The reason for the big discrepancy between the two examples is that Prolog’s
only way to execute if-then-else statements is using a choice point even if the
condition to be evaluated is quite simple and deterministic. In the above
program, the system only tests whether the second argument is unifiable with a
cons cell whose head is the first argument; if not, it need not do much to
restore the state before testing this condition.

Whenever deep backtracking occurs, the choice point is relevant and all the
information stored there is useful; on the other hand, in shallow backtracking
we could save a considerable amount of work. Instead of creating the choice
point right at the procedure beginning, we could postpone this until calling the
first user-defined Prolog subgoal in the body. This will in some cases lead to
much more efficient code, especially when the choice point will not be created
at all. Procedures which are deterministic in the sense that only one clause will



match any admissible call do not in fact need a choice point in the stack, the
necessary information can be kept in registers. This applies both to procedures
where the head unification can succeed only in one clause and to procedures
whose clauses have some additional tests in subgoals followed by a cut,
especially e.g. guarded clauses.

Other procedures which are not deterministic, i.e. more than one clause will
match the call, do not require the same treatment - when the choice point has
to be created anyway, there does not seem to be any reason to try to postpone
that. However, if the procedure performs some shallow backtracking, it could
use the information saved in the registers rather than to access the choice point
on the stack which can speed it up.

Example:

?- mode iTrans(+, -).

iTrans([[L, N1], inc, Lo], [[N]], std, Lo]).
iTrans([[L, N1], inc, Lo], [[N]], inc, Lo]).
iTrans([[L, N1], inc, Lo], [[L, NI], inc, Lo]).
iTrans([[L, N1], dec, Lo], [[L], std, Lo]).
iTrans([[L, N1], dec, Lo], [[L], dec, Lo]).
iTrans([[L, N1], dec, Lo], [[L, N1], dec, Lo]).

Since it is fairly uncommon to index on the second element of a
list, in the call

?- iTrans([[a, ¢/, dec, [a, b, ¢, d]], S)

the head unification will fail three times before yielding any
solution; using shallow backtracking will improve the performance
even if the procedure is not deterministic.

The rest of this paper is organized as follows : in Section 2 we present our
strategy to handle shallow backtracking and the necessary changes in the
abstract machine, in Section 3 the new data structure is introduced, Section 4
comments the abstract instructions and Section 5 discusses the impact on
performance and implementing other primitives like the cut.



Handling Alternatives in Prolog

We will now present a method to handle choice points efficiently by fully
exploiting the possibilities of shallow backtracking. For deterministic
procedures, the choice point will not be created at all and for nondeterministic
ones it will be created only when the head unification succeeds and a
user-defined Prolog subgoal in the body is going to be executed. When
shallow backtracking occurs, the choice point will be used only to access
information that is not available anywhere else. As the suggested change is not
quite straightforward, some problems may arize; let us now analyze them and
present a solution.

(O Since the try/try_me instructions will no longer be responsible for
pushing a choice point, we need another instruction which would
correspond to the clause neck and which would test whether it is
necessary to create the choice point. This will be the neck instructions
and/or its derivatives. It will be generated before the proceed instruction
for facts and in the neck of rules.

(O In the usual WAM, when a procedure with several clauses is called, a
choice point is pushed on the stack and then the first alternative clause is
executed. If this clause has more than one subgoal in the body, an
environment is pushed on the stack which is therefore above the choice
point. When the first alternative fails, the environment is popped and the
next alternative is tried. This may cause problems when we postpone the
choice point creation: we would like to push the choice point only when
it is certain that the head unification succeeded, i.e. no shallow
backtracking will occur. But then the clause environment would have to
be pushed first and the choice point would be pushed after it - in the
wrong position.

Example :
p(X, a) :- q, r.
p(X, b) :- ¢, d.

The right sequence of frames is

If the head unification with p(X, a) succeeds and some of the
predicates in the body of the first clause fail, all frames more
recent than the choice point should be deallocated.

(O A related problem concerns accessing permanent variables in the current
environment during the head unification: if some permanent variables
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are bound, they have to be allocated somewhere to keep track of the
binding and therefore we cannot postpone the environment allocation
(except maybe for the control part) until it is known whether there will
be a choice point on the stack. !

(O Another problem could be that some of the control or argument registers
may actually change during the head unification and we would not be
able to restore them without the choice point if the unification fails, or to
create the choice point if it succeeds.

(O The compiler cannot decide generally whether the machine will be in a
deterministic state or not and whether a failure will cause deep or
shallow backtracking as this often depends on the value of goal
arguments. Hence we must be able to recognize this situation
dynamically by maintaining a new state register. Another register will be
necessary to specify whether the current procedure already has pushed a
choice point or not because some alternative clauses may be executed
after both shallow and deep backtracking.

Note that some authors use the term nondeterministic state and shallow
backtracking for a situation where the top frame on the stack is a choice
point. This does not suit our scheme where the optimizations are

possible only when this choice point belongs to the current procedure.

Example:
p(X, Y) - q(1, X), r.
p(X,Y):-...

r: -

A choice point is pushed for p. If ¢ does not leave any objects
on the stack, it is still at the top when r is called but at that

Yt is also possible to keep the permanent variables in registers and to move them into the
environment only when the unification succeeds. For software implementation, however, this
would be a better solution only if the ratio of failed to successful unifications is sufficiently high.
Experimental results show [1] that there are much more successful unifications than failed ones.

Apart from that, the proposed design does not prevent this kind of optimization.



time the values of several registers, e.g. the argument registers
or the trail pointer, have changed and the original values would
be lost unless saved in the choice point.



3

3.1

Memory Organization

To be able to handle shallow backtracking efficiently we will introduce a new
stack and several new registers and modify the usage of some old registers.

Stack Splitting

We use separate stacks for environments and for choice points. The first
consequence is that we can push an environment before the choice point
without violating the right order, and the second one is that the stack
management is more unified (the idea of separating the two stacks was first
suggested in [14] to improve the locality of stack references).

The only change which is due to stack splitting concerns local variable trailing
and management of frames. If only one stack is used, the register B points to
the most recent choice point and the register E points to the current
environment. The top of stack TE is always set to the greater of B and E;
variables that are allocated before the most recent choice point, i.e. whose
addresses are less than B have to be trailed when they are bound so that they
may be reset when backtracking occurs.

After splitting the stacks the register B does not point any longer to the
environment stack and it cannot be used for its management. We therefore
need a new register EB (environment stack backtrack point) to play this role.
Its use is almost the same as for the GB register (backtrack point in the global
stack) which points to the global stack and is used for trailing global variables
and for resetting the top of the global stack. The only disadvantage of
introducing this new register is that (similarly to GB) it has to be stored in each
choice point and restored in the cut instruction.

On the other hand, the active choice point is now always at the top of the
choice point stack and the previous one is directly below it. This means that
the choice point stack is a real stack and we do not need to store the reference
to the previous choice, i.e. the PB field and thus the size of a choice point is
not increased.



3.2 Lifetime of Choice Point Fields

Several control registers may change during the head unification which would
prevent us from storing the right values in the choice point or from restoring
the right state after shallow backtracking. Here we list the items needed to
create the choice point in the choice point stack together with their lifetime :

CE(B)

CP(B)

B(BP)

TE(B)

TG(B)

TT(B)

the pointer to the current environment, obtained from the E register
value at the procedure entry. The E register is changed when a new
environment is created; its old value is stored in the environment so that
it may be restored after the environment is deallocated.

the continuation pointer which points to the code to be executed after
the current goal is solved. It is set from the CP register that does not
change until the first Prolog subgoal (which is not the last one) in the
clause body is called.

the address of the next alternative clause, it is compiled in the body of
try and retry instructions *

pointing to the top of the environment stack at the moment the choice
point was created. It is set using the TE (top of the environment stack)
register or the new EB (environment stack backtrack point) register. The
register EB must be set before the head unification since it is used to test
whether local variable bindings have to be trailed and it does not change
during the unification.

pointing to the top of the global stack at the moment the choice point
was created. It is set using the TG (top of the global stack) register or
the GB register. Similarly to the previous one, GB must be set before
the head unification to be able to trail global variables.

the top of trail at the moment of choice point creation, obtained from the
TT (top of the trail) register. Since some variables may be trailed in the

head unification, the value of T'T may be changed when the unification
is finished.

We can see that the registers CP, EB and GB do not change in the head
unification and hence we can use their values for the corresponding choice
point fields. On the other hand, the BP(B), CE(B) and TT(B) items must
be treated in a different way since the registers E and TT may change
between the try instruction and the clause neck and BP is available only in
the indexing instructions.

YEverything that is being said about the try, retry and trust instructions applies, of
course, to try_me, retry_me and trust_me instructions.



The rest of the choice point contains the arguments of the call. Very often it is
the case that the argument registers are not changed during the head
unification. It is not always the case as the following, well known, example
shows :

Example :

append([X|L1], L2, [X]|L3]) :- append(L1, L2, L3).
(the generated WAM code is)

get_list A,

unify_variable X,

unify_variable A,

get_list Aj

unify_value X,

unify_variable Az

execute append/3

The unify_variable instructions change the argument registers
directly, hence if the unification of the third argument fails, the first
argument register is no longer valid and it has to be restored from
the choice point (if there is any) even when the backtrack is
shallow.

When some of the argument registers change during the head unification, it is
due to an optimization of register allocation - it directly loads an argument of
the first subgoal; the usual compiling strategy is to minimize the data
movement between the head and the first goal [2]. The above instruction

unify_variable A,

is a shorthand for

unify_variable X5

put_value X5, A;

and it therefore saves one register-to-register transfer. With such optimizations
it would not be possible to re-use argument registers on shallow backtracking
and we would therefore have to execute two register-memory transfers for
each argument, one to save it to the choice point and another one to restore it.
As shallow backtracking occurs fairly often [18] it seems that a more efficient
approach would be to sacrifice the unification optimizations that change

10



3.3

3.4

argument registers in favor of shallow backtracking. Other possibilities are
discussed in Section 5.

The Alternative Clause

In classical WAM, the address of the alternative clause is stored into the choice
point by the try/retry instructions so that when the unification fails, the fail
instruction performs a jump to this address. If no choice point were created,
this address has to be stored somewhere else, unless it is compiled directly into
the code for unification; this is not always possible as the alternative clause in
an indexed procedure generally depends on the call arguments and can be
specified only at runtime. We therefore introduce a new register BP to store
the alternative address and to handle it similarly as the CP register. It will be
set by the try/retry instructions and stored into the choice point when
necessary. This will save at least one memory access on shallow backtracking
since the alternative address will be available in a register.

Environment Pointer

If the clause whose head is being matched has no environment, the E register
is not changed after the unification and we do not need to restore it after a
failure or in order to save it into a choice point. On the other hand, when an
environment is pushed on the local stack, the value of E changes. The old
value of E is always stored in the environment and it can be accessed there if
necessary. The disadvantage of this approach is that we would need two
different neck instructions, one for clauses without environment which would
store into the choice point the current value of E and another one for clauses
with an environment which would use CE(E).

Some systems postpone environment creation until a permanent variable is
accessed hoping to save time when the unification fails before environment
pushing [13]. However, this technique is not possible here since if the
unification succeeds, the previous value of E is not available in a register

anyway.

We suggest here another approach which is even more efficient: the
permanent variables in clause head can be accessed through the stack top
pointer rather than as an offset from the E pointer. If the unification succeeds,
the environment is completed by saving the control information (continuation)
and changing the E register after the choice point with the right value of E has
been created. The instruction allocate thus follows the neck instruction. If the
unification fails, the E register need not be reset and we have not lost the time
by allocating the frame. This has an advantage even for deterministic
(one-clause) procedures which thus will not create an environment if the head

11



3.5

3.6

unification fails.

The permanent variables in put instructions, however, have to be accessed as
usual through the E register since the clause environment might not be at the
stack top when the body subgoals are executed. We therefore need two sets of
unify instructions, one for the head that uses the stack top pointer to access
the permanent variables, and another one for the clause body that uses the E
register. This suits many of the current implementations as they use different
unify instructions for the body anyway, since they are executed always in
write mode (always creating a structure) and no explicit test for the mode bit is
needed.

Trail Backtrack Point

The TT register may change during the unification by trailing variable
bindings. The easiest method to keep its value is to introduce a new register
TB (trail backtracking point) to store the value of T'T before the head
unification started. This register will have a significant value only during the
head unification(s). Note that when backtracking occurs, bindings are untrailed
up to T'T(B) which is not accessed each time to test the end of untrailing loop
but a temporary register is used to keep TT(B). We just extend the usage of
this temporary register from the try instruction up to successful unification.

New State Registers

The compiler cannot generally decide whether the machine will be in a
deterministic state or not and whether a failure will cause deep or shallow
backtracking as this often depends on the value of goal arguments. Therefore
we introduce a new boolean state register D (D for Deterministic or Deep)
which specifies whether there are some alternatives for the current call or not.
If it is {rue it means that there are no alternatives, the state is deterministic and a
failure will cause deep backtracking. This register will always have a significant
value : the try/retry instructions set it to false whereas the instructions neck
and trust set it to true. Another flag is necessary to remember whether the
current procedure already has pushed a choice point or not: the boolean
register ChP is true if the current procedure already has a choice point.

12



New Instruction Set

Here we describe the WAM instructions that are changed in our design. A
substantial modification compared to the original WAM is contained in the
indexing try/retry/trust as well as the fail instructions. The try instruction
only sets the above mentioned registers and stores the value of the BP register.
The fail instruction shrank to an unconditional jump to the address stored in
the BP register. This is due to a change in the retry and trust instructions.

In the original WAM the fail instruction resets all registers from the choice
point, untrail trailed variables and jumps to the address in BP(B) which is an
address of a retry or trust instruction. The ECRC abstract machine, on the
other hand, does not use a fixed choice point size nor stores the arity in a
choice point; in case of deep backtracking the argument registers are refreshed
in the retry/trust instructions that have the arity as an argument. If a part of
restoring would be done in the fail instruction and the rest in the indexing
instructions, it would be necessary to test the register D twice. Instead, all the
job is pushed to the indexing instructions which enables us not to test the D
register at all: We know that backtracking caused by a failure between neck
and try instruction is deep while a failure between a try or retry instruction
and a neck or trust instruction will cause shallow backtracking.

We have specified two entries to each of retry and trust instructions
depending on the value of the register D. The first entry, which is the
beginning of the instruction, corresponds to deep backtracking and it contains
the code to restore some state registers as well as the argument registers. At a
fixed offset from the beginning of the instruction there is the indeterminate
entry for shallow backtracking. These entries are used in the following way:
the BP register is initially set by try and retry instructions to point to the
indeterminate entry so that when shallow backtracking occurs, no test on D
has to be made. In the clause neck a fixed offset is subtracted from BP so that
BP points to the deep backtrack entry.

The neck instruction mentioned above tests whether the choice point has to be
created and if so, it is pushed using the information in registers.

This approach favors the shallow backtracking, since a failure in a
nondeterminate state requires almost no action. Of course other configurations
which favor the deep backtracking are possible. The idea to use two different
entries for backtracking instructions was first expressed in a different context in
[12].

13



try_me_else L

This is the first instruction in the sequence of clauses that may
possibly perform deep backtracking. The registers TE, TG and
TT are saved into their corresponding 'B’ registers, the BP register
is saved into the previous choice point and it is set to L (the shallow
entry). Moreover, the flags D and ChP are reset.

D := false;
ChP := false;
EB := TE;
GB = TG;
TB := TT;
BP(B) := BP;
BP := L;

retry_me_else L, Arity

This instruction 1r1troduces the code for a clause in the middle of
a chain of clauses that may perform shallow backtracking. It has

two entries, depending on the state of the D flag. If D is true,
the backtracking is deep and the registers TB, E and CP have
to be restored from the choice point. Furthermore, the argument
registers are refreshed from the choice point, the flags are set and
the register TE is reset from EB. If D is false, no special action
takes place. In both cases the register TG is reset from GB and
variables on the trail are untrailed up to the value of TB.

true( D) entry:

E := CE(B);

CP := CP(B);

TB := TT(B);

TE := EB;
Refresh_arguments_from_choice_point(B, Arity)
D := false;

ChP := true;

/* goto lab; */
not( D) entry:

lab: .
Untrail TT to TB;
TG := GB;
BP := L;

14



trust_me Arity

This instruction is the last in the sequence of clauses that may
perform shallow backtracking. Similarly to the retry instruction it
has two entries depending on the value of D flag. If D is set, the
same operations are performed as for the retry instruction, except
that the flags are not set and the B register is reset. If the D flag
is not set, this instruction sets it and the register B is set to point
to the previous frame. Then, for both entries, trailed variables are
untrailed, the TG register is set to GB and the registers EB, GB
and BP are reset from the choice point. This sequence effectively
erases the choice point from the stack.

true( D) entry:

E := CE(B);
CP := CP(B);
TB = TT(B),
TE := EB;

Refresh_arguments_from_choice_point(B, Arity)
B := B - 6 - Arity;

goto lab;
not( D) entry:
D := true;
if ChP_then .
B := B - 6 - Arity;
endif;
lab:
Untrail TT to TB
TG := GB;
EB := TE(B);
GB := TG(B);
BP := BP(B); /* true( D) entry ! */
neck Arity

this instruction is generated before the first subgoal that may back-
track or change some registers or before the clause end. In case
the D flag is reset, the choice point is created depending on the
flag ChP, the pointer BP is updated to point to the deep entry of
the retry/trust instruction and the D flag is set.

if not(D) then

if not(ChP) then
Create_ChP(Arity, TB, GB, EB, _, CP, E)

endif;
BP := Deep(BP);
D := true;

endif;



neckcut Arity

This instruction is generated for a cut that occurs before any sub-
goal that may backtrack or change some significant registers. If
the flag D is not set, the registers EB, GB, BP and possibly B
are reset from the choice point. At the end, the flag D is set.

if not(D) then

if ChP_then .
B := B - 6 - Arity;

endif;

EB := TE(B);

GB := TG(B);

BP := BP(B);

D := true;
endif;

neck_bodycut Arity

This instruction is generated before the first subgoal that may back-
track or change some registers in a clause that contains a cut (not
handled by the neckcut instruction). The appropriate B pointer
is stored in the first permanent variable and the choice point is
created if necessary.

if not(D) then

if ChP._then .
Y, := B - 6 - Arity;
else
Y, := B;
Create_ChP(Arity, TB, GB, EB, _, CP, E)
endif;
D := true;
BP := deep(BP);
else
Y, := B;
endif;
fail

tII)le execution continues at the address stored in BP
= 3

cut
the instruction for a cut in the clause body which is not a neckcut.

The B register is reset from the appropriate permanent variable,
TE points to the end of the current environment and the registers
EB, GB and BP are reset from the choice point. Thus all frames
above the current environment are popped from the environment
stack.

B =Y;;
TE = E;
EB = EB(B),
GB = GB(B),
BP = BP(B),

16



5 Discussion

5.1

Our aim was to speed up the shallow backtracking process without slowing the
rest down too much; let us now look at the efficiency of the proposed design.

Performance Results

We have compared the speed of a system without shallow backtracking, a
system that uses shallow backtracking only as far as restoring argument registers
is concerned, and a system that performs all the optimizations described in this
paper. In all cases ECRC Prolog was used (originally treating only the second
case) with some modifications to simulate the other two approaches. A
performance test with the memberchk example brought the following results :

(O When only the D register was introduced and on shallow backtracking
only the argument registers were not refreshed, the gain in speed
compared to the standard WAM was about 15%.

(O With a full shallow backtracking as described here the gain was 65%.

(O To vizualize the impact of register optimizations, the performance of
naive reverse with the above changes was measured and it decreased
about 3% resp. 4% compared to the standard WAM.

ECRC Prolog is a portable system using C as intermediate language, so that
abstract machine registers are represented by C variables instead of using
machine registers. Moreover, since the system supports coroutining, data
management is slightly more complicated and the impact of any change might
be less significant. We suppose that on other software systems all the figures
could be higher. To specify the negative impact more precisely, we have
measured the performance of a compact system [7] which showed a 6%
decrease of speed of naive reverse with full shallow backtracking due to
non-optimized unification and a test in the clause neck; this should be
considered as the upper bound of the negative impact of the proposed
approach. ! The measurements of shallow backtracking impact with the
CHAT-80 program and others are currently in preparation.

! Naive reverse is a standard benchmark example which is deterministic, contains no shal-
low backtracking and very few abstract instructions are generated for one inference step, 7 with
register optimizations and 9 without them. This implies that the impact of register optimizations

in this example is very near to its upper bound over all Prolog procedures.
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If we look at the impact of the suggested change on different types of
procedures we obtain the following picture (ordered in descending order of
advantage):

(O Procedures that perform a lot of shallow backtracking, e.g. database
procedures which are not completely indexed, will be speeded up
significantly.

(O Procedures that perform some deep and some shallow backtracking will
be speeded up by the extent of shallow backtracking.

(O Procedures consisting of one clause or those which are completely
indexed so that only one clause will always be tried will not be affected
at all as the neck instruction is not generated for them.

(O Procedures performing only deep backtracking, e.g. generators, will not
be speeded up with the restriction that environment allocation is avoided
whenever possible. However, if the compiler can deduce that a
procedure belongs to this class, it can generate indexing instructions that
handle only deep backtracking and do not manage the new flags, they
only have to manage the D register if it is used for cut implementation.

5.2 Register Optimizations

Procedures that use optimized register allocation might not be speeded up by
the same extent as those where register optimizations are not possible.
However, there are often possibilities to overcome this drawback. If the
compiler can recognize that the head unification of a clause cannot cause
shallow backtracking and that the choice point will not be pushed in the neck
of this clause, it can safely generate optimized unification instructions. This is
the case when only one clause is a possible candidate for matching, hence
either in one-clause procedures or clauses in indexed procedures which cannot
be entered from a try or retry instruction, which is a very simple test. Note
however, that this class of procedures is not identical with deterministic
procedures, since clauses in which the creation of a choice point is prevented
by a (neck)cut can still perform shallow backtracking.

If e.g. the concatenate/3 procedure is written with the ni/ case first, all the
register optimizations can be performed without affecting a possible shallow
backtracking. Although it might seem awkward to compile a clause only in the
context of a procedure, for an efficient compiler it is necessary anyway since it
is the only way to recognize that the unification of an indexed argument can be
omitted or reduced.

Shallow backtracking might be interesting even in context of partially evaluated
programs : the memberchk/2 procedure can be partially evaluated to yield (see
e.g. [11D:
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5.3

memberchk(Item, List) :-
List = [First|Rest],

(

Item = First — > true

;

memberchk(Item, Rest)
).

The Prolog system still has to create a choice point for the alternative in the
body of memberchk, it only does not have to save and restore the argument
registers; this would then be another possibility (probably only theoretical) to
keep register optimizations.

The consequence is therefore as follows : the optimized register allocation is
not compatible with shallow backtracking. Since each register optimization
saves one register-to-register transfer whereas shallow backtracking saves
several memory accesses, and shallow backtracking occurs fairly often, it
should be given the preference. Procedures which are known not to perform
shallow backtracking or those where the impact of register optimizations is
very high may be compiled in the traditional way using the register
optimizations if desired.

Built-in Predicates

As the reader might have noted, we have not identified the neck instruction
that actually changes the state from shallow to deep with the position of the ’:-’
operator in the clause. The reason is the obvious difference between Prolog
procedures and built-in predicates, more precisely those that are not written in
Prolog and that do not backtrack. If the arguments to those predicates are
passed in such a way that the arguments of the calling procedure are not
destroyed, we can postpone the choice point creation and changing the state to
deep until they are successfully executed.

Example :
?- mode partition(+4, +, -, -).
partition([X|L], Y, [X|L1], L2) :-
X =<Y,
L

partition(L, Y, L1, L2).
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5.4

5.5

partition([X|L], Y, L1, [X|L2]) :-
partition(L, Y, L1, L2).

partition([], -, [], [])-

This is a part of the quicksort program, the procedure partition/3 is
deterministic. Indexing on the first argument will filter out the last
clause; if we identify the clause neck with the end of the head, we
will have to create the choice point when finishing the unification
of the first clause (which always succeeds). However, the arithmetic
test does not change any of the state registers, so the optimal action
would be to perform a shallow backtrack if it fails which would
prevent the creation of the choice point.

In this way, the clause neck will correspond to the position of a guard in a
guarded clause.

Cut Implementation

The D register can be used to implement the cut in an elegant way. The
problem of cut implementation in WAM is that when entering the clause that
contains a cut, it is not possible to decide whether the preceding choice point
belongs to the current procedure or to a former one. The first attempt to
implement it in ECRC Prolog was using a register which would be set to the
current choice point by each call and execute instruction ([3], similarly in [S]).
This approach penalizes each procedure call no matter whether the called
procedure contains some cuts or not.

The D register, on the other hand, gives the possibility to find out whether the
current procedure has a choice point or not even after entering the clause. The
compiler can therefore generate a special neck instruction for clauses
containing a cut in the body. This instruction stores either B or the previous
frame address into a permanent variable depending on the value of D. Clauses
without an explicit cut are no longer affected (supporting the opinion that the
cut should not act in a metacall [8])). When the cut occurs in the neck, which is
a very common case, the execution is extremely efficient.

Coroutining

The implementation of coroutining controlled by wait declarations of
MU-Prolog [9] requires undoing the unification in case a call delays [6]. The
proposed design can fulfill this requirement in an elegant way without
additional constraints.
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Conclusion

We have presented a modified indexing instruction set and memory
organization for WAM which takes full advantage of shallow backtracking. The
suggested system favors shallow backtracking in Prolog procedures up to a
65% increase in speed while keeping the efficiency for other procedures.

The modifications include avoiding to create and access choice points if not
necessary and postponing the allocation of an environment until the head
unification is known to succeed. Moreover they yield a convincing reason to
separate the environment stack and the choice point stack and allow an
advantageous implementation of cut. If needed, the conservative indexing
instructions slightly changed may coexist with the new ones to avoid
unnecessary tests or allow register optimizations for procedures where it is
desirable.
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