Event Handling in Prolog

Micha Meier ECRC-ECRC-95-09



technical report ECRC-ECRC-95-09

Event Handling in Prolog

Micha Meier

{999 R2IN ;9”3 KR

é@i

s000 *o00®

% %00e?

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

TIx. 52 69 10



(©OEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more

information

please

contact : michaecrc.de

II



Abstract

This paper puts forward the argument for a general and flexible event handling
mechanism in Prolog. This will make it more user-friendly, more powerful and
more versatile for use in various real-life application domains. We present a
scheme of handling synchronous and asynchronous events in Prolog, justify
why such a scheme should be incorporated in Prolog, present its advantages
and describe how it can be implemented. The major part of the presented
scheme has been implemented and verified in the ECRC SEPIA system [8].

111



Introduction

An event is a special condition which can arise during the normal execution of
a program and reports that a nonstandard situation has occurred. It can be
caused either by the program itself (for example when the program accesses
data of incorrect type), or by some external activity which is independent on
the program, like a signal from the user or from another process.

The most common example of an event is an error. An error is usually signaled
by the system to warn the user that the program could not be executed for
some reason. Errors normally occur only in built-in predicates because user
predicates are defined using clauses and literals and so any failure or message
occurs there explicitly.

Most of the current Prolog systems have either no ability to handle events at all
or only a restricted one, which is probably caused by the features that
distinguish Prolog from conventional languages: Prolog is a declarative
language based on the resolution principle, the execution of a Prolog
procedure is a sequence of logical inferences, its results can be described in
terms of success, substitution and failure. These features seem to make any sort
of event handling obsolete, since every exceptional situation can be handled
by failure.

But there are also good reasons to have event handling in Prolog:

(O If a Prolog program has to respond to external events, it has to provide
some event handling. Similarly, if a program acts as a metaprogram that
controls the execution of another program, it must be able to handle
events in the object program.

(O Application programs which have their own user interface also need to
maintain control even when exceptional situations occur. Without a
dedicated error handling concept such programs have to check necessary
preconditions for each built-in predicate, otherwise the program might
abort unexpectedly.

With an event handling scheme exceptional situations are handled by
appropriate event handlers and so the normal execution is cleanly
separated from exceptional situations.

(O In a Prolog system that signals every unusual situation, e.g. a wrong
argument type or a call of an undefined procedure, it is very easy to
detect trivial misspellings and similar errors, but in a system that simply
fails it is much more tedious to find the reason why a program failed.



(O When a built-in predicate is called with an argument of an incorrect type,
for example ?- X is 1 4+ a, it can simply fail, however when the
arguments are not sufficiently instantiated, like in ?- X is 1 + Y, a
correct action would be to generate all possible substitutions that satisfy
this goal. In the case of arithmetic this has no practical sense and this is
why some Prolog systems handle such calls with failure. Unfortunately
the logical basis and completeness is then lost.

(O Treating some exceptional cases using failure may seem very strange
taken into account the practice common in other programming languages,
for instance division by zero is traditionally treated as an execution error.

(O In some cases is it doubtful that an exceptional situation should be
treated by failure. For example, arithmetic overflow is at most a failure of
the particular Prolog implementation to represent the result of an
arithmetic operation (more on this topic see in [9]).

(O Prolog is interactive, the user can type goals directly to the interpreting
loop. If the goal is a built-in predicate and it just fails, it might be difficult
for the user to find out the reason for the failure. A classical example is a
syntax error due to incorrect input to the predicate read /1. No Prolog
system just fails if there is a syntax error in the user input, although there
are some that silently fail or even succeed when the syntax error occurs
in a consulted file!

(O All exceptional situations should be handled in a uniform way. Since (to
the knowledge of the author) no Prolog system that would handle all
possible errors just by failure exists, it is clearly more consistent to handle
all errors as events using an appropriate event handling scheme. As there
may be different requirements for the actual event processing, the event
concept should be flexible enough to allow redefinition of the default
handling.

We have listed some reasons for the introduction of event handling in Prolog
systems. Another question is, how to handle an error when it occurs. The
standard action is to print a message and then abort execution or switch on the
debugger. What can the user do to change this default behavior, or even to
correct the error condition? This, together with handling of other event types, is
discussed in the rest of this paper. We first present a short classification of
event types, then describe how they should be handled by the Prolog system
and discuss the implementation of the presented design.



2 Event Types

There are two basic event types:

(O Synchronous events, called exceptions. They occur as a result of the
program’s activity, they are directly related to the operation that the
program is executing. We classify as an exception a situation that either
cannot be handled by the program correctly, or it could be handled in
several possible ways. Examples include arithmetic overflow, calling an
undefined procedure, reading past the end of file, accessing a
nonexistent file etc. The term exceptions therefore includes errors but
also other events that might be handled in several different ways,
depending on the context and maybe on personal taste. Introducing
exceptions into Prolog contributes to its flexibility because the processing
of an exception can be defined by the user.

Besides exceptions there are other possible synchronous event types, not
necessarily available on all Prolog systems, e.g. resuming a suspended
goal in systems which support delayed goals.

(O Asynchronous events, called interrupts. They result from some
external activity, they are triggered by some action outside the program
and possibly even outside the computer. For example, when the user
types Ctrl-C, an interrupt is sent to the attached process no matter what it
is currently executing.

Apart from implementation difference between synchronous and asynchronous
events, there is also a conceptual difference between the two: a synchronous
event results from the activity of the program and so it can be viewed as a
logical consequence of the program. Asynchronous events are triggered by an
external activity and so they are logically independent on the running program.

Sometimes an event is caused by the program itself but is signaled
asynchronously, for example some incorrect arithmetic operations are caught
by the hardware and an interrupt is sent to the program, another example is
when the program is asking for some resource and it cannot obtain it from the
operating system. These events will not be handled in this paper, because they
are machine dependent and also because normally it is possible to avoid them
by doing appropriate tests.



3 Event Handling

The goals of a generalized event handling system are:

(O events are processed by event handlers, which are arbitrary procedures
definable by the user,

(O interrupts are handled immediately, in an asynchronous way, so that a
fast response is guaranteed,

(O event handling is efficient and flexible.

When an event occurs, the appropriate event handler is invoked. Due to the
difference between the two main event types, there are differences in how the
event handler influences the main execution:

(O For synchronous events, the event handler replaces the goal which has
initiated the event. This is logically equivalent to renaming the predicate
in which the error occurred and adding a clause

beylinespred(A, ...) :- (error_condition(A, ...,
Errorld) — > error_handler(Errorld, ...)
; original_pred(A, ...) ).

If an error condition occurs, the predicate call succeeds or fails
depending on the success or failure of the event handler. This means that
after a synchronous event the execution never returns to the predicate
that has caused the event. Apart from logical clarity, this approach has
also advantages in implementation.

(O Asynchronous events are independent on the application program and
therefore the execution of the event handler is transparent to it. Unless
the event handler aborts or has other side effects, the main execution is
not influenced by it. There is no logical connection between application
execution and the event handler execution and so they run as two
independent programs.

If an interaction between the interrupt handler and the interrupted
program is required, e.g. setting a semaphore, the event handler can of
course do anything a normal procedure can do, like assert a clause, call
an external predicate which sets a flag etc.



3.1

3.2

Handler Invocation

In our scheme a separate handler is associated with each event. When the
event occurs, the appropriate handler is invoked. To be able to interact with
the executing program, the handler needs some arguments which must be
provided by the system on the handler invocation:

(O The event identification. It is necessary for the case that one handler is
used to handle several event types.

(O The goal in which the event occurred. This argument is passed only to
synchronous events, because interrupts have no relation to the goal
which has been interrupted.

It can be used either to make a selective handling of the same event for
different predicates, e.g. the event type_error may fail for the predicate
functor/3 and abort for all others. The second purpose of the goal
argument is to be able to access this goal, to examine or print its

arguments or to re-call it when the reason for the event has been fixed in
the handler.

(O An optional third argument for exceptions is the handler context in which
the error occurred, to be used in the propagate_event /3 predicate, see
section 3.2. It is a list of active local handlers.

The event invocation is of course different for synchronous and asynchronous
events: the synchronous events cause abandoning of the predicate where they
occurred. Then the execution continues normally to the event handler thus
replacing the abandoned goal by the event handler call. The asynchronous
events cause the current predicate to be interrupted in whatever state the
execution was, and the handler is immediately invoked. This requires that the
system saves all the data that could be overwritten by the handler execution
and when the handler finishes, the interrupted predicate can be continued as if
nothing had happened.

Handler Specification

There are two types of events handlers, local and global. A local handler is valid
only during the execution of a specified goal, whereas global handlers are
always active and they are invoked if no local handler has been set.

The primitives to set the event handlers are as follows:

(O The global handler is set using the predicate



set_event_handler(EventId, Proc)

which has the effect that now each occurrence of the event Eventld will
invoke the handler Proc unless a local handler has been set. This
handler setting is global since it concerns all events of this type no matter
in which predicate they occur, and type-specific since other events are not
influenced by it.

(O A dual concept is the predicate

trap(Goal, Handler)

which calls the Goal and all events that occur during its execution and
the execution of its children (except for new trap/2 calls) are processed
by the handler Handler. This handler setting is local since it concerns
only events that occur during the execution of one predicate, and general
since any event is processed by the specified handler. A handler specified
by trap/2 is valid until trap/2 exits or fails or a new trap/2 is called.

Our event handling concept is based on these two predicates which give the
user the ability to perform almost any desired action in specific cases. The
predicate set_event_handler/2 can be used to change the behavior of the
system whenever the specified event occurs, moreover the action can be
restricted only to specified predicates using the goal argument of the handlers.
The predicate trap/2 is used to trap all events that occur in the specified
predicate call, which is necessary e.g. when the program wants to retain
control even if an error occurs or when it has to undo some side effects of the
predicate before it is aborted. The two predicates can be combined, which is
useful e.g. when only some of all possible events should be handled locally,
for others the default handler is to be taken.

The handler invoked by trap/2 may decide not to handle the exception by
itself and propagate it instead to the parent’s handler, which can be either a
handler specified by an ancestor trap/2 call or the global handler. The
predicate propagate_event(EventId, Goal, Context) invokes the previous
handler specified by the Context, which is an optional third argument of the
events handlers. If, for instance, any type or range errors that occur in the
predicate p/1 should cause failure, and all other events are to be handled by
the parent handlers, the program can call ?- trap(p(X), handler/3) and the
handler is defined as

beylineshandler(Eventld, Goal, Context) :- EventId
\= type_error, Eventld \= range_error,
propagate_event(Eventld, Goal, Context).

The predicate propagate_event /3 issues the specified event and uses the
handler specified by Context to handle it. Thus the event is propagated to the
parent handler if it is different from the two specified errors, otherwise the
handler fails and so does the call to p/1.



3.3

3.4

Handler Execution

Once the event handler has been invoked, it is executed like a normal Prolog
procedure. As we mentioned above, the processing of interrupts is transparent
to the normal execution which cannot be influenced by it, except if the
interrupt handler aborts or has other side effects. This is also a consequence of
the fact that an interrupt handler can have only one argument which is the
event identification and so it cannot access any variables from the interrupted
predicate. An interrupt handler can of course be interrupted by another
interrupt handler, provided that the interrupts were not disabled using the
predicate disable_interrupts/O0.

The handler of a synchronous event has many possibilities to influence the
normal execution, it can fail, abort, call any other predicate including the one
in which the event occurred, it can bind its variables, create new compound
terms on the global stack and it can also be nondeterministic. Nondeterministic
handlers are used when a nondeterministic predicate issues an error and the
error handler tries to correct the error and re-call the predicate.

Although the event handler can always succeed, the system might not always
allow it, for example when in a modular system the program tries to access
some private data, there might be a predicate that checks the permission and
causes an event if the user has none. Then, by a simple redefinition of the
handler the program could bypass this security check. Such cases can be
handled locally, for example the success of the event handler can be ignored
by forcing a failure:

beylinesaccess_check(Data) :- (user_access(Data) ->
true ; event(no_access, access_check(Data)),
fail % force failure if the handler succeeds

If the handler writes some message describing the event to notify the user, this
message should be directed to a dedicated stream so that all handler messages
can be isolated and also suppressed if needed.

Comparison with Other Schemes

Since the recent ISO proposal [4] provides error handling, we would like to
compare it with our scheme, not without hope that the proposed standard
could take at least some of our ideas on the subject into account. The key
concept in the ISO error handling are the blocks. The predicates block /3 and
exit_block/1, which are the Prolog counterparts of LISP’s catch & throw
mechanism, provide the possibility to abandon the execution of a predicate
before it actually succeeds or fails, and to call another procedure instead. The
predicate block(Goal, Tag, Recovery) calls the Goal and succeeds or fails if



Gloal succeeds or fails respectively. If during the execution of Goal
exit_block(Tag) is called such that its Tag unifies with a block/3 tag, all
active predicates up to this block/3 call are abandoned, their frames popped,
their bindings undone and finally the Recovery procedure is called. This
predicate is also used in our scheme, but not directly for event handling but
rather to abort the execution in an event handler by executing
exit_block(abort).

The proposed way of using this mechanism in ISO is as follows:

beylinesmain :- repeat, block(run, Fault,
recover(Fault)), fail.

and it is assured that an error issues exit_block(ErrorId). Apart from this,
ISO proposes a global error handler which can be set with

write_prolog_flag(error, Handler)

and then Handler (a callable term) is called in the case of an error. The basic
features are similar to our scheme, namely one global and one local handling
mechanism, but besides this there are some conceptual differences:

1. The ISO proposal treats only errors, not interrupts, and the number of
different error types is low. Our scheme supposes that the number of
possible event types can be large.

2. The local handling scheme, using block /3, requires that the error
executes an exit_block /1. Then, however, it is not possible to restart the
erroneous goal since its ancestors are popped during the block exit and
their bindings undone. To prevent this, it is necessary to place a block
around any call that may issue an error which is a rather awkward
method. In our scheme the trap/2 predicate defines a handler which
replaces only the erroneous goal.

The block/3 predicate cuts all the alternatives of the called Goal and so
this mechanism cannot be used to restart nondeterministic predicates.

3. The ISO handlers do not know in which predicate the error occurred.
Consequently, the goal cannot be corrected and restarted in the handler,
nor can the error be sufficiently described in a warning message, and so
the global error handling is overly restrictive. If the erroneous goal is
passed as argument of exit_block/1, i.e. the Tag is a compound term, a
complicated mechanism is needed to implement the block exit.

ISO and some other Prolog systems offer error handling schemes where one
defined procedure is called whenever any error occurs. Our scheme provides



both the possibility to call a specific global handler for each event type and to
call a local event handler common for all errors and so it is more general. In
addition, it is necessary to take into account the following:

(O In our scheme, if the Prolog session is started with
trap(toplevel loop, handler/3),

there is only one handler which is invoked for all events like in some
other systems. This has the advantage that it is possible to define event
handling by asserting new clauses of handler/3. For example, if we wish
to treat all events that occur in functor/3 by failure, we can achieve it by

?- asserta((handler(_, functor(_, _, _), _) :- !, fail)).

(O This approach slows down the selection of the correct handler clause:
the procedures modifyable with assert/1 are usually interpreted even in
compiler-based systems. Moreover, they are either not indexed at all, or
only on one argument and so the time required to select the matching
clause may become proportional to the number of clauses in the handler.

Event handling is related to writing logic operating systems [3, 12, 5]. For
example, the exception handling as described in [5] can be implemented using
our primitives. The difference is that [5] makes a clear distinction between
metaprograms and object programs, whereas our scheme, being at a lower
conceptional level, does not make this explicit difference, it is not required
(however possible) that the event handlers are metaprograms.



4 Implementation

In this section we describe some important details that allow to implement the
event handling concept in a WAM [11] based system.

4.1 Accessing the Handlers

The access is direct, similar to vectored interrupts on some CPU’s: the system
maintains a table of event handlers which contains the address of the
corresponding handler for each possible event. Consequently, the invocation is
very fast, because each event is identified by an identification number which
corresponds to the offset in the handler table where the address of its event
handler is stored. Since the interrupts have to be processed differently to other
events and their number is constant (usually it is hardware-dependent, e.g. the
number of signals), the best approach is to assign the lowest offsets to the
interrupts and the higher ones to synchronous events. Then it is fairly easy to
add new, possibly user-definable synchronous events and also to distinguish
error numbers from the interrupt ones. The entries in the table are updated
with the predicate set_event_handler/2.

In addition to the handlers above, there is one local handler which is the most
recent one set by the trap/2 predicate call. Since the calls to trap/2 can be
nested, the previous handlers must be remembered in a list. Moreover, if the
trapped goal is nondeterministic, a previous handler may become active again
when the system backtracks into the trapped goal. The local handlers can be
easily managed at the Prolog level using two built-in predicates
set_local_handler/1 and get_local_handler/1 that return or set the local
handler list:

beylinestrap(Goal, Handler) :-
get_local_handler(OldHandlerList),

set_local_handler([Handler|OldHandlerList]), (
call(Goal), trap_reset(Handler, OldHandlerList)
; set_local_handler(OldHandlerList) ).

trap_reset(_, OldHandlerList) :-
set_local_handler(OldHandlerList). trap_reset(Handler,
OldHandlerList) :-
set_local_handler([Handler|OldHandlerList]), fail.

The auxiliary procedure trap_reset /2 sets the previous handler whenever the
trapped goal succeeds. If the execution later fails and it backtracks into the

10



4.2

4.3

body of trap/2, it adds the correct handler at the beginning of the list and
propagates the failure to the called goal. When the trapped goal fails, the
previous handler is reset in the body of trap/2.

Invocation

When an event occurs, the system has to carry out the following actions:

(O It must find the appropriate event handler. If a local handler exists, it is
selected, otherwise the handler is selected from the system handler table.

(O Tt must save all data that could be overwritten by the execution of the
handler.

(O The handler arguments have to be fetched. The event identification is
supplied by the event itself, the culprit goal must be provided by the
system. If the predicate in which the event occurred is written in Prolog,
the event can be invoked directly using a predicate event(Eventld,
Goal) and the Goal is supplied literally. If the predicate is written in the
implementation language, its arguments are available in the argument
registers and so only the functor must be provided, and this can be done
through a pointer from the WAM code.

The event identification is a number, an offset in the system event handler
table. At the Prolog level, the event identification is an atom which is a
shorthand for the event name, e.g. overflow or type_error. This makes it
possible to use events easily at the Prolog level and also to add new events
without renumbering the old ones or having similar events with totally different
numbers.

Interrupts

Interrupts have to be processed asynchronously so that an immediate response
is guaranteed, otherwise they could not be used for real-life applications. Some
Prolog systems provide synchronous interrupt handling, by setting a flag when
the user presses the break key. Then, in some well-defined check points the
flag is tested and if set, the break handler is invoked. There are several reasons
why such polling is not sufficient:

(O TIf the flag is tested too often, the execution without interrupts is slowed
down. If it is tested less frequently, e.g. on each procedure call, the
response may be too slow, because a complex unification or shallow
backtracking over several clauses of the called predicate may cause long
pauses between two procedure calls.

11



(O Most of the current systems allow connection of external procedures to
the Prolog system. Such procedures are e.g. written in C and while they
are executed, no interrupts are processed. The external procedure can in
fact be an entire application program of which the Prolog system is only
a small part.

(O When the system is waiting for some user action, e.g. input from the
keyboard, no interrupts can be processed because the Prolog execution is
blocked. This is particularly painful when a window interface is
connected to Prolog. Since the mouse is driven using interrupts, Prolog
must execute a dummy loop while waiting for a mouse event and the
user cannot enter input from the keyboard.

Asynchronous interrupt handling requires in fact only three basic features to be
present in the Prolog system, however they have many further implications so
that the whole system must be designed properly with respect to the interrupt
handling:

1. At any time the system must be able to interrupt the current execution,
save enough data to resume it afterwards, and invoke the interrupt
handling procedure. This implies that the system knows which data must
be saved and that it does not save too much of, otherwise the reponse
time would increase.

2. Global storage areas can be used only to store data that is globally valid.
Such data include e.g. the symbol table, code area, global flags etc.
When this data is modified, the asynchronous events must be delayed,
otherwise the event handler could be executed in an inconsistent state.

3. Important data must be stored in a way that prevents the interrupt
handlers from overwriting it. For example, no important data may be
stored above the stack top and it must be possible to find the stack top
easily.

The first point concerns particularly the WAM. The Warren Machine uses an
indefinite number of argument and temporary registers (they are actually two
names for one abstract register set). When an interrupt occurs, it is usually not
known how many abstract registers store meaningful information.

The solution we suggest and which we have implemented, is to physically
separate the argument and temporary registers and handle them differently.
The abstract registers which are assigned to hardware registers have to be
saved on each interrupt, this is often done by the operating system. The
remaining abstract temporary registers are allocated on the stack, and therefore
they need not be saved on interrupts; this is also the traditional way to cope
with similar problems.

12



4.4

The argument registers could be handled similarly, i.e. they can be located on
the stack instead of using some fixed memory area. As this method requires
rather severe changes in the WAM and its compiler, a simpler one can be used,
namely invalidating the first unused argument register by storing a special value
into it at some defined execution points, e.g. when creating a choice point. If
all arguments are initialized with the invalid value, it is guaranteed that when
all arguments up to the first invalid one are saved on an interrupt, no data will
be lost. Prolog procedures have usually a small arity [7] which justifies such an
approach'.

Another problem in the WAM concerns the management of the local stack:
there is no dedicated stack top pointer, the stack top is always computed
dynamically from the current frame pointer and the current size of the topmost
frame which is accessed as a constant in the code area. This approach makes it
possible to dynamically change the size of the topmost frame (environment
trimming), but it makes it difficult to interrupt the current execution and to use
the local stack to execute the interrupt handler, since the size of the topmost
frame is not known.

Fortunately, introducing a local stack top pointer solves the whole problem.
This implies that the allocate instruction will have one parameter which is the
environment size. The call instruction as well as allocate and fail set the stack
top pointer appropriately. When an interrupt occurs, the stack top is known
and so the local stack can be immediately used.

Before processing the interrupt some data must be saved by the system. It has
already been argued that splitting the local stack has many advantages [6], and
for interrupt handling this is also extremely convenient. The local stack is split
into the environment stack, which contains only the environments, and the
control stack, which contains choice points and other frames, particularly the
interrupt frames.

Exceptions

Some Prolog systems expand certain built-in predicates in-line or they use some
compiler optimizations that take into account the properties of the built-in
predicates. If an exception occurs in such a predicate, the system may have to
behave much like after an interrupt. It has to save all argument registers and
flags which are supposed to survive the call to the built-in predicate. Moreover,
if the compiler uses the fact that the built-in predicate is deterministic, the error
handler (which effectively replaces the built-in in case of an event) must not be
nondeterministic and so any choice points it may have left must be removed.

LOf course in the worst case the system saves a number of registers which is the highest arity
present in the whole program, however this is balanced by a very fast execution in the average

case because no additional instructions are executed.

13



4.5 Garbage Collection

In a system that supports both asynchronous event handling and garbage
collection it is necessary to design carefully the interaction between the two.

The first question is whether the garbage collection can be interrupted by an
asynchronous event and if so, how is the handler executed. During the
garbage collection the entire collected memory area is not in a consistent state
and it must not be accessed. However, since our interrupt handlers do not
interact with the interrupted predicates and they do not access the stacks being
collected, they can be executed without any problem.

The other question, namely whether an interrupt handler can start the garbage
collection, is more complex. There are some points to be mentioned:

(O The response to an interrupt must be immediate and this makes the
execution of the garbage collector inside the interrupt handler highly
undesirable.

(O Since after an interrupt all hardware registers are saved and generally
more argument registers can be saved than necessary, the garbage
collector may have to follow some saved pointers that are no longer valid
which will reduce the amount of collected garbage.

(O Up to the first call instruction, the environment of a clause may contain
uninitialized variables. If an interrupt comes, this may also confuse the
garbage collector.

(O The current incremental garbage collection schemes [2, 10] enable the
garbage collection to be executed frequently enough to make sure that
there will be always a certain amount of space available. This means that
in the normal case the interrupt handler should not cause memory
overflow, unless it requires more space than available even after garbage
collection.

Therefore, if the heap overflows during the execution of an interrupt handler,
the garbage collector should mark and collect only the area that has been used
in the interrupt handler itself. This is possible since there are no references to
or from the space used by the normal execution. If there is not enough
garbage to collect, the top part of the heap can be expanded by allocating
enough space, copying the data and updating pointers. The space occupied by
the execution of the interrupt handler is likely to be much smaller than the
whole occupied space and so the overhead may be acceptable.

14



5

5.1

Summary

In this paper we have described the design of an event handling scheme in
Prolog. Since it differs from schemes available in other Prolog systems in its
generality, we want to justify that there is a need for such a general scheme.
First we want to mention that the implementation of the whole design is not
very difficult, most of it has been implemented in the SEPIA system [8] and has
proven to be powerful and efficient enough for real life applications.

Exceptions

In our scheme, the user can define the handler for any error which can occur
in the system. Sometimes it is required that the errors output a warning
message, sometimes they should abort, sometimes only silently fail but they
can also request user interaction and continue. All this can be very easily
achieved, just by defining an appropriate handler for the required error. Our
scheme allows to define global handlers which are type-specific and local
handlers which apply to all event types, as well as a combination of the two.

There is also a number of situations in which it is difficult to state how the
system should behave. There may be several possibilities, each of them
applicable to a particular situation. An example is a call to an undefined
predicate. From the logical point of view, the call cannot be resolved and so it
simply fails. For a programmer it is helpful if a message is printed since
probably some predicate name was misspelled. For a system developer the
desired action may be to look for a file where this predicate is defined, load it
and continue the execution.

In such cases, our design has the ability to define exception handlers for each
of the above actions. For example, calling

set_event_handler(undef_call, fail/0)
will cause the undefined predicate to fail,
set_event_handler(undef_call, error_handler/2)

will print a warning about the undefined call and abort. A procedure that is
able to find the definition of a specified predicate could be written as

15



5.2

beylinesundef_handler(_, Goal) :-
(find_definition(Goal) -> call(Goal) ;
error_handler(undef_call, Goal) ).

If the definition is found, the predicate is restarted, otherwise a default handler
is invoked which prints the message and aborts.

Another example of exception usage is the definition of evaluable functors. In
the ISO proposal [4] it is possible to call user predicates in an arithmetic
expression. Such cases are easily handled by our event mechanism, which has
the advantage that the arithmetic can still be in-line compiled.

The more exception types that are available within a Prolog system, the more
flexible the system is and it can in fact be customized to particular needs. This
ability was much used in the SEPIA system, since it is a basis system for
integration of Prolog extensions, and very often the extensions have their own
requirements on the behavior of the system in nonstandard cases. For
example, if a call is not sufficiently instantiated, the handler in SEPIA can
suspend it and the call is woken when one of its arguments becomes more
instantiated. When no suspension is used, such calls issue an instantiation fault.

Interrupts

The proposed scheme differs from other current Prolog systems in that it is
able to handle any external interrupts, not just a break key from the user, the
handling is performed in real time, with an immediate response and the action
is user-definable for all interrupts. This scheme has been used in SEPIA to
implement an interface to the PCE graphic system [1]. PCE is running as a
separate process which communicates with Prolog using a pipe. If the Prolog
system is not able to process interrupts, it has to poll this interface in a busy
loop. In SEPIA, the interface is exactly the same as it would be for a normal
Prolog system, the only difference is that the pipe that connects it to PCE has
been set up to send a signal if it receives some data. The corresponding event
handler then reads the data from the pipe, executes the required action and
then returns to the normal execution. This means that Prolog can run as usual,
either execute a program or communicate with the user via the keyboard, but it
can at the same time respond to the mouse-driven events.

Another example is writing a clock in Prolog. SEPIA is set up to receive a
signal from the operating system every second. The interrupt handler updates
the clock on the screen, exits and the normal execution continues, no matter
what it is.

The presented interrupt handling scheme has all the properties which are
necessary for real-time applications, and the SEPIA system is thus a tool for
testing how Prolog can be exploited for real time tasks.

16



Acknowledgements

Pierre Dufresne has implemented the event handling scheme in SEPIA and
solved some problems of interrupt handling. Joachim Schimpf has cleaned it
and thoroughly tested to make sure that an interrupt can really come at any
time and also discussed many times about the event handling. A referee of a
previous version of this paper pointed out problems with the garbage
collection. David Miller did his best to improve my bad english style.

17



Bibliography

[1] A. Anjewierden. Pce-Prolog 1.0 reference manual. Technical report,
University of Amsterdam, October 1986. ESPRIT Project 1098.

[2] Karen Appleby, Mats Carlsson, Seif Haridi, and Dan Sahlin. Garbage
collection for Prolog based on WAM. Communications of the ACM,
31(6):719-741, June 1988.

[3] Keith Clark and Steve Gregory. Notes on systems programming in Prolog.
In Proceedings of the International Conference on Fifth Generation
Computer Systems, pages 299-306. ICOT, 1984.

[4] P. Deransart, P. Folkjaer, J-F. Pique, and R. S. Scowen. Prolog draft for
working draft 1.0. Technical Report N28, International Organization for
Standardization, February 1989.

[5] Tan Foster. Logic operating systems: Design issues. In Proceedings of the
4th ICLP, pages 910-926, Melbourne, May 1987.

[6] Micha Meier. Shallow backtracking in Prolog programs. Technical Report
TR-LP, ECRC, February 1987.

[7] Micha Meier. Analysis of Prolog procedures for indexing purposes. In
ICOT, editor, Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 800-807, Tokyo, November 1988.

[8] Micha Meier, Abderrahmane Aggoun, David Chan, Pierre Dufresne,
Reinhard Enders, Dominique Henry de Villeneuve, Alexander Herold,
Philip Kay, Bruno Perez, Emmanuel van Rossum, and Joachim Schimpf.
SEPIA - an extendible Prolog system. In Proceedings of the 11th World
Computer Congress IFIP’89, pages 1127-1132, San Francisco, August 1989.

[9] R. A. O’Keefe. On standardising Prolog. DAI Working Paper 196,
Department of Artifical Intelligence, University of Edinburgh, October 1984.

[10] Hervé Touati and Toshiyuki Hama. A light-weight Prolog garbage collector.
In ICOT, editor, Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 922-930, Tokyo, November 1988.

[11] David H. D. Warren. An abstract Prolog instruction set. Technical Note
309, SRI, October 1983.

[12] Toshio Yokoi, Shunichi Uchida, and ICOT Third Laboratory. Sequential
inference machine: Sim. its programming and operating system. In ICOT,
editor, Proceedings of the International Conference on Fifth Generation
Computer Systems 1984, pages 70-81, Tokyo, 1984.

18



