Control in ECL:PS:

Micha Meier
Joachim Schimpf ECRC-ECRC-95-07

technical report ECRC-ECRC-95-07

Control in ECL:PS:

Micha Meier
Joachim Schimpf

LTI
*
2000 *o0e’

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

TIx. 52 69 10

(©OEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more

information

please

contact : michaecrc.de, joachim@ecrc.de

II

Abstract

We present the design and implementation of the control primitives in the
ECL'PS® system. The goal of its architecture is to support the development and
use of LP extensions exploiting extended control mechanisms, in particular
data-driven computation. The resulting scheme is flexible, it allows us to define
new extensions at a conceptually high level and to smoothly integrate different
extensions in one system. ECL‘PS® is thus a generic development system
especially for the CLP domain.

11

Introduction

Since the very beginning of the Prolog era, various systems appeared which
have tried to make the control of literal selection more flexible. The reasons for
this were manifold — to make the LP semantics more declarative, to avoid
infinite loops or unnecessary choices, to make it behave like a concurrent
language etc. etc. The first attempts to improve the Prolog control were
inspired on one hand by the obvious yet surprising inability of normal Prolog
to avoid unnecessary execution, on the other hand by the clear potential to
solve various problems in an elegant and declarative way. A valuable summary
of early attempts on improving Prolog control has been done by Naish [23].
Such extended control was first provided in interpreters like Prolog-1I [6] or
MU-Prolog [22] and then WAM-compilers like SICStus [4] or ECRC-Prolog [10].
These systems were able to suspend the execution of certain Prolog subgoals
and resume them later, when they became sufficiently instantiated. It was
shown that this functionality could provide calls which behaved like coroutines
[23] and thus it is often, not quite correctly, called coroutining.

With the emergence of constraint logic programming, many researchers in the
Prolog field realised that Prolog with more flexible control rules could provide
an ideal vehicle to support constraint handling. In contrast to systems that are
based on a stand-alone monolithic constraint solver, a Prolog system with
enhanced control can implement constraints as autonomous agents and
provide a simple yet elegant and flexible data-driven computation. Today,
researching, implementing and using constraints solvers has become one of the
most promising parts of the LP field. We are tackling larger and more complex
problems and they require not only writing CLP programs but also
experimenting with new constraint types, new solvers, various control
approaches and also combinations of different methods.

The ECL'PS® system was designed to meet these requirements. Its main goals
are:

(O To support data-driven computation with some predicates acting like
autonomous agents, waiting for input and producing output for other
agents.

(O To support prototyping, development and use of various system
extensions that use different control schemes and to ensure that various
extensions can work together in one system.

Previous ECRC systems have used special data types, like suspending variables
[19], domain variables [1] or consecutively updatable fields [26) to implement

advanced control structures, used primarily for CLP implementations. These
data structures and their processing were implemented at low level, with no or
only limited Prolog access.

Our experience from these systems has led us to a scheme which uses similar
basic building blocks, but at a different level. We came to the conclusion that
the underlying data structures must be flexible and operations on them
available from Prolog, rather than hardcoded inside the system. On the other
hand, the control of the data-driven computation must be extensible, allowing
different classes of constraint agents to be driven by different kinds of data.
The resulting architecture, presented in this paper, represents a true ’glass box’
architecture [11].

Instead of writing declarations or goal sequences that specify when a goal
should or should not be delayed, we provide a lower-level interface which
allows to meta-program the control issues in the language itself. An extension
defines various suspension lists which are woken when a particular condition is
satisfied. These suspension lists as well as other data can be associated with
selected variables as their attributes. All important built-in operations, like e.g.
the unification, can trigger the execution of user-defined handlers which in turn
can process the attribute data and wake the concerned suspensions. In this
way, creation of suspensions is separated from their insertion into the
suspension lists and their waking is handled explicitly.

In this way, the presented design offers a low-level language which can be
used either to directly implement various extensions based on enhanced
control, or as a sort of "assembly language’ for compilation of higher-level
languages and primitives. Both approaches have already been successfully
used to produce a number of CLP solvers available as ECL'PS® libraries.

In the rest of this paper, we first describe the new data types suspension and
attributed variable, then we discuss the impact of multiple extensions in one
system, the environment support and performance. Finally, we summarise the
contributions of this scheme and describe some of the further possible work.

2 Suspensions

2.1

A suspension is a special data type which represents a suspended goal. It can
also be interpreted as an autonomous agent which is waiting for input and
which produces output for other agents.

Structure

A suspension' is an opaque data structure which is implemented using a new
tag®. It consists of two parts, the goal part and the control information. The
goal part contains the goal structure and its module. It is used for a quick
transformation of a suspension into an ordinary Prolog structure, in case a
(meta)program wants to manipulate the suspensions directly. The goal
arguments are also used when the suspension is woken. The control
information contains the following items:

(O Code address to access the code of the goal.

(O The woken flag marks if the suspension has already been executed or not.
This is necessary for disjunctive delaying: if a goal p(X, Y) has to delay
until X or Y is instantiated, the goal will be woken when the first
variable is instantiated. Later, when the other variable becomes
instantiated, the goal should not be executed again and this is marked by
setting the woken flag.

(O Priority is the waking priority of the suspension used by the waking
scheduler (see 2.3).

(O The debugger information stores the invocation number of the suspension
so that the user can examine it and set conditional spy points on the
suspension.

(O The link field links all suspensions together. This link is crucial for a fast
retrieval of all suspensions which have not yet been woken, e.g. in local
computation predicates (guards or metaprograms) or when displaying
floundered goals in the top-level loop.

INote that our notion of suspenston differs from [4], it represents only the suspended goal
and not its connection to variables.

2ECL'PS® uses 8 bits for the tag and so it is relatively easy to add new ones.

2.2

2.3

Creation and Access

A suspension can be created and decomposed using special built-in predicates,
it is not possible to access its components using normal Prolog unification. If
necessary, it is also possible to define a particular syntax using the ECL‘PS®
read macros so that a suspension can occur directly in the program source [8].

Waking and Scheduling

The ECL'PS® scheme for waking suspensions differs from most other
coroutining Prolog systems, because the order of executing woken suspensions
depends on their priorities. Every goal which is executed has an associated
priority and the system keeps the priority of the current goal in a special
priority register. Each suspension also has its associated priority which decides,
when it can be executed and which other woken goals can interrupt it.
Normal, non-delayed goals (as well as subgoals of woken goals) simply inherit
their priority from their parent. When suspensions are executed, their priority
is stored into the priority register.

A suspension can be in one of three states: sleeping, woken and executed. A
newly created suspension is sleeping, it is waiting for an event that would
wake it. When this event occurs, e.g. a variable becomes instantiated, the
suspension is passed to the waking scheduler and becomes woken.

The waking scheduler maintains a priority queue of all woken suspensions.
When it receives a new woken suspension, it inserts it into the appropriate
place in the queue and trails this change ®. However, it does not actually
execute any of the woken suspensions until it is explicitly told to. Only when
the extension calls the predicate wake /0, the waking scheduler starts to
execute all woken suspensions whose priority is higher than the current one. It
repeatedly removes the suspension with the highest priority from the priority
queue, sets its woken flag (and trails this change), sets the priority register to its
priority, fetches the argument registers from the suspension goal structure and
executes the code at the suspension address. From now on, the suspension is
executed and it is ignored by next wakeup events, unless the execution
backtracks and its state becomes again woken or sleeping. When all woken
suspensions are executed whose priority is higher than that of the wake /0
caller, the priority register is reset to its previous value and the execution of the
wake /0 caller is resumed.

The reason for an explicit triggering of the execution of woken suspensions is
to allow atomic updates. Sometimes a predicate wants to process a term and

3The ECL'PS® trail stack can be used not only to undo variable bindings but also to undo any

other memory updates.

update several variables in it. During this processing, the state of the variables
may not be consistent with the rest of the program, or the predicate may have
made local copies of some data and it wants to make sure that these copies
remain valid until it finishes its processing. In such situations we must
guarantee that no goals will be woken during the updates, i.e. the updates are
atomic w.r.t. woken goals. Atomic updates are frequently used in constraints
processing, for instance during the execution of finite domain constraints over
linear terms.

This design of scheduling woken goals has several advantages:

(O The scheme based on priorities allows to impose an order on woken
suspensions, which is useful both for program tracing and for better
performance. Simple tests which do not bind any variables can be
executed with the highest priority, deterministic predicates which bind
variables will usually have a medium priority and nondeterministic goals
the lowest priority.

The priority scheme also allows to use postponed goals, i.e. those that
have to be executed as late as possible. An example is a database query
which should be instantiated as much as possible. Such goals can be
assigned a priority which is lower than that of the main program.

(O Tt allows an easy experimentation and prototyping of different waking
orders which is crucial e.g. for some CLP programs.

(O Tt supports and is also required by the integration of several independent
extensions in one system (see Section 4).

(O The user does not have to manipulate the suspension lists, all that is
needed is inserting a suspension into a particular list and passing a list to
the waking scheduler *.

Explicit suspension handling requires lower-level programming than using
declarations [22, 19] or freeze/2 [6], but it is more expressive: in these
primitives, creating the suspension and inserting it in a particular suspension
list is hardcoded. To provide different functionality, it would be necessary to
hardcode new primitives. In ECL'PS®, any desired control strategy can be
tailored to a particular purpose which results in more efficient programs. Both
freeze /2 and various declarations can be directly expressed with the ECL'PS®
primitives.

“In the previous ECL'PS® releases some predicates had to concatenate all woken suspension

lists and return them to the caller, or to explicitly call every suspension in the woken list.

2.4 Suspension Lists

A suspension represents a predicate call which is to be executed as soon as a
particular condition is met. This condition usually describes the binding state of
one or more variables, but it might also concern some other data related to
some variables or even some event in the environment like e.g. clicking a
mouse button. All suspensions which have to be woken by the same condition
are linked into a suspension list. Whenever an event occurs which has an
associated suspension list, the whole suspension list is woken. To be able to
do this, the agent that has caused this event must locate and access the
corresponding suspension list. Since wakeup events may occur very frequently,
it is necessary to make this access quickly, without any unnecessary overheads.
This means that the lists have to be directly linked to the data whose state they
react to: suspensions which wait for variable updates must be directly linked to
the variables, suspensions waiting for some global events must be linked to
some related global data. The latter can use the ECL'PS® backtrackable global
variables whereas the former need attributed variables, described in the
following section.

3 Attributed Variables

3.1

Attributed variables are another ECL'PS® special data type! which represents a
free variable with a number of associated attributes. It plays an important role
in the ECL'PS® control:

(O Tt allows to link suspension lists to variables so that the suspensions can
be quickly accessed when the variable changes.

(O When an attributed variable is going to be modified, e.g. instantiated, the
system knows from its tag that there may be some suspension lists
waiting for this event and that it has to be processed differently.

(O The attribute can also store other data related to the variable, e.g. the
variable domain in CLP(FD) or a list of equations which contain this
variable in CLP(Q).

(O Tt is the main primitive that allows an elegant and flexible implementation
of data-driven computation in Prolog.

Various forms of attributed variables have been used in Prolog systems with
coroutining [6, 22, 4, 15, 16]. In these systems, however, an attributed variable
is a system primitive which is not accessible to the user. The ECL'PS® attributed
variables are closer to e.g. [14] in making the attributed variables available to
the user, but ECL'PS® goes as far as to make attributed variables first-class
citizens. We have adopted the multiple-attribute scheme of [3] which allows to
merge attributed variables from different extensions into one program. We
have extended [3] by integrating the attribute access into the module system.
Moreover, the attribute access is statically compiled and it makes use of
compiler indexing so that it is sufficiently fast.

Definition and Syntax

An ECL'PS® attributed variable can contain a number of different attributes
which are subject to module visibility. It is written as

X{Modl : AttI‘l, Modz : Attrz, }

\We used to call this data type metaterm because of its obvious functional similarity with
metastructures [24]. This name, admittedly, has caused much confusion and this is why we
have returned to the more precise term attributed variable.

where every Modj is a module name and Attr; is the value of the
corresponding attribute. The expression Var{Attr} is a shorthand for
Var{CurMod:Attr} where CurMod is the name of the current module. The
former is called nonqualified and the latter qualified attribute specification.
When accessing the attributes, we have adopted a compromise between
efficiency and flexibility: the attributes can be accessed by name qualification,
i.e. they behave like feature terms, but the names are transformed to integer
indices by the compiler, so that they can be accessed in constant time. This
requires that no new attributes may be defined as long as previously created
attributed variables are still accessible.

An attributed variable is created like other compound terms, either statically
when it appears in a clause,

p(A{M}, B, C) :- q(X{A}, Y{B}).

or when it appears in a clause head and the corresponding caller argument is a
free variable

p(X{A}) :- q(a).

or dynamically using a built-in predicate add_attribute(Var, Attribute,
Module). The attribute(s) can be accessed using pattern matching in the
clause head:?

p(X{quant:Q, neg:N}) :-

-7->

process_quant(Q, N).

To avoid ambiguities, only one occurrence of an attributed variable in a term
may be written with the attribute, the other occurrences are plain variables:

p(X{a}) :- qX, ¥{b}), rX, V).

3.2 Attribute Handling

Attributed variables can occur anywhere in the program and in any built-in
operation. In particular, they can be read in and written out, compiled,

2ECL'PS® clauses can use pattern matching instead of head unification. When the special
guard symbol —7— > is used in a clause body, the matching of clause head with the call is

unidirectional, only variables in the clause head may be bound.

asserted, recorded in the internal database, or even stored in the external
BANG database [9] and so from the user’s point of view, there are no
unnecessary restrictions. The user, however, may want to redefine some of the
built-in operations to handle the attributed variables in a special way. This
effect can be achieved with user-defined attribute handlers.

It has been noted in [24, 20, 14] that metastructures or attributed variables can
be used to achieve extensible unification. In ECL'PS®, this concept is
generalised to other built-in operations like e.g. unifiability test, instance test or
term copying. In these primitives, attributed variables are treated in a special
way. Since the system has no knowledge about the attribute, it does not
process it itself. Instead, each attribute has a set of associated attribute handlers
which are invoked for the corresponding operation.

We will explain this functionality on the example of unification: when two
terms are unified, the system uses the normal algorithm for standard Prolog
terms. Whenever it encounters an attributed variable to be unified with another
attributed variable or with a nonvariable, it binds the attributed variable to the
other term. This binding converts the attributed variable to a normal reference
and drops its attributes. These attributes are stored together with the bound
term in a special list, and the unification proceeds.

If the unification fails, normal backtracking occurs. When it succeeds, the
system checks the list and if it is nonempty, it raises an event. The event is
handled by invoking all extension attribute handlers on all elements of the list.
When all handlers succeed, the execution of woken goals is triggered:

handle_unify_event([]) :- wake.

handle_unify_event ([[Term|Attributes] |L]) :-
unify_attribute_handler1(Term, Attributes),
unify_attribute_handler2(Term, Attributes),

unify_attribute_handlerN(Term, Attributes),
handle_unify_event(L).

Each extension or application is thus notified about the binding and it is given
the possibility to process its attribute according to its own interpretation of the
unification.

The other operations are handled in a similar way, except that they are always
performed by some built-in predicates and not implicitly like the head
unification and the list can thus be handled explicitly.

copy_term(Term, Copy) :-
copy_term(Term, Copy, List),
handle_copy_term(List).

3.3

3.4

3.4.1

copy_term/3 copies the Term in the usual way. When an attributed variable
is found, the copy obtains a fresh free variable and a pair

[attributed var|fresh var] is added to the List. When the copying is
finished, handle_copy_term/3 invokes all copy attribute handlers on List
elements and they can themselves specify, whether and how their attribute or
parts of it are copied. Customized versions of copy_term /2 can be used e.g.
to implement various local computation or lookahead primitives.

The ECL'PS® system currently supports attribute processing in the following
operations: unify, test_unify, compare_instances, copy_term,
delayed_goals_number (return the number of suspensions present in the
attribute) and print.

Usage

A new attribute with its associated attribute handlers has to be declared using
the predicate meta_attribute/2, e.g.

meta_attribute(quant, [

unify: unify_quant/2,
test_unify: test_unify_quant/2,
print: print_quant/2]).

defines an attribute with the name quant and with three attribute handlers.
Operations without specified handlers will ignore this attribute. The value of
the attribute can be freely defined. by the extension. Usually it is a structure
whose arguments are suspension lists and/or other data needed by the
extension. Each of the suspension lists has an associated condition. When an
attribute handler is invoked, e.g. after variable unification, and it finds out that
one of these conditions is satisfied, it will pass the appropriate suspension list
to the waking scheduler. Attribute modifications are performed by
backtrackable updates.

Implementation

Internal Representation

Unlike our previous design in SEPIA [19], we have tried to use as few special
data types and WAM instructions as possible. This, on one hand, simplifies the
work of the compiler and the garbage collector, on the other hand it makes it
easier to access the data directly from Prolog. An attributed variable is

10

3.4.2

represented as a pair of words, the first one is the variable and the second is a
structure meta/N which contains the attributes:

META @

STRUCT

4

meta/N
attrl
attr2

attrN

The variable has a special META tag, but its value is a self-reference like a
normal WAM variable. The system remembers the number of attributes
currently in use and all new metaterms are created with this number of slots.

Compilation

We assume the reader is familiar with the WAM [27] and with the SEPIA-like
compilation of compound Prolog terms [17] which makes an explicit difference
between the read and write mode compilation. The compiler compiles the
attributed variables in a way which is very similar to list compilation. Since the
first word is known to be a (special) variable, it can even be compiled in a
tail-recursive way, without having to save the S register. We present here the
compilation scheme for attributed variables in head arguments, the compilation
in the body and in compound terms is similar. If only some of the currently
defined attributes are specified in the attributed variable, the remaining ones
are compiled as void variables.

When an attributed variable occurs in a body argument, the compiler generates
the instruction put_reference Aj, Offset, Tag, which stores into Aj a
reference to the global stack top and increments the global stack top by Offset
words. The first word of this skeleton is filled by a self-reference with tag Tag
and the S register is set to point to the next word. In this way, the machine
state after executing this instruction is exactly like after composing the first
argument of a list element. The attribute structure is then compiled like a
normal structure:

clause p :- q(X{a}), assuming two defined attributes:

11

put_reference Ay, 2, META(”X”) % Tag + source name

push_structure 3
push_constant meta/2
push_void

push_constant a/0
execute q/1

The instruction put_reference is more general than is needed for this
example, because it is also used for other ECL'PS® primitives, e.g. to compile
variables with their source names.

When an attributed variable occurs in the head of a normal clause, it is always
compiled in write mode, i.e. the term is always created. The instruction
get_meta Aj checks if the argument is a free variable. In this case no event
has to be raised and thus it binds it to a reference to the global stack top and it
pushes a skeleton of 2 words on the global stack. The first word of this
skeleton is a self-reference with the tag META and the register S is set to
point to the next word. If, on the other hand, the argument is a nonvariable or
another attributed variable, the generated code has to make the binding and
also to insert the appropriate pair into the special unification list: The first word
in the pushed skeleton is a normal reference to the dereferenced argument, the
S register and the dereferenced argument are inserted into the special
unification list. Note that at this moment the attribute pointed to by S is not yet
created, but this makes no difference because it will be accessed only in the
event raised at the end of the unification. Similarly to the body argument, the
next instructions build the attribute structure:

clause p(X{q:a}), assuming q is the second and last defined

attribute:
get_meta A,
write_structure meta/2
write_void
write_constant a/0
proceed

When matching instead of unification is being used, head occurrences are
compiled in read mode only. The instruction in_get_meta Aj fails if the
argument is not an attributed variable. Otherwise, the instruction
read_attribute N is executed. It checks if the attribute structure has at least
N arguments and if so, the S register is set to point to the N-th attribute,
otherwise it fails. The rest is again compiled like a normal structure with the
exception that all nonvariable arguments are preceded by the instruction
read_test_var which fails if the goal term pointed to by S is a variable:

clause p(X{f:Y}) :- -7-> q(Y), assuming f is the fourth defined
attribute:

12

in_get_meta A,y

read_attribute 4
read_variable A,
execute q/1

The attributed variables are also recognised by the indexing scheme: the
instruction switch_on_term ® has one more label argument which corresponds
to the metaterm type When the compiler indexes a clause on a head argument
which is an attributed variable in the matching mode, this clause is selected
only for the correct argument type. Since attributed variables succeed with the
var/1 predicate, it was necessary to introduce a new predicate to recognise
only true free variables, called free/1. For a predicate like

p(A{f:X}) - -7-> q(X). %assuming f is the fourth defined
attribute

p(X) :- free(X), r(X).

p(X) :- nonvar(X), s(X).

the compiler can generate the following code:

switch_on_term A4, Lv, Lc, LI, Ls, Lm
Lm: in_get_meta Ay

read_attribute 4

read_variable A4

execute q/1
Lv: execute r/1
Le: Ll Ls:

execute s/1

The instruction get_list_arguments A; is a simplified get_list instruction used
when the type is known, it sets S to the value of A;j and thus it can be directly
used for attributed variables. Note that in_get_meta is replaced by two
instructions get_list_arguments and read_void, which in an emulator is
actually slower, but when expanded in native code, it does less work. Note
that no cuts are necessary to make the predicate deterministic, because each
clause succeeds for different types.

3We use the WAM notation here; the actual ECL'PS® instruction is switch_on_type and it
has labels for all different tag types in use (currently about 14).

13

Support for Multiple Independent
Extensions

The ECL'PS® design aims at supporting the development and use of LP
extensions with different control mechanisms. An important requirement for its
architecture is to support modular development, so that extensions which do
not interact with each other can be developed independently and loaded on
demand into the system. At the same time, it must be possible to develop an
extension on top of other one(s) and in this way, hierarchies of extensions may
be created.

For example, ECL'PS® contains a basic suspend extension which handles
'normal’ coroutining. On top of it, two different CLP libraries were written, a
finite domain library and a linear rational constraints library. The Propia system
[25] uses the finite domain library. There is also an extension for intelligent
backtracking [2] on top of the finite domain library and another independent
extension which defines universal quantifiers. All these extensions might be
used together with graphical extensions. When different extensions are loaded,
they must be able to share variables, e.g. to have a finite domain variable
which occurs in a linear rational constraint.

These requirements are satisfied by the multiple-attribute scheme based on [3]
which allows to define variable attributes independently. This scheme has an
obvious advantage over systems which are based on a single attribute

[13, 1, 26]: They have to use a different structure (or data with different tag) for
every extension in the system. Sharing of different attributes in one variable is
achieved by defining new structures or tags for every possible combination.
For each such new combination it is also necessary to write code that handles
it. Obviously, the number of new combinations grows exponentially and there
is no way to write extensions independently [13]. Our scheme does not suffer
from this problem - each extension only describes its own attributes and their
handlers.

There are further consequences of merging several independent extensions
into one system:

() First of all, no extension can assume that it is the sole owner of the
attribute and that it can make deliberate changes that concern the whole
attributed variable. For example, no extensions may remove the attribute
from the variable and thus use of predicates like meta_bind /2 from [20]
or detach_attribute/1 from [14] is illegal.

(O In a single-attribute system, it does not matter if the unification

14

immediately binds the attributed variables it encounters, or if it only
passes them to the attribute handler, which may do the binding or leave
them unbound.

With multiple extensions, however, the binding has global consequences
on all attributes and the decision whether the variable should be bound
or not cannot be left to the handlers. It would also be semantically
unclear what would it mean if one extension wanted to bind the variable
and another one to leave it unbound. There is only one consistent
possibility - the binding is not left to the handlers but made directly in the
unification. This solution also allows a more efficient propagation of the
updates than e.g. stepwise unification proposed in [14], because the final
value of all bound variables is immediately available to all handlers.

(O After a wakeup event, extension attribute handlers are invoked which are
likely to wake some suspensions. Some of these suspensions may
represent simple goals whereas others may trigger a long and
complicated computation. In a system with a single extension it is
possible to explicitly wake the suspensions in a desired order so that the
quick ones are executed first (first fail principle).

With multiple extensions this is no longer possible — the attribute
handlers for each extension are executed sequentially, first all
suspensions of the first handler are executed, then those of the second
one etc. To achieve a consistent waking order, some scheme based on
suspension priorities has to be adopted.

(O Atomic updates become even more important. The extension cannot
assume that it is the single "user’ of some variables and that their update
will not trigger the execution of woken goals. Every update may trigger a
wakeup event for some other extension.

The ECL'PS® system contains a library suspend, which is a general extension
to handle instantiation and binding of attributed variables. It defines an
attribute which contains a suspension list to be woken on instantiation and
another one for binding of an attributed variable to another one. Other
extensions do not need to create such lists in their attributes, they simply put
their suspensions into the suspend attribute. This library thus represents a
basic coroutining extension. The suspend attribute also contains a third list
called constrained. 1t is used in the following case:

Some extended control primitives, e.g. guards or ask-constraints, use the
concept of pattern matching, i.e. one-way unification. In a normal Prolog
system, the semantics of matching is clearly defined. In the presence of
extensions, however, it might have to be modified. For example, when a guard
reduces the domain of a finite domain variable, or when it adds a new
suspension to a variable, it must not succeed. Even if the variable was not
instantiated by the guard, it was constrained by it. A graphical extension, on the

15

other hand, may want to be notified when a variable becomes more
constrained, so that it can update the display.

Since the notion of being constrained depends on the extensions which are
currently loaded into the system, and on the attributes of the variable, it cannot
be decided statically. Whenever a variable becomes more constrained in terms
of a particular extension, this extension calls the built-in predicate
notify_constrained/1 with the variable as the argument. This wakes all
suspensions in the constrained list. An extension which wants to be notified
when a variable becomes more constrained, can then simply put a suspension
into this list.

16

5 Environment Support

Our scheme uses only a minimal amount of special data types and so its
integration with the ECL‘PS® environment is more or less straightforward. The
presented design and all extensions based on it are fully supported by the
environment, including the garbage collector, debugger or profiler. It is also
interesting to note that the OR-parallel ECL'PS® which is currently being
developed at ECRC [21], will automatically support all extensions without any
extra implementation effort.

The ECL'PS® debugger has several features which are of particular importance
for the extensions:

(O Tt can display all sleeping suspensions, all suspensions in a given
attributed variable and all woken suspensions.

O

It can leap to the port where a particular suspension is being woken.

O

Using debug events [7] the extensions can define new debugger
commands which can inspect and modify the goal variables. The
extensions can also create suspensions and insert them into any
suspension list, so that the debugger executes a particular action when
this list is woken. This functionality can be used e.g. to stop when a
particular variable is being constrained, when a finite domain is reduced,
etc.

(O Debug events can be used to define conditional spy points so that the
debugger stops when a particular condition is satisfied, for instance when
at least half of some term’s variables are instantiated.

Suspensions can be also directly used to visualise the execution: each variable
will have an attached suspension. When it is woken, it displays the current state
of the variable in a window, creates a new suspension and attaches it to the
variable if it is still not instantiated. On backtracking, it will undo the display
and fail. In this way, the current state of the variable can be always correctly
displayed. With the use of different priorities it is also possible to control the
frequency of redisplays: when the displaying suspension has a high priority, it
will be woken frequently, the display will be precise but the execution will be
slowed down accordingly. When, on the other hand, its priority is low, the
display update frequency is lower and the program will run faster. It is even
possible to dynamically control the priorities by user interaction, which we
have used very successfully to trace complex search problems [18].

17

Performance

There may be two sources of performance overhead compared to SEPIA [19]:
first, both attributed variables and suspensions are processed from Prolog and
the resulting code is likely to be slower than SEPIA’s C-coded primitives.
Second, the presence of multiple attributes and the enforced discipline on
attribute processing may have an impact on the performance.

We have developed a small suite of benchmark programs to measure particular
coroutining primitives and we have run it with ECL‘PS® 3.4.4, NU-Prolog 1.5.24,
SEPIA 3.2 and SICStus 2.1.6 (fastcode). Every program in the suite executes
100000 cycles which consist of a predicate call, unification or waking so that it
is possible to compare the relative speed of these operations. For all programs,
a compensation loop has been run to eliminate time spent in
non-benchmarked operations . The first two programs, call and unif only
perform a predicate call and call with a value unification respectively.

The create programs creates one suspension per cycle and links them all with
the same variable. All suspensions have 3 integer arguments. The wake(1)
program wakes one suspension in one cycle. The wake(2) program actually
executes only 50000 cycles, but in each cycle it binds a variable which has 2
delayed goals, so the number of woken goals remains the same. wake(100)
executes 1000 cycles of 100 awakenings, unif-mult(100) also executes 1000
cycles and in each cycle it performs one unification which binds 100 variables,
each of which has one delayed goal. The last three tests could be run only
with ECL'PS® because they measure the influence of multiple attributes.
handle(N) binds in one cycle one attributed variable which has N attributes.
This binding triggers a unification handler for every attribute, which just
accesses the attribute and does nothing else.

We can see that all four systems have roughly the same speed for the plain
Prolog operations. As expected, creating suspensions in ECL'PS® is slower than
in the systems where it is hardcoded and combined with insertions into a
suspension list. Waking in ECL‘PS® is about half the speed of SEPIA and much
slower than NU-Prolog, but when more suspensions are woken at a time,
which is often the case, the overhead disappears.

Processing multiple attributes adds a constant overhead and a small overhead
for every additional attribute. If the attribute is used and requires handling,
these overheads are negligible. Only many unused attributes may negatively
affect the performance. In our experience, programs seldom use more than 5

YThis suite is available at ftp.ecre.de:/pub/eclipse/progs

18

‘ Program ‘ SICStus ‘ NU-Prolog ‘ SEPIA ‘ ECL'PS® ‘
call 0.49 0.43 0.35 0.27
unif 0.57 0.38 0.38 0.35
create 0.82 0.71 1.07 1.62
wake(1) 5.49 0.61 1.28 3.48
wake(10) 5.43 0.91 0.91 1.28
wake(100) 5.35 0.94 0.82 1.07
unif_mult(100) 5.46 1.02 1.43 3.12
handle(1) 1.12
handle(5) 2.05
handle(20) 5.63

Figure 6.0.1: Performance benchmarks on a 50-MIPS Sun SPARC 10 (sec.)

or 6 different attributes.

The price we have to pay for the increased functionality is quite acceptable, the
performance of the new design is satisfactory even in comparison with existing

dedicated systems.

19

7 Conclusion and Future Work

We have presented the design and implementation of the special control
primitives available in ECL'PS®. We see the main contribution of our work in
the following:

() To the best of our knowledge, ECL'PS® is the only current LP system
which directly supports the development and use of several different
extensions in one program. CHIP [1] has three different computation
domains, but they are hardcoded and there is no support for further
extensions or for interaction between the three domains.

(O Tt offers extensible unification which can be defined using Prolog
handlers. In addition to other systems with extensible unification
[24, 14, 20], ECL'PS® presents a universal scheme that extends the
functionality of all concerned meta- and extralogical built-in operations.

(O Tts presents a new waking scheme based on goal priorities. This scheme
offers a better insight and better control on the execution of suspensions.

() ECL'PS® is the first generic CLP development system. It offers the user a
complete Prolog environment and enough flexibility to prototype and
experiment with very advanced CLP schemes. Its ability to debug, trace
and visualise the execution of systems and application is at least equal
and often superior to special systems such as CHIP.

(O The architecture allows to write extensions directly in ECL'PS®, so that
they automatically inherit all environment support. In particular,
OR-parallel execution is directly available [21].

The presented scheme has been already used to produce several interesting
extensions: CLP(FD) and CLP(Q) libraries compatible with CHIP [1], the
generalised propagation system Propia [25], Constraint Handling Rules [10], an
intelligent backtracking extension [2] and a constraint system for sets [12]. Our
architecture was proven to have all the needed functionalities and also to be an
efficient vehicle for extensions writing.

Some aspects which seem to be worth considering for future work on the
architecture are as follows:

(O Semantics of the attributes. What should setof/3 do with attributed
variables? How does universal quantification (as used, for example, in
constructive negation [5]) interact with other extensions?

20

(O To exploit the potential AND-parallelism in the execution of suspensions
like autonomous agents.

21

Acknowledgements

We are deeply indebted to Mark Wallace and Pascal Brisset for their
contribution to the ECL'PS® implementation and for many enlightening

discussions on this and other topics. This work has partly been supported by
the Esprit project 5291 CHIC.

22

Bibliography

[1] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP
compiler system. In Koichi Furukawa, editor, Proceedings of the Eighth
International Conference on Logic Programming, pages 775—789, Paris,
France, 1991. The MIT Press.

[2] Eric Bensana. Intelligent backtracking. Technical Report ESPRIT CHIC
D.5.3.2.2, Centre d’Ftudes et de Recherche de Toulouse, June 1993.

[3] Pascal Brisset. Metaterms with several attributes. In Proceedings of the
ILPS’93 Workshop on Methodologies for Composing Logic Programs,
Vancouver, October 1993.

[4] Mats Carlsson. Freeze, indexing and other implementation issues in the
WAM. In Proceedings of the 4th ICLP, pages 40-58, Melbourne, May 1987.

[5] David Chan. Constructive negation based on the completed database. In
Proceedings of the 5th Conference and Symposium on Logic Programming,
Seattle, 1988.

[6] Alain Colmerauer. Prolog II manuel de reference et modele theorique.
Technical Report ERA CNRS 363, Groupe Intelligence Artificielle, Faculte
des Sciences de Luminy, March 1982.

[71 ECLiPSe 3.4 User Manual, 1994.
[8] KFCLiPSe 3./ Fxtensions User Manual, 1994.

[9] M. Freeston. The BANG file: a new kind of grid file. In SIGMOD ’87, San
Francisco, 1987.

[10] T. Frihwirth and P. Hanschke. Terminological reasoning with constraint
handling rules. In First Workshop on Principles and Practice of Constraint
Programming, Newport, Rhode Island, USA, April 1993.

[11] H. Gallaire. Boosting logic programming. In Proceedings of the 4th ICLP,
pages 962-988, Melbourne, May 1987.

[12] Carmen Gervet. Set and binary relation variables viewed as constrained
objects. In Proceedings of the ICLP’93 Workshop on Sets, Budapest, June
1993.

[13] Christian Holzbaur. Specification of constraint based inference mechanism
through extended unification. Technical report, TU Wien, Oktober 1990.
PhD Thesis.

23

[14]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

Christian Holzbaur. Metastructures vs. attributed variables in the context of
extensible unification. In Wirsing M. Bruynooghe M., editor, Programming
Language Implementation and Logic Programming, pages 260-268, 1992.

Serge Le Huitouze. A new data structure for implementing extensions to
prolog. In PLILP, pages 136-150, 1990.

M. Meier. Better Late Than Never. In E. Tick and G. Succi, editors,
Implementations of Logic Programming Systems. Kluwer Academic
Publishers, 1994.

Micha Meier. Compilation of compound terms in Prolog. In Proceedings of
the NACLP 90, Austin, October 1990.

Micha Meier. Visualizing and solving finite algebra problems. In Workshop
on Finite Algebras, ECRC, Munich, March 1994.

Micha Meier, Abderrahmane Aggoun, David Chan, Pierre Dufresne,
Reinhard Enders, Dominique Henry de Villeneuve, Alexander Herold,
Philip Kay, Bruno Perez, Emmanuel van Rossum, and Joachim Schimpf.
SEPIA - an extendible Prolog system. In Proceedings of the 11th World
Computer Congress IFIP’89, pages 1127-1132, San Francisco, August 1989.

Micha Meier and Joachim Schimpf. An architecture for prolog extensions.
In Proceedings of the 3rd International Workshop on Extensions of Logic
Programming, pages 319-338, Bologna, 1992.

Shyam Mudambi and Joachim Schimpf. Parallel CLP on heterogenous
networks. In Proceedings of the ICLP’94, 1994. to appear.

Lee Naish. An introduction to MU-PROLOG. Technical Report 82/2,
University of Melbourne, 1982.

Lee Naish. Prolog control rules. Technical Report 84/13, University of
Melbourne, 1984.

Ulrich Neumerkel. Extensible unification by metastructures. In Proceedings
of META 90, 1990.

Thierry Le Provost and Mark Wallace. Constraint satisfaction over the CLP
scheme. In FGCS’92, Japan, July 1992.

André Véron, Kees Schuerman, Mike Reeve, and Liang-Liang Li. Why and
how in the ElipSys OR-parallel CLP system. In Proceedings of PARLE’93,
pages 291-304, Munich, June 1993.

David H. D. Warren. An abstract Prolog instruction set. Technical Note
309, SRI, October 1983.

24

A Examples of Use

We present here some of the examples from [20] updated for the new design,
to show the difference between the two. Further examples can be found in the
ECL'PS® documentation [8].

The first defines only variables over finite integer domains and their unification.

Example: Defining variables, whose value is from a specified integer finite
domain:

b

module_interface(domain).

use_module(library(suspend)).

export
(in)/2,
#)/2,
(<)/2.

op(300, xfx, [in, #,

<., <..D).

meta_attribute(domain, [

unify:
print:

D.
begin_module(domain)
import

setarg/3
from sepia_kernel.

unify_domain/2,
print_domain/2

Constrain a variable to be from the specified integer interval.

The domain attribute
domain(DomList,
where DomList is the
Susps is list

in [L,H] :-
(number(X) ->
L =<X, X=<H
meta(X) ->
New in [L, H],

has the following format:

Susps)

list of domain elements,

of suspensions to be woken whenever the domain changes

% only test the bounds

% already constrained

X = New

% constrain the variable
make_list(L, H, D), % make a list of integers
add_attribute(X, domain(D, []1))

make_list(H, H, [H]) :- !.
make_list(L, H, [LIR]) :-
H>L,
L1 is L + 1,
make_list(L1, H, R).

% unify_domain(+Term, Attribute)
unify_domain(_, Attr) :-

/H%x ANY + VAR **x/

var (Attr). % Ignore if no attribute for this extension
unify_domain(Term, Attr) :-

compound (Attr),

unify_term_domain(Term, Attr).

unify_term_domain(Term, domain(D, List)) :-
nonvar (Term) , % The variable was instantiated, wake all
/*xx NONVAR + ATTR **x*/
memberchk(Term, D),
schedule_woken(List).
unify_term_domain(Y{AttrY}, AttrX) :-
-7->

unify_domain_domain(Y, AttrX, AttrY).

unify_domain_domain(_, AttrX, AttrY) :-

var (AttrY), % no attribute for this extension
/*x*¥x VAR + ATTR ***/
AttrY = AttrX. % share the attribute

unify_domain_domain(Y, AttrX, AttrY) :-
nonvar (AttrY),
/***x ATTR + ATTR #*%*x/
AttrY = domain(DomY, _),
AttrX = domain(DomX, _),
intersection(DomX, DomY, NewDom),
new_attribute(Y, DomY, NewDom).

% Common handling of constants and constrained vars
attribute(_{Attr}, DA) :-

-7->

Attr = domain(DA, _).
attribute(I, D) :-

integer(I),

D = [I].

% Give the variable a new attribute

26

new_attribute(_, 01dD, 01dD) :- !. % no change

new_attribute(Var, _, [Val]) :- % instantiate it
[}
Var = Val.
new_attribute(_{Attr}, _, [VIR]) :- % new domain must be non-empty
-7->
setarg(l, Attr, [VIR]), % modify the domain
arg(2, Attr, List),
schedule_woken(List) . % domain is changed, wake

domain_range([Min|R], Min, Max) :-
last_element (Min, R, Max).

last_element (Max, [], Max) :- !'.
last_element(_, [EIR], Max) :-
last_element(E, R, Max).

% Print the variable together with its attribute.

print_domain(domain(D, _), T) :- % succeeds only if attribute nonempty
-7->
T =D.

% Example:
[eclipse 2]: X in [1,10], Y in [5,15], X=Y.

X = X{[5, 6, 7, 8, 9, 10]}
Y = X{[5, 6, 7, 8, 9, 10]}
yes.

[eclipse 3]: X in [1, 6], X in [6, 8].

The next example adds to the functionality of the previous one the inequality
constraint over integers. The inequality must be delayed until one argument is
ground as no pruning can be done before this, but then it is completely solved
(forward checking). Note that the control could be extended to delay also in the
case when one argument is a plain free variable.

Example: Inequality over integer finite domains.

% Delay #/2 until one argument is a non-variable or
% both are equal.
A#B :-
nonvar(A) -> delete_value(A, B) ;
nonvar(B) -> delete_value(B, A4) ;
A \== B,
make_suspension(A # B, 2, Susp),
% put the suspension to the Bound list in the suspend library

27

insert_suspension([A|B], Susp, bound of suspend, suspend).

delete_value(N, Var) :-
attribute(Var, D),
delete(N, D, ND) -> new_attribute(Var, D, ND), wake ; true.

% Example of use:
leclipse 4]: X in [1,5], Y in [3,7], X # Y, X = 4.

Y = Y{[3, 5, 6, 71}
X=4
yes.

[eclipse 5]: X#Y, X=Y.

no (more) solution.

The last example shows a more advanced constraint type — inequality < /2 of
two integer domain variables. This constraint prunes those elements from the
domains of the two variables which are incompatible with the constraint, but
then, unless it is trivially satisfied or falsified, it has to wait to be woken as soon
as one of the domains is updated, but not necessarily reduced to a single
element (partial lookahead). Note that, without sophisticated control primitives,
defining such a predicate would be quite difficult.

Example:

The < /2 relation for two domain variables.

A<B :-
attribute(A, DA),
attribute(B, DB),
domain_range(DA, MinA, MaxA),
domain_range(DB, MinB, MaxB),
(MinB > MaxA ->
true % solved

remove_greatereq(DA, MaxB, NewDA),
new_attribute(A, DA, NewDA),
attribute(B, DB1),
remove_smallereq(DB1, MinA, NewDB),
new_attribute(B, DB, NewDB),
(MinB > MinA,
MaxB > MaxA ->
% nothing done
make_suspension(A < B, 2, Susp),
insert_suspension([A|B], Susp, 2),
wake

A <B % repeat

28

remove_smallereq([X|Rest], Min, L) :-
X =< Min,

[}
L)

remove_smallereq(Rest, Min, L).
remove_smallereq(L, _, L).

remove_greatereq([X|Rest], Max, [X|L]) :-

Max > X,

[}
L)

remove_greatereq(Rest, Max, L).
remove_greatereq(_, _, [1).

% Example:

[eclipse 6]: X in [1, 5], Y in [2, 10],
Y < X, printf("X = Ymw, Y = Ymw\n", [X, Y1),
X # 5, printf("X = Ymw, Y = Ymw\n", [X, Y1),
Y # 2.

X = X{[3, 4, 51}, Y = Y{[2, 3, 4]}
X = x{[3, 41}, Y = Y{[2, 3]}

X=4

Y =3

yes.

29

