Chapter 7: Optimization (Routing and Wavelength Assignment)

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

Helmut Simonis

Optimization

Problem Program Search

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Helmut Simonis

Optimization

Outline

- Problem
- Program
- Search

Helmut Simonis

Optimization

0

Problem Program Search

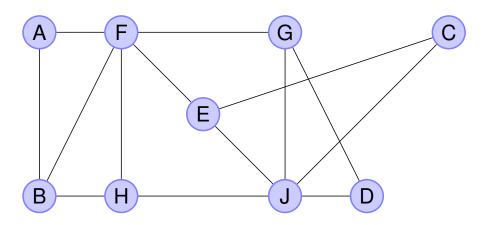
What We Want to Introduce

- Optimization
- Graph algorithm library
- Problem decomposition
- Routing and Wavelength Assignment in Optical Networks

Problem Definition

Routing and Wavelength Assignment

In an optical network, traffic demands between nodes are assigned to a route through the network and a specific wavelength. The route (called *lightpath*) must be a simple path from source to destination. Demands which are routed over the same link must be allocated to different wavelengths, but wavelengths may be reused for demands which do not meet. The objective is to find a combined routing and wavelength assignment which minimizes the number of wavelengths used for a given set of demands.

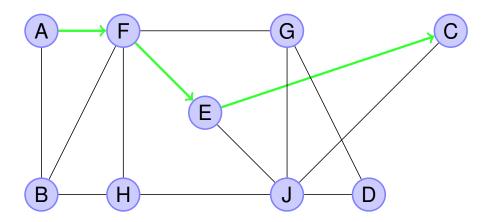


Helmut Simonis Optimization 5

Problem Program Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Example Network



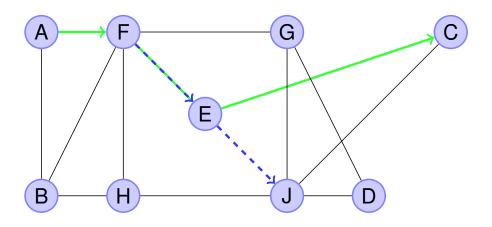
Helmut Simonis

Optimization

Lightpath from A to C

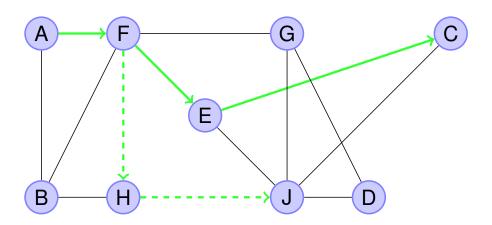
Helmut Simonis

Optimization


7

Problem Program Search

Problem 1: Find routing


Problem 2: Assign Wavelengths

Conflict between demands A to C and F to J: Use different frequencies

Conflict between demands A to C and F to J: Use different paths

Helmut Simonis Optimization 9

Problem Program Search

Problem 1: Find routing

Problem 2: Assign Wavelengths

Solution Approaches

- Greedy heuristic
- Optimization algorithm for complete problem
- Decomposition into two problems
 - Find routing
 - Assign wavelengths

10

Helmut Simonis Optimization

Finding Routing

- Find routing which does not assign too many demands on the same link
- Lower bound for overall problem
- Do not use arbitrarily complex paths
- Start with shortest paths

Helmut Simonis Optimization 11

Problem Program Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Proposed Solution

- For each demand, use a shortest path between source and destination
- Shortest path = smallest number of links used
- Good for overall network utilisation
- May create bottlenecks on some links

How to Find Shortest Paths

- Well studied, well understood problem
- Many different algorithms for particular cases
 - Positive/negative weight
 - Path between pair of nodes/between node and all other nodes/between all nodes
 - One/all shortest paths or paths which are nearly shortest paths
- Don't program this yourself!
- Library in ECLiPSe: lib (graph_algorithms)

13

Helmut Simonis Optimization

Problem Program

Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Library graph_algorithms

- Provides different algorithms about graphs
- Based on opaque Graph structure created from nodes and edges
- make_graph(NrNodes, Edges, Graph)
- Edges are terms e (FromNode, ToNode, Weight)
- Directed graphs as default, undirected graphs represented by edges in both directions

Basic Shortest Path Method

- single_pair_shortest_path(Network,-1,From,To,Result)
- Find path from node From to node To in graph Network
- Second argument describes weight function
 - -1: use number of hops
- Result given length of path and edges as list

Helmut Simonis Optimization 15

Problem Program Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Problem 2: Assign Wavelength

- Demands are routed on shortest paths
- Demands routed over the same link must have different frequencies
- Minimize maximal number of frequencies used

Model

- Domain variable for every demand
- Initial domain large, e.g. number of demands
- Disequality constraint between demands routed over same link
- Alternative: alldifferent constraints for all demands over each link
- Feasible solution: find assignment for variables

Helmut Simonis Optimization 17

Problem Program Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Optimization

- We are not looking for only a feasible solution
- We want to optimize objective
- Minimize largest value used

Library branch_and_bound

- bb_min(Goal, Cost, bb_options{})
- Goal search goal
 - Like search/6 or labeling/1 call
- Cost objective (domain variable)
- bb_options optional parameters
 - timeout: Time timeout limit in seconds
 - from:LowerBound known lower bound
 - to: UpperBound known upper bound

Helmut Simonis Optimization 19

Problem Program Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Example

```
List :: 1..20,

ic:max(List,Max),

bb_min(labeling(List),Max,

bb_options{timeout:100,from:10}),

...
```


ic Constraint max(List, Var)

- Var is the largest value occuring in List
- Similar min (List, Var)
- Do not confuse with max in core language

Helmut Simonis

Optimization

21

Problem Program Search

Main Program

Routing

Helmut Simonis

Optimization

23

Problem Program

Wavelength Assignment

Assignment Routine

Helmut Simonis

Optimization

25

Problem Program Search

Variable Selection Method most_constrained

- Similar to first_fail
- Select vairable with smallest domain first
- For tie break, select variable in largest number of constraints

Creating alldifferent Constraints

Helmut Simonis

Optimization

27

Problem Program Search

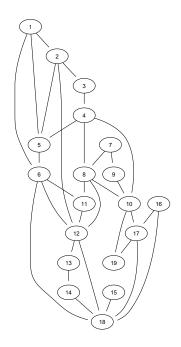
Creating alldifferent Constraints (II)

```
(foreach(_-Group,Groups),
  fromto(0,A,A1,LowerBound),
  param(Var) do
    length(Group,N),
    A1 is eclipse_language:max(N,A),
    (foreach(1(_,I),Group),
        foreach(X,AlldifferentVars),
        param(Var) do
            subscript(Var,[I],X)
    ),
    ic_global:alldifferent(AlldifferentVars);
    ork
        constraint
        constraint
```

Helmut Simonis Optimization

Generating Data

```
problem(Name, NrDemands, Network, Demands):-
    network_topology(Name, NrNodes, Edges),
    make_graph(NrNodes, Edges, Directed),
    make_undirected_graph(Directed, Network),
    (for(I,1,NrDemands),
        fromto([],A,[demand(I,From,To)|A],Demands),
        param(NrNodes) do
        repeat,
        From is 1+(random mod NrNodes),
        To is 1+(random mod NrNodes),
        From \= To,
        !
        ).
```


Helmut Simonis

Optimization

29

Problem Program Search

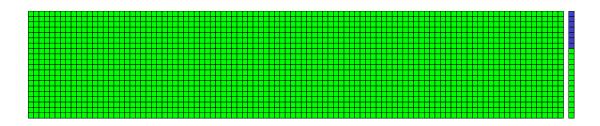
Example Network: MCI

MCI Topology Data

```
network_topology(mci,19,
    [e(1,2,1),e(1,5,1),e(1,6,1),e(2,3,1),
    e(2,5,1),e(2,12,1),e(3,4,1),e(4,5,1),
    e(4,8,1),e(4,10,1),e(5,6,1),e(6,11,1),
    e(6,12,1),e(6,18,1),e(7,8,1),e(7,9,1),
    e(8,10,1),e(8,11,1),e(8,12,1),e(9,10,1),
    e(10,17,1),e(10,19,1),e(11,12,1),e(12,13,1),
    e(12,18,1),e(13,14,1),e(14,18,1),e(15,18,1),
    e(16,17,1),e(16,18,1),e(17,18,1),e(17,19,1)]).
```


Helmut Simonis

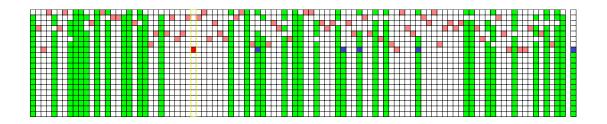
Optimization


31

Problem Program Search

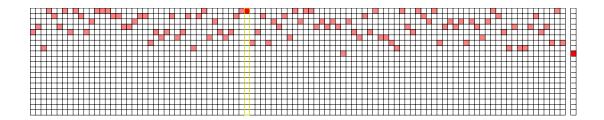
Searchtree

Initial State


Helmut Simonis

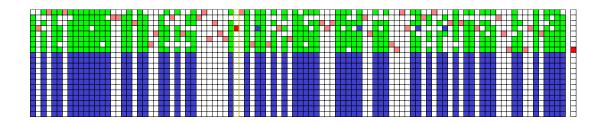
Optimization

33


Problem Program Search

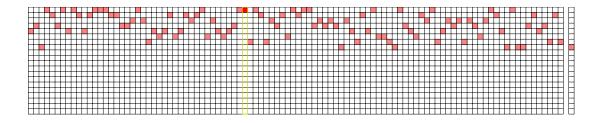
Update Cost

First Solution


Helmut Simonis

Optimization

35


Problem Program Search

Continue Search

Optimal Solution

Helmut Simonis

Optimization

37

Problem Program Search

Observations

- Optimal solution found with minimal backtracking
- Reaching lower bound avoids enumeration proof of optimality
- Not guaranteed to be optimal for original problem
- Given decomposition destroys flexibility in finding solution

Further Experiments

- Vary number of demands to be handled
- Make 100 runs with randomized demands

Helmut Simonis

Optimization

39

Problem Program Search

Multiple Runs (100 experiments)

Network	Nr Demands	Avg LB	Avg Sol	σ Sol	Avg Gap
mci	20	3.71	3.71	0.711	0.00
mci	40	5.85	5.85	0.931	0.00
mci	60	7.69	7.69	1.324	0.00
mci	80	9.48	9.48	1.353	0.00
mci	100	11.34	11.34	1.687	0.00
mci	120	12.89	12.89	1.928	0.00
mci	140	14.59	14.59	2.298	0.00
mci	160	16.28	16.28	2.421	0.00
mci	180	17.89	17.89	2.656	0.00
mci	200	19.52	19.52	2.456	0.00

Helmut Simonis

Optimization

Observations

- These are not hard problem instances
- In general, graph coloring can be much more difficult
- Fast, simple solution to RWA problem
- Quality gap to be determined
 - Chapter 17: Solving RWA with MILP
 - Chapter 18: A Hybrid model for RWA

Helmut Simonis

Optimization

41

Conclusions

Network Problems

- graph_algorithms library
- Shortest path, articulation points, critical links
- Matching, strongly connected components
- Max-flow/min-cut
- Interface to AT&T graphviz visualizer

Optimization in ECLiPSe

- branch_and_bound library
- Not restricted to ic library
- Simple extention of search
- Importance of lower bounds
- For best results, needs support in constraint model

Helmut Simonis

Optimization

43

Conclusions

More Information

- Rajiv Ramaswami and Kumar N. Sivarajan.
 Routing and wavelength assignment in all-optical networks. *IEEE/ACM Trans. Netw.*, 3(5):489–500, 1995.
- Dhritiman Banerjee and Biswanath Mukherjee.
 A practical approach for routing and wavelength assignment in large wavelength-routed optical networks.

 IEEE Journal on Selected Areas in Communications, 14(5):903–908, June 1996.

More Information

Brigitte Jaumard, Christophe Meyer, and Babacar Thiongane.

ILP formulations for the routing and wavelength assignment problem: Symmetric systems.

In M. Resende and P. Pardalos, editors, *Handbook of Optimization in Telecommunications*, pages 637–677. Springer, 2006.

Brigitte Jaumard, Christophe Meyer, and Babacar Thiongane.

Comparison of ILP formulations for the RWA problem.

Optical Switching and Networking, 4(3-4):157–172, 2007.

Helmut Simonis

Optimization

45

Conclusions

More Information

A hybrid constraint model for the routing and wavelength assignment problem.

CP 2009, Lisbon, September 2009.

http://4c.ucc.ie/~hsimonis/rwa.pdf

Helmut Simonis.

Solving the static design routing and wavelength assignment problem.

CSCLP 2009, Barcelona, Spain, June 2009.

46