Chapter 12: Systematic Development

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning
Eork

@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development

Licence

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License.
To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

oK)

_@ork
@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Outline

0 Introduction

© Application Structure
e Documentation

e Data Representation

© Programming Concepts
©Cork
@onstraint

QO style Guide R

Helmut Simonis Systematic Development 3

Introduction

Overview

@ How to develop large applications in ECLiIPSe

@ Software development issues for Prolog
@ This is essential for large applications
e But it may show benefits already for small programs

@ This is not about problem solving, but the boring bits of
application development

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 4

Introduction

Disclaimer

@ This is not holy writ
e But it works!
@ This is a team issue

e People working together must agree
e Come up with a local style guide

@ Consistency is not optional
e Every shortcut must be paid for later on
@ This is an appetizer only

e The real story is in the tutorial Developing Applications with
ECLiPSe (part of the ECLiIPSe documentation) ©ork

@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development 5

Application Structure

Application Structure

Full Application Batch Application
[Java Application}—>
[ECLiPSe/Java Interface] (Data Files)
! !
[ECLiPSe Application | [ECLiPSe Application |

‘Oénsf;z

C omputation

“@entre

Helmut Simonis Systematic Development 6

Application Structure

LSCO Structure

[prepare data}

[create \;’ariables]

[create cgnstraints]

[find sglution]

[outputvresultsJ

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development 7

Application Structure

Top-Down Design

@ Design queries

@ UML static class diagram (structure definitions)
@ API document/test cases

@ Top-level structure

@ Data flow analysis

@ Allocate functionality to modules

@ Syntactic test cases
@ Module expansion

e Using programming concepts where possible @ork
e Incremental changes @onstraint
C omputation

“@entre

Helmut Simonis Systematic Development 8

Application Structure

Modules

@ Grouping of predicates which are related
@ Typically in a single file
@ Defined external interfaces

e Which predicates are exported
@ Mode declaration for arguments
e Intended types for arguments

e Documentation

@ Helps avoid Spaghetti structure of program
Eork

@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development 9

Documentation

Creating Documentation

@ Your program can be documented in the same way as
ECLiPSe library predicates

@ Comment directives in source code

@ Tools to extract comments and produce HTML
documentation with hyper-links

@ Quality depends on effort put into comments
@ Every module interface should be documented

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 10

Documentation

:— comment (prepare_data/4, [
summary:"creates the data structures
for the flow analysis",
amode:prepare_data (+,+,+,),
args: [
"Dir":"directory for report output",
"Type":"the type of report to be generated",
"Summary":"a summary term",
"Nodes":"a nodes data structure"],
desc:html ("

This routine creates the data Corx

@onstraint
C omputation

“@entre

structures for the flow analysis.

Helmut Simonis Systematic Development 11

see_also: [hop/3]

Data Representation

External Data Representation

Property Argument [I):?Itea Tlfizg] Facts | EXDR
Multiple runs ++ + + - +
Debugging - + + + _
Test generation
effort) * + + -

Java I/0O Effort - + - - ¥
ESLEIE(?re'[++ + ++ ++ ++
Memory ++ - - _ _

Develoment
Effort *] * * -

Helmut Simonis

Systematic Development

Computation

“@entre

12

Data Representation

Internal Data Representation

@ Named structures

e Define & document properly
@ Lists

@ Do not use for fixed number of elements
@ Hash tables, e.g. lib(hash)

o Efficient
e Extensible
e Multiple keys possible

@ Vectors & arrays
e Requires that keys are integers (tuples)

@ Multi-representation Qo
. . . ‘ei‘mstramt
e Depending on key use one of multiple representations C"".‘r:;f:;’;:

Helmut Simonis Systematic Development 13

Data Representation

Internal Representation Comparison

Named , Hash Vectors Multi-
Lists .
Structures Tables Arrays representation
hold
disparate ++ - - - -
data
access
specific + - + + +
info
add new
. - + ++ - -
entries
do
+ ++ - ++ ++
loops
sort
. - ++ - - ++
entries
Inde).(- - — ++ + . @ork
calculations @onstraint
- omputation
“@entre

Helmut Simonis Systematic Development 14

Data Representation

Getting it to work

@ Early testing 1ib (test_util)

e Define what a piece of code should do by example
e May help to define behaviour

@ Stubs
@ Line coverage 1ib (coverage)
e Check that tests cover code base
@ Heeding warnings of compiler, 1ib (1int)
e Eliminate all causes of warnings
e Singleton warnings typically hide more serious problems
@ Small, incremental changes

e Matter of style pe Gor
e Works for most people Cerpuation

Helmut Simonis Systematic Development

Programming Concepts

Programming Concepts

@ Many programming tasks are similar
e Finding the right information
e Putting things together in the right sequence

@ We don’t need the fastest program, but the easiest to
maintain
e Squeezing the last 10% improvement normally does not
pay
@ Avoid unnecessary inefficiency
@ lib(profile), lib(port_profiler)
Eork

@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 16

Programming Concepts

List of concepts

@ Alternatives

@ lteration (list, terms, arrays)
@ Transformation
@ Filtering
@ Combine
@ Minimum/Best and rest
@ Sum
@ Merge
@ Group
@ Lookup
. ©Cork
@ Cartesian @onstraint
. C omputation
@ Ordered pairs “@entre
Helmut Simonis Systematic Development 17

Programming Concepts

Example: Cartesian

:—-mode cartesian(+,+,-).
cartesian (L, K, Res) :—
(foreach (X, L),
fromto([], In,Out,Res),
param(K) do
(foreach (Y, K),
fromto (In,Inl, [pair(X,Y) |Inl],Out),
param(X) do
Lrue
) . @&Jﬁi

Computation

“@entre

Helmut Simonis Systematic Development 18

Programming Concepts

Input/Output

@ Section on DCG use
e Grammars for parsing and generating text formats
@ XML parser in ECLiIPSe
@ lib (xml)
@ EXDR format to avoid quoting/escaping problems
@ Tip:
e Generate hyper-linked HTML/SVG output to present
data/results as development aid

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development

Programming Concepts

If it doesn’t work

@ Understand what happens

e Which program point should be reached with which
information?

e Why do we not reach this point?

e Which data is wrong/missing?

@ Do not trace through program!

@ Debugging is like solving puzzles

e Pick up clues
@ Deduce what is going on

@ Do not simulate program behaviour!)
Eork
@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 20

Programming Concepts

Correctness and Performance

@ Testing
@ Profiling

@ Code Reviews

e Makes sure things are up to a certain standard
e Don’t expect reviewer to find bugs

@ Things to watch out for

e Unwanted choice points

e Open streams

e Modified global state

e Delayed goals ©or«

@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development

Programming Concepts

Did | mention testing?

@ Single most important/neglected activity
@ Re-test directly after every change

e |dentifies faulty modification
e Avoids lengthy debugging session after making 100s of
changes
@ Independent verification
e Check results by hand (?)
e By other program (?7?)
e Use constraint solver as checker
Eork

@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 22

Style Guide

Style Guide

@ Rules that should be satisfied by finished program
@ Things may be relaxed during prototyping
@ Often, choice among valid alternatives is made arbitrarily,
so that a consistent way is defined
@ If you don't like it, change it!
e But: better a bad rule than no rule at all!

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development 23

Style Guide

Style Guide Examples

@ There is one directory containing all code and its
documentation (using sub-directories).

@ Filenames are of form [a-z] [a—-z_]+ with extension
.ecl.

@ One file per module, one module per file.

@ Each module is documented with comment directives.

o ..

@ Don'tuse ', ' /2 to make tuples.

@ Don’t use lists to make tuples.

@ Avoid append/3 where possible, use accumulators mnsf;ﬂi
instead. -

Helmut Simonis Systematic Development 24

Style Guide

Layout rules

@ How to format ECLiIPSe programs

@ Pretty-printer format
@ Eases

e Exchange of programs

e Code reviews

e Bug fixes

@ Avoids extra reformatting work

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development 25

Style Guide

Core Predicates List

@ Alphabetical predicate index lists 2940 entries

@ You can’t possibly learn all of them
e Do you really want to know what
set_typed_pool_constraints/3 does?

@ List of Prolog predicates you need to know
@ 69 entries, more manageable

@ Ignores all solver libraries

@ If you don’t know what an entry does, find out about it
e whatdoes write_exdr/2 do?

@ If you use something not on the list, start to wonder... o G o
Computation

“@entre

Helmut Simonis Systematic Development 26

Style Guide

Other Sources

@ Developing Applications with ECLiIPSe
e H. Simonis
@ http://www.eclipse—-clp.org
@ Constraint Logic Programming Using ECLiPSe
e K. Apt, M. Wallace
e Cambridge University Press
@ The Craft of Prolog
e R.O’Keefe, MIT Press
©Cork

@onstraint
C omputation

“@entre

Helmut Simonis Systematic Development

Style Guide

Conclusions

@ Large scale applications can be built with ECLiIPSe

@ Software engineering is not that different for Prolog

@ Many tasks are similar regardless of solver used

@ Correctness of program is useful even for research work

Eork
@onstraint
Computation

“@entre

Helmut Simonis Systematic Development 28

http://www.eclipse-clp.org

	Introduction
	Application Structure
	Documentation
	Data Representation
	Programming Concepts
	Style Guide

