Chapter 16: More Global Constraints (Car Sequencing)

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

Constraint Computation Centre

	Helmut Simonis	More Global Constraints	1
	Problem		
	Program		
	Search		
	Improved Search Strategy		
Liconco			

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Problem Program	
Search Improved Search Strategy	
Outline	
Problem	
Dragram	
Program	
3 Search	
Ocaron	
Improved Search Strategy	
	Carte
	Computation
	Gentre
Helmut Simonis	More Global Constraints 3
Problem Program	
Search Improved Search Strategy	

What we want to introduce

- Car sequencing problem
- gcc global cardinality constraint
- sequence constraint
- Search does not always have to be based on original problem variables
- Can be useful to consider additional variables which allow more clever search

Problem Definition

Car Sequencing

We have to schedule a number of cars for production on an assembly line. Each car is of a certain type, and we know how many cars of each type we have to produce. Car types differ in the options they require, i.e. sun-roof, air conditioning. For each option, we have capacity limits on the assembly line, expressed as k cars out of n consecutive cars on the line may have some option. Find an assignment which produces the correct number of cars of each type, while satisfying the capacity constraints.

		Computation Centre
Helmut Simonis	More Global Constraints	5
Problem		
Search		
Improved Search Strategy		
Example (DSV88)		

- 100 cars
- 18 types
- 5 options
 - Option 1: 1 out of 2
 - Option 2: 2 out of 3
 - Option 3: 1 out of 3
 - Option 4: 2 out of 5
 - Option 5: 1 out of 5

Cork Constraint

Problem

Program Search

Improved Search Strategy

Car Types

	Cars		Option			
Туре	Required	1	2	3	4	5
1	5	1	1	0	0	1
2	3	1	1	0	1	0
3	7	1	1	1	0	0
4	1	0	1	1	1	0
5	10	1	1	0	0	0
6	2	1	0	0	0	1
7	11	1	0	0	1	0
8	5	1	0	1	0	0
9	4	0	1	0	0	1
10	6	0	1	0	1	0
11	12	0	1	1	0	0
12	1	0	0	1	0	1
13	1	0	0	1	1	0
14	5	1	0	0	0	0
15	9	0	1	0	0	0
16	5	0	0	0	0	1
17	12	0	0	0	1	0
18	1	0	0	1	0	0

Constraint Computation Centre

Helmut Simonis

Improved Search Strategy

Problem Program More Global Constraints

7

Solution

Modelling Alternatives

• Assign start time (sequence number) to each car

Problem Program Search

100 variables, each with 100 values

Improved Search Strategy

- Handling of car types implicit
- Symmetry breaking for cars of same type (inequalities)?
- Capacity constraints?
- Assign car type to each slot on assembly line
 - 100 variables, 18 values
 - How to control number of cars of each type?
 - How to express capacity constraints?

		Constraint Computation Centre
Helmut Simonis	More Global Constraints	9
Problem		
Program		
Improved Search Strategy		
Model		

- 100 variables ranging over car types
- gcc constraint to control number of items with same type
- $5 \times 100 \text{ 0/1}$ variables indicating use of option for each slot
- element constraints to map car types to options used
- sequence constraints to enforce limits on each option

- gcc global cardinality constraint
- Pattern is list of terms gcc(Low, High, Value)
- The overall number of variables taking value Value is between Low and High
- Generalization of alldifferent
- Domain consistent version in ECLiPSe

	Centre
Helmut Simonis	More Global Constraints 11
Problem Program	
Search Improved Search Strategy	
gcc Example	

```
X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),
      gcc(0,4,4),gcc(1,3,5)],
      [X1,X2,X3,X4,X5]),
```

X1 = ?, X2 = ?, X3 = ?, X4 = ?, X5 = ?

Cork constraint computation

gcc Reasoning

```
X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),
      gcc(0,4,4),gcc(1,3,5)],
      [X1,X2,X3,X4,X5]),
```

Problem Program Search

Improved Search Strategy

X1 = ?2, X2 = ?, X3 = ?2, X4 = ?, X5 = ?

X1 = 2, X2 = ?1, X3 = 2, X4 = ?, X5 = ?

gcc Continued

Problem Program Search

Improved Search Strategy

X1 = 2, X2 = 1, X3 = 2, X4 = ?, X5 = ?

X1 = 2, X2 = 1, X3 = 2, X4 \in {3,5}, X5 \in {3,5}

Cork

How does the constraint solver do that?

Explained in optional material at end

► Domain Consistent gcc

Cork Constraint Computation Centre

Helmut Simonis	More Global Constraints 17
Problem	
Program	
Improved Search Strategy	
Reminder: element (X, L:	ist,Y)

- List is a list of integers
- The Xth element of List is Y
- The index starts from 1
- Typical uses:
 - Projection
 - Cost

Problem Program Search Search Element Examples Prime is 1 iff $X \in 1..10$ is a prime number X :: 1..10, element (X, [1, 1, 1, 0, 1, 0, 1, 0, 0, 0], Prime), Cost is the cost corresponding to the assignment of Y

Y :: 1..10, element(Y,[5,3,34,0,3,1,12,12,1,3],Cost)

- Variables Vars have 0/1 domain
- Between Min and Max variables have value 1
- For every sub-sequence of length *K*, between Low and High variables have value 1

©ork onstraint

Problem

X1 = 0, X4 = 0, X7 = 0, X10 = 0

$$x_1, \overline{x_2, x_3, x_4}, \overline{x_5, x_6, x_7}, \overline{x_8, x_9, x_{10}}$$

Cork

Mathematical Equivalent

Problem Program Search

Improved Search Strategy

Helmut Simonis	More Global Constraints 23
Problem Program Search Improved Search Strategy	
Mathematical Equivalent	

- Pruning very different when using finite domain inequalities
- Currently no domain consistent implementation of sequence_total
- Weaker version sequence (no global counters) domain consistent
- Currently using decomposition:
 - sequence_total = sequence + gcc + more

Cork onstraint omputation

Main Program

:-module(car).
:-export(top/0).
:-lib(ic).
:-lib(ic_global_gac).

top: problem(Problem),
 model(Problem,L),
 writeln(L).

Constraint Computation Centre

Helmut Simonis	More Global Constraints	25
Problem Program Search Improved Search Strategy		

Structure Definitions

Constraint Computation Computation

Problem Program Search Improved Search Strategy Model (Part 1)


```
(foreach(option{k:K,
               n:N,
               index_set:IndexSet,
               total_use:Total},List),
param(L, NrCars) do
    (foreach(X,L),
    foreach(B, Binary),
    param(IndexSet) do
       element(X,IndexSet,B)
   ),
   Constraint
),
                                       omputation
search(L,0,input_order,ordered(Ordered),
                                         Centre
```

Data

```
problem(100,18,
[5,3,7,1,10,2,11,5,4,6,12,1,1,5,9,5,12,1],
[option(1,2,[1,2,3,5,6,7,8,14],
    [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0],48),
    option(2,3,[1,2,3,4,5,9,10,11,15],
    [1,1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0,0],57),
    option(1,3,[3,4,8,11,12,13,18],
    [0,0,1,1,0,0,0,1,0,0,1,1,1,0,0,0,0,0,1],28),
    option(2,5,[2,4,7,10,13,17],
    [0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0],34),
    option(1,5,[1,6,9,12,16],
    [1,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0],17)], order
[1,3,2,4,6,8,7,12,13,5,9,11,10,14,16,18,17]
```


More Global Constraints

Helmut Simonis

- Data not really stored as facts
- Generated from text data files in different format
- Benchmark set from CSPLIB

(http://www.csplib.org)

29

DSV88 Example More Difficult Example

> Constraint Computation Centre

> > 31

Helmut Simonis	More Global Constraints
Problem	

Program Search DSV88 Example

Improved Search Strategy
Assignment Step 4

DSV88 Example

Assignment Step 40

Cork onstraint omputation Centre

Heimut Simonis	More Global Cons

traints

DSV88 Example

33

Assignment Step 83

DSV88 Example More Difficult Example

Another Example (PR97)

- 100 cars
- 22 types
- 5 options
 - Option 1: 1 out of 2
 - Option 2: 2 out of 3
 - Option 3: 1 out of 3
 - Option 4: 2 out of 5
 - Option 5: 1 out of 5

35

Problem Program

Search Improved Search Strategy

More Difficult Example

More Global Constraints

Helmut Simonis

Second Example: Car Types

	Cars		(Optior	1	
Туре	Required	1	2	3	4	5
1	6	1	0	0	1	0
2	10	1	1	1	0	0
3	2	1	1	0	0	1
4	2	0	1	1	0	0
5	8	0	0	0	1	0
6	15	0	1	0	0	0
7	1	0	1	1	1	0
8	5	0	0	1	1	0
9	2	1	0	1	1	0
10	3	0	0	1	0	0
11	2	1	0	1	0	0
12	1	1	1	1	0	1
13	8	0	1	0	1	0
14	3	1	0	0	1	1
15	10	1	0	0	0	0
16	4	0	1	0	0	1
17	4	0	0	0	0	1
18	2	1	0	0	0	1
19	4	1	1	0	0	0
20	6	1	1	0	1	0
21	1	1	0	1	0	1
22	1	1	1	1	1	1

- This does not look good
- Typical thrashing behaviour
- We made a wrong choice at some point
- ... but did not detect it
- Many additional choices are made before failure is detected
- We have to explore the complete tree under the wrong choice
- This is far too expensive

Change of Search Strategy

- Do not label car slot variables
- Decide instead if slot should use an option or not

Problem Program Search

Improved Search Strategy

- This restricts the car models which can be placed in this slot
- Start with the most restricted option
- When all options are assigned, the car type is fixed
- Potential problem: We now have 500 instead of 100 decision variables
- Naive searchspace 2⁵⁰⁰ = 3.2e150 instead of 22¹⁰⁰ = 1.7e134

Helmut Simonis	More Global Constraints 39
Problem	
Program	
Search	
Improved Search Strategy	
Second Modification	

- Instead of assigning values left to right
- Start assigning in middle of board
- And alternate around middle until you reach edges
- Idea: Slots at edges are less constrained, i.e. easier to assign
- Save those slots until the end
- We already encountered this idea for the N-Queens problem

Cork onstraint omputation Problem Program

Improved Search Strategy

Modified Search

Constraint Computation Centre

Helmut Simonis More Global Constraints

41

Problem Program Search Improved Search Strategy

Assignment Step 2

Assignment Step 28

Constraint Computation Centre

Helmut Simonis

More Global Constraints

43

Assignment Step 119

Problem Program Search Improved Search Strategy Observations

- Important to start in middle
- Making hard choices first
- Concentrate on difficult to satisfy sub-problem
- Number of choices is much smaller than number of variables
- Some assignments lead to a lot of propagation

		Constraint Computation Centre
Helmut Simonis	More Global Constraints	45
Problem		
Search		
Improved Search Strategy		
Conclusions		

- Introduced global constraint sequence
- Reuse gcc and element
- Search on auxiliary variables can work well
- Raw search space measures are unreliable
- Modelling idea
 - Decide what to make in a given time slot
 - ... and not when to schedule some given activity

Cork

Making gcc Domain Consistent

```
X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),
      gcc(0,4,4),gcc(1,3,5)],
      [X1,X2,X3,X4,X5]),
```


- Express constraint as max-flow problem
- Any flow solution corresponds to a valid assignment
- Only work with one flow solution
- Obtain all others by considering
 - residual graph and
 - strongly connected components
- Classical method, faster methods exist
- Use of max flow based propagators for many constraints

©ork onstraint

Start with Value Graph

Helmut Simonis

More Global Constraints

49

Making gcc Domain Consistent

Convert to Flow Problem

Find Maximal Flow

Helmut Simonis

More Global Constraints

51

Making gcc Domain Consistent

Mark Value Edges in Flow

Residual Graph

Constraint Computation Centre

Helmut Simonis

More Global Constraints

53

Making gcc Domain Consistent

Find Strongly Connected Components

Mark Edges

Helmut Simonis

More Global Constraints

55

Making gcc Domain Consistent

Remove Unmarked Edges

Making gcc Domain Consistent

Constraint is Domain Consistent

57

Helmut Simonis

More Global Constraints

Making gcc Domain Consistent
More Information

 Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the car-sequencing problem in constraint logic programming. In *ECAI*, pages 290–295, 1988.
 Jean-Charles Regin and Jean-Francois Puget. A filtering algorithm for global sequencing constraints. In Gert Smolka, editor, *CP*, volume 1330 of *Lecture Notes in Computer Science*, pages 32–46. Springer, 1997.

More Information

Christine Solnon, Van Dat Cung, Alain Nguyen, and Christian Artigues. The car sequencing problem: overview of state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem. <i>European Journal of Operational Research</i> , Volume 191:912–927, December 2008.	
 Willem Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal. Revisiting the sequence constraint. In Frederic Benhamou, editor, <i>CP</i>, volume 4204 of <i>Lecture</i> <i>Notes in Computer Science</i>, pages 620–634. Springer, Constraint 2006. 	
Helmut Simonis More Global Constraints 59	

Making gcc Domain Consistent

More Information

Michael J. Maher, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh.

Flow-based propagators for the sequence and related global constraints.

In Peter J. Stuckey, editor, *Principles and Practice of Constraint Programming, 14th International Conference, CP 2008, Sydney, Australia, September 14-18, 2008. Proceedings*, pages 159–174.

