
ECLiPSe

Visualisation Manual

Release 6.1

Kish Shen (IC-Parc)
Josh Singer (Parc Technologies Ltd.)

Andrew Sadler (IC-Parc)

January 27, 2018

Trademarks

Java is a trademarks of Sun Microsystems, Inc.
c© 2002 – 2006 Cisco Systems, Inc.

Contents

Contents i

1 Introduction 1

2 Program annotation 3
2.1 Viewables . 3

2.1.1 2D and beyond . 4
2.1.2 Growth . 5
2.1.3 Types . 6
2.1.4 Named dimensions . 6
2.1.5 Structured data . 7
2.1.6 Solver variables . 8

3 Visualisation clients 11
3.1 Control . 11
3.2 Viewlets . 12
3.3 Viewers . 13

3.3.1 Options menu . 14
3.3.2 Select menu . 16
3.3.3 View menu . 17
3.3.4 Viewlet actions . 17
3.3.5 Desktop/Network viewers . 17
3.3.6 Adding images . 19
3.3.7 Layout . 21
3.3.8 Gantt charts . 22
3.3.9 Printing . 22

3.4 Scenarios . 22

Index 24

i

ii

Chapter 1

Introduction

This manual contains information on the modelling level search and propagation visualisation
tools available in ECLiPSe.
In order to investigate the behaviour of your constraint logic programs at a level of abstraction
above that provided by the source level debugger, ECLiPSe provides the following visualisation
tools.

1

2

Chapter 2

Program annotation

When visualising CLP program behaviour, not all the variables of the program are of interest.
ECLiPSe supports the concept of a set of viewable variables whose state over the course of
a program run are of interest to the user. The library lib(viewable) contains the annotation
predicates that allow a programmer to define (and expand) these viewable sets.

2.1 Viewables

By collecting together related program variables into a logical, multidimensional array-like struc-
ture called a viewable, the user can view the changing state of these variables in a number of
ways using the provided visualisation clients (these will be covered in depth later (section 3)).
As an example of how to annotate an ECLiPSe program, consider the following classic crypto-
graphic example, SEND+MORE=MONEY

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

Digits :: [0..9],

Carries = [C1,C2,C3,C4],

Carries :: [0..1],

alldifferent(Digits),

S #\= 0,

M #\= 0,

C1 #= M,

C2 + S + M #= O + 10*C1,

C3 + E + O #= N + 10*C2,

C4 + N + R #= E + 10*C3,

D + E #= Y + 10*C4,

labeling(Carries),

labeling(Digits).

It is hopefully clear from the code that this formulation of the classic puzzle uses four variables
[C1,C2,C3,C4] to indicate the carry digits. If we suppose that the user is only interested in
the behaviour of the program with respect to the primary problem variables, which in this case

3

corresponds to the variables [S,E,N,D,M,O,R,Y], then we can annotate the program code by
declaring a viewable which contains these variables.

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

Digits :: [0..9],

viewable_create(digits, Digits),

...

...

labeling(Carries),

labeling(Digits).

As can be seen, viewables are declared using the viewable create/2 predicate, the first pa-
rameter of which is an atom which will be used to uniquely identify the viewable later, and the
second argument is a (possibly nested) list of variables.
Declaring viewables has little performance overhead when running code normally (that is to
say, without any visualisation clients), and so it is safe to leave the visualisation annotations in
the code even when not visualising.

2.1.1 2D and beyond

In the previous example, the created viewable was a simple one dimensional structure, it is
possible however to create multi-dimensional structures if the problem variables are so related.
For example one could choose to group the variables in a way that mirrors the problem structure,
for example a 2D array representing the equation

S E N D
+ M O R E

M O N E Y

would be the array

0 S E N D

0 M O R E

M O N E Y

and would be declared in the program as nested lists

viewable_create(equation,[[0, S, E, N, D],[0, M, O, R, E],[M, O, N, E, Y]]

or it could be declared in the program using ECLiPSe array syntax

viewable_create(equation,[]([](0, S, E, N, D),

[](0, M, O, R, E),

[](M, O, N, E, Y)))

Three points should be noted here,

1. viewable create/2 accepts both nested lists and arrays.

2. Variables may occur more than once in viewable.

3. Constants may occur in viewables.

4

2.1.2 Growth

So far we have introduced only static (or fixed dimension) viewables, but it is conceivable
that during the course of program runs new variables may be introduced which the user has
an interest in looking at. In order to accommodate this, viewables may be declared as having
flexible dimensions.
To declare a viewable with flexible dimensions, the three argument form of the view-
able create/3 predicate is used. The third argument specifies the type of the viewable and
at present the type must be of the form array(FixityList, ElementType) where

FixityList is a list with an atom fixed or flexible specifying the fixity for each dimension.
The fixity denotes whether the dimension’s size is fixed or may vary during the time when
the viewable is existent.

ElementType is a term which specifies the type of the constituent viewable elements. Currently
there are two supported element types:

any which includes any ECLiPSe term.

numeric_bounds which includes any ground number, integer fd variables, ic variables and
range variables (including eplex and ria variables).

Let us expand our example by assuming that, during the program run our user is only interested
in the digit variables but once labelling has finished they wish to also see the carry variables.
Clearly the user is free to simply print out the carry variables after completing the labelling,
but within the visualisation framework they may also expand the viewable by adding the carry

digits to it. The code to do this is

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

Digits :: [0..9],

viewable_create(equation,

[]([](0, S, E, N, D),

[](0, M, O, R, E),

[](M, O, N, E, Y)),

array([flexible,fixed], any)),

...

...

labeling(Carries),

labeling(Digits),

viewable_expand(equation, 1, [C1, C2, C3, C4, 0]).

Once declared as flexible, dimensions may be expanded by the viewable expand/3 predicate.
The predicate specifies which dimension to expand and which values should be added. Had the
viewable been 3 dimensional, then the values to be added would need to be 2 dimensional. In
general for an N dimensional viewable, when expanding a flexible dimension, the values to be
added must be N-1 dimensional arrays or nested lists.
As with viewable create/2 and viewable create/3, viewable expand/3 silently succeeds
with little overhead at runtime, so it too may be left in code even when not visualising.

5

2.1.3 Types

As mentioned briefly in the previous section, viewables have a type definition which determines
what sort of values may be stored in them. This type information allows visualisation clients to
render the values in a fitting manner.

Explicitly stating that the variables in a viewable are numeric_bounds where known will increase
the number of ways in which the viewable elements may be viewed.

2.1.4 Named dimensions

Each position in a viewable’s dimension has an associated name. By default, these names are
simply the increasing natural numbers starting from “1”. So, for example, in the previous code
samples the variable R would be at location ["2","4"].

By using the most expressive form, the viewable create/4 predicate allows the user to assign
their own symbolic names to dimension locations.

In our ongoing example, we could name the first dimension positions ["send",

"more", "money"] and the second dimension positions ["ten thousands", "thousands",

"hundreds", "tens", "units"].

A version of viewable expand/4 exists also which allows the user to assign a name to the new
position of an expanded dimension.

Our completed example now looks like this

:-lib(viewable).

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

Digits :: [0..9],

viewable_create(equation,

[]([](0, S, E, N, D),

[](0, M, O, R, E),

[](M, O, N, E, Y)),

array([flexible,fixed], numeric_bounds),

[["send", "more", "money"],

["ten thousands", "thousands",

"hundreds", "tens", "units"]]),

Carries = [C1,C2,C3,C4],

Carries :: [0..1],

alldifferent(Digits),

S #\= 0,

M #\= 0,

C1 #= M,

C2 + S + M #= O + 10*C1,

C3 + E + O #= N + 10*C2,

C4 + N + R #= E + 10*C3,

D + E #= Y + 10*C4,

labeling(Carries),

labeling(Digits),

6

viewable_expand(equation, 1, [C1, C2, C3, C4, 0], "carries").

2.1.5 Structured data

In an effort to increase the ease with which program behaviour can be viewed and to provide
tighter integration between ECLiPSe modules, data held in graph structures can also be anno-
tated.
The following code demonstrates how a simple graph structure from the lib(graph algorithms)
library can be used to define a viewable.

:-lib(graph_algorithms).

:-lib(viewable).

:-lib(ic).

test:-

make_graph(7,

[e(1,2,F12), e(2,3,F23), e(2,4,F24), e(3,5,F35),

e(4,5,F45), e(4,6,F46), e(5,6,F56), e(6,3,F63),

e(6,7,F67)],

Graph),

Flows = [F23,F24,F35,F45,F46,F56,F63],

Flows :: 0..5,

(for(Node, 2, 6), param(Graph) do

graph_get_incoming_edges(Graph, Node, InEdges),

graph_get_adjacent_edges(Graph, Node, OutEdges),

(foreach(e(_From, _To, Flow), InEdges),

foreach(Flow, InFlow) do true),

(foreach(e(_From, _To, Flow), OutEdges),

foreach(Flow, OutFlow) do true),

sum(InFlow) #= sum(OutFlow)

),

F12 #= 9,

viewable_create(flow_viewable, Graph, graph(fixed),

[node_property([0->[name(nodes), label]]),

edge_property([0->[name(edges), label]])

]),

labeling(Flows).

This simple network flow problem uses the graph structure to hold the problem variables and
also to define the network topology. Note the single viewable create/4 statement immediately
before the labeling step.
As with the regular list/array based viewable create calls, the first argument specifies the view-
able name and the structure containing the variables of interest (in this case the graph) comes
second. The third argument defines the type as being a graph whose structure is fixed (as all
graph algorithms graphs are). Currently only fixed graphs are supported. The final (optional)

7

argument defines a mapping between the node/edge structures within the graph and properties
useful for visualisation. The table below outlines the currently supported properties.
markup meaning applicability required

name(String) A unique name to refer to this property both yes

label This property should be used as the node/edge
text label

both yes

For more control over the display of graphs structures, consider using the lib(graphviz) li-
brary.

2.1.6 Solver variables

The program annotations shown so far will work with most solvers in ECLiPSe but not all.
Generally speaking if the solver operates by monotonically reducing the domain of its variables
then no further annotations are required. There are solvers however which do not manipulate
variables in this way. For instance the lib(eplex) library uses ECLiPSe program variables as
handles to the values calculated by an external solver. When solutions are found by the external
solver, the ECLiPSe variables are not (always) instantiated but rather must be queried to obtain
their values.

In order to facilitate the visualisation of such variables, the same viewablecreation annotations
can be used, but the name of the solver must be given explicitly. As an example consider the
following lib(eplex) model of a simple transportation problem involving 3 factories 1,2,3 and
4 clients A,B,C,D taken from the ECLiPSe examples web page.

%--

% Example for basic use of ECLiPSe/CPLEX interface

%

% Distribution problem taken from EuroDecision chapter in D4.1

%--

:- lib(eplex_xpress).

:- eplex_instance(foo).

%--

% Explicit version (clients A-D, plants 1-3)

%--

main(Cost, Vars) :-

Vars = [A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, D3],

foo:(Vars :: 0.0..10000.0), % variables

foo:(A1 + A2 + A3 $= 200), % demand constraints

foo:(B1 + B2 + B3 $= 400),

foo:(C1 + C2 + C3 $= 300),

foo:(D1 + D2 + D3 $= 100),

foo:(A1 + B1 + C1 + D1 $=< 500), % capacity constraints

8

foo:(A2 + B2 + C2 + D2 $=< 300),

foo:(A3 + B3 + C3 + D3 $=< 400),

foo:eplex_solver_setup(

min(% solve

10*A1 + 7*A2 + 11*A3 +

8*B1 + 5*B2 + 10*B3 +

5*C1 + 5*C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3)),

foo:eplex_solve(Cost).

Adding the following line immediately before the call to eplex_solve/1 indicates that the
solution values computed by the eplex instance foo are of interest. Note the element type field
of the third argument says that the values of interest may be changed by the solver foo. Further
note that you will need to load the viewablelibrary inorder to access these annotations.

viewable_create(vars, Vars

array([fixed], changeable(foo, any))),

This changeable element type can appear in any form of the annotations, so as another example,
the following annotation gives more structure to the variables.

viewable_create(vars, []([](A1, A2, A3),

[](B1, B2, B3),

[](C1, C2, C3),

[](D1, D2, D3)),

array([fixed,fixed], changeable(foo, any))),

As a final example, adding these two lines will make the structure of the problem even more
explicit.

make_graph_symbolic([](’A’,’B’,’C’,’D’,1,2,3),

[edge(1,’A’,A1),edge(2,’A’,A2),edge(3,’A’,A3),

edge(1,’B’,B1),edge(2,’B’,B2),edge(3,’B’,B3),

edge(1,’C’,C1),edge(2,’C’,C2),edge(3,’C’,C3),

edge(1,’D’,D1),edge(2,’D’,D2),edge(3,’D’,D3)],G),

viewable_create(network, G, graph(fixed,changeable(foo,graph_data))),

9

viewable create/2/3/4 used to group problem variables for visualisation purposes.
Groupings referred to as viewables.

viewable expand/3/4 viewables can be of a fixed size, or can expand and shrink.

types elements of a viewable may be defined as being numeric values or may be any
ECLiPSeterm. The type of a viewable will determine how it can be visualised.

structure interesting variables contained within graph structures can be directly anno-
tated using the graph(static) viewable type.

Figure 2.1: Overview of program annotation

10

Chapter 3

Visualisation clients

To visualise the viewables of an annotated program, the library lib(java vc) provides a Java
based graphical visualisation client.

A new Java visualisation client (Java VC) can be started from the tools menu of tkECLiPSe
or using the predicate start vc/1 in lib(java vc). The single argument will return a unique
name for the created client which can be used to close the client if required. While the Java VC
is running, it will react automatically to the creation of viewables during ECLiPSe execution,
but it cannot visualise viewables which were created before the Java VC was running.

Figure 3.1: The initial Java VC screen before any viewables have been created.

3.1 Control

When running a visualisation-annotated ECLiPSe program with a Java VC attached, control
of the ECLiPSe process may pass between ECLiPSe and the VC throughout the program run.
That is to say at certain key events in the program, ECLiPSe will pause in its running of the
program and wait for user interaction with the VC before continuing. In such circumstances,
the VC is said to hold the control.

Table 3.1 details the default behaviour for each of the visualisation events which may occur, and
indicates whether or not this default behaviour can be altered.

11

Event Triggered by Default hold Alterable

viewable creation viewable create/2 viewable create/3
viewable create/4

yes no

viewable expansion viewable expand/3 view-
able expand/4

no yes

viewable contraction Backtracked over a viewable expansion no yes

viewable destruction Backtracked over a viewable creation yes yes

forward update One or more elements in a viewable have
been updated, ie. had their domain re-
duced or have been instantiated

no yes

backward update A forward update has been backtracked
over

no yes

Table 3.1: VC default behaviour for visualisation event.

Should the VC hold, control can be passed back to ECLiPSe by pressing the Resume button
at the bottom of the VC window, or by setting the auto resume timer. The Resume button
and the auto resume timer are disabled when ECLiPSe has control, see Figure 3.2.

Figure 3.2: The VC showing the auto resume menu option and timer slider.

3.2 Viewlets

The Java VC provides many ways of visualising any single element of a viewable.

1. Textually, as though the element had been printed with write/1. This is suitable for all
viewable types.

2. As a rectangular bar on a scale representing the current bounds of a numeric bounds type
viewable element. Bounds viewlets can be aligned either vertically or horizontally.

3. As a node in a graph, similar to the simple textual representation but enclosed in a
geometric shaped node.

12

4. As an edge in a graph, with the textual representation attached as a label to the edge.

5. With a colour which varies in shade and hue in response to events occurring on the variable.

When rendered on the screen these representations are referred to as viewlets. Figure 3.3 shows
the same variable rendered using a number of viewlet types.

Figure 3.3: The FD variable with initial domain 0..10, reduced to 3..5 as rendered by text,
bound, node and fade viewlets.

3.3 Viewers

The Java VC currently contains five different methods for rendering an entire viewable. Each
of these methods can be thought of as a window looking onto the viewable and is referred to
as a viewer.

Upon a viewable being created, the user is presented with a dialog box asking which of the
available viewers they wish to view the viewable with.

The currently available viewers are

TextTable Renders any type of 1D and 2D viewables as a grid of textual descriptions of the
elements.

BoundsTable Renders numeric bounds 1D and 2D viewables as a grid of rectangles repre-
senting the size of the numeric domains.

FadeTable Renders 1D and 2D viewables as a grid of coloured rectangles whose colour changes
represent domain changes in the viewable elements.

Desktop Allows the user to place all available representations of the viewable elements any-
where on a desktop window. Also enables the loading of an arbitrary background image
from file, and for placing images alongside viewlets.

Network Renders graph(fixed) viewables graphically as connected nodes, where the textual
representation of the viewable elements is displayed at nodes and along edges.

Network (0/1) Similar to the Network viewer except that if the edge annotation can be inter-
preted as the number 0, then the edge is not drawn. If it can be interpreted as the number
1, it is drawn in black. Any other value has the edge draw in gray.

Network (Capacity) Similar to the Network viewer except that the edge labels are interpreted
as fractions indicating the capacity of a link in a flow network. 0.0 indicating unused (thin

13

black line) up to 1.0 indicating full usage (thick black line) and any number greater than
one indicating over utilisation (very think red line). If the edge data cannot be interpreted
as a number (eg. it is a variable) it is assumed to be 0.

Gantt Interprets the first three rows of any 2D viewable with numeric_bounds elements (and at
least 3 rows) as being the start times, durations and resource requirements of a scheduling
problem. The resulting schedule/partial schedule is rendered as a gantt chart.

Bar chart Renders any n-dimensional numeric_bounds viewable as a bar chart. Extra dimen-
sions will be separated by gaps in the chart.

Figure 3.4: The VC showing some of the applicable viewers for the SEND+MORE=MONEY example.

Common to all viewers are the three menus Options, Select and View, the latter two also
being accessible by pressing the right mouse button.

3.3.1 Options menu

The options menu contains controls for viewer-wide properties.

Hold at expansions Determines whether this viewer will hold control when the viewable is
expanded.

Hold at contractions Determines whether this viewer will hold control when the viewable
is contracted.

Hold at destruction Determines whether this viewer will hold control when the viewable
is destroyed. This option is useful for examining the state of the viewable immediately
before the creation is backtracked over.

14

Figure 3.5: The VC showing the network viewer displaying the graph example.

Figure 3.6: The VC showing various viewers for the changeable solver example.

15

View propagation steps Controls how frequently the visualisation client is informed of for-
ward update events.

fine Events are sent as soon as they occur.

coarse Events are sent at priority 8 in the ECLiPSe program. Typically this means that
all the propagation that occurs as a result of a single user level search step are sent
together.

timed Events are collected and sent at regular timed intervals.

Track updates When set, the viewer will attempt to ensure that all updates are visible within
the window. This can be important when visualising large viewables which may not easily
fit the window.

Figure 3.7 shows the default settings for the Options menu. Note that the View propagation
steps options are disabled because ECLiPSe has control and the update granularity can only
be changed when the Java VC is holding control.

Figure 3.7: The options menu, common to all viewers.

3.3.2 Select menu

Contains convenience commands for dealing with the currently selected set of viewlets.

Selecting individual viewlets can be done clicking on them with the left mouse button, whilst
selecting ranges can be done by dragging the mouse across a range of viewlets.

Select all viewlets Sets the selection to the entire viewable.

Select updating viewlets(s) Sets the selection to only those viewlets which have been
marked as updating (either forward or backward). This option is only enabled when
the Java VC has control, since it requires the state of the viewables to remain constant
during the selection process.

Clear selection Clears the selection.

Figure 3.8: The select menu, common to all viewers.

16

3.3.3 View menu

So as to facilitate visualisation of large viewables, all viewers have the ability to zoom in
and out. All the options are self explanatory and will not be expanded further upon except to
mention that the Zoom to fit width and Zoom to fit height options operate on the whole
viewer and not just the selected viewlets.

Figure 3.9: The view menu, common to all viewers.

Both the network and desktop viewers have an extra item on the view menu, Toggle high quality.
This toggles between quick rendering and high quality views, and may help to make the VC
more reactive under high load.

3.3.4 Viewlet actions

Within a viewer, as previously mentioned, any number of viewlets may be selected. These
viewlets, once selected can have actions performed on them. The actions are selected by pressing
the right mouse button in order to bring up the context sensitive actions menu. If the viewlets
in the selection are of different types then all the available actions are displayed and once one has
been selected, it will be applied to all applicable viewlets in the selection. This is a change from
previous versions of the visualisation client, which would display only those actions common to
all viewlets.

Hold on update

The most common action, which can be performed on any type of viewlet is the Hold on updates

action, which, when set, indicates that the Java VC should hold control whenever any sort of
update event is issued for the corresponding viewable element. The Hold on updates property
of a viewlet is indicated by a slight “greying” out of the viewlet, or in the case of viewlets
attached to edges in the network viewer, the edge is drawn “dotted” instead of solid.

Figure 3.10 shows the graphical effect of setting the Hold on update property of a text viewlet.

Table 3.2 lists the available viewlet actions and indicates for which type the actions are valid.

3.3.5 Desktop/Network viewers

All the table viewers have essentially the same functionality – they do not allow flexible place-
ment of viewables and both deal only with 1 or 2 dimensional viewables. A more flexible
viewer is provided in the Desktop viewer.

This viewer aims to implement the common desktop metaphor by providing the user with a
rectangular region of the screen upon which viewlets can be dropped, stacked and moved around
as though they were pieces of paper on a desk.

17

Figure 3.10: The sequence of actions required to select Hold on update for a viewlet

Name Description Applicable

Hold on updates Causes the VC to hold control on forward
or backward update events for the selected
viewlets.

all

Fade update history Toggles using the background color of the
viewlet to indicate recent update history.
This has the effect of fading from green to
white in the event of a forward update and
from red to white for backward updates.

text, node, fade, edge

View bounds in detail Pops up a window detailing the original
bounds and the current bounds for the sin-
gle selected viewlet.

bound

Align bounds Causes the selected viewlets to use the
same underlying scale when displaying the
bounds. This allows variables whose ini-
tial bounds were different to be visually
compared.

bound

Toggle horizontal/vertical range bar Toggles the rotation of the bar for all
bounds viewlets

bound

Table 3.2: The available viewlet actions and associated types.

18

Adding viewlets

Typically, viewlets will be added to a desktop immediately after the viewer has been created.
To minimise the overhead of having to layout the viewlets each time the user’s program is run
(a potentially time consuming task), the Java VC provides an automatic recording and repeat

mechanism which is triggered every time a viewer is created. Section 3.4 explains this feature
in more detail.
Adding viewlets to a Desktop viewer is done by selecting the required viewlet type from the
Insert menu. This menu will contain only those viewlet types which are appropriate for the
type of the viewable.
Once an appropriate viewlet type has been selected, the range selection dialog will pop up,
from which any combination of dimension ranges may be selected.
Figure 3.11 shows the range select dialog for the on going SEND+MORE=MONEY example.

Figure 3.11: The range selection dialog for the SEND+MORE=MONEY example

At least one selection must be made from each of the dimensions, though it is possible to select
multiple values in each dimension.
Figures 3.12 and 3.13 illustrate the default layout of viewlets when 1 and 2 dimensional ranges
are selected. The desktop will automatically resize to ensure that all viewlets fit. Attempts to
move a viewlet off the desktop will cause it to grow.
Higher dimension range selections result in a stacked 2D grid, with progressive dimensions
appearing underneath the initially visible grid.

3.3.6 Adding images

As well as viewlets, the Desktop viewer can show icons loaded from disk by selecting the
Image option from the Insert menu. This brings up a file selection dialog from which the user
may select an image file to load. The loaded image will be added to the viewer as a small icon
which is selectable and movable like other items on the desktop. Currently there is no way to
increase the size of the loaded image.

Background images

In keeping with the computer GUI desktop metaphor, the user may set the background image
for the desktop viewer. Aside from making the viewer look pretty this feature is intended to
allow graphical context to be associated with the visualisation of a program. For example the
background image could be a diagram representing the network topology and the values being
visualised could be the flows through various parts of the network. By placing the viewlets

19

Figure 3.12: The result of selecting a 1D range

Figure 3.13: The result of selecting a 2D range

20

near the appropriate nodes on the background image the user could more easily visualise the
network flow problem.

Background images are loaded by selecting the Import background image option from the
Background menu and are removed by selecting the Clear background option. Currently
only GIF, PNG and JPEG format images can be loaded.

In keeping with our SEND+MORE=MONEY example, figure 3.14 shows the problem visualised on a
desktop viewer, placed over a background image1.

Figure 3.14: The SEND+MORE=MONEY example displayed on a Desktop viewer with a background
image

3.3.7 Layout

Items on the desktop may be manually positioned by selecting (single click) and dragging (click-
and-move) them. New items may be added to the current selection by holding down the Ctrl
key whilst clicking with the left mouse button. Ranges of items are selected by clicking on the
background of the desktop and dragging a selection rectangle around the desired items. When
dragging a selection all items move, except lines on the Network viewer.

It is also possible to use one of the automatic layout options available from the Graph menu.
These options make use of the external graph layout tools dot, neato and twopi from the AT&T
Labs Research project Graphviz 2. These tools should be automatically installed as part of the
ECLiPSe installation procedure.

1Background image c©1999-2003 www.barrysclipart.com
2http://www.research.att.com/sw/tools/graphviz/

21

3.3.8 Gantt charts

The Gantt chart viewer has many of the same options as the Network viewer previously men-
tioned but in addition, the Gantt menu provides access to options that control how transparent
the individual gantt task bars are drawn. By selecting the transparent option, regions where
tasks overlap will be rendered in a darker colour. The darker the colour, the more tasks overlap
there.

When either the start time or the duration of a task is a variable, then the task will be draw
as two connected bars indicating the earliest & shortest possible occurrence of the task and the
latest & longest possible occurrence.

Above the gantt chart is a numeric scale indicating time. By clicking and dragging this scale
can be expanded or shrunk so as to fit the gantt chart into the window. This feature works
independently of the zoom.

Figure 3.15: The VC showing the Gantt viewer for a scheduling example. Note the highlighted
task showing the earliest start/shortest and latest/longest times of the task.

3.3.9 Printing

To print the current state of almost all viewers, right-click on the background and select the
Print option from the popup menu. This will bring up the print dialog as shown in figure 3.16.

3.4 Scenarios

To make the process of setting up the visualisation environment and the laying out of viewers
and viewlets quicker, the Java VC provides a record and playback feature where all user visible
changes and actions that are performed following the creation of a viewable are recorded in a

22

Figure 3.16: The print options dialog box.

visualisation scenario. This action sequence can then be optionally re-played the next time a
viewable of the same name is created.
The common use case is as follows.

1. Start Java VC.

2. Run program which creates viewable “foo” for the first time.

3. Select viewers for “foo”.

4. Arrange viewer windows on screen, resize and scale to taste. Optionally insert and layout
viewlets on a Desktop viewer.

5. Press Resume button to continue running program.

6. Watch visualisation of program run until viewable is destroyed (ie. is backtracked over).

7. Re-run program, after having made some changes.

8. Answer yes to the prompt to reinstate visualisation preferences for viewable “foo”.

9. Watch as things magically re-arrange themselves into the configuration you previously had.

10. (optional) Make some more layout changes.

11. Press Resume again.

12. Repeat.

To make long running visualisation projects easier and also to assist in running demonstrations,
these visualisation preferences can be saved to disk and loaded back into memory at any time.
The loading and saving of scenarios is achieved by using the Load and Save options of the File
menu. The most common point at which a scenario is saved is just after laying out all the
viewers and just before passing control back to ECLiPSe. It should be noted that the scenarios
(settings) for many different viewables can be saved into/loaded from a single file, this is to aid
visualisation of large programs.

23

Index

eplex, 5

fd, 5

ic, 5

lib(eplex), 8
lib(graph_algorithms), 7
lib(graphviz), 8
lib(java_vc), 11
lib(viewable), 3

range, 5
ria, 5

start_vc/1, 11

viewable, 3–14, 16, 17, 19, 22, 23
viewable_create/2, 4, 5, 12
viewable_create/3, 5, 12
viewable_create/4, 6, 7, 12
viewable_expand/3, 5, 12
viewable_expand/4, 6, 12

write/1, 12

24

	Contents
	Introduction
	Program annotation
	Viewables
	2D and beyond
	Growth
	Types
	Named dimensions
	Structured data
	Solver variables

	Visualisation clients
	Control
	Viewlets
	Viewers
	Options menu
	Select menu
	View menu
	Viewlet actions
	Desktop/Network viewers
	Adding images
	Layout
	Gantt charts
	Printing

	Scenarios

	Index

