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Chapter 1

Introduction

1.1 What is ECLiPSe ?

ECLiPSe (ECLiPSe Common Logic Programming System) is a Prolog based system whose aim
is to serve as a platform for integrating various Logic Programming extensions, in particular
Constraint Logic Programming (CLP). The kernel of ECLiPSe is an efficient implementation
of standard (Edinburgh-like) Prolog as described in basic Prolog texts [2]. It is built around
an incremental compiler which compiles the ECLiPSe source into WAM-like code [13], and an
emulator of this abstract code.

1.2 Overview

The ECLiPSe logic programming system was originally an integration of ECRC’s SEPIA, Mega-
Log and (parts of the) CHIP systems. It was then further developed into a Constraint Logic
Programming system with a focus on hybrid problem solving and solver integration. The docu-
mentation is organised as follows:

The User Manual describes the functionality of the ECLiPSe kernel (this document).

The Constraint Library Manual describes the major ECLiPSe libraries, in particular the
ones implementing constraint solvers.

The Interfacing and Embedding Manual describes how to interface ECLiPSe to other pro-
gramming languages, and in particular how to embed it into an application as a component.

The Reference Manual contains detailed descriptions of all the Built-in predicates and the li-
braries. This information is also available from the development system’s help/1 command
and the tkeclipse library browser.

The Visualisation Manual describes the facilities for the visualisation of constraint propa-
gation and search.

All the documentation can be accessed using an html browser (refer to the eclipse installation
directory under doc/index.html).
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1.3 Further Information

ECLiPSe was initially developed at the European Computer-Industry Research Centre (ECRC)
in Munich, and then at IC-Parc, Imperial College in London until the end of 2005. It is now an
open-source project, with the support of Cisco Systems. Up-to-date information can be obtained
from the ECLiPSe web site

http://eclipseclp.org

or from the Sourceforge site under the project name eclipse-clp

http://www.sourceforge.net/projects/eclipse-clp

which also hosts the main source repository. There you can also subscribe to the ECLiPSe user
group mailing list or access its archives

eclipse-clp-users@lists.sf.net

1.4 Reporting Problems

In order to make ECLiPSe as useful and reliable as possible, we would like to encourage users
to submit problem reports via the web site

http://eclipseclp.org/bugs.html

or by e-mail to

eclipse-clp-bugs@lists.sf.net
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Chapter 2

Terminology

This chapter defines the terminology which is used throughout the manual and in related doc-
umentation.

+X This denotes an input argument. Such an argument must be instantiated before a built-in
is called.

++X This denotes a ground argument. Such an argument can be complex, but must be fully
instantiated, i.e., not contain any variables.

−X This denotes an output argument. Such an argument must be not instantiated before a
built-in is called.

?X This denotes an input or an output argument. Such an argument may be either instantiated
or not when a built-in is called.

Arity Arity is the number of arguments to a term. Atoms are considered as functors with zero
arity. The notation Name/Arity is used to specify a functor by giving its name and arity.

Atom An arbitrary name chosen by the user to represent objects from the problem domain.
A Prolog atom corresponds to an identifier in other languages. It can be written as a
conventional identifier (beginning with a lower-case letter), or a character sequnce enclosed
in single quotes.

Atomic An atom, string or a number. A term which does not contain other terms.

Body A clause body can either be of the form

Goal_1, Goal_2, ..., Goal_k

or simply

Goal

Each Goal i must be a callable term.

Built-in Procedures These are predicates provided for the user by the ECLiPSe system, they
are either written in Prolog or in the implementation language (usually C).
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Callable Term A callable term is either a compound term or an atom.

Clause See program clause or goal clause.

Compound Term Compound terms are of the form

f(t_1, t_2, ..., t_n)

where f is the functor of the compound term, n is its arity and t i are terms. Lists and
pairs are also compound terms.

Constant An atom, a number or a string.

Determinism The determinism specification of a built-in or library predicate says how many
solutions the predicate can have, and whether it can fail. The six determinism groups are
defined as follows:

| Maximum number of solutions

Can fail? | 0 1 > 1

------------+------------------------------------------

no | erroneous det multi

yes | failure semidet nondet

This classification is borrowed from the Mercury programming language, but in ECLiPSe

only used for the purpose of documentation. Note that the determinism of a predicate
usually depends on its calling mode.

DID Each atom created within ECLiPSe is assigned a unique identifier called the dictionary
identifier or DID.

Difference List A difference list is a special kind of a list. Instead of being ended by nil, a
difference list has an uninstantiated tail so that new elements can be appended to it in
constant time. A difference list is written as List - Tail where List is the beginning of the
list and Tail is its uninstantiated tail. Programs that use difference lists are usually more
efficient and always much less readable than programs without them.

Dynamic Procedure These are procedures which can be modified clause-wise, by adding or
removing one clause at a time. Note that this class of procedure is equivalent to interpreted
procedures in other Prolog systems. See also static procedures.

External Procedures These are procedures which are defined in a language other than Prolog,
and explicitly connected to Prolog predicates by the user.

Fact A fact or unit clause is a term of the form:

Head.

where Head is a head.

A fact may be considered to be a rule whose body is always true.
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Functor A functor is characterised by its name (which is an atom), and its arity (which is its
number of arguments).

Goal Clause See query.

Ground A term is ground when it does not contain any uninstantiated variables.

Head A clause head is a structure or an atom.

Instantiated A variable is instantiated when it has been bound to an atomic or a compound
term as opposed to being uninstantiated or free. See also ground.

List A list is a special type of term within Prolog. It is a recursive data structure consisting of
pairs (whose tails are lists). A list is either the atom [] called nil as in LISP, or a pair
whose tail is a list. The notation :

[a , b , c]

is shorthand for:

[a | [b | [c | []]]]

Mode A predicate mode is a particular instantiation pattern of its arguments at call time. Such
a pattern is usually written as a predicate template, e.g.,

p(+,-)

where the symbols +, ++, - and ? represent instantiated, ground, uninstantiated and
unknown arguments respectively.

Name/Arity The notation Name/Arity is used to specify a functor by giving its name and
arity.

Number A number literal denotes a number, more or less like in all programming languages.

Pair A pair is a compound term with the functor ./2 (dot) which is written as :

[H|T]

H is the head of the pair and T its tail.

Predicate A predicate is another term for a procedure.

PredSpec This is similar to Name/Arity. Some built-ins allow the arity to be omitted and
to specify the name only: this stands for all (visible) predicates with that name and any
arity.

Program Clause A program clause (or simply clause) is either the term

Head :- Body.

(i.e., a compound term with the functor :-/2), or only a fact.
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Query A query has the same form as a body and is also called a goal. Such clauses occur mainly
as input to the top level Prolog loop and in files being compiled, then they have the form

:- Goal_1, ..., Goal_k.

or

?- Goal_1, ..., Goal_k.

The first of these two forms is often called a directive.

Regular Prolog Procedure A regular (Prolog) procedure is a sequence of user clauses whose
heads have the same functor, which then identifies the user procedure.

Simple Procedures Apart from regular procedures ECLiPSe recognises simple procedures
which are written not in Prolog but in the implementation language (i.e., C), and which
are deterministic. There is a functor associated with each simple procedure, so that any
procedure recognisable by ECLiPSe is identified by a functor, or by a compound term (or
atom) with this functor.

SpecList The SpecList notation means a sequence of PredSpec terms of the form:

name_1/arity_1, name_2/arity_2, ..., name_k/arity_k.

The SpecList notation is used in many built-ins, for example, to specify a list of procedures
in the export/1 predicate.

Static Procedures These are procedures which can only be changed as a whole unit, i.e.,
removed or replaced.

Stream This is an I/O channel identifier and can be a physical stream number, one of the
predefined stream identifiers (input, output, error, warning_output, log_output, null)
or a user defined stream name (defined using set stream/2 or open/3).

String A string is similar to those found in all other programming languages. A string is
enclosed in double quotes.

Structure Compound terms which are not pairs are also called structures.

Term A term is the basic data type in Prolog. It is either a variable, a constant or a compound
term.

Variable A variable is more similar to a mathematical variable than to a variable in some
imperative language. It can be free, or instantiated to a term, but once instantiated it
becomes indistinguishable from the term to which it was instantiated: in particular, it
cannot become free again (except upon backtracking through the point of instantiation).
The name of a variable is written in the form of an identifier that begins with an upper-case
letter or with an underscore. A single underscore represents an anonymous variable that
has only one occurrence (i.e., another occurrence of this name represents another variable).

The notation Pred/N1, N2 is often used in this documentation as a shorthand for Pred/N1,
Pred/N2.
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Chapter 3

Getting started with ECLiPSe

3.1 How do I install the ECLiPSe system?

Please see the installation notes that came with ECLiPSe. For Unix/Linux systems, these are
in the file README_UNIX. For Windows, they are in the file README_WIN.TXT.

Please note that choices made at installation time can affect which options are available in the
installed system.

3.2 How do I run my ECLiPSe programs?

There are two ways of running ECLiPSe programs. The first is using tkeclipse, which provides
an interactive graphical user interface to the ECLiPSe compiler and system. The second is using
eclipse, which provides a more traditional command-line interface. We recommend you use
TkECLiPSe unless you have some reason to prefer a command-line interface.

3.3 How do I use TkECLiPSe?

3.3.1 Getting started

To start TkECLiPSe, either type the command tkeclipse at an operating system command-
line prompt, or select TkECLiPSe from the program menu on Windows. This will bring up the
TkECLiPSe top-level, which is shown in Figure 3.1.

Note that help on TkECLiPSe and its component tools is available from the Help menu in the
top-level window. If you need more information than can be found in this manual, try looking
in the Help menu.

3.4 How do I write an ECLiPSe program?

You need to use an editor to write your programs. ECLiPSe does not come with an editor, but
any editor that can save plain text files can be used. Save your program as a plain text file, and
you can then compile the program into ECLiPSe and run it.

With TkECLiPSe, you can specify the editor you want to use, and this editor will be started
by TkECLiPSe, e.g., when you select a file in the ‘Edit’ option under the File menu. The
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Figure 3.1: TkECLiPSe top-level

default values are the value of the VISUAL environment variable under Unix, or Wordpad
under Windows. This can be changed with the Preference Editor under the Tools menu.

3.4.1 Compiling a program

From the File menu, select the Compile ... option. This will bring up a file selection dialog.
Select the file you wish to compile, and click on the Open button. This will compile the file and
any others it depends on. Messages indicating which files have been compiled and describing
any errors encountered will be displayed in the bottom portion of the TkECLiPSe window
(Output and Error Messages).

If a file has been modified since it was compiled, it may be recompiled by clicking on the make

button. This recompiles any files which have become out-of-date.

For more information on program compilation and the compiler, please see chapter 6.

3.4.2 Executing a query

To execute a query, first enter it into the Query Entry text field. You will also need to specify
which module the query should be run from, by selecting the appropriate entry from the drop-
down list to the left of the Query Entry field. Normally, the default selection of eclipse will
be fine; this will allow access to all ECLiPSe built-ins and all predicates that have not explicitly
been compiled into a different module. Selecting another module for the query is only needed
if you wish to call a predicate which is not visible from the eclipse module, in which case you
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need to select that module. (For more information about the module system, please see chapter
7.)
To actually execute the query, either hit the Enter key while editing the query, or click on the
run button. TkECLiPSe maintains a history of commands entered during the session, and these
may be recalled either by using the drop-down list to the right of the Query Entry field, or by
using the up and down arrow keys while editing the Query Entry field.
If ECLiPSe cannot find a solution to the query, it will print No in the Results section of the
TkECLiPSe window. If it finds a solution and knows there are no more, it will print it in the
Results section, and then print Yes. If it finds a solution and there may be more, it will print
the solution found as before, print More, and enable the more button. Clicking on the more

button tells ECLiPSe to try to find another solution. In all cases it also prints the total time
taken to execute the query.
Note that a query can be interrupted during execution by clicking on the interrupt button.

3.4.3 Editing a file

If you wish to edit a file (e.g., a program source file), then you may do so by selecting the
Edit ... option from the File menu. This will bring up a file selection dialog. Select the file
you wish to edit, and click on the Open button.
When you have finished editing the file, save it. After you’ve saved it, if you wish to update the
version compiled into ECLiPSe (assuming it had been compiled previously), simply click on the
make button.
You can change which program is used to edit your file by using the TkECLiPSe Preference
Editor, available from the Tools menu.

3.4.4 Debugging a program

To help diagnose problems in ECLiPSe programs, TkECLiPSe provides the tracer. This can be
invoked by selecting the Tracer option from the Tools menu. The next time a goal is executed,
the tracer window will become active, allowing you to step through the program’s execution and
examine the program’s state as it executes.
The tracer displays the current call stack and a trace log. By using the left mouse button in
the Call Stack region of the tracer window, you can bring up a menu of additional operations
you can perform on that goal, such as inspecting it, or setting a spy point on the predicate in
question. Selecting Configure filter ... from the Options menu of the tracer will launch
the conditional filter. This filter allows you to specify conditions on which the tracer should stop
at a debug port. This can be very useful for skipping over unwanted debug ports.
For more information on using the tracer, please see the online help, available by selecting
Tracer Help from the Help menu.
Other TkECLiPSe tools which are useful while using the tracer are:

• the predicate browser (available by selecting the Predicate Browser option from the
Tools menu), which is useful for setting or removing spy points on predicates, or for
setting the start tracing flag which activates the tracer when a particular predicate is
called for the first time; and

• the term inspector (available by double left clicking on a term from the stack window, or
by selecting the Inspector option from the Tools menu), which is useful for examining
and browse the arguments of a term in detail.
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• the delayed goals browser (available by selecting the Delayed Goals option from the Tools
menu), which allows you to inspect the current list of delayed goals.

• the display matrix (available either from calls in user’s code, or by interactively selecting
terms to be observed from the inspector, tracer or delay goals tools), which allows you to
monitor any changes to a term and its arguments.

More information about debugging in ECLiPSe may be found in chapter 14.

3.4.5 Getting help

More detailed help than is provided here can be obtained online for all the features of TkECLiPSe.
Simply select the entry from the Help menu on TkECLiPSe’s top-level window which corresponds
to the topic or tool you are interested in.

3.4.6 Other tools

TkECLiPSe comes with a number of useful tools. Some have been mentioned above, but here is
a more complete list. Note that we only provide brief descriptions here; for more details, please
see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code and have it compiled. This is useful
for quick experimentation, but not for larger examples or programs you wish to keep, since the
source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source files have been compiled in the
current ECLiPSe session. You can select files to edit them, or compile them individually, as well
as adding new files.

Predicate Browser

This tool allows you to browse through the modules and predicates which have been compiled
in the current session. It also lets you alter some properties of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicates selected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allowing a spy point to be placed on the
predicate and the source code viewed.

Tracer

As discussed in section 3.4.4, the tracer is useful for debugging programs. See also chapter 14.
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Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation
panel can be launched which provides arrow buttons as an alternative way to navigate the tree.

Note that while the inspector window is open, interaction with other TkECLiPSe windows is dis-
allowed. This prevents the term from changing while being inspected. To continue TkECLiPSe,
the inspector window must be closed.

Global Settings

This tool allows the setting of some global flags governing the way ECLiPSe behaves. See also
the documentation for the set flag/2 and get flag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usage of the ECLiPSe system, up-
dated at regular intervals. See also the documentation for the statistics/0 and statistics/2
predicates.

Simple Query

This tool allows the user to send a simple query to ECLiPSe even while ECLiPSe is running
some program and the Toplevel Query Entry window is unavailable. Note that the reply is
shown in EXDR format (see the ECLiPSe Embedding and Interfacing Manual).

Library Help

This tool allows you to browse the online help for the ECLiPSe libraries. On the left is a tree
display of the libraries available and the predicates they provide.

• Double clicking on a node in this tree either expands it or collapses it again.

• Clicking on an entry displays help for that entry to the right.

• Double clicking on a word in the right-hand pane searches for help entries containing that
string.

You can also enter a search string or a predicate specification manually in the text entry box
at the top right. If there is only one match, detailed help for that predicate is displayed. If
there are multiple matches, only very brief help is displayed for each; to get detailed help, try
specifying the module and/or the arity of the predicate in the text field.

3.4.7 Preference Editor

This tool allows you to edit and set various user preferences. This include parameters for how
TkECLiPSe will start up, e.g., the amount of memory it will be able to use, and an initial
query to execute; and parameters which affects the appearance of TkECLiPSe, such as the fonts
TkECLiPSe uses.
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3.5 How do I use eclipse?

3.5.1 Getting started

To start ECLiPSe, type the command eclipse at an operating system command-line prompt.
This will display something like this:

% eclipse

ECLiPSe Constraint Logic Programming System [kernel]

Kernel and basic libraries copyright Cisco Systems, Inc.

and subject to the Cisco-style Mozilla Public Licence 1.1

(see legal/cmpl.txt or eclipseclp.org/licence)

Source available at www.sourceforge.org/projects/eclipse-clp

GMP library copyright Free Software Foundation, see legal/lgpl.txt

For other libraries see their individual copyright notices

Version X.Y #Z, DAY MONTH DD HH:MM YYYY

[eclipse 1]:

The list in square brackets on the first line specifies the configuration of the running system,
i.e., the language extensions that are present. The copyright and version information is followed
by the prompt [eclipse 1]:, which tells the user that the top-level loop is waiting for a user
query in the module eclipse. The predicate help/0 gives general help and help/1 gives help
about specific built-in predicates.

3.5.2 Interacting with the top level loop

The ECLiPSe prompt [eclipse 1]: indicates that ECLiPSe is at the top level and the opened
module is eclipse. The top level loop is a procedure which repetitively prompts the user for a
query, executes it and reports its result, i.e., either the answer variable bindings or the failure
message. There is always exactly one module opened in the top level and its name is printed in
the prompt. From this point it is possible to enter ECLiPSe goals, e.g., to pose queries, to enter
an ECLiPSe program from the keyboard or to compile a program from a file. Goals are entered
after the prompt and are terminated by fullstop and newline.

The ECLiPSe system may be exited by typing CTRL-D (UNIX) or CTRL-Z + RETURN
(Windows) at the top level prompt, or by calling either the halt/0 or the exit/1 predicates.

3.5.3 Compiling a program

The square brackets [...] or the compile/1 predicate are used to compile ECLiPSe source from
a file. If the goal

compile(myfile).

or the short-hand notation

[myfile].

is called, either as a query at the top level or within another goal, the system looks for the file
myfile or for a file called myfile.pl or myfile.ecl and compiles it. The short-hand notation
may also be used to compile several files in sequence:
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[ file_1, file_2, ..., file_n ]

The compile/2 predicate may be used to compile a file or list of files into a module specified
in the second argument.
If a file has been modified since it was compiled, it may be recompiled by invoking the make/0
predicate. This recompiles any files which have become out-of-date.
For more information on program compilation and the compiler, please see chapter 6.

3.5.4 Entering a program from the terminal

Programs can be entered directly from the terminal, as well as being read from files. To do
this, simply compile the special file user. That is, [user]. or compile(user). at a top
level prompt. The system then displays the compiler prompt (which is a blank by default) and
waits for a sequence of clauses. Each of the clauses is terminated by a fullstop. (If the fullstop
is omitted the system just sits waiting, because it supposes the clause is not terminated. If
you omit the fullstop by accident simply type it in on the following line, and then proceed to
type in the program clauses, each followed by a fullstop and carriage return.) To return to the
top level prompt, type CTRL-D (UNIX), CTRL-Z + RETURN (Windows) or enter the atom
end_of_file followed by fullstop and RETURN.
For example:

[eclipse 1]: [user].

source_processor.eco loaded in 0.01 seconds

...

ecl_compiler.eco loaded in 0.23 seconds

father(abraham, isaac).

father(isaac, jacob).

father(jacob, joseph).

ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).

^D

tty compiled 420 bytes in 0.01 seconds

Yes (0.24s cpu)

[eclipse 2]:

The two predicates father/2 and ancestor/2 are now compiled and can be used.

3.5.5 Executing a query

Once a set of clauses has been compiled, it may be queried in the usual Prolog manner. If there
are uninstantiated variables in the query, the system will attempt to find an instantiation of them
which will satisfy the query, and if successful it will display one such instantiation. If potentially
there is another solution, the top level will then wait for a further instruction: either a <CR>

(“newline”or “return”) or a semi-colon ’;’. A return will end the query successfully. A semi-colon
will initiate backtracking in an attempt to find another solution to the query. Note that it is
not necessary to type a new line after the semicolon — one keystroke is enough. When the top
level loop can detect that there are no further solutions, it does not wait for the semicolon or
newline, but it displays directly the next prompt. For example in a query on a family database:
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[eclipse 3]: father(X, Y).

X = abraham

Y = isaac

Yes (0.00s cpu, solution 1, maybe more) ? ; (user types ’;’)

X = isaac

Y = jacob

Yes (0.00s cpu, solution 2)

[eclipse 4]:

Queries may be extended over more than one line. When this is done the prompt changes to a
tabulation character, i.e., the input is indented to indicate that the query is not yet completed.
The fullstop marks the end of the input.

3.5.6 Interrupting the execution

If a program is executing, it may be interrupted by typing CTRL-C (interrupt in the UNIX
environment). This will invoke the corresponding interrupt handler (see section 13.3). By
default, the system prints a menu offering some alternatives:

^C

interruption: type a, b, c, e, or h for help : ? h (user types ’h’)

help

a : abort

b : break level

c : continue

e : exit

h : help

interruption: type a, b, c, e, or h for help : ?

The a option returns to the toplevel, b starts a nested toplevel, c continues the interrupted
execution, and e is an emergency exit of the whole ECLiPSe session. If the debugger is running,
an additional option d is displayed: it switches the debugger to creep mode.
The execution of ECLiPSe may be suspended by typing CTRL-Z (suspend) or by calling pause/0.
This will suspend the ECLiPSe process and return the UNIX prompt. Entering the shell com-
mand fg will return to ECLiPSe. Note that this feature may not be available on all systems.

3.5.7 Debugging a program

Please see the chapters on debugging in the tutorial and user manuals for more details. The
tutorial chapter covers the TkECLiPSe debugging in a tutorial style tour, and the user manual
chapter covers debugging in general and the command-line debugger in particular.

3.5.8 The history mechanism

The ECLiPSe toplevel loop provides a simple history mechanism which allows the examination
and repetition of previous queries. The history list is printed with the command h. A previous
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query is invoked by typing either its absolute number or its relative negative offset from the
current query number (i.e., –1 will execute the previous query). The current query number is
displayed in the toplevel prompt.
The history is initialized from the file .eclipse_history in the current directory or in the home
directory. This file contains the history goals, each ended by a fullstop. The current history can
be written using the predicate write history/0 from the util library.

3.5.9 Getting help

Detailed documentation about all the predicates in the ECLiPSe libraries can be obtained online
through the help facility. It has two modes of operation. First, when a fragment of a built-in
name is specified, a list of short descriptions of all built-ins whose name contains the specified
string is printed. For example,

:- help(write).

will print one-line descriptions about write/1, writeclause/2, etc. When a unique specification
is given, the full description of the specified built-in is displayed, e.g., in

:- help(write/1).

3.6 How do I make things happen at compile time?

A file being compiled may contain queries. These are goals preceded by either the symbol “:-”.
As soon as a query is encountered in the compilation of a file, the ECLiPSe system will try to
satisfy it. Thus by inserting goals in this fashion, things can be made to happen at compile
time.
In particular, a file can contain a directive to the system to compile another file, and so large
programs can be split between files, while still only requiring a single simple command to compile
them. When this happens, ECLiPSe interprets the pathnames of the nested compiled files
relative to the directory of the parent compiled file; if, for example, the user calls

[eclipse 1]: compile(’src/pl/prog’).

and the file src/pl/prog.pl contains a query

:- [part1, part2].

then the system searches for the files part1.pl and part2.pl in the directory src/pl and not in
the current directory. Usually larger ECLiPSe programs have one main file which contains only
commands to compile all the subfiles. In ECLiPSe it is possible to compile this main file from
any directory. (Note that if your program is large enough to warrant breaking into multiple files
(let alone multiple directories), it is probably worth turning the constituent components into
modules — see chapter 7.)

3.7 How do I use ECLiPSe libraries in my programs?

A number of files containing library predicates are supplied with the ECLiPSe system. These
predicates provide utility functions for general use. They are usually installed in an ECLiPSe
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library directory (or directories). These predicates are either loaded automatically by ECLiPSe

or may be loaded “by hand”.
During the execution of an ECLiPSe program, the system may dynamically load files containing
library predicates. When this happens, the user is informed by a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use module/1
predicates. e.g., to load the library called lists, use one of the following goals:

lib(lists)

use_module(library(lists))

This will load the library file unless it has been already loaded. In particular, a program can
ensure that a given library is loaded when it is compiled, by including an appropriate directive
in the source, e.g., :- lib(lists).

Library files are found by searching the library path and by appending a suffix to the library
name. The search path used when loading libraries is specified by the global flag library path
using the get flag/2 and set flag/2 predicates. This flag contains a list of strings containing
the pathnames of the directories to be searched when loading a library file. User libraries may
be be added to the system simply by copying the desired file into the ECLiPSe library directory.
Alternatively the library path flag may be updated to point at a number of user specific
directories. The following example illustrates how a directive may be added to a file to add a
user-defined library in front of any existing system libraries.

?- get_flag(library_path,Path),

set_flag(library_path, ["/home/myuser/mylibs" | Path]).

The UNIX environment variable ECLIPSELIBRARYPATH may also be used to specify the initial
setting of the library path. The syntax is similar to the syntax of the UNIX PATH variable, i.e.,
a list of directory names separated by colons. The directories will be prepended to the standard
library path in the given order.

3.8 How do I make my programs run faster?

By default, ECLiPSe compiles programs as traceable, which means that they can be traced using
the built-in debugger. To obtain maximum efficiency, the directive nodbgcomp/0 should be
used, which will set some flags to produce a more efficient and shorter code:

[eclipse 2]: nodbgcomp.

yes.

[eclipse 3]: [user].

father(abraham, isaac).

father(isaac, jacob).

father(jacob, joseph).

ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).

user compiled optimized 396 bytes in 0.02 seconds

yes.

[eclipse 4]:
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Section 6.7 contains more detailed discussion on other techniques which can be used to optimise
your programs.

3.9 Other tips

3.9.1 Initialisation at start-up

If you wish to have ECLiPSe do or execute things at startup time, you can achieve this in
TkECLiPSe by setting the initial query call in the Preference editor; and in the command-line
eclipse by putting via a .eclipserc file.
For eclipse, before displaying the initial prompt, the system checks whether there is a file
called .eclipserc in the current directory and if not, in the user’s home directory. If such a file
is found, ECLiPSe compiles it first. Thus it is possible to put various initialisation commands
into this file. ECLiPSe has many possibilities to change its default behaviour and setting up a
.eclipserc file is a convenient way to achieve this. A different name for the initialisation file
can be specified in the environment variable ECLIPSEINIT. If ECLIPSEINIT is set to an empty
string, no initialisation is done. If the system is started with a -e option, then the .eclipserc

file is ignored.
For TkECLiPSe, the system will make the initial query call as set in the Preference Editor
before giving control to the user. This call can be set to compile an initialisation file. This can
be the .eclipserc file, or some other file if the user wants to initialise the system differently in
TkECLiPSe.

3.9.2 Recommended file names

It is recommended programming practice to give the Prolog source programs the suffix .pl, or
.ecl if it contains ECLiPSe specific code. It is not enforced by the system, but it simplifies
managing the source programs. The compile/1 predicate automatically adds the suffix to the
filename, so that it does not need to be specified; if the literal filename can not be found, the
system tries appending each of the valid suffixes in turn and tries to find the resulting filename.
The system’s list of valid Prolog suffixes is in the global flag prolog suffix and can be examined
and modified using get flag/2 and set flag/2. For example, to add the new suffix “.pro” use:

get_flag(prolog_suffix, Old), set_flag(prolog_suffix, [".pro"|Old]).
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Chapter 4

The TkECLiPSe Development Tools

TkECLiPSe is a graphical user interface to ECLiPSe. It is an alternative to the traditional
textual line-based user interface, providing multiple windows, menus and buttons to assist the
user in interacting with ECLiPSe. It consists of two major components:

• A graphical top-level.

• A suite of development tools for aiding the development of ECLiPSe code.

TkECLiPSe is implemented in the Tcl/Tk scripting language/graphical toolkit [11], using the
new ECLiPSe Tcl/Tk interface [10]. The development tools are designed to be independent of
the top-level, so the user can develop their own applications with a graphical front end written
in Tcl/Tk, replacing the TkECLiPSe top-level, but still using the development tools.

Chapter 3 gave an introduction to using TkECLiPSe from a user’s point of view. This chapter
focuses on how to use the tools from a programmer’s point of view (i.e. how to include them in a
program). In particular it discusses in detail the display matrix tool, which can be invoked in
user’s ECLiPSe code; and also how to use the development tools in the user’s own applications.

4.1 Display Matrix

This tool provides a method to display the values of terms in a matrix form. It is particularly
useful because it can display the attributes of an attributed variable.1 The predicate which
invokes the display matrix is considered a no-op in the tty-based ECLiPSe2, and so the same
code can be run without modification from either eclipse or tkeclipse, though the matrix
display is only presented to the user in the latter.

This tool is invoked using either the make display matrix/2 predicate or the make display matrix/5
predicate. Adding a call to one of these predicates should be the only change you need to make
to your code. For example, in the following fragment of a N-queens program, only one extra line
has been added to invoke a display matrix:

queens(N, List) :-

1 The display matrix tools is similar to the variable display of Grace. The main differences are: it can display
all attributes, not just the finite domain attribute; the attributes can only be observed, not changed; and the
labelling strategy cannot be changed.

2Unless it is attached to the remote development tools, in which case the display matrix is invoked.
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Figure 4.1: Display Matrix Tool for 4-Queens (Initial)

Figure 4.2: Display Matrix Tool for 4-Queens (During execution)

length(List, N),

List :: 1..N,

make_display_matrix(List/0, queens),

% sets up a matrix with all variables in 1 row. This is the only

% extra goal that has to be added to enable monitoring

alldistinct(List),

constrain_queens(List),

labeling(List).

Figures 4.1 and 4.2 show the tool invoked with the example N-Queens programs for 4 Queens,
at the start initially and during the execution of the program. The name of the display window
is specified by the second argument of make display matrix/2, along with the module it is
in. The values of the terms are shown in the matrix, which can be one dimensional (as in this
case), or two dimensional. Spy points can be set on each individual cell of the matrix so that
execution will stop when the cell is updated. The matrix can be killed using the ‘Kill display’
button. Left-clicking on a cell will bring up a menu which shows the current and previous value
of the term in the cell (the current value is shown because the space available in the cell may be
too small to fully display the term), and allows the user to inspect the term using the inspector.

Note that the display matrix can be used independently of, or in conjunction with, the tracer.
Multiple display matrices can be created to view different terms.

The following predicates are available in conjunction with the display matrix:

make display matrix(+Terms, +Name)
make display matrix(+Terms, +Prio, +Type, +CondList, +Name)

These predicates create a display matrix of terms that can be monitored under TkECLiPSe.
The two argument form is a simplification of the five argument form, with defaults settings for
the extra arguments. Terms is a list or array of terms to be displayed. A List can be specified
in the form List/N, where N is the number of elements per row of the matrix. If N is 0, then
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the list will be displayed in one row (it could also be omitted in this case). The extra arguments
are used to control how the display is updated.

The terms are monitored by placing a demon suspension on the variables in each term. When
a demon wakes, the new value of the term it is associated with is sent to the display matrix
(and possibly updated, depending on the interactive settings on the matrix). When the new
value is backtracked, the old value is sent to the display matrix. The other arguments in this
predicate is used to control when the demon wakes, and what sort of information is monitored.
Prio is the priority that the demon should be suspended at, Type is designed to specify the
attributes that is being monitored (currently all attributes are monitored, and Type is a dummy
argument), CondList is the suspension list that the demon should be added to. Depending on
these arguments, the level of monitoring can be controlled. Note that it is possible for the display
matrix to show values that are out of date because the change was not monitored.

The display matrix will be removed on backtracking. However, it will not be removed if
make display matrix has been cut – kill_display_matrix/1 can be used to explicitly remove
the matrix in this case.

kill display matrix(+Name)

This predicate destroys an existing display matrix. Name is an atomic term which identifies the
matrix.

Destroys an existing display matrix. The display matrix is removed from being displayed.

4.1.1 Invoking display matrix tool interactively

Display matricies can be created interactively when a program is executing, if the program is
being debugged with the tracer tool. The user can select terms that are to be observed by a
display matrix while at a debug port. This can be done from the inspector, the tracer, and the
delay goal tools. See the online help files (available from the help menu of TkECLiPSe) for more
details.

4.2 Using the development tools in applications

The user can develop their own ECLiPSe applications using the development tools independent
of the TkECLiPSe toplevel. There are two ways to do this, depending on if the user is also
using the embedding Tcl/Tk interface (see the Embedding and Interfacing Manual) to provide
a graphical front end:

• The user is using the embedding Tcl/Tk interface, and is thus developing a graphical front
end in Tk. In this case the user can use the development tools via the embedding interface.
This is described in section 4.2.1.

• The user is not using the embedding Tcl/Tk interface. In this case the user can use
the development tools remotely, by using the remote tools library. This is described in
section 4.2.2.

4.2.1 Using the Development tools in the Tcl/Tk Embedding Interface

The development tool suite was designed to be independent of the TkECLiPSe top-level so that
they can be used in a user’s application. In effect, the user can replace the TkECLiPSe top-level
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with their own alternative top-level. Two simple examples in which this is done are provided in
the lib_tcl library as example.tcl and example1.tcl. In addition, tkeclipse itself, in the
file tkeclipse.pl, can be seen as a more complex example usage of the interface.
In order to use the Tcl/Tk interface, the system must be initialised as described in the Embedding
manual. In addition, the user’s Tcl code should probably also be provided as a package using
Tcl’s package facility, in order to allow the program to run in a different directory. See the
Embedding manual and the example programs for more details on the initialisation needed.
The user should most likely provide a connection for the output stream of ECLiPSe so that out-
put from ECLiPSe will go somewhere in the GUI. In addition, especially during the development,
it is also useful to connect the error stream to some window so that errors (such as ECLiPSe

compilation errors) are seen by the user. This can be done using the ec_queue_connect Tcl
command described in the embedding manual.
Output from ECLiPSe need not be sent to a Tk window directly. The Tcl/Tk code which
receives the output can operate on it before displaying it. It is intended that all such graphical
operations should be performed on the Tcl side, rather than having some primitives provided
on the ECLiPSe side.
The user can also provide balloon-help to his/her own application. The balloon help package is
part of the Megawidget developed by Jeffrey Hobbs and used in TkECLiPSe. In order to define
a balloon help for a particular widget, the following Tcl code is needed:

balloonhelp <path> <text>

where <path> is the pathname of the widget, and <text> is the text that the user wants to
display in the balloon.

4.2.2 Using the Remote Development Tools

The user can also use the development tools via the remote tools library. In this case, the
development tools are run as a separate program from the ECLiPSe session, and is attached to
it via the Tcl/Tk remote interface (see the Embedding and Interfacing Manual). This allows any
ECLiPSe session to use the development tools, as long as there is the capability for graphical
display.
The main purpose for the remote tools library is to allow the user to use the development tools
in situations where (s)he cannot use the Tcl/Tk embedding interface, e.g. if ECLiPSe is already
embedded into another programming language, or if the user needs to use the tty interface for
ECLiPSe.
Once attached to an ECLiPSe session, the remote development tools has its own window as
shown in Figure 4.3. The Tools menu is the same as in TkECLiPSe, providing access to the
same suite of development tools. The main body of the window consists of one button and a
status indicator. The indicator shows wheather the tools can be used or not (the tools cannot be
used when the ECLiPSe is active), and the button is used to pass control explicitly to ECLiPSe.
The ECLiPSe session and the development tools are two separate processes (and in fact they
can be running on different machines) that are connected to each other via the remote Tcl/Tk
interface. The interactions of the two processes are synchronised in that there is a thread-like
flow of control between them: only one process can be ‘active’ at any time. The interaction
is similar to the standard interaction between a debugger and the program being debugged
– debugging commands can only be issued while the execution of the program is suspended.
In the same way, the user can only interact with the remote tools window when execution in
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Figure 4.3: Remote Development Tools Toplevel (left: ECLiPSe active; right: remote tools
active)

the ECLiPSe session is suspended. The toplevel window of the remote tools has an indicator
showing which side has control (see Figure 4.3). To allow ECLiPSe to resume execution, control
is transferred back from the remote tools to ECLiPSe. This can either be done automatically
from the tools (e.g. when one of the debug buttons is pressed in the tracer tool), or control
can be transferred explicitly back to ECLiPSe via the “Resume ECLiPSe” button on the remote
tools window.

Starting Remote Tools

To use the remote tools, the user must first load the remote tools library with lib(remote_tools).
After loading the library, the user can start the remote tools by starting the development tools
as a separate program and then manually attach the program to the ECLiPSe session. This
allows the development tools to be run on a different machine from the ECLiPSe session. In
this case, the user initiates the attachment in ECLiPSe with attach tools/0:

[eclipse 2]: attach_tools.

Socket created at address holborn.icparc.ic.ac.uk/22849

ECLiPSe prints the host and port address it expects the remote tools to attach to, and execution
is now suspended waiting for the remote tools to attach. This is done by running the tktools
program, which is located with the other ECLiPSe executables. As stated, this program can be
run on a different machine from the ECLiPSe session, as long as the two are connected via a
network such as the internet. A connection window is then displayed as shown:
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The same ‘host’ and ‘port’ fields as printed by the ECLiPSe session should be entered. The
default ‘host’ field is ‘localhost’. This will work if the remote tools are ran on the same machine
as the ECLiPSe session. Otherwise the full name of the ‘host’ as given by attach tools/0 needs
to be entered:

Typing return in the ‘port’ field will start the attachment, and with success, the remote tools
window (see Figure 4.3) will be displayed. The attach tools/0 predicate will also return.
The user is not able to immediately interact directly with the remote tools, as the ECLiPSe

session is initially given control. The user can use the ECLiPSe session as normal, with the
additional availability of the development tools. For example, the display matrix predicates can
be used as in TkECLiPSe. Also, the tracer tool replaces the previous tracing facilities of the
ECLiPSe session (this would typically be the command-line debugger).
The tools can be triggered by events in the ECLiPSe session as described above. In order to
use the tools in a more interactive way, control should be handed over to the remote tools. This
can be done by calling the tools/0 predicate. When the remote tools have control, the user can
now interactively select development tools from the Tools menu.
The remote tools library provides several predicates to facilitate the use of the remote develop-
ment tools:

tools Explicitly hands over control to the remote development tools. The tools window can then
be used interactively. Execution on the ECLiPSe session is suspended until the remote
tools allows ECLiPSe to resume, at which point the predicate succeeds. The predicate will
abort if the development tools is disconnected from the ECLiPSe session.
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attached(?ControlStream) Checks if the remote development tools have been attached to
this ECLiPSe session or not. If attached, the predicate succeeds and unifies ControlStream
with the stream name of the control stream. If not attached, th predicate fails.

Once attached, the remote development tools should be connected until the user quits the session.
Although it is possible to disconnect the tools from the ECLiPSe session (from the File menu in
the development tools window). This is not recommended, as there would not be any debugging
facilities available after the disconnection – the original tracer would not be restored.
It is possible to attach the remote development tools to any ECLiPSe session, including one that
is using the embedding Tcl/Tk interface (and indeed, to TkECLiPSe itself). However, using the
tools via the embedding interface is usually the better option if available, because the tools are
more tightly coupled to ECLiPSe in this case. This means that the communications between
ECLiPSe and the tools are more efficient (and hence something like the display matrix would
perform more efficiently).
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Chapter 5

ECLiPSe-specific Language Features

ECLiPSe is a logic programming language derived from Prolog. This chapter describes ECLiPSe-
specific language constructs that have been introduced to overcome some of the main deficiencies
of Prolog.

5.1 Structure Notation

ECLiPSe structure notation provides a way to use structures with field names. It is intended
to make programs more readable and easier to modify, without compromising efficiency (it is
implemented by preprocessing).
A structure is declared by specifying a template like this

:- local struct( book(author, title, year, publisher) ).

Structures with the functor book/4 can then be written as

book{}

book{title:’tom sawyer’}

book{title:’tom sawyer’, year:1886, author:twain}

which translate to the corresponding forms

book(_, _, _, _)

book(_, ’tom sawyer’, _, _)

book(twain, ’tom sawyer’, 1886, _)

This transformation is done by the parser, therefore it can be used in any context and is as
efficient as using the structures directly.
The argument index of a field in a structure can be obtained using a term of the form

FieldName of StructName

E.g. to access (ie. unify) a single argument of a structure, use arg/3 like this:

..., arg(year of book, B, Y), ...

which is translated into

..., arg(3, B, Y), ...

If a program is consistently written using curly-brace and of syntax, then the struct-declaration
can be modified (fields added or rearranged) without having to update the code anywhere else.
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5.1.1 Updating Structures

To construct an updated structure, i.e. a structure which is similar to an existing structure
except that one or more fields have new values, use the update struct/4 built-in, which allows
to do that without having to mention all the other field names in the structure.

5.1.2 Arity and Functor of Structures

The arity of a structure can be symbolically written using of/2 as follows:

property(arity) of StructName

For example,

?- printf("A book has %d fields%n", [property(arity) of book]).

A book has 4 fields

Yes.

Similarly, the whole StructName/Arity specification can be written as

property(functor) of StructName

which is used for the portray-declaration in the example below.

5.1.3 Printing Structures

When structures are printed, they are not translated back into the curly-brace-syntax by default.
The reason this is not done is that this can be bulky if all fields are printed, and often it is
desirable to hide some of the fields anyway.

A good way to control printing of big structures is to write special purpose portray-transformations
for them, for instance

:- local portray(property(functor) of book, tr_book_out/2, []).

tr_book_out(book{author:A,title:T},

no_macro_expansion(book{author:A,title:T})).

which will cause book/4 structures to be printed like

book{author:twain, title:tom sawyer}

while the other two arguments remain hidden.

5.1.4 Inheritance

Structures can be declared to contain other structures, in which case they inherit the base
structure’s field names. Consider the following declarations:

:- local struct(person(name,address,age)).

:- local struct(employee(p:person,salary)).

The employee structure contains a field p which is a person structure. Field names of the
person structure can now be used as if they were field names of the employee structure:
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[eclipse 1]: Emp = employee{name:john,salary:2000}.

Emp = employee(person(john, _105, _106), 2000)

yes.

Note that, as long as the curly-brace and of syntax is used, the employee structure can be
viewed either as nested or as flat, depending on what is more convenient in a given situation.
In particular, the embedded structure can still be accessed as a whole:

[eclipse 1]:

Emp = employee{name:john,age:30,salary:2000,address:here},

arg(name of employee, Emp, Name),

arg(age of employee, Emp, Age),

arg(salary of employee, Emp, Salary),

arg(address of employee, Emp, Address),

arg(p of employee, Emp, Person).

Emp = employee(person(john, here, 30), 2000)

Name = john

Age = 30

Salary = 2000

Address = here

Person = person(john, here, 30)

yes.

The indices of nested structures expand into lists of integers rather than simple integers, e.g.
age of employee expands into [1,3].

5.1.5 Visibility

Structure declaration can be local to a module (when declared as above) or exported when
declared as

:- export struct(...).

in the module.

5.2 Loop/Iterator Constructs

Many types of simple iterations are inconvenient to write in the form of recursive predicates.
ECLiPSe therefore provides a logical iteration construct do/2, which can be understood either
by itself or by its translation to an equivalent recursion. More background can be found in [12].
A simple example is the traversal of a list

main :-

write_list([1,2,3]).

write_list([]).

write_list([X|Xs]) :-

writeln(X),

write_list(Xs).
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which can be written as follows without the need for an auxiliary predicate:

main :-

( foreach(X, [1,2,3]) do

writeln(X)

).

This looks very much like a loop in a procedural language. However, due to the relational nature
of logic programming, the same foreach- construct can be used not only to control iteration
over an existing list, but also to build a new list during an iteration. For example

main :-

( foreach(X, [1,2,3]), foreach(Y, Negatives) do

Y is -X

),

writeln(Negatives).

will print [-1, -2, -3].
The general form of a do-loop is

( IterationSpecs do Goals )

and it corresponds to a call to an auxiliary recursive predicate of the form

do__n(...) :- !.

do__n(...) :- Goals, do__n(...).

The IterationSpecs determine the number of times the loop is executed (i.e. the termination
condition), and the way information is passed into the loop, from one iteration to the next, and
out of the loop.
IterationSpecs is one (or a combination) of the following:

fromto(First,In,Out,Last)
iterate Goals starting with In=First until Out=Last. In and Out are local loop variables.
For all but the first iteration, the value of In is the same as the value of Out in the previous
iteration.

foreach(X,List)
iterate Goals with X ranging over all elements of List. X is a local loop variable. Can also
be used for constructing a list.

foreacharg(X,Struct)
iterate Goals with X ranging over all elements of Struct. X is a local loop variable. Cannot
be used for constructing a term.

foreacharg(X,Struct,Idx)
same as before, but Idx is set to the argument position of X in Struct, i.e. arg(Idx, Struct, X)

is true. X and Idx are local loop variables.

foreachelem(X,Array)
like foreacharg/2, but iterates over all elements of an array of arbitrary dimension. The
order is the natural order, i.e. if Array = []([](a, b, c), [](d, e, f)), then for suc-
cessive iterations X is bound in turn to a, b, c, d, e and f. X is a local loop variable.
Cannot be used for constructing a term.
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foreachelem(X,Array,Idx)
same as before, but Idx is set to the index position of X in Array, i.e. subscript(Array, Idx, X)

is true. X and Idx are local loop variables.

foreachindex(Idx,Array)
like foreachelem/3, but returns just the index position and not the element.

for(I,MinExpr,MaxExpr)
iterate Goals with I ranging over integers from MinExpr to MaxExpr. I is a local loop
variable. MinExpr and MaxExpr can be arithmetic expressions. Can be used only for
controlling iteration, i.e. MaxExpr cannot be uninstantiated.

for(I,MinExpr,MaxExpr,Increment)
same as before, but Increment can be specified (it defaults to 1).

multifor(List,MinList,MaxList)
like for/3, but allows iteration over multiple indices (saves writing nested loops). Each
element of List takes a value between the corresponding elements in MinList and MaxList.
Successive iterations go through the possible combinations of values for List in lexico-
graphic order. List is a local loop variable. MinList and MaxList must be either lists of
arithmetic expressions evaluating to integers, or arithmetic expressions evaluating to inte-
gers (in the latter case they are treated as lists containing the (evaluated) integer repeated
an appropriate number of times). At least one of List, MinList and MaxList must be a
list of fixed length at call time so that it is known how many indices are to be iterated.

multifor(List,MinList,MaxList,IncrementList)
same as before, but IncrementList can be specified (i.e. how much to increment each
element of List by). IncrementList must be either a list of arithmetic expressions evaluating
to non-zero integers, or an arithmetic expression evaluating to a non-zero integer (in which
case all elements are incremented by this amount). IncrementList defaults to 1.

count(I,Min,Max)
iterate Goals with I ranging over integers from Min up to Max. I is a local loop variable.
Can be used for controlling iteration as well as counting, i.e. Max can be a variable.

param(Var1,Var2,...)
for declaring variables in Goals as global, i.e. as shared with the loop context and shared
among all iterations of the loop. CAUTION: By default, variables in Goals have local
scope, which means that in every iteration these variables are new (even if a variable of
the same name occurs outside the do-construct).

Note that fromto/4 is the most general specifier (all the others could be implemented using it),
while foreach/2, foreacharg/2,3, foreachelem/2,3, foreachindex/2, count/3, for/3,4, multifor/3,4
and param/N are convenient shorthands.
There are three ways to combine the above specifiers in a single do loop:

IterSpec1, IterSpec2 (“synchronous iteration”)
This is the normal way to combine iteration specifiers: simply provide a comma-separated
sequence of them. The specifiers are iterated synchronously; that is, they all take their
first “value” for the first execution of Goals, their second “value” for the second execution
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of Goals, etc. The order in which they are written does not matter, and the set of local
loop variables is the union of those of IterSpec1 and IterSpec2.

When multiple iteration specifiers are given in this way, typically not all of them will
impose a termination condition on the loop (e.g. foreach with an uninstantiated list and
count with an uninstantiated maximum do not impose a termination condition), but at
least one of them should do so. If several specifiers impose termination conditions, then
these conditions must coincide, i.e. specify the same number of iterations.

IterSpec1 * IterSpec2 (“cross product”)
This iterates over the cross product of IterSpec1 and IterSpec2. The sequence of iteration
is to iterate IterSpec2 completely for a given “value” of IterSpec1 before doing the same
with the next “value” of IterSpec1, and so on. The set of local loop variables is the union
of those of IterSpec1 and IterSpec2.

IterSpec1 >> IterSpec2 (“nested iteration”)
Like ( IterSpec1 do ( IterSpec2 do Goals ) ), including with respect to scoping. The local
loop variables are those of IterSpec2; in particular, those of IterSpec1 are not available
unless IterSpec2 passes them through, e.g. using a param. Similarly, the only “external”
variables available as inputs to IterSpec2 are the locals of IterSpec1; variables from outside
the loop are not available unless passed through by IterSpec1, e.g. using a param.

Syntactically, the do-operator binds like the semicolon, i.e. less than comma. That means that
the whole do-construct should always be enclosed in parentheses (see examples).

Unless you use :-pragma(noexpand) or the compiler’s expand goals:off option, the do-construct
is compiled into an efficient auxiliary predicate named do nnn, where nnn is a unique integer.
This will be visible during debugging. To make debugging easier, it is possible to give the loop
a user-defined name by adding loop name(Name) to the iteration specifiers. Name must be
an atom, and is used as the name of the auxiliary predicate into which the loop is compiled
(instead of do nnn). The name should therefore not clash with other predicate names in the
same module.

Finally, do-loops can be used as a control structure in grammar rules as well: A do-loop in a
grammar rule context will generate (or parse) the concatenation of the lists of symbols generated
(or parsed) by each loop iteration (the grammar rule transformation effectively adds a hidden
fromto-iterator to a do-loop). The following rule will generate (or parse) a list of integers from
1 to N

intlist(N) --> ( for(I,1,N) do [I] ).

5.2.1 Examples

Iterate over list

foreach(X,[1,2,3]) do writeln(X).

Maplist (construct a new list from an existing list)

(foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).

Sumlist
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(foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).

Reverse list

(foreach(X,[1,2,3]), fromto([],In,Out, Rev) do Out=[X|In]). % or:

(foreach(X,[1,2,3]), fromto([],In,[X|In],Rev) do true).

Iterate over integers from 1 up to 5

for(I,1,5) do writeln(I). % or:

count(I,1,5) do writeln(I).

Iterate over integers from 5 down to 1

(for(I,5,1,-1) do writeln(I)).

Make list of integers [1,2,3,4,5]

(for(I,1,5), foreach(I,List) do true). % or:

(count(I,1,5), foreach(I,List) do true).

Make a list of length 3

(foreach(_,List), for(_,1,3) do true). % or:

(foreach(_,List), count(_,1,3) do true).

Get the length of a list

(foreach(_,[a,b,c]), count(_,1,N) do true).

Actually, the length/2 builtin is (almost)

length(List, N) :- (foreach(_,List), count(_,1,N) do true).

Iterate [I,J] over [1,1], [1,2], [1,3], [2,1], ..., [3,3]:

(multifor([I,J],1,3) do writeln([I,J])).

Similar, but have different start/stop values for I and J:

(multifor([I,J], [2,1], [4,5]) do writeln([I,J])).

Similar, but only do odd values for the second variable:

(multifor(List, [2,1], [4,5], [1,2]) do writeln(List)).

Filter list elements

(foreach(X,[5,3,8,1,4,6]), fromto(List,Out,In,[]) do

X>3 -> Out=[X|In] ; Out=In).

Iterate over structure arguments

(foreacharg(X,s(a,b,c,d,e)) do writeln(X)).

Collect args in list (bad example, use =.. if you really want to do that!)
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(foreacharg(X,s(a,b,c,d,e)), foreach(X,List) do true).

Collect args reverse

(foreacharg(X,s(a,b,c,d,e)), fromto([],In,[X|In],List) do true).

or like this:

S = s(a,b,c,d,e), functor(S, _, N),

(for(I,N,1,-1), foreach(A,List), param(S) do arg(I,S,A)).

Rotate args in a struct

S0 = s(a,b,c,d,e), functor(S0, F, N), functor(S1, F, N),

(foreacharg(X,S0,I), param(S1, N) do I1 is (I mod N)+1, arg(I1,S1,X)).

Flatten an array into a list

(foreachelem(X,[]([](5,1,2),[](3,3,2))), foreach(X,List) do true).

Transpose a 2D array

A = []([](5,1,2),[](3,3,2)), dim(A, [R,C]), dim(T, [C,R]),

(foreachelem(X,A,[I,J]), param(T) do X is T[J,I]).

Same, using foreachindex

A = []([](5,1,2),[](3,3,2)), dim(A, [R,C]), dim(T, [C,R]),

(foreachindex([I,J],A), param(A, T) do

subscript(A, [I,J], X), subscript(T, [J,I], X)).

The following two are equivalent

foreach(X,[1,2,3]) do writeln(X).

fromto([1,2,3],In,Out,[]) do In=[X|Out], writeln(X).

The following two are equivalent

count(I,1,5) do writeln(I).

fromto(0,I0,I,5) do I is I0+1, writeln(I).

Some examples for nested loops. Print all pairs of list elements:

Xs = [1,2,3,4],

( foreach(X, Xs), param(Xs) do

( foreach(Y,Xs), param(X) do

writeln(X-Y)

)

).

% or

Xs = [1,2,3,4],

( foreach(X, Xs) * foreach(Y, Xs) do

writeln(X-Y)

).
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and the same without symmetries:

Xs = [1,2,3,4],

( fromto(Xs, [X|Xs1], Xs1, []) do

( foreach(Y,Xs1), param(X) do

writeln(X-Y)

)

).

% or

Xs = [1,2,3,4],

( fromto(Xs, [X|Xs1], Xs1, []) >> ( foreach(Y,Xs1), param(X) ) do

writeln(X-Y)

).

Find all pairs of list elements and collect them in a result list:

pairs(Xs, Ys, Zs) :-

(

foreach(X,Xs),

fromto(Zs, Zs4, Zs1, []),

param(Ys)

do

(

foreach(Y,Ys),

fromto(Zs4, Zs3, Zs2, Zs1),

param(X)

do

Zs3 = [X-Y|Zs2]

)

).

% or

pairs(Xs, Ys, Zs) :-

(

foreach(X, Xs) * foreach(Y, Ys),

foreach(Z, Zs)

do

Z = X-Y

).

Flatten a 2-dimensional matrix into a list:

flatten_matrix(Mat, Xs) :-

dim(Mat, [M,N]),

(

for(I,1,M),

fromto(Xs, Xs4, Xs1, []),

param(Mat,N)

do

(
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for(J,1,N),

fromto(Xs4, [X|Xs2], Xs2, Xs1),

param(Mat,I)

do

subscript(Mat, [I,J], X)

)

).

Same using * to avoid nesting:

flatten_matrix(Mat, Xs) :-

dim(Mat, [M,N]),

(

for(I, 1, M) * for(J, 1, N),

foreach(X, Xs),

param(Mat)

do

subscript(Mat, [I,J], X)

).

Same using multifor to avoid nesting:

flatten_matrix(Mat, Xs) :-

dim(Mat, [M,N]),

(

multifor([I,J], 1, [M,N]),

foreach(X, Xs),

param(Mat)

do

subscript(Mat, [I,J], X)

).

Same for an array of arbitrary dimension:

flatten_array(Array, Xs) :-

dim(Array, Dims),

(

multifor(Idx, 1, Dims),

foreach(X, Xs),

param(Array)

do

subscript(Array, Idx, X)

).

Same but returns the elements in the reverse order:

flatten_array(Array, Xs) :-

dim(Array, Dims),

(

multifor(Idx, Dims, 1, -1),
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foreach(X, Xs),

param(Array)

do

subscript(Array, Idx, X)

).

Flatten nested lists one level (cf. flatten/2 which flattens completely):

List = [[a,b],[[c,d,e],[f]],[g]],

(foreach(Xs,List) >> foreach(X,Xs), foreach(X,Ys) do true).

Iterate over all ordered pairs of integers 1..4 (param(I) required to make I available in body of
loop):

(for(I,1,4) >> (for(J,I+1,4), param(I)) do writeln(I-J)).

Same for general 1..N (param(N) required to make N available to second for):

N=4,

((for(I,1,N), param(N)) >> (for(J,I+1,N), param(I)) do writeln(I-J)).

5.3 Array Notation

Since our language has no type declarations, there is really no difference between a structure
and an array. In fact, a structure can always be used as an array, creating it with functor/3
and accessing elements with arg/3. However, this can look clumsy, especially in arithmetic
expressions.

ECLiPSe therefore provides array syntax which enables the programmer to write code like

[eclipse 1]: Prime = a(2,3,5,7,11), X is Prime[2] + Prime[4].

X = 10

Prime = a(2, 3, 5, 7, 11)

yes.

Within expressions, array elements can be written as variable-indexlist or structure-indexlist
sequences, e.g.

X[3] + M[3,4] + s(4,5,6)[3]

Indices run from 1 up to the arity of the array-structure. The number of array dimensions is
not limited.

To create multi-dimensional arrays conveniently, the built-in dim/2 is provided (it can also be
used backwards to access the array dimensions):

[eclipse]: dim(M,[3,4]), dim(M,D).

M = []([](_131, _132, _133, _134),

[](_126, _127, _128, _129),

[](_121, _122, _123, _124))

D = [3, 4]

yes.
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Although dim/2 creates all structures with the functor [ ], this has no significance other than
reminding the programmer that these structures are intended to represent arrays.
Array notation is especially useful within loops. Here is the code for a matrix multiplication
routine:

matmult(M1, M2, M3) :-

dim(M1, [MaxIJ,MaxK]),

dim(M2, [MaxK,MaxIJ]),

dim(M3, [MaxIJ,MaxIJ]),

(

for(I,1,MaxIJ),

param(M1,M2,M3,MaxIJ,MaxK)

do

(

for(J,1,MaxIJ),

param(M1,M2,M3,I,MaxK)

do

(

for(K,1,MaxK),

fromto(0,Sum0,Sum1,Sum),

param(M1,M2,I,J)

do

Sum1 is Sum0 + M1[I,K] * M2[K,J]

),

subscript(M3, [I,J], Sum)

)

).

5.3.1 Implementation Note

Array syntax is implemented by parsing variable-list and structure-list sequences as terms with
the functor subscript/2. For example:

X[3] ---> subscript(X, [3])

M[3,4] ---> subscript(M, [3,4])

s(4,5,6)[3] ---> subscript(s(4,5,6), [3])

If such a term is then used within an arithmetic expression, a result argument is added and the
built-in predicate subscript/3 is called, which is a generalised form of arg/3 and extracts the
indicated array element.
When printed, subscript/2 terms are again printed in array notation, unless the print-option to
suppress operator notation (”O”) is used.

5.4 The String Data Type

In the Prolog community there have been ongoing discussions about the need to have a special
string data type. The main argument against strings is that everything that can be done with
strings can as well be done with atoms or with lists, depending on the application. Nevertheless,
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in ECLiPSe it was decided to have the string data type, so that users that are aware of the
advantages and disadvantages of the different data types can always choose the most appropriate
one. The system provides efficient builtins for converting from one data type to another.

5.4.1 Choosing The Appropriate Data Type

Strings, atoms and character lists differ in space consumption and in the time needed for per-
forming operations on the data.

Strings vs. Character Lists

Let us first compare strings with character lists. The space consumption of a string is always
less than that of the corresponding list. For long strings, it is asymptotically 16 times more
compact. Items of both types are allocated on the global stack, which means that the space is
reclaimed on failure and on garbage collection.

For the complexity of operations it must be kept in mind that the string type is essentially
an array representation, ie. every character in the string can be immediately accessed via its
index. The list representation allows only sequential access. The time complexity for extracting
a substring when the position is given is therefore only dependent on the size of the substring
for strings, while for lists it is also dependent on the position of the substring. Comparing two
strings is of the same order as comparing two lists, but faster by a constant factor. If a string
is to be processed character by character, this is easier to do using the list representation, since
using strings involves keeping index counters and calling the string code/3 predicate.

The higher memory consumption of lists is sometimes compensated by the property that when
two lists are concatenated, only the first one needs to be copied, while the list that makes up
the tail of the concatenated list can be shared. When two string are concatenated, both strings
must be copied to form the new one.

Strings vs. Atoms

At a first glance, an atom does not look too different from a string. In ECLiPSe, many predicates
accept both strings and atoms (e.g. the file name in open/3) and some predicates are provided
in two versions, one for atoms and one for strings (e.g. concat atoms/3 and concat strings/3).

However, internally these data types are quite different. While a string is simply stored as a
character sequence, an atom is mapped into an internal constant. This mapping is done via a
table called the dictionary. A consequence of this representation is that copying and comparing
atoms is a unit time operation, while for strings both is proportional to the string length. On
the other hand, each time an atom is read into the system, it has to be looked up and possibly
entered into the dictionary, which implies some overhead. The dictionary is a much less dynamic
memory area than the global stack. That means that once an atom has been entered there, this
space will only be reclaimed by a relatively expensive dictionary garbage collection. It is therefore
in general not a good idea to have a program creating new atoms dynamically at runtime.

Atoms should always be preferred when they are involved in unification and matching. As
opposed to strings, they can be used for indexing clauses of predicates. Consider the following
example:

[eclipse 1]: [user].

afather(mary, george).
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afather(john, george).

afather(sue, harry).

afather(george, edward).

sfather("mary", "george").

sfather("john", "george").

sfather("sue", "harry").

sfather("george", "edward").

user compiled 676 bytes in 0.00 seconds

yes.

[eclipse 2]: afather(sue,X).

X = harry

yes.

[eclipse 3]: sfather("sue",X).

X = "harry" More? (;)

no (more) solution.

The predicate with atoms is indexed, that means that the matching clause is directly selected
and the determinacy of the call is recognised (the system does not prompt for more solutions).
When the names are instead written as strings, the system attempts to unify the call with the
first clause, then the second and so on until a match is found. This is much slower than the
indexed access. Moreover the call leaves a choicepoint behind (as shown by the more-prompt).

Conclusion

Atoms should be used for representing (naming) the items that a program reasons about, much
like enumeration constants in PASCAL. If used like this, an atom is in fact indivisible and there
should be no need to ever consider the atom name as a sequence of characters.

When a program deals with text processing, it should choose between string and list represen-
tation. When there is a lot of manipulation on the single character level, it is probably best to
use the character list representation, since this makes it very easy to write recursive predicates
walking through the text.

The string type can be viewed as being a compromise between atoms and lists. It should be
used when handling large amounts of input, when the extreme flexibility of lists is not needed,
when space is a problem or when handling very temporary data.

5.4.2 Builtin Support for Strings

Most ECLiPSe builtins that deliver text objects (like getcwd/1, read string/3,4 and many
others) return strings. Strings can be created and their contents may be read using the string
stream feature (cf. section 10.3.1). By means of the builtins atom string/2, string list/2,
number string/2 and term string/2, strings can easily be converted to other data types.
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5.4.3 Quoted lists

As already discussed, many Prologs use the double quotes as a notation for lists of characters. By
default, ECLiPSe does not provide any syntactical support for such quoted lists. However, the
user can manipulate the quotes by means of the set chtab/2 predicate. A quote is defined by
setting the character class of the chosen character to string_quote, list_quote or atom_quote
respectively. To create a list quote (which is not available by default) one may use:

[eclipse 1]: set_chtab(0’‘, list_quote).

yes.

[eclipse 2]: X = ‘text‘, Y = "text", type_of(X, TX), type_of(Y, TY).

X = [116, 101, 120, 116]

TX = compound

Y = "text"

TY = string

yes.

5.5 Matching Clauses

When Prolog systems look for clauses that match a given call, they use full unification of the goal
with the clause head (but usually without the occur check). Sometimes it is useful or necessary
to use pattern matching instead of full unification, i.e. during the matching only variables in
the clause head can be bound, the call variables must not be changed. This means that the call
must be an instance of the clause head.
The operator -?-> at the beginning of the clause body specifies that one-way matching should
be used instead of full unification in the clause head:

p(f(X)) :-

-?->

q(X).

Using the ?- operator in the neck of the clause (instead of :-) is an alternative way of expressing
the same, so the following is equivalent to the above:

p(f(X)) ?-

q(X).

Matching clauses are not supported in dynamic clauses. A runtime error (calling an undefined
procedure −?− >/1) will be raised when executing dynamic code that has a matching clause
head.
Pattern matching can be used for several purposes:

• Generic pattern matching when looking for clauses whose heads are more general than the
call.

• Decomposing attributed variables [4]. When an attributed variable occurs in the head
of a matching clause, it is not unified with the call argument (which would trigger the
unification handlers) but instead, the call argument is decomposed into the variable and
its attribute(s):
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get_attr(X{A}, Attr) :-

-?->

A = Attr.

This predicate can be used to return the attribute of a given attributed variable and fail
if it is not one.

• Replacing other metalogical operations, e.g. var/1 test. Since a nonvariable in the head
of a matching clause matches only a nonvariable, explicit variable tests and/or cuts may
become obsolete.

If some argument positions of a matching clause are declared as output in a mode declaration,
then they are not unified using pattern matching but normal unification, in this case then the
variable is normally bound. The above example can thus be also written as

:- mode get_attr(?, -).

get_attr(X{A}, A) :-

-?->

true.

but in this case it must not be called with its second argument already instantiated.

5.6 Soft Cut

Sometimes it is useful to be able to remove a choice point which is not the last one and to keep
the following ones, for example when defining an if-then-else construct which backtracks also
into the condition. This functionality is usually called soft cut in the Prolog folklore.
Softcuts are written as:

A ∗− > B ; C

If A succeeds, B is executed and on backtracking subsequent solutions of A followed by B are
returned, but C is never executed. If A fails straight away, C is executed. The behaviour of
∗− >/2 is similar to − >/2 with the exception that − >/2 cuts both A and the disjunction if
A succeeds, whereas ∗− >/2 cuts only the disjunction.
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Chapter 6

The Compiler

6.1 Summary

The ECLiPSe compiler compiles ECLiPSe source (or Prolog source in various dialects) into the
instructions of an abstract machine, which are then executed by an emulator.

Program source can either be read in text form from files, console, strings and general input
streams. Alternatively, it can be provided in the form of a data structure (list of clause terms).

The smallest program unit the compiler can meaningfully process is a predicate. In practice it
is best to compile modules as a whole, since this allows for better consistency checks.

Usually, the generated code is immediately loaded into main memory and ready for execution.
This method is the most convenient during program development. In addition, compiled code
can be output to a file (ECLiPSe object format, or eco), from which it can later be loaded more
quickly.

Compiled code optionally contains debugging information, allowing a source-oriented trace of
program execution.

6.2 Compiler Invocation

The compiler is usually invoked by calling one of the following built-in predicates:

compile(Source) This is the standard compiler predicate. Source is usually a file name, other
forms are detailed below. The contents of the file is compiled with the default compiler
options.

compile(Source, Options) This is the standard compiler predicate. Source is usually a file
name, other forms are detailed below. Options is a list of options to control the compilation
process, see details below.

[File1,...,FileN] This predicate can be used as a shorthand for the compile/1 predicate. It
accepts a list of files, which can be source files or precompiled files.

compile stream(Stream) This predicate compiles a given, open stream up to its end or to
the end_of_file clause. It can be used when the input file is already open, e.g. when the
beginning of the file does not contain compiler input.

compile stream(Stream,Options) Like compile stream/1 but with options list.
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compile term(Clauses) This predicate is used to compile a given term, usually a list of clauses
and directives. Unlike assert/1 it compiles a static procedure, and so it can be used to
compile a procedure which is dynamically created and then used as a static one.

compile term(Clauses,Options) Like compile stream/2 but with options list.

When using a development environment like TkEclipse or Saros, the compiler is usually invoked
implicitly via menu options or buttons.

6.2.1 Source Files

Program source is usually contained in files. The recommended file suffixes (extensions) are

• .ecl for ECLiPSe specific source

• .pl for Prolog source

To compile a source files solver.ecl, any of the following forms is acceptable:

?- compile(’solver.ecl’).

?- compile("solver.ecl").

?- compile("/home/joe/solver.ecl").

?- compile("/home/joe/solver").

?- compile(solver).

File names need to be single quoted (atom) or double quoted (string) if they contain punctuation,
blank space, or start with an upper case letter. The .ecl extension can be omitted as long as
no file without extension is present. A .pl extension can be omitted as long as no file without
extension and no file with .ecl extension is present. The list of accepted suffixes and their
precedence is given by the global flag prolog suffix, see get flag/3.
The following shorthands can be used, but note that the last two forms will load precompiled
.eco files by preference, should they be present:

?- [’solver.ecl’].

?- ["solver.ecl"].

?- ["/home/joe/solver.ecl"].

?- ["/home/joe/solver"].

?- [solver].

If the source is given as library(Name), the predicates looks for the file in the directories from
the global flag library path.
If File is the special atom ’user’, the source will be taken from the current ’input’ stream, i.e.
will usually generate a prompt at which clauses can be typed in. In this case, input must be
terminated either by typing CTRL-D (on Unix), CTRL-Z + RETURN (on Windows), or with
the single atom end of file, followed by a fullstop/period.

?- [user].

main :- writeln(hello).

^D

tty compiled 72 bytes in 0.01 seconds

Yes (0.01 cpu)
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?- main.

hello

Yes (0.00s cpu)

If File is the special form stream(Stream), then the source is taken from the given stream (which
must be already opened). The stream content is compiled until the end of stream (or the
end of file marker). Using this feature, any ECLiPSe stream (file, socket, tty, string, queue,
pipe) can be used as the source for program text.

6.2.2 Main Compiler Options

The following compiler options affect the generated code:

debug This option (off/on) determines whether the resulting code contains debugging infor-
mation. If off, subgoals of the compiled predicates will not be visible to the debugger, the
code will be significantly smaller, and slightly faster. The default value is taken from the
global flag debug compile. The setting can be changed via a pragma (debug/nodebug)
in the code.

opt level: Currently the integer 0 or 1, with 1 the default. Setting this to 0 will disable certain
compiler optimizations and usually reduce performance. The setting can be changed via
an opt level(Level) pragma in the code.

The following options determine what is being done with the compilation result:

load: Determines whether the generated code is immediately loaded into memory, ready for
execution. Values for the ’load’ option are:

all (default) Load and replace code in memory, create/re-create all modules, interpret
pragmas, and execute all directives and queries.

none Do not load any code into memory, do not execute queries, but interpret pragmas
and execute directives. Do not re-create modules, but create new ones and erase them
again after compilation.

new Do not overwrite any code in memory, but load new predicates. Do not execute
queries, but interpret pragmas and execute directives. Do not re-create modules, but
create new ones and erase them again after compilation. For existing modules, erase
pragmas.

output: The abstract machine code which is the result of the compilation can be output in
various forms. Possible values are:

none (default) no output (but code may be loaded, see load option),

eco output compiled code in eco format to input file with .eco suffix This format can be
loaded using ensure loaded/1 or the compiler itself.

eco(File) output compiled code in eco format to File.

asm output compiled code in asm format to input file with .asm suffix. This format
represents the code as WAM code that can be loaded back into ECLiPSe using the
assembler (lib(asm)).

asm(File) output compiled code in asm format to File.
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outdir: Value is the destination directory for all output files. The default is the empty string
””, meaning that all output files go into the same directory as the corresponding input file.

For other options see compile/2.
For example, to compile a program without debugging support directly into memory, use

?- compile(myprogram, [debug:off]).

The following command will create a precompiled file myprogram.eco from a source file called
myprogram.ecl (or myprogram.pl):

?- compile(myprogram, [output:eco]).

6.3 Source Structure

The compiler normally reads files from beginning to end, but the file end can also be simulated
with a clause

end_of_file.

When reading from a terminal/console, the end of the input can be marked by CTRL-D (in
Unix-like systems) or CTRL-Z+RETURN on Windows.
When reading program source, the compiler distinguishes clauses, directives and file queries.
Directives are terms with main functor :-/1 while file queries have the main functor ?-/1.
Everything else is a program clause (see Appendix A)
The differences between a directive and a file query are as follows:

• File queries are general goals, and are executed when the program is loaded, i.e. when
compiling with the load-option set to all, or when loading a compiled file. When compiling
without loading, they are ignored.

• Directives can be general goals, in which case they are executed while the program is being
compiled, and also when a compiled program is loaded.

• Some directives are not goals, but are interpreted by the compiler (or other source process-
ing tool), e.g. module-directives or pragmas. These should not be combined with general
goals in the same directive.

Directives and file queries should succeed and should only have a single solution. No results are
printed by the system, failure leads to a warning, and an error condition will cause compilation
to abort.

6.3.1 Clauses and Predicates

All other input terms are interpreted as clauses to be compiled. A sequence of consecutive
clauses whose heads have the same functor is interpreted as one predicate. Normally, all clauses
for one predicate should be consecutive in the source. If this is not the case, the compiler issues
a warning and ignores the new clauses.
To change this behaviour, a discontiguous/1 declaration must be used. The clauses are then
collected and compiled as a whole once the end of the source unit (file or module) has been
reached.
To add clauses for a predicate incrementally though several independent compiler invocations is
only possible by declaring the corresponding predicate as dynamic/1, see Chapter 11.
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6.3.2 Compilation and Modules

In the absence of module-directives (module/1, module/3) within the file, the file content is
compiled into the module from which compile/1,2 itself was called. This context module may be
modified using the @/2 notation, i.e. compile(File,Options)@Module. Existing static predicates
will be redefined, and clauses for dynamic predicates appended to the existing ones (unless the
’load’ option requests otherwise).
If the compiled file contains module directives (module/1,3), these specify to which module(s) the
subsequent code belongs. Module directives are effective from the point where they occur until
the next module directive, or until the end of file. If a module directive refers to a module that
already exists, this module is erased and redefined (unless the ’load’ option requests otherwise).
It is generally recommended to follow the one file - one module convention, and to make the
base name of the file identical to the module name. In rare cases, it may make sense to have an
auxiliary module in the same file as the main module. This is allowed, and every new module
directive terminates the previous module.
To spread the code for one module over several files, use a top-level file containing the module
directive plus one or more include-directives (section 6.4.3) for the component files.

6.3.3 Incrementality

When it encounters a module/1/ module/3 directive the compiler first erases previous con-
tents of this module, if there was any, before starting to compile predicates into it. This means
that in order to incrementally add predicates to a module, the module directive cannot be
used because the previous contents of the module would be destroyed. Instead, the construct
compile(File)@Module must be used.

6.4 Directives

6.4.1 Modules and Declarations

The following is a list of the directives most commonly used in source files:

:- module(Name). Beginning of a module.

:- module(Name,Exports,Dialect). Beginning of a module in a given dialect.

:- local Specs. Declaration of local items, e.g. syntax settings, operators, global storage, etc.

:- export Specs. Declaration of local items, e.g. predicates, syntax settings, operators, etc.

:- reexport Specs. Declaration of reexported items.

:- import Specs. Declaration of imported modules or predicates.

:- use module(Mods). Loading and importing of modules or libraries.

:- lib(Libs). Loading and importing of libraries.

:- meta attribute(Name,Handlers) Declare a variable attribute.

:- comment(Type,Info) Structured program documentation.
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6.4.2 Conditional Compilation

The compiler and other source-processing tools recognise the conditional compilation directives
if/1, elif/1, else/0 and endif/0. The first two take a goal as their argument, and parts of the
program source can be included or excluded depending of the satisfiability of that goal. E.g.

:- if(get_flag(hostarch,"i386_nt")).

...Windows-specific code...

:- elif( (get_flag(version_as_list,Version), Version @>= [6,0]) ).

...code for version 6.0 and later...

:- else.

...alternative code...

:- endif.

Note however, that only complete clauses or directives can be conditionally included.

6.4.3 Include Directives

Generally, it is best to use the module system to structure ECLiPSe applications, and to use
one module per file. The modules then refer to each other via use module/1, lib/1, or import/1
directives. In rare cases it can make sense to split a single module into several files, which can
then be pulled together using the following include directives:

:- include(Files). The contents of the given Files are treated as if they occurred in place of
the include directive. Files is a single file name or a list of them.

:- [Files]. A synonym for the include/1 directive. Note that the semantics of this construct
when used as a directive (include semantics) differs slightly from its use as a goal or query
(compiler/loader invocation).

Included files can contain clauses, directives and queries, but should not contain module/1,3
directives, since they would be interpreted as occurring within the including file, and the included
module would not end at the end of the included file.

6.4.4 Compiler Pragmas

Compiler pragmas are compiler directives which instruct the compiler to emit a particular code
type, overriding the options given to the compiler. Their syntax is similar to directives:

:- pragma(Option).

It is not possible to have several pragmas grouped together and separated by commas, every
pragma must be specified separately. Option can be one of the following:

debug - generate code which can be inspected with the debugger. This overrides the global
setting of the debug_compile flag, and any debug-option given to the compiler..

nodebug - generate optimized code with no debugger support. This overrides the global setting
of the debug_compile flag, and any debug-option given to the compiler.
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expand - do in-line expansion of built-ins like is/2 and user-defined inline predicates. This code
can still be inspected with the debugger but the expanded subgoals look differently than in
the normal debugged code, or their arguments cannot be seen. This pragma overrides the
global setting of the goal_expansion flag, and any expand-option given to the compiler.

noexpand - inhibit the in-line goal expansion. This pragma overrides the global setting of the
goal_expansion flag, and any expand-option given to the compiler.

opt level(Level) - override the opt level option given to the compiler. Level is an integer
greater or equal to 0. A zero setting disables all optional optimization.

skip - set the skip flag of all following predicates to on.

noskip - set the skip flag of all following predicates to off.

system - set the type flag of all following predicates to built_in. Moreover, all following
predicates will have unspecified source_file and source_line flags.

warnings - enable compiler warnings, overriding any warnings-option given to the compiler.

nowarnings - disable compiler warnings, overriding any warnings-option given to the compiler.

A pragma is active from its specification in the file until the file end or until it is disabled by
another pragma. Recursive compilations or calls to other compiling predicates are not affected
by the pragma.

The pragmas are useful mainly for libraries and other programs that should be always compiled
in a particular mode independently of the global flags or compiler option settings.

6.5 Precompiled (ECO) Files

6.5.1 Making Precompiled Files

ECLiPSe source files can be compiled into ECLiPSe object files, for subsequent loading. These
files have the .eco suffix by default. This facility is mainly intended for module files. To create
such a file, call the compiler with the appropriate output-option, e.g.

?- compile(myprogram, [output:eco]).

This create a precompiled file myprogram.eco from a source file called myprogram.ecl (or mypro-
gram.pl). If the source file contained include directives, the result will be a single object file
containing the compiled code of all included files. In earlier releases of ECLiPSe this was done
using the fcompile/1 predicate from the fcompile library, which is still supported for compati-
bility.

Loading of ECLiPSe object files is significantly faster than compilation from source. In ECLiPSe

6.0, ECLiPSe object files are text files containing a representation of the compiled abstract
machine code, and can be used to deploy application code without revealing the source. The
precompiled code is hardware and operating system independent. It may however not be portable
between different versions of ECLiPSe if details of the abstract machine were modified between
releases.

The file suffix used for ECLiPSe object files is the value of the global flag eclipse object suffix.
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6.5.2 Restrictions

Currently, the compiler generates the auxiliary predicates for the do iterator using a module-
wide counter to name the predicates. Unfortunately this means that if an object file with
auxiliary predicates is loaded into a module that already has existing code that contains auxiliary
predicates, naming conflict can occur and the old auxiliaries may be replaced. It is thus strongly
recommended that object files should not be loaded into an existing module. This will only be
a problem if the file does not contain any module declarations that redefines the module (i.e.
module/1), as these redefinition will erase the old copy of the module.
One restriction does apply between platforms of different word sizes: integers which fit in the
word size of one platform but not the other are represented differently internally in ECLiPSe.
Specifically, integers which takes between 32 and 64 bits to represent are treated as normal
integers on a 64 bit machine, but as bignums (see section 8.2.1) on 32 bit machines. This
difference is normally invisible, but if such numbers occur as constants in the program code (i.e.
their values appear textually), they can lead to different low-level compiled abstract code on
the different platforms. Avoid using such constants if you want the object code to be portable
across different word sizes (they can always be computed at run-time, e.g. writing 2^34 instead
of 17179869184).

6.5.3 Loading Precompiled Files

The following predicates either invoke the compiler or load precompiled .eco files. If the source
specification does not specify the file type, precompiled files are preferred if they can be found
in the search path:

[File1,...,FileN] This predicate can be used as a shorthand for the compile predicate, usually
in the interactive toplevel. It accepts a list of files, which can be source files or precompiled
files.

ensure loaded(Files) This predicate compiles the specified file if it has not been compiled yet
or if it has been modified since the last compilation. It can be used to load application
code or system libraries.

use module(Files) A combination of ensure loaded/1 and import/1.

lib(Lib) This predicate is used to ensure that a specified library file is loaded. It is equivalent
to ensure loaded(library(Lib)). If this library is not yet compiled or loaded, the system
will look in all directories in the library_path flag for a file with this name, which is
either a source file or a precompiled file, and compile or load it.

make This predicate recompiles or reloads all files that have been modified since their last
compilation or loading.

To implement reloading/recompiling when needed, the system keeps track of when a particular
source files was compiled or precompiled file was loaded into memory. This information can be
accessed explicitly through current compiled file/3.

6.5.4 Using the Compiler with a Makefile

To generate .eco file from source files, the compiler can be run from the command line using the
-e option. To invoke it from a makefile, use the following suffix rule
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.SUFFIXES: $(SUFFIXES) .ecl .eco

.ecl.eco:

eclipse -e "compile(\"$<\",[output:eco])"

or a pattern rule for Gnu make:

%.eco: %.ecl

eclipse -e "compile(\"$<\",[output:eco])"

6.6 Special Compiler Features

6.6.1 Compiling Non-Textual Source

A characteristic feature of Prolog and ECLiPSe is, that programs can be represented as data
structures in a straightforward way. The compiler therefore provides the compile term/1/
compile term/2 interface, which allows to compile a list of terms. The compiler interprets
these as clauses, directives and queries, similar to program source being read from a file. For
program generators, it is therefore not necessary to create a textual representation of generated
code - the data structures can be compiled directly.

There are the following minor differences between compilation from textual sources and term
compilation:

• Module directives are not supported - to compile code into a certain module, use the
construct compile term(Clauses,Options)@Module, and use create module/1 to create
modules beforehand if necessary.

• Include directives do not make sense and are not supported.

• No end-of-compilation events are raised - compile term/1 behaves more like the compila-
tion of an included file in this respect. This implies that discontiguous predicates are not
supported.

A variant of compile term/2 is compile term annotated/3 which takes source terms with
source position annotations. This can be used when compiling auxiliary code within inlining/goal
expansions transformations, without losing the source position information which is needed by
the debugger.

6.6.2 Mode Declarations

Mode declarations are a way for the user to give some additional information to the compiler,
thus enabling it to do a better job. The ECLiPSe compiler makes use of the mode information
mainly to improve indexing and to reduce code size.

Mode declarations are optional. They specify the argument instantiation patterns that a predi-
cate will be called with at runtime, for example:

:- mode p(+), q(-), r(++, ?).

The possible argument modes and their meaning are:

+ - The argument is instantiated, i.e. it is not a variable.

51



++ - The argument is ground.

− - The argument is not instantiated, it must be a free variable without any constraints, espe-
cially it must not occur in any other argument and it cannot be a suspending variable.

? - The mode is not known or it is neither of the above ones.

Note that, if the actual instantiation of a predicate call violates its mode declaration, the be-
haviour is undefined. Usually, an unexpected failure occurs in this case.

6.6.3 Inlining

To improve efficiency, calls to user-defined predicates can be preprocessed and transformed at
compile time. The directive inline/2, e.g.

:- inline(mypred/1, mytranspred/2).

arranges for mytranspred/2 to be invoked at compile time for each call to the predicate mypred/1
before this call is being compiled.
The transformation predicate receives the original call to mypred/1 as its first argument, and is
expected to return a replacement goal in its second argument. This replacement goal replaces
the original call in the compiled code. Usually, the replacement goal would be semantically
equivalent, but more efficient than the original goal. When the transformation predicate fails,
the original goal is not replaced.
Typically, a predicate would be defined together with the corresponding inlining transformation
predicate, e.g.

:- inline(double/2, trans_double/2).

double(X, Y) :-

Y is 2*X.

trans_double(double(X, Y), Y=Result) :-

not nonground(X), % if X already known at compile time:

Result is 2*X. % do calculation at compile time!

All compiled calls to double/2 will now be preprocessed by being passed to trans double/2. E.g.
if we now compile the following predicate involving double/2

sample :-

double(12,Y), ..., double(Y,Z).

the first call to double will be replaced by Y=24 while the second one will be unaffected. The
code that the compiler sees and compiles is therefore

sample :-

Y=24, ..., double(Y,Z).

Note that meta-calls (e.g. via call/1) are never preprocessed, they always go directly to the
definition of double/2.
Transformation can be disabled for debugging purposes by adding
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:- pragma(noexpand).

to the compiled file, or by setting the global flag

:- set_flag(goal_expansion, off).

6.6.4 Clause Expansion

Before compilation, the compiler also performs clause macro expansion (macro/3. This includes
the DCG grammar rule expansion (section 12.3).

6.7 Writing Efficient Code

Even with a declarative language, there are certain constructs which can be compiled more
efficiently than others. It is however not recommended to write unreadable code with the aim of
achieving faster execution - intuition is often wrong about which particular construct will execute
more efficiently in the end. The advice is therefore Try the simple and straightforward
solution first! This will keep code maintainable, and will often be as fast or marginally slower
than elaborate tricks. The second rule is to keep this original program even if you try to optimise
it. You may find out that the optimisation was not worth the effort. ECLiPSe provides some
support for finding those program parts that are worth optimizing.

To achieve the maximum speed of your programs, chose the following compiler options:

• debug:off

• opt level:1 (the default)

• expand:on (the default)

Some programs spend a lot of time in the garbage collection, collecting the stacks and/or the
dictionary. If the space is known to be deallocated anyway, e.g. on failure, the programs
can be often sped up considerably by switching the garbage collector off or by increasing the
gc_interval flag. As the global stack expands automatically, this does not cause any stack
overflow, but it may of course exhaust the machine memory.

When the program is running and its speed is still not satisfactory, use the profiling tools. The
profiler can tell you which predicates are the most expensive ones, and the statistics tool tells
you why. A program may spend its time in a predicate because the predicate itself is very
time consuming, or because it was frequently executed. The port profiling tool gives you this
information. It can also tell whether the predicate was slow because it has created a choice point
or because there was too much backtracking due to bad indexing.

One of the very important points is the selection of the clause that matches the current call. If
there is only one clause that can potentially match, the compiler is expected to recognise this
and generate code that will directly execute the right clause instead of trying several subsequent
clauses until the matching one is found. Unlike most of the current Prolog compilers, the
ECLiPSe compiler tries to base this selection (indexing) on the most suitable argument of the
predicate1. It is therefore not necessary to reorder the predicate arguments so that the first one
is the crucial argument for indexing. For example, in a predicate like

1The standard approach is to index only on the first argument
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p(a, a) :- a.

p(b, a) :- b.

p(a, b) :- c.

p(d, b) :- d.

p(b, c) :- e.

calls where the first argument is instantiated, like p(d,Y), will be indexed on the first argument,
while calls where the second argument is instantiated, like p(X,b), will be indexed on the second.
However, the decision is still based on only one argument at a time: a call like p(d,b) will be
indexed on the first argument only (not because it is the first, but because it is more discrim-
inating than the second). If it is crucial that such a procedure is executed as fast as possible
with such a calling pattern, it can help to define an auxiliary procedure which will be indexed
on the other argument:

p(X, a) :- pa(X).

p(X, b) :- pb(X).

p(b, c) :- e.

pa(a) :- a. pa(b) :- b.

pb(a) :- c. pb(d) :- d.

The compiler also tries to use for indexing all type-testing information that appears at the
beginning of the clause body (or beginning of a disjunction):

• Type testing predicates free/1, var/1, meta/1, atom/1, integer/1, rational/1, float/1,
breal/1, real/1, number/1, string/1, atomic/1, compound/1, nonvar/1 and non-
ground/1.

• Explicit unification and value testing =/2, ==/2, \==/2 and \=/2.

• Combinations of tests with ,/2, ;/2, not/1, − >/2.

• A cut after the type tests.

If the compiler can decide about the clause selection at compile time, the type tests are never
executed and thus they incur no overhead. When the clauses are not disjoint because of the type
tests, either a cut after the test or more tests into the other clauses can be added. For example,
the following procedure will be recognised as deterministic and all tests are optimised away:

% a procedure without cuts

p(X) :- var(X), ...

p(X) :- (atom(X); integer(X)), X \= [], ...

p(X) :- nonvar(X), X = [_|_], ...

p(X) :- nonvar(X), X = [], ...

Another example:

% A procedure with cuts

p(X{_}) ?- !, ...

p(X) :- var(X), !, ...

54



p(X) :- integer(X), ...

p(X) :- real(X), ...

p([H|T]) :- ...

p([]) :- ...

Here are some more hints for efficient coding with ECLiPSe:

• Arguments which are repeated in the clause head and in the first regular goal in the body
do not require any data moving and thus they do not cost anything. For example,

p(X, Y, Z, T, U) :- q(X, Y, Z, T, U).

is just as cheap as

p :- q.

On the other hand, switching arguments requires data moves and so

p(A, B, C) :- q(B, C, A).

is somewhat more expensive.

• When accessing an argument of a structure whose functor is known, unification and arg/3
are both similarly efficient, so whether to write Struct=emp(_,X,_) or arg(2,Struct,X)
is just a matter of taste and style.

In eiter case, the structure notation (see section 5.1) should be used, as it improves readabil-
ity without adding any overhead. So, for example Struct=emp{salary:X} or arg(salary
of emp,Struct,X).

• Tests are generally rather slow unless they can be compiled away (see indexing).

• Waking is more expensive (due to the priority mechanism) than metacalling which is more
expensive than compiled calls. Metacalls however do not carry as heavy a penalty as in
some other Prolog systems.

• Sorting using sort/2 is very efficient and it does not use much space. Using setof/3,
findall/3 etc. is also efficient enough to be used every time a list of all solutions is needed.

• =/2 and ==/2 are faster than =:=/2.

• :/2 is optimised away by the compiler if both arguments are known.

• Starting from ECLiPSe 6.0, there is no performance difference between using multiple
clauses or using disjunction or if-then-else cascades. In fact, the compiler normalises mul-
tiple clause predicates into a single-clause representation with inline disjunctions. Disjunc-
tions are indexed.

• Conditionals with − >; are compiled more efficiently if the condition is an indexable
built-in test.
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6.8 Implementation Notes

The ECLiPSe compiler is actually contained in the eclipse library lib(ecl compiler) which re-
lies on a number of auxiliary modules. It uses lib(source processor) to read programs, and
produces abstract machine code that is assembled using lib(asm).
The built-in predicate als/1 or asm:wam/1 lists the abstract code of the given predicate and
it can thus be used by experts to check if the predicate was compiled as expected.
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Chapter 7

Module System

7.1 Basics

7.1.1 Purpose of Modules

The purpose of the module system is to provide a way to package a piece of code in such a way
that

• internals are hidden

• it has a clearly defined interface

• naming conflicts are avoided

In particular, this helps with

• Structuring of large applications: Modules should be used to break application programs
into natural components and to define the interfaces between them.

• Provision of libraries: All ECLiPSe libraries are modules. Their interfaces are defined in
terms of what the module makes visible to the world.

• Different implementations of the same predicate: In constraint programming it is quite
common to have different implementations of a constraint, which all have the same declar-
ative meaning but different operational behaviour (e.g. different amount of propagation,
using different algorithms, exhibiting different performance characteristics). The module
system supports that by allowing to specify easily which version(s) of a predicate should
be used in a particular context.

7.1.2 What is under Visibility Control?

The ECLiPSe module system governs the visibility of the following entities:

Predicate names Predicates can always be used in the module where they are defined and
optionally in other modules when they are made available.

Structure names Structure declarations can be valid only local to a module or shared between
several modules.
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Syntax settings These include operator declarations op/3, syntax options and character classes.
This means in particular that different modules can use different language dialects (e.g.
ECLiPSe vs. ISO-Prolog).

Container names These include the names of record keys, nonlogical variables and references.
They are always local to the module where they are declared.

Initialization and Finalization goals Modules can have initialization and finalization goals
attached, see section 7.4.3.

Note that every definition (predicate, structure etc) is in some module, there is no space outside
the modules. When you don’t explicitly specify a module, you inherit the module from the
context in which you do an operation. When you are using an interactive ECLiPSe toplevel, a
prompt will tell you in which module your input is read and interpreted.

7.1.3 What Modules are There?

The module system is flat, i.e. no module is part of another module, and module names must
be unique. There are

• a few basic modules that are part of the ECLiPSe runtime system and are always there.
The most important one is called eclipse_language and is by default imported into all
other modules.

• the library modules: every library consists of at least one module. By convention, that
module name is the library name and same as the base part of the library filename.

• the application-defined modules: these are created by the application programmer.

• in an interactive ECLiPSe toplevel there is one module in which queries entered by the
user are read and executed. That module name is displayed in a prompt.

7.2 Getting Started

7.2.1 Creating a Module

You create a module simply by starting your program code with a module/1 directive. This
should usually be placed at the beginning of the source file and looks like

:- module(mymodule).

As a rule, the module name should be chosen to be the same as the file’s base name (the
filename without directory/folder and suffix/extension part). E.g. the module mymodule might
be contained in a file mymodule.ecl.
Anything you define in your module is by default local to that module.

7.2.2 Exporting

A definition is made available to the outside world by exporting it. All the exports of a module
together form the module’s interface. Exporting is done with the export/1 directive, which
can take different forms depending on the kind of the exported item.
Predicates are exported as follows:
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:- export p/2.

p(X,Y) :-

...

Structures are exported by defining them with an export/1 instead of a local/1 directive, e.g.

:- export struct(book(author,title,publisher)).

And the same holds for operators and other syntax settings:

:- export op(500, xfx, before).

:- export chtab(0’$, lower_case).

:- export syntax_option(no_array_subscripts).

:- export macro(pretty/1, tr_pretty/2, []).

All these declarations are valid locally in the module where they appear and in every module
that imports them.
Initialization goals are exported as follows:

:- export initialization(writeln("I have been imported")).

Unlike the other declarations above, an exported initialization/1 directive is not executed
locally in they module where it appears, but only in the context of the module where it gets
imported1.

7.2.3 Importing

In order to use a definition that has been exported elsewhere, it has to be imported. Often it
is desirable to import another module’s interface as a whole, i.e. everything it exports. This is
achieved by an import/1 directive of the form

:- import amodule.

If the module is in a file and has to be compiled first, then use module/1 can be used, which
is a combination of ensure loaded/1 (see chapter 6) and import/1:

:- use_module("/home/util/amodule").

If the module is a library in one of ECLiPSe’s library directories, then it can be loaded and
imported by

:- use_module(library(hash)).

or simply using lib/1 as in

:- lib(hash).

It is also possible to import only a part of another module’s interface, using an import-from
directive

:- import p/2 from amodule.

Note that this is the only form of import that can refer to a module that has not yet been loaded,
and therefore allows a restricted form of circularity in the import structure.

1 for local initialization use :- local initialization(...).
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7.2.4 Definitions, Visibility and Accessibility

For a given predicate name and arity the following rules hold:

• Every module can contain at most one definition

– this definition may be local or exported

• In every module, at most one definition is visible

– if there is a definition in the module itself, this is also the visible one in the module

– otherwise, if there is an (unambiguous) import or reexport, this is the visible one

– otherwise no definition is visible

• All exported definitions are accessible everywhere

– this might require explicit module qualification (see 7.3.2)

7.3 Advanced Topics

7.3.1 Solving Name Conflicts

Name conflicts occur in two flavours:

Import/Import conflict: this is the case when two or more imported modules provide a
predicate of the same name.

Import/Local conflict: this is the case when a local (or exported) predicate has the same
name as a predicate provided from an imported module.

Conflicts of the first type are accepted silently by the system as long as there is no reference to
the conflict predicate. Only when an attempt is made to access the conflict predicate is an error
raised. The conflict can be resolved by explicitly importing one of the versions, e.g.

:- lib(ria). % exports #>= / 2

:- lib(eplex). % exports #>= / 2

:- import (#>=)/2 from ria. % resolves the conflict

Alternatively, the conflict can remain unresolved and qualified access can be used whenever the
predicates are referred to (see 7.3.2).

Conflicts of the second type give rise to an error or warning message when the compiler en-
counters the local (re)definition. To avoid that, an explicit local/1 declaration has to be used:

:- local write/1.

write(X) :- % my own version of write/1

...

Note that the local/1-declaration must occur textually before any use of the predicate inside
the module.
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7.3.2 Qualified Access via :/2

Normally, it is convenient to import predicates which are needed. By importing, they become
visible and can be used within the module in the same way as local definitions. However,
sometimes it is preferable to explicitly specify from which module a definition is meant to be
taken. This is the case for example when multiple versions of the predicate are needed, or when
the presence of a local definition makes it impossible to import a predicate of the same name
from elsewhere. A call with explicit module qualification is done using : /2 and looks like this:

lists:print_list([1,2,3])

Here, the module where the definition of print list/1 is looked up (the lookup module) is
explicitly specified. To call print list/1 like this, it is not necessary to make print list/1 visible.
The only requirement is that it is exported (or reexported) from the module lists.
Note that, if the called predicate is in operator notation, it will often be necessary to use brackets,
e.g. in

..., ria:(X #>= Y), ...

The : /2 primitive can be used to resolve import conflicts, i.e. the case where the same name is
exported from more than one module and both are needed. In this case, none of the conflicting
predicates is imported - an attempt to call the unqualified predicate raises an error. The solution
is to qualify every reference with the module name:

:- lib(ria). % exports #>= / 2

:- lib(eplex). % exports #>= / 2

..., ria:(X #>= Y), ...

..., eplex:(X #>= Y), ...

Another case is the situation that a module wants to define a predicate of a given name but
at the same time use a predicate of the same name from another module. It is not possible to
import the predicate because of the name conflict with the local definition. Explicit qualification
must be used instead:

:- lib(lists).

print_list(List) :-

writeln("This is the list"),

lists:print_list(List).

A more unusual feature, which is however very appropriate for constraint programming, is the
possibility to call several versions of the same predicate by specifying several lookup modules:

..., [ria,eplex]:(X #>= Y), ...

which has exactly the same meaning as

..., ria:(X #>= Y), eplex:(X #>= Y), ...

Note that the modules do not have to be known at compile time, i.e. it is allowed to write code
like

after(X, Y, Solver) :-

Solver:(X #>= Y).

However, this is likely to be less efficient because it prevents compile-time optimizations.
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7.3.3 Reexport - Making Modules from Modules

To allow more flexibility in the design of module interfaces, and to avoid duplication of defini-
tions, it is possible to re-export definitions. A reexport is an import combined with an export.
That means that a reexported definition becomes visible inside the reexporting module and is
at the same time exported again. A user of a module’s interface sees no difference between
exported and reexported definitions2.
There are 3 forms of the reexport/1 directive. To reexport the complete module interface of
another module, use

:- reexport amodule.

To reexport only an explicitly enumerated selection, use

:- reexport p/1,q/2 from amodule.

To reexport everything except some explicitly enumerated items, use

:- reexport amodule except p/2,q/3.

These facilities make it possible to extend, modify, restrict or combine modules into new modules,
as illustrated in figure 7.1.

Restrict:

Modify:

Extend:

m1 interface

m3 interface

m2 interface

m1 interface

m1
interface

m2
interface

reexportreexport

reexport exceptexport

define

reexport

m2 interface

m1 interface

reexport except

m2 interface

export

(re)define

Combine:

Figure 7.1: Making modules from modules with reexport

7.3.4 Modules and Source Files

When a source file contains no module directives, it becomes part of the module from which its
compilation was invoked. This makes it possible to write small programs without caring about
modules. However, serious applications should be structured into modules.

2 except that reexported predicates retain their original definition module
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Often it is the most appropriate to have one file per module and to have the file name match
the module name.

It is however possible to have several modules in one file, e.g. a main module and one or more
auxiliary modules - in that case the name of the main module should match the filename. Every
module-directive in the file marks the end of the previous module and the start of the next one.

It is also possible to spread the contents of a module over several files. In this case, there should
be a main file whose filename matches the module name, and the other files should be referenced
from the main file using the include/1 directive, e.g.

:- module(bigmodule).

:- include(part1).

:- include(part2).

7.3.5 Tools and Caller Modules

Tools

There are predicates in a modular system that need to know from which module they were called
(since this may be different from the module in which they were defined). The most common
case is where a predicate is a meta-predicate, i.e. a predicate that has another goal or predicate
name as an argument. Other cases are I/O predicates - they need to be executed in a certain
module context in order to obey the correct syntax of this module. In ECLiPSe, such predicates
that need to know their caller module are called tool predicates3.

Tool predicates must be declared. As a consequence, the system will automatically add a caller
module argument whenever such a tool predicate is called.

Consider for example a predicate that calls another predicate twice. The naive version of this
predicate looks like

twice(Goal) :-

call(Goal),

call(Goal).

As long as no modules are involved, this works fine. Now consider the situation where the
definition of twice/1 and a call of twice/1 are in two different modules:

:- module(stuff).

:- export twice/1.

twice(Goal) :-

call(Goal),

call(Goal).

:- module(main).

:- import stuff.

top :- twice(hello).

hello :- writeln(hi).

3 Many Prolog systems call them meta-predicates.
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This will not work because hello/0 is only visible in module main and an attempt to call it from
within twice/1 in module stuff will raise an error. The solution is to declare twice/1 as a tool
and change the code as follows:

:- module(stuff).

:- export twice/1.

:- tool(twice/1, twice/2).

twice(Goal, Module) :-

call(Goal)@Module,

call(Goal)@Module.

What happens now is that the call to twice/1 in module main

..., twice(hello), ...

is effectively replaced by the system with a call to twice/2 where the additional argument is the
module in which the call occurs:

..., twice(hello, main), ...

This caller module is then used by twice/2 to execute

..., call(hello)@main, ...

The call(Goal)@Module construct means that the call is supposed to happen in the context
of module main.
The debugger trace shows what happens:

[main 5]: top.

(1) 1 CALL top

(2) 2 CALL twice(hello)

(3) 3 CALL twice(hello, main)

(4) 4 CALL call(hello) @ main

(5) 5 CALL call(hello)

(6) 6 CALL hello

S (7) 7 CALL writeln(hi)

hi

S (7) 7 EXIT writeln(hi)

(6) 6 EXIT hello

...

One complication that can arise when you use tools is that the compiler must know that a
predicate is a tool in order to properly compile a call to the tool. If the call occurs textually
before the tool declaration, this will therefore give rise to an inconsistent tool redefinition
error. The tool/2 declaration must therefore occur before any call to the tool.

System Tools

Many of the system built-in predicates are in fact tools, e.g. read/1, write/1, record/2,
compile/1, etc. All predicates which handle modular items must be tools so that they know
from which module they have been called. In case that the built-in predicate has to be executed
in a different module (this is very often the case inside user tool predicates), the @ /2 construct
must be used, e.g.

current_predicate(P) @ SomeModule
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7.3.6 Lookup Module vs Caller Module

The following table summarises the different call patterns with and without module specifica-
tions. There are only two basic rules to remember:

• : /2 specifies the lookup module (to find the definition)

• @ /2 specifies the caller module (to know the context)

Call inside module(m) Module where definition
of twice/1 is looked up

Caller module argument
added to twice/1

..., twice(X), ... m m

..., lm : twice(X), ... lm m

..., twice(X) @ cm, ... m cm

..., lm : twice(X) @ cm, ... lm cm

..., call(twice(X)) @ cm, ... cm cm

7.3.7 The Module Interface

The primitive current module/1 can be used to check for the existence of a module, or to
enumerate all currently defined modules.
Further details about existing modules can be retrieved using get module info/3, in particular
information about the module’s interface, what other modules it uses and whether it is locked
(see 7.4.4).

7.3.8 Module-related Predicate Properties

Information about a predicate’s properties can be retrieved using the get flag/3 primitive or
printed using pred/1. The module-related predicate properties are

defined (on/off) indicates whether code for the predicate has already been compiled. If not,
only a declaration was encountered.

definition module (an atom) the module where the predicate is defined.

visibility (local/exported/reexported/imported) indicates the visibility of the predicate in the
caller module.

tool (on/off) indicates whether the predicate has been declared a tool.

For tool predicates, tool body/3 can be used to retrieve the predicate it maps to when the
module argument is added.
To get information about a predicate visible in a different module, use for instance

get_flag(p/3, visibility, V) @ othermodule

7.4 Less Common Topics

7.4.1 Modules Using Other Languages

Modules created with the module/1 directive automatically import the module eclipse_language,
which provides the standard set of ECLiPSe built-in predicates. To create a module that uses a
different language dialect, use module/3. For instance
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:- module(mystdcode, [], iso).

creates a module in which you can use ISO Standard Prolog4, but not all of ECLiPSe’s usual
language features. Note that the third argument (here iso) simply specifies a library which
implements the desired language, so new languages can be added easily.

7.4.2 Creating and Erasing Modules at Runtime

A module can also be created explicitly by a running program with create module/1 or cre-
ate module/3 and erased with erase module/1. The latter should be used with care, erasing
a module while a predicate defined in that module is being executed can provoke unpredictable
results. The same holds for trying to erase essential system modules.

7.4.3 Initialization and Finalization

Sometimes modules have global state which needs to be initialised or finalised. For this purpose,
modules can have

Local Initialization Goals: these are specified as

:- local initialization(Goal).

and are executed just after the module containing them has been loaded.

Exported Initialization Goals: these are specified as

:- export initialization(Goal).

and are executed whenever the module containing the declaration gets imported into an-
other module. The call will happen in the context of the importing module.

Finalization Goals: these are specified as

:- local finalization(Goal).

and are executed just before the module containing them gets erased. Modules can get
erased either explicitly through erase module/1 or implicitly when the module is re-
compiled, or when the ECLiPSe session is exited. Finalization goals should not do any
I/O because in the case of an embedded ECLiPSe, I/O may no longer be available at
finalization time.

7.4.4 Locking Modules

By default, ECLiPSe does not strictly enforce the hiding of module internals. This facilitates
program development as is makes it possible to inspect and trace without being too concerned
about module boundaries. E.g. you can set a spy point on a local predicate p/3 in module
othermod by calling:

:- spy(p/3)@othermod.

4to the extent implemented by ECLiPSe’s compatibility library
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Once a module implementation is stable and there is a need for privacy, it is possible to lock a
module. Locking makes it impossible to access internal, local items from outside the module.
Of course, the module can still be used though its interface. The built-in predicates related to
locking are lock/0 which provides a definitive lock, lock pass/1 which allows subsequent un-
locking using a password ( unlock/2), and get module info/3 which allows to check whether
a module is locked. lock/0 and lock pass/1 are usually used as a directive in the source file
of the module to be locked.
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Chapter 8

Arithmetic Evaluation

8.1 Built-Ins to Evaluate Arithmetic Expressions

Unlike other languages, Prolog usually interprets an arithmetic expression like 3 + 4 as a
compound term with functor + and two arguments. Therefore a query like 3 + 4 = 7 fails
because a compound term does not unify with a number. The evaluation of an arithmetic
expression has to be explicitly requested by using one of the built-ins described below.

The basic predicate for evaluating an arithmetic expression is is/2. Apart from that only the 6
arithmetic comparison predicates evaluate arithmetic expressions automatically.

Result is Expression Expression is a valid arithmetic expression and Result is an uninstan-
tiated variable or a number. The system evaluates Expression which yields a numeric
result. This result is then unified with Result. An error occurs if Expression is not a
valid arithmetic expression or if the evaluated value and Result are of different types.

Expr1 < Expr2 succeeds if (after evaluation and type coercion) Expr1 is less than Expr2.

Expr1 >= Expr2 succeeds if (after evaluation and type coercion) Expr1 is greater or equal to
Expr2.

Expr1 > Expr2 succeeds if (after evaluation and type coercion) Expr1 is greater than Expr2.

Expr1 =< Expr2 succeeds if (after evaluation and type coercion) Expr1 is less or equal to
Expr2.

Expr1 =:= Expr2 succeeds if (after evaluation and type coercion) Expr1 is equal to Expr2.

Expr1 =\= Expr2 succeeds if (after evaluation and type coercion) Expr1 is not equal to
Expr2.

8.1.1 Arithmetic Evaluation vs Arithmetic Constraint Solving

This chapter deals purely with the evaluation of arithmetic expressions containing numbers. No
uninstantiated variables must occur within the expressions at the time they are evaluated. This
is exactly like arithmetic evaluation in procedural languages.

As opposed to that, in arithmetic constraint solving one can state equalities and inequalities
involving variables, and a constraint solver tries to find values for these variables which satisfy
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these constraints. Note that ECLiPSe uses the same syntax in both cases, but different imple-
mentations providing different solving capabilities. See the chapter Common Solver Interface
in the Constraint Library Manual for an overview.

8.2 Numeric Types and Type Conversions

ECLiPSe distinguishes four types of numbers: integers, rationals, floats and bounded reals.

8.2.1 Integers

The magnitude of integers is only limited by your available memory. However, integers that fit
into the word size of your computer are represented more efficiently (this distinction is invisible
to the user). Integers are written in decimal notation or in base notation, e.g.:

0 3 -5 1024 16’f3ae 0’a 15511210043330985984000000

Note that integer range is unlimited if ECLiPSe was compiled with bignum support. Other-
wise, integers are restricted to that representable in a machine word, and max_integer flag of
get flag/2 returns the maximum integer value.

8.2.2 Rationals

Rational numbers implement the corresponding mathematical domain, i.e. ratios of two integers
(numerator and denominator). ECLiPSe represents rationals in a canonical form where the
greatest common divisor of numerator and denominator is 1 and the denominator is positive.
Rational constants are written as numerator and denominator separated by an underscore, e.g.

1_3 -30517578125_32768 0_1

Rational arithmetic is arbitrarily precise. When the global flag prefer_rationals is set, the
system uses rational arithmetic wherever possible. In particular, dividing two integers then
yields a precise rational rather than a float result.

Rationals are supported if ECLiPSe is compiled with bignum support. If rationals are not
supported, a type error will be raised when a rational is required.

8.2.3 Floating Point Numbers

Floating point numbers conceptually correspond to the mathematical domain of real numbers,
but are not precisely represented. Floats are written with decimal point and/or an exponent,
e.g.

0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECLiPSe uses double precision floats1.

1 ECLiPSe versions older than 5.5 optionally supported single precision floats. This is no longer the case.
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8.2.4 Bounded Real Numbers

It is a well known problem that floating point arithmetic suffers from rounding errors. To provide
safe arithmetic over the real numbers, ECLiPSe also implements bounded reals2. A bounded
real consists of a pair of floating point numbers which constitute a safe lower and upper bound
for the real number that is being represented. Bounded reals are written as two floating point
numbers separated by two underscores, e.g.

-0.001__0.001 3.141592653__3.141592654 1e308__1.0Inf

A bounded real is a representation for a real number that definitely lies somewhere between the
two bounds, but the exact value cannot be determined 3. Bounded reals are usually not typed
in by the user, they are normally the result of a computation or type coercion.
All computations with bounded reals give safe results, taking rounding errors into account. This
is achieved by doing interval arithmetic on the bounds and rounding the results outwards. The
resulting bounded real is then guaranteed to enclose the true real result.
Computations with floating point values result in uncertainties about the correct result. Bounded
reals make this uncertainty explicit. A consequence of this is that sometimes it is conceptu-
ally not possible to decide whether two bounded reals are identical or not. This occurs when
the bounds of the compared intervals overlap. In this case, the arithmetic comparisons leave
a (ground) delayed goal behind which can then be inspected by the user to decide whether
the match is considered close enough. The syntactial comparisons like =/2 and ==/2 treat
bounded reals simply as a pair of bounds, and consider them equal when the bounds are equal.

8.2.5 Type Conversions

Note that numbers of different types never unify, e.g. 3, 3 1, 3.0 and 3.0 3.0 are all different.
Use the arithmetic comparison predicates when you want to compare numeric values. When
numbers of different types occur as arguments of an arithmetic operation or comparison, the
types are first made equal by converting to the more general of the two types, i.e. the rightmost
one in the sequence

integer → rational → float → bounded real

The operation or comparison is then carried out with this type and the result is of this type as
well, unless otherwise specified. Beware of the potential loss of precision in the rational → float
conversion! Note that the system never does automatic conversions in the opposite direction.
Such conversion must be programmed explicitly using the integer, rational, float and breal
functions.

8.3 Arithmetic Functions

8.3.1 Predefined Arithmetic Functions

The following predefined arithmetic functions are available. E, E1 and E2 stand for arbitrary
arithmetic expressions.

2 We have chosen to use the term bounded real rather than interval in order to avoid confusion with interval
variables as used in the interval arithmetic constraint solvers

3This is in contrast to a floating point number, which represents a real number which lies somewhere in the
vicinity of the float
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Function Description Argument Types Result Type

+ E unary plus number number
– E unary minus number number
abs(E) absolute value number number
sgn(E) sign value number integer
floor(E) round down to integral value number number
ceiling(E) round up to integral value number number
round(E) round to nearest integral value number number
truncate(E) truncate to integral value number number
E1 + E2 addition number × number number
E1 – E2 subtraction number × number number
E1 * E2 multiplication number × number number
E1 / E2 division number × number see below
E1 // E2 integer division (truncate) integer × integer integer
E1 rem E2 integer remainder integer × integer integer
E1 div E2 integer division (floor) integer × integer integer
E1 mod E2 integer modulus integer × integer integer
gcd(E1,E2) greatest common divisor integer × integer integer
lcm(E1,E2) least common multiple integer × integer integer
E1 ˆ E2 power operation number × number number
min(E1,E2) minimum of 2 values number × number number
max(E1,E2) maximum of 2 values number × number number
\ E bitwise complement integer integer
E1 /\ E2 bitwise conjunction integer × integer integer
E1 \/ E2 bitwise disjunction integer × integer integer
xor(E1,E2) bitwise exclusive disjunction integer × integer integer
E1 >> E2 shift E1 right by E2 bits integer × integer integer
E1 << E2 shift E1 left by E2 bits integer × integer integer
sin(E) trigonometric function number real
cos(E) trigonometric function number real
tan(E) trigonometric function number real
asin(E) trigonometric function number real
acos(E) trigonometric function number real
atan(E) trigonometric function number real
atan(E1,E1) trigonometric function number × number real
exp(E) exponential function ex number real
ln(E) natural logarithm number real
sqrt(E) square root number real
pi the constant pi = 3.1415926... — float
e the constant e = 2.7182818... — float
fix(E) convert to integer (truncate) number integer
integer(E) convert to integer (exact) number integer
float(E) convert to float number float
breal(E) convert to bounded real number breal
rational(E) convert to rational number rational
rationalize(E) convert to rational number rational
numerator(E) extract numerator of a rational integer or rational integer
denominator(E) extract denominator of a rational integer or rational integer
sum(L) sum of list elements list number
min(L) minimum of list elements list number
max(L) maximum of list elements list number
eval(E) evaluate runtime expression term number
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Argument types other than specified yield a type error. As an argument type, number stands
for integer, rational, float or breal with the type conversions as specified above. As a result type,
number stands for the more general of the argument types, and real stands for float or breal.
The division operator / yields either a rational or a float result, depending on the value of the
global flag prefer_rationals. The same is true for the result of ˆ if an integer is raised to a
negative integral power.

The integer division // rounds the result towards zero (truncates), while the div division rounds
towards negative infinity (floor). Each division function is paired with a corresponding remainder
function: (rem computes the remainder corresponding to //, and mod computes the remainder
corresponding to div 4. The remainder results differ only in the case where the two arguments
have opposite signs. The relationship between them is as follows:

X =:= (X rem Y) + (X // Y) * Y

X =:= (X mod Y) + (X div Y) * Y

This table gives an overview:

10 x 3 -10 x 3 10 x -3 -10 x -3

// 3 -3 -3 3

rem 1 -1 1 -1

div 3 -4 -4 3

mod 1 2 -2 -1

8.3.2 Evaluation Mechanism

An arithmetic expression is a Prolog term that is made up of variables, numbers, atoms and
compound terms, e.g.

3 * 1.5 + Y / sqrt(pi)

Compound terms are evaluated by first evaluating their arguments and then calling the cor-
responding evaluation predicate. The evaluation predicate associated with a compound term
func(a 1,..,a n) is the predicate func/(n+1). It receives a 1,..,a n as its first n arguments
and returns a numeric result as its last argument. This result is then used in the arithmetic
computation. For instance, the expression above would be evaluated by the goal sequence

*(3,1.5,T1), sqrt(3.14159,T2), /(Y,T2,T3), +(T1,T3,T4)

where Ti are auxiliary variables created by the system to hold intermediate results.

Although this evaluation mechanism is usually transparent to the user, it becomes visible when
errors occur, when subgoals are delayed, or when inline-expanded code is traced.

8.3.3 User Defined Arithmetic Functions

This evaluation mechanism outlined above is not restricted to the predefined arithmetic functions
shown in the table. In fact it works for all atoms and compound terms. It is therefore possible
to define a new arithmetic operation by just defining an evaluating predicate:

4Caution: In ECLiPSe versions up to 5.8, mod was the remainder corresponding to //, i.e. behaved like rem
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[eclipse 1]: [user].

:- op(200, yf, !). % let’s have some syntaxtic sugar

!(N, F) :- fac(N, 1, F).

fac(0, F0, F) :- !, F=F0.

fac(N, F0, F) :- N1 is N-1, F1 is F0*N, fac(N1, F1, F).

user compiled traceable 504 bytes in 0.00 seconds

yes.

[eclipse 2]: X is 23!. % calls !/2

X = 25852016738884976640000

yes.

Note that this mechanism is not only useful for user-defined predicates, but can also be used to
call ECLiPSe built-ins inside arithmetic expressions, eg.

T is cputime - T0.

L is string_length("abcde") - 1.

which call cputime/1 and string length/2 respectively. Any predicate that returns a number
as its last argument can be used in a similar manner.
However there is a difference compared to the evaluation of the predefined arithmetic functions
(as listed in the table above): The arguments of the user-defined arithmetic expression are not
evaluated but passed unchanged to the evaluating predicate. E.g. the expression twice(3+4)

is transformed into the goal twice(3+4, Result) rather than twice(7, Result). This makes
sense because otherwise it would not be possible to pass any compound term to the predicate.
If evaluation is wanted, the user-defined predicate can explicitly call is/2 or use eval/1.

8.3.4 Runtime Expressions

In order to enable efficient compilation of arithmetic expressions, ECLiPSe requires that vari-
ables in compiled arithmetic expressions must be bound to numbers at runtime, not symbolic
expressions. E.g. in the following code p/1 will only work when called with a numerical argu-
ment, else it will raise error 24:

p(Number) :- Res is 1 + Number, ...

To make it work even when the argument gets bound to a symbolic expression at runtime, use
eval/1 as in the following example:

p(Expr) :- Res is 1 + eval(Expr), ...

If the expression is the only argument of is/2, the eval/1 may be omitted.

8.4 Low Level Arithmetic Builtins

The low level builtins (like +/3, sin/2 etc.) which are used to evaluate the predefined arith-
metic functions can also be called directly, but this is not recommended for portability reasons.
Moreover, there is no need to use them directly since the ECLiPSe compiler will transform all
arithmetic expressions into calls to the corresponding low level builtins.
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8.5 The Multi-Directional Arithmetic Predicates

A drawback of arithmetic using is/2 is that the right hand side must be fully instantiated at
evaluation time. Often it is desirable to have predicates that define true logic relationships
between their arguments like “Z is the sum of X and Y”. For integer addition and multiplication
this is provided as:

succ(X, Y) True if X and Y are natural numbers, and Y is one greater than X. At most one
of X, Y can be a variable.

plus(X, Y, Z) True if the sum of X and Y is Z. At most one of X, Y, Z can be a variable.

times(X, Y, Z) True if the product of X and Y is Z. At most one of X, Y, Z can be a variable.

They work only with integer arguments but any single argument can be a variable which is
then instantiated so that the relation holds. If more than one argument is uninstantiated, an
instantiation fault is produced.
Note that if one of the first two arguments is a variable, a solution doesn’t necessarily exist. For
example, the following goal has no integer solution :

[eclipse 1]: times(2, X, 3).

no (more) solution.

Since any one of the arguments of these two predicates can be a variable, it does not make much
sense to use them in arithmetic expressions where always the first arguments are taken as input
and the last one as output.

8.6 Arithmetic and Coroutining

Arithmetic comparisons can be delayed until their arguments are instantiated instead of gener-
ating an instantiation fault by passing the comparison to the suspend solver (see section 17.3).
This gives a form of coroutining.

75



76



Chapter 9

Non-logical Storage and References

9.1 Introduction

This chapter describes primitives that allow to break the normal logic programming rules in two
ways:

• information can be saved across logical failures and backtracking

• information can be accessed by naming rather than by argument passing

Obviously, these facilities must be used with care and should always be encapsulated in an
interface that provides logical semantics.
ECLiPSe provides several facilities to store information across backtracking. The following table
gives an overview. If at all possible, the handle-based facilities (bags, shelves and stores) should
be preferred because they lead to cleaner, reentrant code (without global state) and reduce the
risk of memory leaks.

Facility Type Access See

shelves array by handle shelf create/2,3
bags unordered bag by handle bag create/1
stores hash table by handle store create/1
anonymous records ordered list by handle record create/1
named shelves array by name shelf/2
named stores hash table by name store/1
non-logical variables single cell by name variable/1
non-logical arrays array by name array/1,2
records ordered list by name record/1,2
dynamic predicates ordered list by name dynamic/1,assert/1

The other facility described here, Global References, does not store information across failure,
but provides a means to give a name to an otherwise logical data structure. See section 9.7.

9.2 Bags

A bag is an anonymous object which can be used to store information across failures. A bag
is unordered and untyped. Any ECLiPSe term can be stored in a bag. Bags are referred
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to by a handle. An empty bag is created using bag create/1, data is stored in the bag by
invoking bag enter/2, and the stored data can be retrieved as a list with bag retrieve/2 or
bag dissolve/2.

A typical application is the implementation of the findall/3 predicate or similar functionality.
As opposed to the use of record/2 or assert/1, the solution using bags is more efficient, more
robust, and trivially reentrant.

simple_findall(Goal, Solutions) :-

bag_create(Bag),

(

call(Goal),

bag_enter(Bag, Goal),

fail

;

true

),

bag_dissolve(Bag, Solutions).

9.3 Shelves

A shelf is an anonymous object which can be used to store information across failures. A typical
application is counting of solutions, keeping track of the best solution, aggregating information
across multiple solutions etc.

A shelf is an object with multiple slots whose contents survive backtracking. The content of
each slot can be set and retrieved individually, or the whole shelf can be retrieved as a term.

Shelves are referred to by handle, not by name, so they make it easy to write robust, reentrant
code. A shelf disappears when the system backtracks over its creation, when the shelf handle
gets garbage collected, or when it is explicitly destroyed.

A shelf is initialised using shelf create/2 or shelf create/3. Data is stored in the slots (or
the shelf as a whole) with shelf set/3 and retrieved with shelf get/3.

Example: Counting how many solutions a goal has:

count_solutions(Goal, Total) :-

shelf_create(count(0), Shelf),

(

call(Goal),

shelf_get(Shelf, 1, Old),

New is Old + 1,

shelf_set(Shelf, 1, New),

fail

;

shelf_get(Shelf, 1, Total)

).

In this particular example, we could have used shelf inc/2 to increment the counter.
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9.4 Stores

A store is an anonymous object which can be used to store information across failures. A typical
application is aggregating information across multiple solutions. Note that, if it is not necessary
to save information across backtracking, the use of the library(hash) is more appropriate and
efficient than the facilities described here.

A store is a hash table which can store arbitrary terms under arbitrary ground keys. Modifica-
tions of a store, as well as the entries within it, survive backtracking. The basic operations on
stores are entering and looking up information under a key, or retrieving the store contents as a
whole.

Stores come in two flavours: anonymous stores are created with store create/1 and referred
to by handle, while named stores are created with a store/ 1 declaration and referred to by
their name within a module. If possible, anonymous stores should be preferred because they
make it easier to write robust, reentrant code. For example, an anonymous store automatically
disappears when the system backtracks over its creation, or when the store handle gets garbage
collected. Named stores, on the other hand, must be explicitly destroyed in order to free the
associated memory.

Data is entered into a store using store set/3 and retrieved using store get/3. It is possible to
retrieve all keys with stored keys/2 or the full contents of the table with stored keys and values/2.
Entries can be deleted via store delete/2 or store erase/1.

A typical use of stores is for the implementation of memoization. The following is an implemen-
tation of the Fibonacci function, which uses a store to remember previously computed results.
It consists of the declaration of a named store, a wrapper predicate fib/2 that handles storage
and lookup of results, and the standard recursive definition fib naive/2:

:- local store(fib).

fib(N, F) :-

( store_get(fib, N, FN) ->

F = FN % use a stored result

;

fib_naive(N, F),

store_set(fib, N, F) % store computed result

).

fib_naive(0, 0).

fib_naive(1, 1).

fib_naive(N, F) :-

N1 is N-1, N2 is N-2,

fib(N1, F1), fib(N2, F2),

F is F1 + F2.

Using this definition, large function values can be efficiently computed:

?- fib(300, F).

F = 222232244629420445529739893461909967206666939096499764990979600

Yes (0.00s cpu)
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The next example shows the use of an anonymous store, for computing how many solutions of
each kind a goal has. The store is used to maintain counter values, using the solution term as
the key to distinguish the different counters:

solutions_profile(Sol, Goal, Profile) :-

store_create(Store),

(

call(Goal),

store_inc(Store, Sol),

fail

;

stored_keys_and_values(Store, Profile)

).

Running this code produces for example:

?- solutions_profile(X, member(X, [a, b, c, b, a, b]), R).

X = X

R = [a - 2, b - 3, c - 1]

Yes (0.00s cpu)

9.5 Non-logical Variables

Non-logical variables in ECLiPSe are a means of storing a copy of a Prolog term under a name
(an atom). The atom is the name and the associated term is the value of the non-logical variable.
This term may be of any form, whether an integer or a huge compound structure. Note that
the associated term is being copied and so if it is not ground, the retrieved term is not strictly
identical to the stored one but is a variant of it1. There are two fundamental operations that can
be performed on a non-logical variable: setting the variable (giving it a value), and referencing
the variable (finding the value currently associated with it).
The value of a non-logical variable is set using the setval/2 predicate. This has the format

setval(Name, Value)

For instance, the goal

setval(firm, 3)

gives the non-logical variable firm the value 3. The value of a non-logical variable is retrieved
using the getval/2 predicate. The goal

getval(firm, X)

will unify X to the value of the non-logical variable firm, which has been previously set by
setval/2. If no value has been previously set, the call raises an exception. If the value of a non-
logical variable is an integer, the predicates incval/1 and decval/1 may be used to increment
and decrement the value of the variable, respectively. The predicates incval/1 and decval/1
may be used e.g. in a failure-driven loop to provide an incremental count across failures as in
the example:

1 Though this feature could be used to make a copy of a term with new variables, it is cleaner and more
efficient to use copy term/2 for that purpose
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count_solutions(Goal, _) :-

setval(count, 0),

call(Goal),

incval(count),

fail.

count_solutions(_, N) :-

getval(count, N).

However, code like this should be used carefully. Apart from being a non-logical feature, it also
causes the code to be not reentrant. I.e. if count solutions/2 would be called recursively from
inside Goal, this would smash the counter and yield incorrect results2.
The visibility of a non-logical variable is local to the module where it is first set. It is good style
to declare them using local/1 variable/1 declarations. E.g. in the above example one should
use

:- local variable(count).

If it is necessary to access the value of a variable in other modules, exported access predicates
should be provided.

9.6 Non-logical Arrays

Non-logical arrays are a generalisation of the non-logical variable, capable of storing multiple
values. Arrays have to be declared in advance. They have a fixed number of dimensions and a
fixed size in each dimension. Arrays in ECLiPSe are managed solely by special predicates. In
these predicates, arrays are represented by compound terms, e.g. matrix(5, 8) where matrix
is the name of the array, the arity of 2 specifies the number of dimensions, and the integers 5
and 8 specify the size in each dimension. The number of elements this array can hold is thus
5*8 = 40. The elements of this array can be addressed from matrix(0,0) up to matrix(4,7).
An array must be explicitly created using a local/1 array/1 declaration, e.g.

:- local array(matrix(5, 8)).

The array is only accessible from within the module where it was declared. The declaration will
create a two-dimensional, 5-by-8 array with 40 elements matrix(0,0) to matrix(4, 7). Arrays can
be erased using the predicate erase array/1, e.g.

erase_array(matrix/2).

The value of an element of the array is set using the setval/2 predicate. The first argument of
setval/2 specifies the element which is to be set, the second specifies the value to assign to it.
The goal

setval(matrix(3, 2), plato)

sets the value of element (3, 2) of array matrix to the atom plato. Similarly, values of array
elements are retrieved by use of the getval/2 predicate. The first argument of getval/2 specifies
the element to be referenced, the second is unified with the value of that element. Thus if the
value of matrix(3, 2) had been set as above, the goal

2A similar problem can occur when the counter is used by an interrupt handler
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getval(matrix(3, 2), Val)

would unify Val with the atom plato. Similarly to non-logical variables, the value of integer
array elements can be updated using incval/1 and decval/1.
It is possible to declare arrays whose elements are constrained to belong to certain types. This
allows ECLiPSe to increase time and space efficiency of array element manipulation. Such an
array is created for instance by the predicate

:- local array(primes(100),integer).

The second argument specifies the type of the elements of the array. It takes as value an atom
from the list float (for floating point numbers), integer (for integers), byte (an integer modulo
256), or prolog (any Prolog term - the resulting array is the same as if no type was specified).
When a typed array is created, the value of each element is initialised to zero in the case of
byte, integer and float, and to an uninstantiated variable in the case of prolog. Whenever
a typed array element is set, type checking is carried out.
As an example of the use of a typed array, consider the following goal, which creates a 3-by-3
matrix describing a 90 degree rotation about the x-axis of a Cartesian coordinate system.

:- local array(rotate(3, 3), integer).

:- setval(rotate(0, 0), 1),

setval(rotate(1, 2), -1),

setval(rotate(2, 1), 1).

(The other elements of the above array are automatically initialised to zero).
The predicate current array/2 is provided to find the size, type and visibility of defined arrays.
of the array and its type to be found:

current array(Array, Props)

where Array is the array specification as in the declaration (but it may be uninstantiated or
partially instantiated), and Props is a list indicating the array’s type and visibility. Non-logical
variables are also returned, with Array being an atom and their type is prolog.

[eclipse 1]: local(array(pair(2))),

setval(count, 3),

local(array(count(3,4,5), integer)).

yes.

[eclipse 2]: current_array(Array, Props).

Array = pair(2)

Props = [prolog, local] More? (;)

Array = count

Props = [prolog, local] More? (;)

Array = count(3, 4, 5)

Props = [integer, local] More? (;)
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no (more) solution.

[eclipse 3]: current_array(count(X,Y,Z), _).

X = 3

Y = 4

Z = 5

yes.

9.7 Global References

Terms stored in non-logical variables and arrays are copies of the setval/2 arguments, and the
terms obtained by getval/2 are thus not identical to the original terms, in particular their
variables are different. Sometimes it is necessary to be able to access the original term with its
variables, i.e. to have global variables in the meaning of conventional programming languages.
A typical example is global state that a set of predicates wants to share without having to pass
an argument pair through all the predicate invocations.

ECLiPSe offers the possibility to store references to general terms and to access them even inside
predicates that have no common variables with the predicate that has stored them. They are
stored in so-called references. For example,

:- local reference(p).

or

:- local reference(p, 0).

creates a named reference p (with an initial value of 0) which can be used to store references
to terms. This reference is accessed and modified in the same way as non-logical variables, with
setval/2 and getval/2, but the following points are different for references:

• the accessed term is identical to the stored term (with its current substitutions):

[eclipse 1]: local reference(a), variable(b).

yes.

[eclipse 2]: Term = p(X), setval(a, Term), getval(a, Y), Y == Term.

X = X

Y = p(X)

Term = p(X)

yes.

[eclipse 3]: Term = p(X), setval(b, Term), getval(b, Y), Y == Term.

no (more) solution.

• the modifications are backtrackable, when the execution fails over the setval/2 call, the
previous value of the global reference is restored

[eclipse 4]: setval(a, 1), (setval(a, 2), getval(a, X); getval(a, Y)).

X = 2
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Y = Y More? (;)

X = X

Y = 1

• there are no arrays of references, but the same effect can be achieved by storing a structure
in a reference and using the structure’s arguments. The arguments can then be accessed
and modified using arg/3 and setarg/3 respectively.

The use of references should be considered carefully. Their overuse can lead to programs which
are difficult to understand and difficult to optimize. Typical applications use at most a single
reference per module, for example to hold state that would otherwise have to be passed via
additional arguments through many predicate invocations.
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Chapter 10

Input and Output

10.1 Streams

Input and output in ECLiPSe is done via communication channels called streams. They are
usually associated with either a file, a terminal, a socket, a pipe, or in-memory queues and
buffers. The streams may be opened for input only (read mode), output only (write mode), or
for both input and output (update mode).

10.1.1 Predefined Streams

Every ECLiPSe session has 4 predefined system streams:

stdin The standard input stream.

stdout The standard output stream.

stderr The standard error stream.

null A dummy stream, output to it is discarded, on input it always gives end of file.

In a stand-alone ECLiPSe stdin, stdout and stderr are connected to the corresponding standard
I/O descriptors of the process. In an embedded ECLiPSe, the meaning of stdin, stdout and
stderr is determined by the ECLiPSe initialisation options.

Moreover, every ECLiPSe session defines the following symbolic stream names, which are used
for certain categories of input/output:

input Used by the input predicates that do not have an explicit stream argument, e.g. read/1.
This is by default the same as stdin, but can be redirected.

output Used by the output predicates that do not have an explicit stream argument, e.g.
write/1. This is by default the same as stdout, but can be redirected.

error Output for error messages and all messages about exceptional states. This is by default
the same as stderr, but can be redirected.

warning output Used by the system to output warning messages. This is by default the same
as stdout, but can be redirected.
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log output Used by the system to output log messages, e.g. messages about garbage collection
activity. This is by default the same as stdout, but can be redirected.

user This identifier is provided for compatibility with Prolog systems and it is identical with
stdin and stdout depending on the context where it is used.

Symbolic Stream System Stream

input 0 (stdin)

output 1 (stdout)
warning output 1 (stdout)

log output 1 (stdout)

error 2 (stderr)

3 (null)
Initial assignment of symbolic stream names

10.1.2 Stream Identifiers and Aliases

Every stream is identified by a small integer1, but it can have several symbolic names (aliases),
which are atoms. Most of the built-in predicates that require a stream to be specified have a
stream argument at the first position, e.g. write(Stream, Term). This argument can be either
the stream number or a symbolic stream name.
An alias name can be given to a stream either when it is created or explicitly by invoking
set stream/2:

set_stream(Alias, Stream)

To find the corresponding stream number, use get stream/2:

get_stream(StreamOrAlias, StreamNr)

get stream/2 can also be used to check whether two stream names are aliases of each other.

10.1.3 Opening New Streams

Streams provide a uniform interface to a variety of I/O devices and pseudo-devices. The following
table gives an overview of how streams on the different devices are opened.

I/O device How to open

tty implicit (stdin,stdout,stderr) or open/3 of a device file

file open(FileName, Mode, Stream)

string open(string(String), Mode, Stream)

queue open(queue(String), Mode, Stream)

pipe exec/2, exec/3 and exec group/3

socket socket/3 and accept/3

null implicit (null stream)
How to open streams onto the different I/O devices

Most streams are opened for input or output by means of the open/3 or open/4 predicate.
The goals

1 Note that the stream numbers are not the same as UNIX file descriptors
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open(SourceSink, Mode, Stream)

open(SourceSink, Mode, Stream, Options)

open a communication channel with SourceSink.

If SourceSink is an atom or a string, a file is being opened and SourceSink takes the form of a file
name in the host machine environment. ECLiPSe uses an operating system independent path
name syntax, where the components are separated by forward slashes. The following forms are
possible:

• absolute path name, e.g. /usr/peter/prolog/file.pl

• relative to the current directory, e.g. prolog/file.pl

• relative to the own home directory, e.g. ~/prolog/file.pl

• start with an environment variable, e.g. $HOME/prolog/file.pl

• relative to a user’s home directory, e.g. ~peter/prolog/file.pl (UNIX only)

• specifying a drive name, e.g. //C/prolog/file.pl (Windows only)

Note that path names usually have to be quoted (in single or double quotes) because they contain
non-alphanumeric characters.

If SourceSink is of the form string(InitString) a pseudo-file in memory is opened, see section
10.3.1.

If SourceSink is of the form queue(InitString) a pseudo-pipe in memory is opened, see section
10.3.2.

Mode must be one of the atoms read, write, append or update, which means that the stream
is to be opened for input, output, output at the end of the existing stream, or both input and
output, respectively. Opening a file in write mode will create it if it does not exist, and erase the
previous contents if it does exist. Opening a file in append mode will keep the current contents
of the file and start writing at its end.

Stream is a symbolic stream identifier or an uninstantiated variable. If it is uninstantiated, the
system will bind it to an identifier (the stream number):

[eclipse 1]: open(new_file, write, Stream).

Stream = 6

yes.

If the stream argument is an atomic name, this name becomes an alias for the (hidden) stream
number:

[eclipse 1]: open(new_file, write, new_stream).

yes.

The stream identifier (symbolic or numeric) may then be used in predicates which have a named
stream as one of their arguments. For example

open("foo", update, Stream), write(Stream, subject), close(Stream).
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will write the atom subject to the file ‘foo’ and close the stream subsequently.

It is recommended style not to use symbolic stream names in code that is meant to be reused.
This is because the stream names are global, there is the possibility of name clashes, and the
code will not be reentrant. It is cleaner to open streams with a variable for the stream identifier
and pass the identifier as an argument wherever it is needed.

Socket streams are not opened with open/3, but with the special primitives socket/3 and
accept/3. More details are in chapter 21.

A further group of primitives which open streams implicitly is exec/2, exec/3 and and exec group/3.
They open pipes which connect directly to the I/O channels of the executed process. See chapter
20 for details.

10.1.4 Closing Streams

The predicate

close(Stream)

is used to close an open stream. If a stream has several alias names, closing any of them will
close the actual stream. All the other aliases should be closed as well (or redirected to streams
that are still open), because otherwise they will continue to refer to the number of the already
closed stream.

When an attempt is made to close a redirected system stream (e.g. output), the stream is closed,
but the system stream is reset to its default setting.

10.1.5 Redirecting Streams

The set stream/2 primitive can be used to redirect an already existing symbolic stream to a
new actual stream. This is particularly useful to redirect e.g. the default output stream

set_stream(output, MyStream)

so that all standard output is redirected to some other destination (e.g. an opened file instead of
the terminal). Note that the stream modes (read/write) must be compatible. The redirection
is terminated by calling

close(output)

which will reestablish the original meaning of the output stream.

10.1.6 Finding Streams

The predicate

current_stream(?Stream)

can be used to backtrack over all the currently opened stream indentifiers (but not their aliases).
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10.1.7 Stream Properties

A stream’s properties can be accessed using get stream info/3

get_stream_info(+Stream, +Property, -Value)

e.g. its mode, line number, file name etc. Some stream properties can be modified using
set stream property/3

set_stream_property(+Stream, +Property, +Value)

e.g. the end-of-line sequence used, the flushing behaviour, the event-raising behaviour, the
prompt etc.

10.2 Communication via Streams

The contents of a stream may be interpreted in one of the three basic ways. The first one is to
consider it as a sequence of characters, so that the basic unit to be read or written is a character.
The second one interprets the stream as a sequence of tokens, thus providing an interface to the
Prolog lexical analyzer and the third one is to consider a stream as a sequence of Prolog terms.

10.2.1 Character I/O

The get/1, 2 and put/1, 2 predicates corresponds to the first way of looking at streams. The
call

get(Char)

takes the next character from the current input stream and matches it as a single character with
Char. Note that a character in ECLiPSe is represented as an integer corresponding to the ASCII
code of the character. If the end of file has been reached then an exception is raised. The call

put(Char)

puts the char Char on to the current output stream. The predicates

get(Stream, Char)

and

put(Stream, Char)

work similarly on the specified stream.
The input and output is normally buffered by ECLiPSe. To make I/O in raw mode, without
buffering, the predicates tyi/1, 2 and tyo/1, 2 are provided.

10.2.2 Token I/O

The predicates read token/2 and read token/3

read_token(Token, Class)

read_token(Stream, Token, Class)
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represent the second way of interpreting stream contents. They read the next token from the
current input stream, unify it with Token, and its token class is unified with Class. A token is
either a sequence of characters with the same or compatible character class, e.g. ab 1A, then it is
a Prolog constant or variable, or a single character, e.g. ’)’. The token class represents the type
of the token and its special meaning, e.g. fullstop, comma, open_par, etc. The exact definition
of character classes and tokens can be found in appendices A.2.1 and A.2.3, respectively.
A further, very flexible possibility to read a sequence of characters is provided by the built-ins
read string/3 and read string/4

read_string(Delimiters, Length, String)

read_string(Stream, Delimiters, Length, String)

Here, the input is read up to a specified delimiter or up to a specified length, and returned as
an ECLiPSe string.
In particular, one line of input can be read as follows:

read_line(Stream, String) :-

read_string(Stream, end_of_line, _Length, String).

Once a string has been read, string manipulation predicates like split string/4 can be used to
break it up into smaller components.

10.2.3 Term I/O

The read/1, 2 and write/1, 2 predicates correspond to the third way of looking at streams.
For input, the goal

read(Term)

reads the next ECLiPSe term from the current input stream and unifies it with Term. The input
term must be followed by a full stop, that is, a ’.’ character followed by a layout character (tab,
space or newline) or by the end of file. The exact definition of the term syntax can be found in
appendix A.
If end of file has been reached then an exception is raised, the default handler causes the atom
end of file to be returned. A term may be read from a stream other than the current input
stream by the call

read(Stream, Term)

which reads the term from the named stream.
For additional information about other options for reading terms, in particular for how to get
variable names, refer to readvar/3, read term/2 and read term/3. For reading and pro-
cessing complete ECLiPSe source code files, use the library(source processor).
For output, the goal

write(Term)

writes Term to the current output stream. This is done by taking the current operator
declarations into account. Output produced by the write/1, 2 predicate is not (necessarily) in
a form suitable for subsequent input to a Prolog program using the read/1 predicate, for this
purpose writeq/1, 2 is to be used. The goal
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write(Stream, Term)

writes Term to the named output stream. For more details about how to output terms in
different formats, see section 10.4.

When the flag variable_names is switched off, the output predicates are not able to write free
variables in their source form, i.e. with the correct variable names. Then the variables are
output in the form

_N

where N is a number which identifies the variable (but note that these numbers may change on
garbage collection and can therefore not be used to identify the variable in a more permanent
way). Occasionally the number will be prefixed with the lower-case letter l, indicating that the
variable is in a short-lived memory area called the local stack (see 19).

10.2.4 Newlines

Newlines should be output using either nl/0, nl/1, writeln/1, writeln/2, or using the ”%n”
format with printf/2, printf/3. All those will produce a LF or CRLF sequence, depending on
the stream property settings (see set stream property/3).

10.2.5 General Parsing and Text Generation

Reading and writing of I/O formats that cannot be handled by the methods discussed above are
probably best done using Definite Clause Grammar (DCG) rules. See chapter 12.3 for details.

10.2.6 Flushing

On most devices, output is buffered, i.e. any output does not appear immediately on the file,
pipe or socket, but goes into a buffer first. To make sure the data is actually written to the
device, the stream usually has to be flushed using flush/1. If this is forgotten, the receiving
end of a pipe or socket may hang in a blocking read operation.

It is possible to configure a stream such that it is automatically flushed at every line end (see
set stream property/3).

10.2.7 Prompting

Input streams on terminals can be configured to print a prompt whenever input is required, see
set stream property/3.

10.2.8 Positioning

Streams that are opened on files or strings can be positioned, ie. the read/write position can be
moved forward or backwards. This is not possible on pipes, sockets, queues and terminals.

To specify a position in the file to write to or read from, the predicate seek/2 is provided. The
call

seek(Stream, Pointer)
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moves the current position in the file (the ’file pointer’) to the offset Pointer (a number specifying
the length in bytes) from the start of the file. If Pointer is the atom end of file the current
position is moved to the end of the file. Hence a file could be open in append mode using

open(File, update, Stream), seek(Stream, end_of_file)

The current position in a file may be found by the predicate at/2. The call

at(Stream, Pointer)

unifies Pointer with the current position in the file. The predicate

at_eof(Stream)

succeeds if the current position in the given stream is at the file end.

10.3 In-memory Streams

There are two kinds of in-memory streams, string streams and queues. String streams be-
have much like files, they can be read, written, positioned etc, but they are implemented as
buffer in memory. Queues are intended mainly for message-passing-style communication be-
tween ECLiPSeand a host language, and they are also implemented as memory buffers.

10.3.1 String Streams

In ECLiPSe it is possible to associate a stream with a Prolog string in its memory, and this
string is then used in the same way as a file for the input and output operations. A string stream
is opened like a file by the open/3 predicate call

open(string(InitString), Mode, Stream)

where InitString can be a ECLiPSe string or a variable and represents the initial contents of the
string stream. If a variable is supplied for InitString, the initial value of the string stream is the
empty string and the variable is bound to this value:

[eclipse 1]: open(string(S), update, s).

S = ""

yes.

Once a string stream is opened, all predicates using streams can take it as argument and perform
I/O on it. In particular the predicates seek/2 and at/2 can be used with them.
While writing into a stream changes the stream contents destructively, the initial string that has
been opened will never be affected. The new stream contents can be retrieved either by reading
from the string stream, or as a whole by using get stream info/3:

[eclipse 1]: S = "abcdef", open(string(S), write, s), write(s, ---).

S = "abcdef"

yes.

[eclipse 2]: get_stream_info(s, name, S).
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S = "---def"

yes.

[eclipse 3]: seek(s, 1), write(s, .), get_stream_info(s, name, S).

S = "-.-def"

yes.

[eclipse 4]: seek(s, end_of_file), write(s, ine),

get_stream_info(s, name, S).

S = "-.-define"

yes.

10.3.2 Queue streams

A queue stream is opened by the open/3 predicate

open(queue(InitString), Mode, Stream)

The initial queue contents is InitString. It can be seen as a string which gets extended at its
end on writing and consumed at its beginning on reading.

[eclipse 11]: open(queue(""), update, q), write(q, hello), write(q, " wo").

yes.

[eclipse 12]: read_string(q, " ", _, X).

S = "hello"

yes.

[eclipse 13]: write(q, "rld"), read(q, X).

S = world

yes.

[eclipse 14]: at_eof(q).

yes.

It is not allowed to seek on a queue. Therefore, once something is read from a queue, it is no
longer accessible. A queue is considered to be at its end-of-file position when it is currently
empty, however this is no longer the case when the queue is written again.

A useful feature of queues is that they can raise a synchronous event when data arrives on the
empty queue. To create such an event-raising queue, this has to be specified as an option when
opening the queue with open/4. In the example we have chosen the same name for the stream
and for the event, which is not necessary but convenient when the same handler is going to be
used for different queues:

[eclipse 1]: [user].

handle_queue_event(Q) :-

read_string(Q, "", _, Data),

printf("Queue %s received data: %s\n", [Q,Data]).

yes.

[eclipse 2]: set_event_handler(eventq, handle_queue_event/1).

yes.

[eclipse 3]: open(queue(""), update, eventq, [event(eventq)]).
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yes.

[eclipse 4]: write(eventq, hello).

Queue eventq received data: hello

yes.

10.4 Term Output Formats

10.4.1 Write term and Printf

The way ECLiPSe terms are printed can be customised in a number of ways. The most flexible
predicates to print terms are write term/3 and printf/3. They both allow all variants of term
output, but the format is specified in a different way. The following figure gives an overview.
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Output Option for
write term/2,3

Format
char for
printf
%..w

Meaning

as(term) do not assume any particular meaning of the printed term

as(clause) C print the term as a clause (apply clause transformations)

as(goal) G print the term as a goal (apply goal transformations)

attributes(none) do not print any variable attributes

attributes(pretty) m print attributes using the corresponding print handlers

attributes(full) M print the full contents of all variable attributes

compact(false) print extra blank space (around operators, after commas,
etc.) for better readability

compact(true) K don’t print blank space unless necessary

depth(Max) <Max> print the term only up to a maximum nesting depth of Max
(a positive integer)

depth(0) observe the stream-specific or global flag ’print depth’

depth(full) D print the whole term (may loop when the term is cyclic!)

dotlists(false) write lists in square bracket notation, e.g. [a,b]

dotlists(true) . write lists as terms with functor ./2

newlines(false) print newlines inside quotes as escape sequence \n

newlines(true) N print newlines as line breaks even inside quotes

numbervars(false) do not treat ’$VAR’/1 terms specially

numbervars(true) I print terms of the form ’$VAR’(N) as named variables:
’$VAR’(0) is printed as A, ’$VAR’(25) as Z, ’$VAR’(26) as
A1 and so on. When the argument is an atom or a string,
just this argument is printed.

operators(true) obey operator declarations and print prefix/infix/postfix

operators(false) O ignore operator declarations and print functor notation

portrayed(false) do not use portray/1,2

portrayed(true) P call the user-defined predicate portray/1,2 for printing

quoted(false) do not print quotes around strings or atoms

quoted(true) Q quote strings and atoms if necessary

transform(true) apply portray transformations (write macros)

transform(false) T do not apply portray transformations (write macros).

variables(default) print variables using their source name (if available)

variables(raw) v print variables using a system-generated name, e.g. 123

variables(full) V print variables using source name followed by a number, e.g.
Alpha 132

variables(anonymous) print every variable as a simple underscore
Overview of term output options (see write term/3 for more details)

The write term/2 and write term/3 predicates print a single ECLiPSe term and accept a
list of output options (first column in the table 10.4.1).
The printf/2 and printf/3 predicates are similar to C’s printf(3) function, but provide ad-
ditional format characters for printing ECLiPSe terms. The basic format string for printing
arbitrary terms is ”%w”. Additional format characters can go between % and w, according to
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the second column in the table 10.4.1.
For example, the following pairs of printing goals are equivalent:

printf("%mw", [X]) <-> write_term(X, [attributes(pretty)])

printf("%O.w", [X]) <-> write_term(X, [operators(false),dotlist(true)])

printf("%5_w", [X]) <-> write_term(X, [depth(5),variables(anonymous)])

10.4.2 Other Term Output Predicates

The other term output predicates write/1, writeln/1, writeq/1, write canonical/1, dis-
play/1, print/1 can all be defined in terms of write term/2 (or, similarly in terms of printf/2)
as follows:

write(X) :- write_term(X, []).

writeln(X) :- write_term(X, []), nl.

writeq(X) :- write_term(X, [variables(raw), attributes(full),

transform(false), quoted(true), depth(full)]).

write_canonical(X) :- write_term(X, [variables(raw), attributes(full),

transform(false), quoted(true), depth(full),

dotlist(true), operators(false)]).

display(X) :- write_term(X, [dotlist(true), operators(false)]).

print(X) :- write_term(X, [portrayed(true)]).

10.4.3 Default Output Options

It is possible to set default output options for an output stream in order to globally affect all
output to this particular stream. The set stream property/3 predicate can be used to assign
default options (in the same form as accepted by write term/3) to a stream. These options will
then be observed by all output predicates which do not override the particular option.
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Chapter 11

Dynamic Code

Support for dynamic code is provided partly for compatibility with Prolog. Note that ECLiPSeprovides
much better primitives (see chapter 9) to support the non-logical storage of information – a major
use for dynamic predicates in Prolog.
An ECLiPSe predicate can be made dynamic. That is, it can have clauses added and removed
from its definition at run time. This chapter discusses how to do this, and what the implications
are.

11.1 Compiling Procedures as Dynamic or Static

If it is intended that a procedure be altered through the use of assert/1 and retract/1,
the system should be informed that the procedure will be dynamic, since these predicates are
designed to work on dynamic procedures. If assert/1 is applied on a non-existing procedure,
an error is raised, however the default error handler for this error only declares the procedure
as dynamic and then makes the assertion.
A procedure is by default static unless it has been specifically declared as dynamic. Clauses of
static procedures must always be consecutive, they may not be separated in one or more source
files or by the user from the top level. If the static procedure clauses are not consecutive, each of
the consecutive parts is taken as a separate procedure which redefines the previous occurrence of
that procedure, and so only the last one will remain. However, whenever the compiler encounters
nonconsecutive clauses of a static procedure in one file, it raises an exception whose default
handler prints a warning but it continues to compile the rest of the file.
If a procedure is to be dynamic the ECLiPSe system should be given a specific dynamic decla-
ration A dynamic declaration takes the form

:- dynamic SpecList.

The predicate is dynamic/1 may be used to check if a procedure is dynamic:

is_dynamic(Name/Arity).

When the goal

compile(Somefile)

is executed and Somefile contains clauses for procedures that have already been defined in
the Prolog database, those procedures are treated in one of two ways: If such a procedure is
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dynamic, its clauses compiled from Somefile are added to the database (just as would happen
if they were asserted), and the existing clauses are not affected. For example, if the following
clauses have already been compiled:

:- dynamic city/1.

city(london).

city(paris).

and the file Somefile contains the following Prolog code:

city(munich).

city(tokyo).

then compiling Somefile will cause adding the clauses for city/1 to those already compiled, as
city/1 has been declared dynamic. Thus the query city(X) will give:

[eclipse 5]: city(X).

X = london More? (;)

X = paris More? (;)

X = munich More? (;)

X = tokyo

yes.

If, however, the compiled procedure is static, the new clauses in Somefile replace the old
procedure. Thus, if the following clauses have been compiled:

city(london).

city(paris).

and the file Somefile contains the following Prolog code:

city(munich).

city(tokyo).

when Somefile is compiled, then the procedure city/1 is redefined. Thus the query city(X)
will give:

[eclipse 5]: city(X).

X = munich More? (;)

X = tokyo

yes.

When the dynamic/1 declaration is used on a procedure that is already dynamic, which may
happen for instance by recompiling a file with this declaration inside, the system raises the error
64, ’procedure already dynamic’. The default handler for this error, however, will only erase all
existing clauses for the specified procedure, so that when such a file is recompiled several times
during its debugging, the system behaves as expected, the existing clauses are always replaced.
The handler for this error can of course be changed if required. If it is set to true/0, for instance,
the dynamic/1 declaration is be just silently accepted without erasing any clauses and without
printing an error message.
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11.2 Altering programs at run time

The Prolog database can be updated during the execution of a program. ECLiPSe allows the
user to modify procedures dynamically by adding new clauses via assert/1 and by removing
some clauses via retract/1. These predicates operate on dynamic procedures; if it is required
that the definition of a procedure be altered through assertion and retraction, the procedure
should therefore first be declared dynamic (see the previous section). The effect of assert/1
and retract/1 on static procedures is explained below.
The effect of the goal

assert(ProcClause)

where ProcClause1 is a clause of the procedure Proc, is as follows.

1. If Proc has not been previously defined, the assertion raises an exception, however the
default handler for this exception just declares the given procedure silently as dynamic
and executes the assertion.

2. If Proc is already defined as a dynamic procedure, the assertion adds ProcClause to the
database after any clauses already existing for Proc.

3. If Proc is already defined as a static procedure, then the assertion raises an exception.

The goal

retract(Clause)

will unify Clause with a clause on the dynamic database and remove it. If Clause does not
specify a dynamic procedure, an exception is raised.
ECLiPSe’s dynamic database features the so-called logical update semantics. This means that
any change in the database that occurs as a result of executing one of the builtins of the abolish,
assert or retract family affects only those goals that start executing afterwards. For every call
to a dynamic procedure, the procedure is virtually frozen at call time.

11.3 Differences between static and dynamic code

• Only dynamic procedures can have clauses added or removed at run time.

• Matching clauses (section 5.5) are not supported by dynamic code. A runtime error (calling
an undefined procedure −?− >/1) will be raised when executing dynamic code that has a
matching clause head.

• Clauses for a dynamic procedure need not be consecutive.

• Source tracing is not supported for dynamic procedures.

• assert/1, retract/1 and clause/1 does not perform clause transformation on the clause.
If clause transformation is required, this can be done explicitly with expand clause/2
before.

• Internally, dynamic procedures are represented differently from static procedures. The
execution of dynamic procedures will generally be slower than for static procedures.

1It should be remembered that because of the definition of the syntax of a term, to assert a procedure of the
form p :- q,r it is necessary to enclose it in parentheses: assert((p:-q,r)).
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Chapter 12

ECLiPSe Macros

12.1 Introduction

ECLiPSe provides a general mechanism to perform macro expansion of Prolog terms. Macro
expansion can be performed in 3 situations:

read macros they are expanded just after a Prolog term has been read by the ECLiPSe parser.
Note that the parser is not only used during comilation but by all term-reading predi-
cates.

compiler macros they are expanded only during compilation and only when a term occurs in
a certain context (clause or goal).

write macros they are expanded just before a Prolog term is printed by one of the output
predicates

In addition to transforming a term, macros can also be source annotation aware, and provide
source annotation information for the transformed term if supplied with source annotation in-
formation for the orginal term. Source annotation information provide source and position
information for a term, and is provided by predicate such as read annotated/3.

Macros are attached to classes of terms specified by their functors or by their type. Macros
obey the module system’s visibility rules. They may be either local or exported. The macro
expansion is performed by a user-defined Prolog predicate.

12.2 Using the macros

The following declarations and built-ins control macro expansion:

local macro(+TermClass, +TransPred, +Options) define a macro for the given Term-
Class. The transformation will be performed by the predicate TransPred.

export macro(+TermClass, +TransPred, +Options) as above, but available to other mod-
ules.

erase macro(+TermClass, +Options) erase a currently defined macro for TermClass. This
can only be done in the module where the definition was made.
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current macro(?TermClass, ?TransPred, ?Options, ?Module) retrieve information about
currently defined visible macros.

Macros are selectively applied only to terms of the specified class. TermClass can take two
forms:

Name/Arity transform all terms with the specified functor

type(Type) transform all terms of the specified type, where Type is one of compound, string,

integer, rational, float, breal, atom, goal1.

The +TransPred argument specifies the predicate that will perform the transformation. It has
to be either of arity 2 or 3 and should have the form:

trans_function(OldTerm, NewTerm [, Module]) :- ... .

or it can be source annotation aware, and be of arity 4 or 5, as follows:

trans_function(OldTerm, NewTerm, OldAnn, NewAnn [, Module]) :- ... .

At transformation time, the system will call TransPred in the module where macro/3 was
invoked. The term to transform is passed as the first argument, the second is a free variable
which the transformation predicate should bind to the transformed term. In the case of the
source annotation aware version of TransPred, if the term was read in by read annotated/2,3,
the annotated version of the term to transformed is passed in the third argument, and the
transformation should bind the fourth argument to the annotated transformed term; otherwise,
if no source annotation information is available, the third argument is passed in as a free variable,
and the transformation should not bind the fourth argument. In both TransPred cases, the
optional last argument is the module where the term was being read in. See section 12.2.1 for
more details on annotated terms.
Options is a list which may be empty (in this case the macro defaults to a local read term macro)
or contain specifications from the following categories:

• mode

read: This is a read macro and shall be applied after reading a term (default).

write: This is a write macro and shall be applied before printing a term.

• type

term: Transform all terms (default).

clause: Transform only if the term is a program clause, i.e. inside compile/1, etc.2 Write
macros are applied using the ’C’ option in the printf/2 predicate.

goal: Goal-read-macros are transformed only if the term is a subgoal in the body of a
program clause. Goal-write macros are applied using the ’G’ option in the printf/2
predicate.

• additional specification

1type(goal) stands for suspensions.
2Note that clause transformation is not performed with assert/1, retract/1 and clause/1. This is a change

from previous versions of ECLiPSe.
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protect arg: Disable transformation of subterms (optional).

top only: Consider only the whole term, not subterms (optional).

The following shorthands exist:

local/export portray(+TermClass, +TransPred, +Options) portray/3 is like macro/3,
but the write-option is implied.

inline(+PredSpec, +TransPred) inline/2 is the same as a goal-read-macro. The visibility
is inherited from the transformed predicate.

Here is an example of a conditional read macro:

[eclipse 1]: [user].

trans_a(a(X,Y), b(Y)) :- % transform a/2 into b/1,

number(X), % but only under these

X > 0. % conditions

:- local macro(a/2, trans_a/2, []).

user compiled traceable 204 bytes in 0.00 seconds

yes.

[eclipse 2]: read(X).

a(1, hello).

X = b(hello) % transformed

yes.

[eclipse 3]: read(X).

a(-1, bye).

X = a(-1, bye) % not transformed

yes.

If the transformation function fails, the term is not transformed. Thus, a(1, zzz) is transformed
into b(zzz) but a(-1, zzz) is not transformed. The arguments are transformed bottom-up. It
is possible to protect the subterms of a transformed term by specifying the flag protect_arg.

A term can be protected against transformation by quoting it with the “protecting functor” (by
default it is no macro expansion/1):

[eclipse 4]: read(X).

a(1, no_macro_expansion(a(1, zzz))).

X = b(a(1, zzz)).

Note that the protecting functor is itself defined as a macro:

trprotect(no_macro_expansion(X), X).

:- export macro(no_macro_expansion/1, trprotect/2, [protect_arg]).

A local macro is only visible in the module where it has been defined. When it is defined as
exported, then it is copied to all other modules that contain a use module/1 or import/1 for
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this module. The transformation function should also be exported in this case. There are a few
global macros predefined by the system, e.g. for -->/2 (grammar rules, see below) or with/2

and of/2 (structure syntax, see section 5.1). These predefined macros can be hidden by local
macro definitions.

The global flag macro expansion can be used to disable macro expansion globally, e.g. for
debugging purposes. Use set_flag(macro_expansion, off) to do so.

The next example shows the use of a type macro. Suppose we want to represent integers as s/1
terms:

[eclipse 1]: [user].

tr_int(0, 0).

tr_int(N, s(S)) :- N > 0, N1 is N-1, tr_int(N1, S).

:- local macro(type(integer), tr_int/2, []).

yes.

[eclipse 2]: read(X).

3.

X = s(s(s(0)))

yes.

When we want to convert the s/1 terms back to normal integers so that they are printed in the
familiar form, we can use a write macro. Note that we first erase the read macro for integers,
otherwise we would get unexpected effects since all integers occurring in the definition of tr s/2
would turn into s/1 structures:

[eclipse 3]: erase_macro(type(integer)).

yes.

[eclipse 4]: [user].

tr_s(0, 0).

tr_s(s(S), N) :- tr_s(S, N1), N is N1+1.

:- local macro(s/1, tr_s/2, [write]).

yes.

[eclipse 2]: write(s(s(s(0)))).

3

yes.

12.2.1 Source Annotation-aware macro transformations

When the macro transformation predicate has 4 or 5 arguments, it is termed source annotation
aware, and the extra arguments are used to specify how source information from the original
term should be mapped to the transformed term.

An annotated term provides the source information about a term. It is structurally similar to
the original term and contains all information about the term, plus additional type information,
variable names, and source position annotations for all subterms.

The structure of the descriptive terms is as follows:

104



:- export struct(annotated_term(

term, % var, atomic or compound

type, % term type (see below)

file, % source file name (atom)

line, % source line (integer)

from, to % source position (integers)

...

)).

The type-field describes the type of the original term and provide type information similar to
those used in type of/2, except that they convey additional information about variables and
end_of_file.
In the case of atomic terms and variables, the term-field simply contains the plain original term.
For compound terms, the term-field contains a structure whose functor is the functor of the
plain term, but whose arguments are annotated versions of the plain term arguments.
For example, the annotated term representing the source term foo(bar, X, _, 3) is:

annotated_term(foo(

annotated_term(bar, atom, ...),

annotated_term(X, var(’X’), ...),

annotated_term(_, anonymous, ...),

annotated_term(3, integer, ...)),

compound, ...)

The file/line/from/to-fields of an annotated term describe the ”source position” of the term, as
follows:

file The canonical file name of the source file (an atom), or the empty atom ” if the source is
not a file or not known.

line The line number in the source stream (positive integer).

from, to The exact term position as integer offsets in the source stream, starting at from and
ending at to-1.

The extra arguments for the transformation predicate are a pair of annotated terms for the
original and transformed term. The predicate will be supplied with the annotated term for the
original term if available, and the predicate is responsible for specifying the annotated term
for the transformed term – the structure of the transformed annotated term must match the
annotated term structure expected for the transformed term. If no annotated information is
available, the original annotated term will be a variable, and the predicate must not bind the
transformed annotated term.
For an example, here is a source annotation aware version of the previous trans_a/2 example:

[eclipse 1]: [user].

...

trans_a(a(X,Y), b(Y), AnnA, AnnTrans) :-

number(X),
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X > 0,

( var(AnnA) ->

true % no source information, leave AnnTrans as var

;

AnnA = annotated_term{term:a(_AnnX, AnnY),

file:File, line:Line,

from:From,to:To},

AnnTrans = annotated_term{term:b(AnnY),

type: compound,

file:File, line:Line,

from:From,to:To}

).

:- local macro(a/2, trans_a/4, []).

Yes (0.23s cpu)

[eclipse 2]: read_annotated(user, X, Y).

a(3,bar(X)).

X = b(bar(X))

Y = annotated_term(b(annotated_term(bar(annotated_term(X, var(’X’), user, 18, 654, 655)), compound,

In the example, the main functor of the transformed predicate, b/1, inherits the annotation
information for the original tern’s principle functor, a/2. The argument Y in the transformed
term takes the annotation information from the corresponding argument in the original term.
The source annotation aware transformation predicate facility is provided to allow the user to
detail how the subterms of the original term is mapped to the transformed term. Without this
extra information, the whole of the transformed term is given the source information (source
position, source file etc.) of the original source term. This extra information is useful when the
subterms are goals, because without the extra information, source tracing of these goals during
debugging will not be done.

12.3 Definite Clause Grammars — DCGs

Grammar rules are described in many standard Prolog texts ([2]). In ECLiPSe they are provided
by a predefined global3 macro for -->/2. When the parser reads a clause whose main functor is
-->/2, it transforms it according to the standard rules. The syntax for DCGs is as follows:

grammar_rule --> grammar_head, [’-->’], grammar_body.

grammar_head --> non_terminal.

grammar_head --> non_terminal, [’,’], terminal.

grammar_body --> grammar_body, [’,’], grammar_body.

grammar_body --> grammar_body, [’;’], grammar_body.

3 So that the user can redefine it with a local one.
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grammar_body --> grammar_body, [’->’], grammar_body.

grammar_body --> grammar_body, [’|’], grammar_body.

grammar_body --> iteration_spec, [’do’], grammar_body.

grammar_body --> [’-?->’], grammar_body.

grammar_body --> grammar_body_item.

grammar_body_item --> [’!’].

grammar_body_item --> [’{’], Prolog_goals, [’}’].

grammar_body_item --> non_terminal.

grammar_body_item --> terminal.

The non-terminals are syntactically identical to prolog goals (atom, compound term or variable),
the terminals are lists of prolog terms (typically characters or tokens). Every term is transformed,
unless it is enclosed in curly brackets. The control constructs like conjunction ,/2, disjunction
(;/2 or |/2), the cut (!/0), the condition (->/1) and do-loops do not need to be enclosed in
curly brackets.
The grammar can be accessed with the built-in phrase/3. The first argument of phrase/3 is
the name of the grammar to be used, the second argument one is a list containing the input to
be parsed. If the parsing is successful the built-in will succeed. For instance with the grammar

a --> [] | [z], a.

phrase(a, X, []) will give on backtracking: X = [z] ; X = [z, z] ; X = [z, z, z] ; ....

12.3.1 Simple DCG example

The following example illustrates a simple grammar declared using the DCGs.

sentence --> imperative, noun_phrase(Number), verb_phrase(Number).

imperative, [you] --> [].

imperative --> [].

noun_phrase(Number) --> determiner, noun(Number).

noun_phrase(Number) --> pronom(Number).

verb_phrase(Number) --> verb(Number).

verb_phrase(Number) --> verb(Number), noun_phrase(_).

determiner --> [the].

noun(singular) --> [man].

noun(singular) --> [apple].

noun(plural) --> [men].

noun(plural) --> [apples].

verb(singular) --> [eats].

verb(singular) --> [sings].

verb(plural) --> [eat].
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verb(plural) --> [sing].

pronom(plural) --> [you].

The above grammar may be successfully parsed using phrase/3. If the predicate succeeds then
the input has been parsed successfully.

[eclipse 1]: phrase(sentence, [the,man,eats,the,apple], []).

yes.

[eclipse 2]: phrase(sentence, [the,men,eat], []).

yes.

[eclipse 3]: phrase(sentence, [the,men,eats], []).

no.

[eclipse 4]: phrase(sentence, [eat,the,apples], []).

yes.

[eclipse 5]: phrase(sentence, [you,eat,the,man], []).

yes.

The predicate phrase/3 may be used to return the point at which parsing of a grammar fails
— if the returned list is empty then the input has been successfully parsed.

[eclipse 1]: phrase(sentence, [the,man,eats,something,nasty],X).

X = [something, nasty] More? (;)

no (more) solution.

[eclipse 2]: phrase(sentence, [eat,the,apples],X).

X = [the, apples] More? (;)

X = [] More? (;)

no (more) solution.

[eclipse 3]: phrase(sentence, [hello,there],X).

no (more) solution.

12.3.2 Mapping to Prolog Clauses

Grammar rule are translated to Prolog clauses by adding two arguments which represent the
input before and after the nonterminal which is represented by the rule. The effect of the transfor-
mation can be observed, e.g. by calling biprefexpand clause/2../bips/kernel/compiler/expand clause-
2.html:
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[eclipse 1]: expand_clause(p(X) --> q(X), Expanded).

X = X

Expanded = p(X, _250, _243) :- q(X, _250, _243)

Yes (0.00s cpu)

[eclipse 2]: expand_clause(p(X) --> [a], Expanded).

X = X

Expanded = p(X, _251, _244) :- ’C’(_251, a, _244)

Yes (0.00s cpu)

12.3.3 Parsing other Data Structures

DCGs are in principle not limited to the parsing of lists. The predicate ’C’/3 is responsible for
reading resp. generating the input tokens. The default definition is

’C’([Token|Rest], Token, Rest).

The first argument represents the parsing input before consuming Token and Rest is the input
after consuming Token.
By redefining ’C’/3, it is possible to apply a DCG to other input sources than a list, e.g. to parse
directly from an I/O stream:

:- local ’C’/3.

’C’(Stream-Pos0, Token, Stream-Pos1) :-

seek(Stream, Pos0),

read_string(Stream, " ", _, TokenString),

atom_string(Token, TokenString),

at(Stream, Pos1).

sentence --> noun, [is], adjective.

noun --> [prolog] ; [lisp].

adjective --> [boring] ; [great].

This can then be applied to a string as follows:

[eclipse 1]: String = "prolog is great", open(String, string, S),

phrase(sentence, S-0, S-End).

...

End = 15

yes.

Here is another redefinition of ’C’/3, using a similar idea, which allows the direct parsing of
ECLiPSe strings as sequences of characters:

:- local ’C’/3.

’C’(String-Pos0, Char, String-Pos1) :-

Pos0 =< string_length(String),

string_code(String, Pos0, Char),

Pos1 is Pos0+1.

109



anagram --> [].

anagram --> [_].

anagram --> [C], anagram, [C].

This can then be applied to a string as follows:

[eclipse 1]: phrase(anagram, "abba"-1, "abba"-5).

yes.

[eclipse 2]: phrase(anagram, "abca"-1, "abca"-5).

no (more) solution.

Unlike the default definition, these redefinitions of ’C’/3 are not bi-directional. Consequently,
the grammar rules using them can only be used for parsing, not for generating sentences.
Note that every grammar rule uses that definition of ’C’/3 which is visible in the module where
the grammar rule itself is defined.
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Chapter 13

Events and Interrupts

The normal execution of a Prolog program may be interrupted by Events and Interrupts:

Events

• they may occur asynchronously (posted by the environment) or synchronously (raised
by the program itself).

• they are handled synchronously by a handler goal that is inserted into the resolvent.

• the handler can cause the interrupted execution to fail or to abort.

• the handler can interact with the interrupted execution only via nonlogical features
(e.g. global variable or references).

• the handler can cause waking of delayed goals via symbolic triggers.

Errors
Errors can be viewed as a special case of events. They are raised by built-in predicates
(e.g. when the arguments are of the wrong type) and usually pass the culprit goal to the
error handler.

Interrupts
Interrupts usually originate from the operating system, e.g. on a Unix host, signals are
mapped to ECLiPSe interrupts.

• they occur asynchronously, but may be mapped into a sychronous event.

• certain predefined actions (like aborting) can be performed asynchronously

13.1 Events

13.1.1 Event Identifiers and Event Handling

Events are identified by names (atoms) or by anonymous handles.
When an event is raised, a call to the appropriate handler is inserted into the resolvent (the
sequence of executing goals). The handler will be executed as soon as possible, which means at
the next synchronous point in execution, which is usually just before the next regular predicate
is invoked. Note that there are a few built-in predicates that can run for a long time and will
not allow handlers to be executed until they return (e.g. read/1, sort/4).

111



Creating Named Events

A named event is created by defining a handler for it using set event handler/2:

:- set_event_handler(hello, my_handler/1).

my_handler(Event) :-

<code to deal with Event>

A handler for a named event can have zero or one arguments. When invoked, the first argument
is the event identifier, in this case the atom ’hello’. It is not possible to pass other information
to the handler.

The handler for a defined event can be queried using get event handler/3.

Creating Anonymous Events

An anonymous event is created with the builtin event create/3:

..., event_create(my_other_handler(...), [], Event), ...

The builtin takes a handler goal and creates an anonymous event handle Event. This handle is
the only way to identify the event, and therefore must be passed to any program location that
wants to raise the event. The handler goal can be of any arity and can take arbitrary arguments.
Typically, these arguments would include the Event handle itself and other ground arguments
(variables should not be passed because when the event is raised, a copy of the handler goal
with fresh variables will be executed).

13.1.2 Raising Events

Events can be raised in the following different ways:

• Explicitly by the ECLiPSe program itself, using event/1.

• By foreign code (C/C++) using the ec post event() function.

• Via signals/interrupts by setting the interrupt handler to event/1.

• Via I/O streams (e.g. queues can be configured to raise an event when they get written
into).

• Via timers, so-called after-events

Raising Events Explicitly

To raise an event from within ECLiPSe code, call event/1 with the event identifier as its
argument. If no handler has been defined, a warning will be raised:

?- event(hello).

WARNING: no handler for event in hello

Yes (0.00s cpu)

The event can be an anonymous event handle, e.g.
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?- event_create(writeln(handling(E)), [], E), event(E).

handling(’EVENT’(16’edbc0b20))

E = ’EVENT’(16’edbc0b20)

Yes (0.00s cpu)

Raising events explicitly is mainly useful for test purposes, since it is almost the same as calling
the handler directly.

Raising Events from Foreign Code

To raise an event from within foreign C/C++ code, call

ec_post_event(ec_atom(ec_did("hello",0)));

This works both when the foreign code is called from ECLiPSe or when ECLiPSe is embedded
into a foreign code host program.

Timed Events (after events)

An event can be triggered after a specified amount of elapsed time. The event is then handled
sychronously by ECLiPSe. These events are known as after events, as they are set up so that
the event occurs after a certain amount of elapsed time. They are setup by one of the following
predicates:

event after(+EventId, +Time) This sets up an event EventId so that the event is raised
once after Time seconds of elapsed time from when the predicate is executed. EventId is an
event identifier and Time is a positive number.

event after every(+EventId, +Time) This sets up an event EventId so that the event is
raised every Time seconds has elapsed from when the predicate is executed.

events after(+EventList) This sets up a series of after events specified in EventList, which
is list of events in the form EventId-Time, or EventId-every(Time), specifying a single event or
a repeated event respectively.

The Time parameter is actually the minimum of elapsed time before the event is raised. Factors
constraining the actual time of raising of the event include the granularity of the system clock,
and also that ECLiPSe must be in a state where it can synchronously process the event – it
needs to be where it can make a procedure call.

Once an after event has been set up, it is pending until it is raised. In the case of
event_after_every/2, the event will always be pending because it is rasied repeatedly. A
pending event can be cancelled so that it will not be raised:

cancel after event(+EventId, -Cancelled) This finds and cancels all pending after events
with name EventId and returns the actually cancelled ones in a list.

113



current after events(-Events) This returns a list of all pending after events.
The after event mechanism allows multiple events to make use of the timing mechanism inde-
pendently of each other. The same event can be setup multiple times with multiple calls to
event_after/2 and event_after_every/2. The cancel_after_event/2 predicate will cancel
all instances of an event.
By default, the after event feature uses the real timer. The timer can be switched to the virtual
timer, in which case the elapsed time measured is user CPU time1 This setting is specified by
the ECLiPSe environment flag after_event_timer (see get flag/2, set flag/2). Note that if the
timer is changed while some after event is still pending, these events will no longer be processed.
The timer should therefore not be changed once after events are initiated.
Currently, the virtual timer is not available on the Windows platform. In addition, the user
should should not make use of these timers for their own purpose if they plan to use the after
event mechanism.

13.1.3 Events and Waking

Using the suspension and event handling mechanisms together, a goal can be added to the
resolvent and executed after a defined elapsed time. To achieve this, the goal is suspended and
attached to a symbolic trigger, which is triggered by an afer-event handler. The goal behaves
‘logically’, in that if the execution backtracks pass the point in which the suspended goal is
created, the goal will disappear from the resolvent as expected and thus not be executed. The
event will still be raised, but there will not be a suspended goal to wake up. Note that if the
execution finishes before the suspended goal is due to be woken up, it will also not enter the
resolvent and is thus not executed.
The following is an example for waking a goal with a timed event. Once monitor(X) is called,
the current value of X will be printed every second until the query finishes or is backtracked
over:

:- set_event_handler(monvar, trigger/1).

monitor(Var) :-

suspend(m(Var), 3, trigger(monvar)),

event_after_every(monvar, 1).

:- demon m/1.

m(Var) :- writeln(Var).

:- monitor(Var), <do_something>.

Note the need to declare m/1 as a demon: otherwise, once m/1 is woken up once, it will disappear
from the resolvent and the next monvar event will not have a suspended m/1 to wake up. Note
also that it is necessary to connect the event machanism to the waking mechanism by setting
the event handler to trigger/1.

13.1.4 Aborting an Execution with Events

Typically, event handlers would perform some action and then succeed, letting the interrupted
exectuion continue unharmed. Event handlers for asynchronous events should never fail, be-

1This is time that the CPU spends on executing user code, i.e. the ECLiPSe program.
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cause the failure will be inserted in a random place in resolvent, and the effect will be unpre-
dictable. It is however sometimes useful to allow an asynchronous event to abort an execution
(via exit block/1), e.g. to implement timeouts2.

When dealing with events that occur asynchronously (in particular after-events), and event
handlers that cause the execution to abort, it is often a problem that event handlers may be
interrupted or preempted by other event handlers. This can be avoided by use of the event-defer
mechanism. Events can be declared with the defer-property, which means that all further event
handling is temporarily suppressed as soon as the handling of this event begins. In this case, the
event handler is responsible for reenabling event handling explicitly before returning by calling
events nodefer/0. For instance:

:- set_event_handler(my_event, defers(my_handler/0)).

my_after_handler :- % event handling is deferred at this point

<deal with event>,

events_nodefer. % allow other events to be handled again

In the presence of other event handlers which can cause aborts, this will protect the handler
code from being preempted.

13.2 Errors

Error handling is one particular use of events. The main property of error events is that they
have a culprit goal, ie. the goal that detected or caused the error. The error handler obtains
that goal as an argument.

The errors that the system raises have numerical identifiers, as documented in appendix C.
User-defined errors have atomic names, they are the same as events. Whenever an error occurs,
the ECLiPSe system identifies the type of error, and calls the appropriate handler. For each
type of error, it is possible for the user to define a separate handler. This definition will replace
the default error handling routine for that particular error - all other errors will still be handled
by their respective handlers. It is of course possible to associate the same user defined error
handler to more than one error type.

When a goal is called and produces an error, execution of the goal is aborted and the appropriate
error handler is invoked. This invocation of the error handler is seen as replacing the invocation
of the erroneous goal:

• If the error handler fails it has the same effect as if the erroneous goal failed.

• If the error handler succeeds, possibly binding some variables, the execution continues at
the point behind the call of the erroneous goal.

• If the handler calls exit block/1, it has the same effect as if this was done by the erroneous
goal itself.

For errors that are classified as warnings the second point is somewhat different: If the handler
succeeds, the goal that raised the warning is allowed to continue execution.

2Since implementing reliable timeouts is a nontrivial task, we recommend the use of lib(timeout) for this
purpose.
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Apart from binding variables in the erroneous goal, error handlers can also leave backtrack
points. However, if the error was raised by an external or a builtin that is implemented as an
external, these choicepoints are discarded3.

13.2.1 Error Handlers

The predicate set event handler/2 is used to assign a procedure as an error handler. The call

set_event_handler(ErrorId, PredSpec)

sets the event handler for error type ErrorId to the procedure specified by PredSpec, which must
be of the form Name/Arity.

The corresponding predicate get event handler/3 may be used to identify the current handler
for a particular error. The call

get_event_handler(ErrorId, PredSpec, HomeModule)

will, provided ErrorId is a valid error identifier, unify PredSpec with the specification of the
current handler for error ErrorId in the form Name/Arity, and HomeModule will be unified with
the module where the error handler has been defined. Note that this error handler might not
be visible from every module and therefore may not be callable.

To re-install the system’s error handler in case the user error handler is no longer needed,
reset event handler/1 should be used. reset error handlers/0 resets all error handlers to
their default values.

To enable the user to conveniently write predicates with error checking the built-ins

error(ErrorId, Goal)

error(ErrorId, Goal, Module)

are provided to raise the error ErrorId (an error number or a name atom) with the culprit Goal.
Inside tool procedures it is usually necessary to use error/3 in order to pass the caller module
to the error handler. Typical error checking code looks like this

increment(X, X1) :-

( integer(X) ->

X1 is X + 1

;

error(5, increment(X, X1))

).

The predicate current error/1 can be used to yield all valid error numbers, a valid error is that
one to which an error message and an error handler are associated. The predicate error id/2
gives the corresponding error message to the specified error number. To ease the search for the
appropriate error number, the library util contains the predicate

util:list_error(Text, N, Message)

3 This is necessary because the compiler recognises simple predicates as deterministic at compile time and so
if a simple predicate would cause the invocation of a non-deterministic error handler, the generated code may no
longer be correct.
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which returns on backtracking all the errors whose error message contains the string Text.

The ability to define any Prolog predicate as the error handler permits a great deal of flexibility
in error handling. However, this flexibility should be used with caution. The action of an
error handler could have side effects altering the correctness of a program; indeed it could be
responsible for further errors being introduced. One particular area of danger is in the use of
input and output streams by error handlers.

13.2.2 Arguments of Error Handlers

An error handler has 4 optional arguments.

1. The first argument is the number or atom that identifies the error.

2. The second argument is the culprit (a structure corresponding to the call which caused
the error). For instance, if, say, a type error occurs upon calling the second goal of the
procedure p(2, Z):

p(X, Y) :- a(X), b(X, Y), c(Y).

the structure given to the error handler is b(2, Y). Note that the handler could bind Y
which would have the same effect as if b/2 had done the binding.

3. The third argument is only defined for a subset of the existing errors. If the error oc-
curred inside a tool body, it holds the caller module, otherwise it is identical to the fourth
argument4.

4. The fourth argument is the lookup module for the culprit goal. This is needed for example
when the handler wants to call the culprit reliably, using a qualified call via : /2.

The error handler is free to ignore some of these arguments, i.e. it can have any arity from 0 to
4. The first argument is provided for the case that the same procedure serves as the handler for
several error types - then it can distinguish which is the actual error type. An error handler is
just an ordinary Prolog procedure and thus within it a call may be made to any other procedure,
or any built in predicate; this in particular means that a call to exit block/1 may be made (see
the section on the block/3 predicate). This will work ’through’ the call to the error handler,
and so an exit may be made from within the handler out of the current block (i.e. back to
the corresponding call of the block/3 predicate). Specifying the predicates true/0 or fail/0 as
error handlers will make the erroneous predicate succeed (without binding any further variables)
or fail respectively.

The following two templates are the most common for error handlers. The first simply prints
an error message and aborts:

my_error_handler(ErrorId, Goal, ContextModule) :-

printf(error, "Error %w in %w in module %w%n",

[ErrorId,Goal,ContextModule]),

abort.

The following handler tries to repair the error and call the goal again:

4 Note that some events are not errors but are used for different purposes. In thoses cases the second and third
argument are sometimes used differently. See Appendix C for details.
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my_error_repair_handler(ErrorId, Goal, ContextModule, LookupModule) :-

% repair the error

... some code to repair the cause for the error ...

% try call the erroneous goal again

LookupModule : Goal @ ContextModule.

13.2.3 User Defined Errors

The following example illustrates the use of a user-defined error. We declare a handler for the
event ’Invalid command’ and raise the new error in the application code.

% Command error handler - output invalid command, sound bell and abort

command_error_handler(_, Command) :-

printf("\007\nInvalid command: %w\n", [Command]),

abort.

% Activate the handler

:- set_event_handler(’Invalid command’, command_error_handler/2).

% top command processing loop

go :-

writeln("Enter command."),

read(Command),

( valid_command(Command)->

process_command(Command),

go

;

error(’Invalid command’,Command) % Call the error handler

).

% Some valid commands

valid_command(start).

valid_command(stop).

13.3 Interrupts

Operating systems such as Unix provide a notion of asynchronous interrupts or signals. In a
standalone ECLiPSe system, the signals can be handled by defining interrupt handlers for them.
In fact, a set of default handlers is already predefined in this case.

In an embedded ECLiPSe, signals are usually handled by the host application, and it is recom-
mended to use the event mechanism described above (the ec post event() library function) to
communicate between the host application and the ECLiPSe code. However, even in this set-
ting, ECLiPSe can also handle signals directly, provided the programmer sets up a corresponding
interrupt handler.
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13.3.1 Interrupt Identifiers

Interrupts are identified either by their signal number (Unix) or by a name which is derived from
the name the signal has in the operating system. Most built-ins understand both identifiers.
It is usually more portable to use the symbolic name. The built-in current interrupt/2 is
provided to check and/or generate the valid interrupt numbers and their mnemonic names.

13.3.2 Asynchronous handling

When an interrupt happens, the ECLiPSe system calls an interrupt handling routine in a manner
very similar to the case of event handling. The only argument to the handler is the interrupt
number. Just as event handlers may be user defined, so it is possible to define interrupt handlers.
The goal

set_interrupt_handler(N, PredSpec)

assigns the procedure specified by PredSpec as the interrupt handler for the interrupt identified
by N (a number or a name). Some interrupts cannot be caught by the user (e.g. the kill signal),
trying to establish a handler for them yields an error message. Note that PredSpec should be
one of the predefined handlers. The use of general user defined predicates is deprecated because
of portability considerations.

To test interrupt handlers, the built-in kill/2 may be used to send a signal to the own process.

The predicate get interrupt handler/3 may be used to find the current interrupt handler for
an interrupt N, in the same manner as get event handler:

get_interrupt_handler(N, PredSpec, HomeModule)

An interrupt handler has one optional argument, which is the interrupt number. There is no
argument corresponding to the error culprit, since the interrupt has no relation to the currently
executed predicate. A handler may be defined which takes no argument (such as when the
handler is defined for only one interrupt type). If the handler has one argument, the identifier
of the interrupt is passed to the handler when it is called.

The following is the list of predefined interrupt handlers:

default/0
performs the standard UNIX handling of the specified interrupt (signal). Setting this
handler is equivalent to calling signal(N, SIG DFL) on the C level. Thus e.g. specifying

?- set_interrupt_handler(int, default/0)

will exit the ECLiPSe system when ∧C is pressed.

true/0
This is equivalent to calling signal(N, SIG IGN) on the C level, ie. the interrupt is ignored.

throw/1
Invoke exit block/1 with the interupt’s symbolic name.

abort/0
Invoke exit block(abort).
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halt/0
Terminate the ECLiPSe process.

internal/0 Used by ECLiPSe to implement internal functionality like the profiler. This is not
intended to be used by the user.

event/1
The signal is handled by posting a (synchronous) event. The event name is the symbolic
name of the interrupt.

Apart from these special cases, all other arguments will result in the specified predicate to be
called when the appropriate interrupt occurs. This general asynchronous interrupt handling
is not supported on all hardware/platforms, neither in an embedded ECLiPSe (including the
tkeclipse development environment), and is therefore deprecated.
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Chapter 14

Debugging

14.1 The Box Model

The ECLiPSe debugger is based on a port model which is an extension of the classical Box
Model commonly used in Prolog debugging.
A procedure invocation (or goal) is represented by a box with entry and exit ports. Each time a
procedure is invoked, a box is created and given a unique invocation number. The invocations
of subgoals of this procedure are seen as boxes inside this procedure box.
Tracing the flow of the execution consists in tracing the crossing of the execution flow through
any of the port of the box.
The five basic ports of the box model of ECLiPSe are the CALL, EXIT, REDO, FAIL and
NEXT ports, the suspension facilities are traced through the DELAY and RESUME ports, and
the exceptional exit is indicated by LEAVE.

CALL: When a procedure is invoked, the flow of the execution enters the procedure box by
its CALL port and enters the first clause box which could (since not all clauses are tried,
some of them being sure to fail, i.e. indexing is shown) unify with the goal. It may happen
that a procedure is called with arguments that make it sure to fail (because of indexing).
In such cases, the flow does not enter any clause box.

For each CALL port a new procedure box is created and is given:

• an invocation number that is one higher than that given for the most recent CALL
port. This allows to uniquely identify a procedure invocation and all its corresponding
ports.

• a level that is one higher than that of its parent goal.

The displayed variable instantiations are the ones at call time, i.e. before the head unifi-
cation of any clause.

EXIT: When a clause of a predicate succeeds (i.e. unification succeeded and all procedures
called by the clause succeeded), the flow gets out of the box by the EXIT port of both
boxes (only the EXIT port of the procedure box is traced).

When a procedure exits non-deterministically (and there are still other clauses to try on
that procedure or one of its children goals has alternatives which could be resatisfied), the
EXIT port is traced with an asterisk (*EXIT). When the last possibly matching clause of

121



NEXT

NEXT

FAIL

RESUME
CALL

.....

*EXIT
EXIT

LEAVE

Clause 1

Clause 2

Clause n

REDO

Figure 14.1: The box model

a procedure is exited, the exit is traced without asterisk. This means that this procedure
box will never be retried as there is no other untried alternative.

The instantiations shown in the EXIT port are the ones at exit time, they result from the
(successful) execution of the procedure.

FAIL: When a clause of a procedure fails (because head unification failed or because a sub-goal
failed), the flow of the execution exits the clause box and leaves the procedure box via
the FAIL port. Note that the debugger cannot display any argument information at FAIL
ports (an ellipsis ... is displayed instead for each argument).

NEXT: If a clause fails and there is another possibly matching clause to try, then that one
is tried for unification. The flow of the execution from the failure of one clause to the
head unification of a following clause is traced as a NEXT port. The displayed variable
instantiations are the same as those of the corresponding CALL or REDO port.

ELSE: This is similar to the NEXT port, but indicates that the next branch of a disjunction
(;/2) it tried after the previous branch failed. The predicate that gets displayed with the
port is the predicate which contains the disjunction (the immediate ancestor).

REDO: When a procedure box is exited trough an *EXIT port, the box can be retried later
to get a new solution. This will happen when a later goal fails. The backtracking will
cause failing of all procedures that do not have any alternative, then the execution flow
will enter a procedure box that an contains alternative through a REDO port.

Two situations may occur: either the last tried clause has called a procedure that has left
a choice point (it has exited through an *EXIT port). In that case the nested procedure
box is re-entered though another REDO-port.
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Otherwise, if the last clause tried does not contain any nondeterministically exited boxes,
but there are other untried clauses in the procedure box, the next possibly matching clause
will be tried.

The last REDO port in such a sequence is the one which contains the actual alternative
that is tried. The variable instantiations for all REDO ports in such a sequence are the
ones corresponding to the call time of the last one.

LEAVE: This port allows to trace the execution of a the block/3 and exit block/1 predicates
within the box model. The predicate block/3 is traced as a normal procedure. If the
goal in its first argument fails, block/3 fails, if it exits, block/3 exits. If the predicate
exit block/1 is called (and exited since it never fails), all the goals inside the matching
block are left through a special port called LEAVE, so that each entry port matches with
an exit port. The recover procedure (in the third argument of block/3) is then called
and traced normally and block/3 will exit or fail (or even leave) depending on the recover
procedure.

As with the FAIL port, no argument value are displayed in the LEAVE port.

DELAY: The displayed goal becomes suspended. This is a singleton port, it does not enter
or leave a box. However, a new invocation number is assigned to the delayed goal, and
this number will be used in the matching RESUME port. The DELAY port is caused by
one of the built-in predicates suspend/3, suspend/4, make suspension/3 or a delay
clause. The port is displayed just after the delayed goal has been created.

RESUME: When a waking condition causes the resuming of a delayed goal, the procedure box
is entered through its RESUME port. The box then behaves as if it had been entered
through its CALL port. The invocation number is the same as in its previous DELAY
port. which makes it easy to identify corresponding delay and resume events. However
the depth level of the RESUME corresponds to the waking situation. It is traced like a
subgoal of the goal which has caused the waking.

In the rest of this chapter the user interface to the debugger is described, including the commands
available in the debugger itself as well as built-in predicates which influence it. Some of the
debugger commands are explained using an excerpt of a debugger session. In these examples,
the user input is always underlined (it is in fact not always output as typed) to distinguish it
from the computer output.

14.1.1 Breakpoints

Breakpoints can be set on specific calls to a predicate, i.e. on a specific body goal in the source,
so that the debugger will stop only at a CALL port only when that specific body goal is executed.
A breakpoint is specify by giving the source file and the line number where the body goal is.

For example, if the following predicate is in a file called newtop, with the following line numbers:

243 check_words([],[]).

244 check_words([Word|Words],[RevWord|RevWords]) :-

245 check_words(Words,RevWords).
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The breakpoint for the body goal verb’check words(Words,RevWords)’ would be newtop:245.
Note that the file name must be sufficiently specified for ECLiPSe to find the file from your
current working directory.
For a call that has a breakpoint set, the execution will stop when the call is made, i.e. at the
CALL port for that specific body goal.

14.2 Format of the Tracing Messages

All trace messages are output to the debug output stream.
The format of one trace line is as follows:

S+(4) 2 *EXIT<5> module:foo(one, X, two) %>

12 3 4 5 6 7 8 9 10

1. The first character shows some properties of the displayed procedure. It may be one of

• C - an external procedure, not implemented in Prolog

• S - a skipped procedure, i.e. a procedure whose subgoals are not traced

2. A ’+’ displayed here shows that the procedure has a spy point set, and a ’#’ shows that
the specific call has a break-point set..

3. The number between parentheses shows the box invocation number of this procedure call.
Since each box has a unique invocation number, it can be used to identify ports that
belong to the same box. It also shows how many procedure redos have been made since
the beginning of the query. Only boxes that can be traced obtain an invocation number,
for instance subgoals of a procedure which is compiled in debug mode or has its skip-flag
set are not numbered.

When a delayed goal is resumed, it keeps the invocation number it was assigned when
it delayed. This makes it easy to follow all ports of a specified call even in data-driven
computation.

4. The second number shows the level or depth of the goal, i.e. the number of its ancestor
boxes. When a subgoal is called, the level increases and after exit it decreases again. The
initial level is 1.

Since a resumed goal is considered to be a descendant of the procedure that woke it, the
level of a resumed goal may be different from the level the goal had when it delayed.

5. An asterisk before an EXIT means that this procedure is nondeterministic and that it
might be resatisfied.

6. The next word is the name of the port. It might be missing if the displayed goal is not the
current position in the execution (e.g. when examining ancestors or delayed goals).

CALL a procedure is called for the first time concerning a particular invocation,

DELAY a procedure delays,

EXIT a procedure succeeds,

FAIL a procedure fails, there is no (other) solution,
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LEAVE a procedure is left before having failed or exited because of a call to exit block/1,

NEXT the next possibly matching clause of a procedure is tried because unification failed
or a sub-goal failed,

ELSE the next branch of a disjunction is tried because some goal in the previous branch
failed.

REDO a procedure that already gave a solution is called again for an alternative,

RESUME a procedure is woken (the flow enters the procedure box as for a call) because
of a unification of a suspending variable,

7. This only appears if the goal is executing at a different priority than 12, the normal priority.
The number between the angled brackets shows the priority (between 1 and 11) that the
goal is executed at.

8. For the tty debugger, the optional module name followed by a colon. Printing of the
module can be enabled and disabled by the debugger command m. If it is enabled, the
module from where the procedure is called is displayed. By default the module printing
is disabled. With tkeclipse, the module name is not displayed with the traceline, instead,
you can get the information by right holding the mouse button over the trace line in the
call stack window.

9. The goal is printed according to the current instantiations of its variables. Arguments of
the form ... represent subterm that are not printed due to the depth limit in effect. The
depth limit can be changed using the < command.

The goal is printed with the current output mode settings. which can be changed using
the o command.

10. The prompt of the debugger, which means that it is waiting for a command from the user.
Note there is no prompt when tkeclipse tracer is used.

14.3 Debugging-related Predicate Properties

Predicates have a number of properties which can be listed using the pred/1 built-in. The
following predicate flags and properties affect the way the predicate is traced by the debugger:

debugged
Indicates whether the predicate has been compiled in debug-compile mode. If on, calls to
the predicate’s subgoal will be traced. The value of this property can only be changed by
re-compiling the predicate in a different mode.

leash
If notrace, no port of the predicate will be shown in the trace (but the invocations will be
counted nevertheless). If stop, the ports of this predicate will be shown and the debugger
will stop and await new commands. (The print setting is currently not supported). The
value of this property can be changed with traceable/1, untraceable/1 or set flag/3.

spy
If on, the predicate has a spy-point and the debugger will stop at its ports when in leap
mode. The value of this property can be changed with spy/1, nospy/1 or set flag/3.
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skipped
If on, the predicate’s subgoal will not be traced even if it has been compiled in debug-
compile mode. The value of this property can be changed with skipped/1, unskipped/1
or set flag/3.

start tracing
If on, a call to the predicate will activate the debugger if it is not already running. Only
the execution within this predicate’s box will be traced. This is useful for debugging part of
a big program without having to change the source code. The effect is similar to wrapping
all call of the predicate into trace/1.

14.4 Starting the Debugger

Several methods can be used to switch the debugger on. If the textual interactive top-level
is used, the commands trace/0 and debug/0 are used to switch the debugger on for the
following queries typed from the top-level. trace/0 will switch the debugger to creep mode
whereas debug/0 will switch it in it leap mode.

For the tkeclipse graphical toplevel, the debugger may be switched on by starting the tracer
from the Tools menu before executing the query. This puts the debugger in creep mode.

When the debugger is in it creep mode, it will prompt for a command at the crossing of the first
port of a leashed procedure. When the debugger is in leap mode, it will prompt for a command
at the first port of a leashed procedure that has a spy point. The debugger is switched off either
from the toplevel with the commands nodebug/0 or notrace/0, or by typing n or N to the
debugger prompt.

A spy point can be set on a procedure, or a breakpoint on a specific call, using spy/1 (which
will also switch the debugger to leap) and removed with nospy/1. They both accept a SpecList
as argument. Note that set flag/3 can be used to set and reset spy points without switching
the debugger on and without printing messages.

debugging/0 can be used to list the spied predicates and the current debugger mode.

[eclipse 1]: spy writeln/1.

spypoint added to writeln / 1.

yes.

Debugger switched on - leap mode

[eclipse 2]: debugging.

Debug mode is leap

writeln / 1 is being spied

yes.

[eclipse 3]: true, writeln(hello), true.

B+(2) 0 CALL writeln(hello) %> l leap

hello

B+(2) 0 EXIT writeln(hello) %> c creep

B (3) 0 CALL true %> l leap

yes.
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[eclipse 4]: trace.

Debugger switched to creep mode

yes.

[eclipse 5]: true, writeln(hello), true.

B (1) 0 CALL true %> c creep

B (1) 0 EXIT true %> c creep

B+(2) 0 CALL writeln(hello) %> l leap

hello

B+(2) 0 EXIT writeln(hello) %> l leap

yes.

14.5 Debugging Parts of Programs

14.5.1 Mixing debuggable and non-debuggable code

The debugger can trace only procedures which have been compiled in debug mode. The com-
piler debug mode is by default switched on and it can be changed globally by setting the flag
debug compile with the set flag/2 predicate or using dbgcomp/0 or nodbgcomp/0. The
global compiler debug mode can be overruled on a file-by-file basis using one of the compiler
pragmas

:- pragma(nodebug).

:- pragma(debug).

Once a program (or a part of it) has been debugged, it can be compiled in nodbgcomp mode so
that all optimisations are done by the compiler. The advantages of non-debugged procedures
are

• They run slightly faster than the debugged procedures when the debugger is switched off.
When the debugger is switched on, the non-debugged procedures run considerably faster
than the debugged ones and so the user can selectively influence the speed of the code
which is being traced as well as its space consumption.

• Their code is shorter than that of the debugged procedures.

Although only procedures compiled in the dbgcomp mode can be traced, it is possible to mix the
execution of procedures in both modes. Then, calls of nodbgcomp procedures from dbgcomp ones
are traced, however further execution within nodbgcomp procedures, i.e. the execution of their
subgoals, no matter in which mode, is not traced. In particular, when a nodbgcomp procedure
calls a dbgcomp one, the latter is normally not traced. There are two important exceptions from
this rule:

• When a debuggable procedure has delayed and its DELAY port has been traced, then its
RESUME port is also traced, even when it is woken inside non-debuggable code.

• When non-debuggable code meta-calls a debuggable procedure (i.e. via call/1), then this
procedure can be traced. This is a useful feature for the implementation of meta- predi-
cates like setof/3, because it allows to hide the details of the setof-implementation, while
allowing to trace the argument goal.
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Setting a procedure to skipped (with set flag/3 or skipped/1 ) is another way to speed up the
execution of procedures that do not need to be debugged. The debugger will ignore everything
that is called inside the skipped procedure like for a procedure compiled in nodbgcomp mode.
However, the debugger will keep track of the execution of a procedure skipped with the command
s of the debugger so that it will be possible to ’creep’ in it on later backtracking or switch the
debugger to creep mode while the skip is running (e.g. by interrupting a looping predicate with
ˆC and switching to creep mode).

The two predicates trace/1 and debug/1 can be used to switch on the debugger in the middle of
a program. They execute their argument in creep or leap mode respectively. This is particularly
useful when debugging large programs that take too much time (or need a lot of memory) to
run completely with the debugger.

[eclipse 1]: debugging.

Debugger is switched off

yes.

[eclipse 2]: big_goal1, trace(buggy_goal), big_goal2.

Start debugging - creep mode

(1) 0 CALL buggy_goal %> c creep

(1) 0 EXIT buggy_goal %> c creep

Stop debugging.

yes.

It is also possible to enable the debugger in the middle of execution without changing the code.
To do so, use set flag/3 to set the start tracing flag of the predicate of interest. Tracing will
then start (in leap mode) at every call of this predicate1. To see the starting predicate itself, set
a spy point in addition to the start tracing flag:

[eclipse 1]: debugging.

Debugger is switched off

yes.

[eclipse 2]: set_flag(buggy_goal/0, start_tracing, on),

set_flag(buggy_goal/0, spy, on).

yes.

[eclipse 3]: big_goal1, buggy_goal, big_goal2.

+(0) 0 CALL buggy_goal %> creep

+(0) 0 EXIT buggy_goal %> creep

yes.

In tkeclipse, the debugger can also be started in this way. The tracer tool will popup at the
appropriate predicate if it has not been invoked already. The start tracing flag can also be set
with the predicate browser tool.

1provided the call has been compiled in debug compile mode, or the call is a meta-call
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14.6 Using the Debugger via the Command Line Interface

This section describe the commands available at the debugger prompt in the debugger’s com-
mand line interface (for the graphical user interface, please refer to the online documentation).

Commands are entered by typing the corresponding key (without newline), the case of the letters
is significant. The action of some of them is immediate, others require additional parameters
to be typed afterwards. Since the ECLiPSe debugger has the possibility to display not only
the goal that is currently being executed (the current goal or procedure), but also its ancestors,
some of the commands may work on the displayed procedure whatever it is, and others on the
current one.

14.6.1 Counters and Command Arguments

Some debugger commands accept a counter (a small integer number) before the command letter
(e.g. c creep). The number is just prefixed to the command and terminated by the command
letter itself. If a counter is given for a command that doesn’t accept a counter, it is ignored.

When a counter is used and is valid for the command, the command is repeated, decrementing
the counter until zero. When repeating the command, the command and the remaining counter
value is printed after the debugger prompt instead of waiting for user input.

Some commands prompt for a parameter, e.g. the j (jump) command asks for the number of the
level to which to jump. Usually the parameter has a sensible default value (which is printed in
square backets). If just a newline is typed, then the default value is taken. If a valid parameter
value is typed, followed by newline, this value is taken. If an illegal letter is typed, the command
is aborted.

14.6.2 Commands to Continue Execution

All commands in this section continue program execution. They difference between them is the
condition under which execution will stop the next time. When execution stops again, the next
trace line is printed and a new command is accepted.

nc creep
This command allows exhaustive tracing: the execution stops at the next port of any

leashed procedure. No further parameters are required, a counter n will repeat the com-
mand n times. It always applies on the current procedure, even when the displayed pro-
cedure is not the current one (e.g. during term inspection). An alias for the c command
is to just type newline (Return-key).

ns skip
If given at an entry port of a box (CALL, RESUME, REDO), this command skips the

execution until an exit port of this box (EXIT, FAIL, LEAVE). If given in an exit port it
works like creep. (Note that sometimes the i command is more appropriate, since it skips
to the next port of the current box, no matter which). A counter, if specified, repeats this
command.

nl leap
Continues to the next spy point (any port of a procedure which has its spy flag set). A

counter, if specified, repeats this command.
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i par invocation skip
Continue to the next port of the box with the invocation number specified. The default

invocation number is the one of the current box. Common uses for this command are to
skip from CALL to NEXT, from NEXT to NEXT/EXIT/FAIL, from *EXIT to REDO,
or from DELAY to RESUME.

j par jump to level
Continue to the next port with the specified nesting level (which can be higher or lower

than the current one). The default is the parent’s level, i.e. to continue until the current
box is exited, ignoring all the remaining subgoals of the current clause. This is particularly
useful when a c (creep) has been typed where a s (skip) was wanted.

n nodebug
This command switches tracing off for the remainder of the execution. However, the next
top-level query will be traced again. Use N to switch tracing off permanently.

q query the failure culprit
The purpose of this command is to find out why a goal has failed (FAIL) or was aborted
with an exit block (LEAVE). It prints the invocation number of the goal which caused the
failure. You can then re-run the program in creep mode and type q at the first command
prompt. This will then offer you to jump to the CALL port of the culprit goal.

[eclipse 3]: p.

(1) 1 CALL p %> skip

(1) 1 FAIL p %> query culprit

failure culprit was (3) - rerun and type q to jump there %> nodebug? [y]

No (0.00s cpu)

[eclipse 4]: p.

(1) 1 CALL p %> query culprit

failure culprit was (3) - jump to invoc: [3]?

(3) 3 CALL r(1) %> creep

(3) 3 FAIL r(...) %> creep

(2) 2 FAIL q %> creep

(1) 1 FAIL p %> creep

No (0.01s cpu)

v var/term modification skip
This command sets up a monitor on the currently displayed term, which will cause a

MODIFY-port to be raised on each modification to any variable in the term. These ports
will all have a unique invocation number which is assigned and printed at the time the
command is issued. This number can then be used with the i command to skip to where
the modifications happen.

[eclipse 4]: [X, Y] :: 1..9, X #>= Y, Y#>1.

(1) 1 CALL [X, Y] :: 1..9 %> var/term spy? [y]

Var/term spy set up with invocation number (2) %> jump to invoc: [1]? 2

(2) 3 MODIFY [X{[1..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]?

(2) 4 MODIFY [X{[2..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]?
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Note that these monitors can also be set up from within the program code using one of
the built-ins spy var/1 or spy term/2.

z par zap
This command allows to skip over, or to a specified port. When this command is executed,
the debugger prompts for a port name (e.g. fail) or a negated port name (e.g. ∼exit).
Execution then continues until the specified port appears or, in the negated case, until a
port other than the specified one appears. The default is the negation of the current port,
which is useful when exiting from a deep recursion (a long sequence of EXIT or FAIL
ports).

14.6.3 Commands to Modify Execution

f par fail
Force a failure of the procedure with the specified invocation number. The default is to

force failure of the current procedure.

a abort
Abort the execution of the current query and return to the top-level. The command

prompts for confirmation.

14.6.4 Display Commands

This group of commands cause some useful information to be displayed.

d par delayed goals
Display the currently delayed goals. The optional argument allows to restrict the display
to goal of a certain priority only. The goals are displayed in a format similar to the trace
lines, except that there is no depth level and no port name. Instead, the goal priority is
displayed in angular brackets:

[eclipse 5]: [X, Y] :: 1..9, X #>= Y, Y #>= X.

(1) 1 CALL [X, Y] :: 1..9 %> creep

(1) 1 EXIT [X{[1..9]}, Y{[1..9]}] :: 1..9 %> creep

(2) 1 CALL X{[1..9]} - Y{[1..9]}#>=0 %> creep

(3) 2 DELAY X{[1..9]} - Y{[1..9]}#>=0 %> creep

(2) 1 EXIT X{[1..9]} - Y{[1..9]}#>=0 %> creep

(4) 1 CALL Y{[1..9]} - X{[1..9]}#>=0 %> creep

(5) 2 DELAY Y{[1..9]} - X{[1..9]}#>=0 %> delayed goals

with prio: [all]?

------- delayed goals -------

(3) <2> X{[1..9]} - Y{[1..9]}#>=0

(5) <2> Y{[1..9]} - X{[1..9]}#>=0

------------ end ------------

(5) 2 DELAY Y{[1..9]} - X{[1..9]}#>=0 %>

u par scheduled goals
Similar to the d command, but displays only those delayed goals that are already scheduled
for execution. The optional argument allows to restrict the display to goal of a certain
priority only. Example:
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[eclipse 13]: [X,Y,Z]::1..9, X#>Z, Y#>Z, Z#>1.

(1) 1 CALL [X, Y, Z] :: 1..9 %> creep

(1) 1 EXIT [X{[1..9]}, Y{[1..9]}, Z{[1..9]}] :: 1..9 %> creep

(2) 1 CALL X{[1..9]} - Z{[1..9]}+-1#>=0 %> creep

(3) 2 DELAY X{[2..9]} - Z{[1..8]}#>=1 %> creep

(2) 1 EXIT X{[2..9]} - Z{[1..8]}+-1#>=0 %> creep

(4) 1 CALL Y{[1..9]} - Z{[1..8]}+-1#>=0 %> creep

(5) 2 DELAY Y{[2..9]} - Z{[1..8]}#>=1 %> creep

(4) 1 EXIT Y{[2..9]} - Z{[1..8]}+-1#>=0 %> creep

(6) 1 CALL 0 + Z{[1..8]}+-2#>=0 %> creep

(3) 2 RESUME X{[2..9]} - Z{[2..8]}#>=1 %> scheduled goals

with prio: [all]?

------ scheduled goals ------

(5) <2> Y{[2..9]} - Z{[2..8]}#>=1

------------ end ------------

(3) 2 RESUME X{[2..9]} - Z{[2..8]}#>=1 %>

G all ancestors
Prints all the current goal’s ancestors from the oldest to the newest. The display format

is similar to trace lines, except that .... is displayed in the port field.

. print definition
If given at a trace line, the command displays the source code of the current predicate. If
the predicate is not written in Prolog, or has not been compiled from a file, or the source
file is inaccessible, no information can be displayed.

w write source context for current goal
Lists the source lines around the current goal displayed by the trace line, showing the

context of the goal. For example:

(230) 4 CALL check_word(what, _5824) %> write source lines

Source file: /homes/user/EclipseTests/Chatq/newtop

241 :- mode check_words(+,-).

242

243 check_words([],[]).

244 check_words([Word|Words],[RevWord|RevWords]) :-

245> check_word(Word,RevWord),

245 check_words(Words,RevWords).

246

247 :- mode check_word(+,-).

248

%>

The listing shows the line numbers for the source lines, with a > marking the line with
the current goal. Note it is the actual body goal that is shown, rather than the predicate
definition as in the ‘.’ command. An optional numeric argument can be given before the
command, specifying the number of lines surrounding (i.e. before and after) the current
goal that should be listed:
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%> 2write source lines

Source file: /homes/user/EclipseTests/Chatq/newtop

243 check_words([],[]).

244 check_words([Word|Words],[RevWord|RevWords]) :-

245> check_word(Word,RevWord),

245 check_words(Words,RevWords).

246

%>

Source is only shown if the source information is available – that is, the code has to be
compiled debuggable from a file, and not all goals have source information; for example,
goals in meta-calls (e.g. those inside a block/3). Also, source context cannot be shown
at a RESUME port.

h help
Print a summary of the debugger commands.

? help
Identical to the h command.

14.6.5 Navigating among Goals

While the debugger waits for commands, program execution is always stopped at some port of
some predicate invocation box, or goal. Apart from this current goal, two types of other goals
are also active. These are the ancestors of the current goal (the enclosing, not yet exited boxes
in the box model) and the delayed goals. The debugger allows to navigate among these goals
and inspect them.

g ancestor
Move to and display the ancestor goal (or parent) of the displayed goal. Repeated appli-
cation of this command allows to go up the call stack.

x par examine goal
Move to and display the goal with the specified invocation number. This must be one of
the active goals, i.e. either an ancestor of the current goal or one of the currently delayed
goals. The default is to return to the current goal, i.e. to the goal at whose port the
execution is currently stopped.

14.6.6 Inspecting Goals and Data

This family of commands allow the subterms in the goal displayed at the port to be inspected.
The ability to inspect subterms is designed to help overcome two problems when examining a
large goal with the normal display of the goal at a debug port:

1. Some of the subterms may be omitted from the printed goal because of the print-depth;

2. If the user is interested in particular subterms, it may be difficult to precisely locate them
from the surrounding arguments, even if it is printed.
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With inspect subterm commands, the user is able to issue commands to navigate through the
subterms of the current goal and examine them. A current subterm of the goal is maintained,
and this is printed after each inspect subterm command, instead of the entire goal. Initially, the
current subterm is set to the goal, but this can then be moved to the subterms of the goal with
navigation commands.
Once inspect subterm is initiated by an inspect subterm command, the debugger enters into the
inspect subterm mode. This is indicated in the trace line by ’INSPECT’ instead of the name of
the port, and in addition, the goal is not shown on the trace line:

INSPECT (length/2) %>

Instead of showing the goal, a summary of the current subterm – generally its functor and arity
if the subterm is a structure – is shown in brackets.

# par move down to parth argument

The most basic command of inspect subterm is to move the current subterm to an argu-
ment of the existing current subterm. This is done by typing a number followed by carriage
return, or by typing #, which causes the debugger to prompt for a number. In both cases,
the number specifies the argument number to move down to. In the following example,
the # style of the command is used to move to the first argument, and the number style
of the command to move to the third argument:

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> inspect arg #: 1<NL>

a

INSPECT (atom) %>

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> 3<NL>

X

INSPECT (var) %>

The new current subterm is printed, followed by the INSPECT trace line. Notice that
the summary shows the type of the current subterm, instead of Name/Arity, since in both
cases the subterms are not structures.

If the current subterm itself is a compound term, then it is possible to recursively navigate
into the subterm:

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 2<NL>

[2]

INSPECT (list 1-head 2-tail) %>

Notice that lists are treated as a structure with arity 2, although the functor (./2) is not
printed.

In addition to compound terms, it is also possible to navigate into the attributes of at-
tributed variables:
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[eclipse 21]: suspend(foo(X), 3, X->inst), foo(X).<NL>

(1) 1 DELAY foo(X) %> <NL>

creep

(2) 1 CALL foo(X) %> 1<NL>

X

INSPECT (attributes 1-suspend 2-fd ) %>1<NL>

suspend([’SUSP-1-susp’|_218] - _218, [], [])

INSPECT (struct suspend/3) %>

The variable X is an attributed variable in this case, and when it is the current subterm,
this is indicated in the trace line. The debugger also shows the user the currently available
attributes, and the user can then select one to navigate into (fd is available in this case
because the finite domain library was loaded earlier in the session. Otherwise, it would
not be available as a choice here).

Note that the suspend/3 summary contains a struct before it. This is because the
suspend/3 is a predefined structure with field names (see section 5.1). It is possible to
view the field names of such structures using the . command in inspect mode.

If the number specified is larger than the number of the arguments of the current subterm,
then an error is reported and no movement is made:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 4<NL>

Out of range.....

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

nuparrow key Move current subterm up by N levels

nA Move current subterm up by N levels

In addition to moving the current subterm down, it can also be moved up from its current
position. This is done by typing the uparrow key. This key is mapped to A by the debugger,
so one can also type A. Typing A may be necessary for some configurations (combination
of keyboards and operating systems) because the uparrow key is not correctly mapped to
A.

An optional argument can preceded the uparrow keystroke, which indicates the number
of levels to move up. The default is 1:

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 1<NL>

b

INSPECT (atom) %> up subterm

g(b, [1, 2])

135



INSPECT (g/2) %> 1up subterm

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

The debugger prints up subterm when the uparrow key is typed. The current subterm
moves back up the structure to its parent for each level it moves up, and the above move
can be done directly by specifying 2 as the levels to move up:

b

INSPECT (atom) %> 2up subterm

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

If the number of levels specified is more than the number of levels that can be traversed
up, the current subterm stops at the toplevel:

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 5up subterm

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

0 Move current subterm to toplevel

It is possible to quickly move back to the top of a goal that is being inspected by specifying
0 (zero) as the command:

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 2<NL>

[2]

INSPECT (list 1-head 2-tail) %> 2<NL>

[]

INSPECT (atom) %> 0<NL>

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

Moving to the top can also be done by the # command, and not giving any argument (or
0) when prompted for the argument.

nleftarrow key Move current subterm left by N positions
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nD Move current subterm left by N positions

The leftarrow key (or the equivalent D) moves the current subterm to a sibling subterm (i.e.
fellow argument of the parent structure) that is to the left of it. Consider the structure
foo(a, g(b, [1, 2]), 3), then for the second argument, g(b, [1, 2]), a is its (only)
left sibling, and 3 its (only) right sibling. For the third argument, 3, both a (distance of 2)
and g(b, [1, 2]) (distance of 1) are its left siblings. The optional numeric argument for
the command specifies the distance to the left that the current subterm should be moved.
It defaults to 1.

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 3<NL>

3

INSPECT (integer) %> 2left subterm

a

INSPECT (atom) %>

If the leftward movement specified would move the argument position before the first
argument of the parent term, then the movement will stop at the first argument:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 3<NL>

3

INSPECT (integer) %> 5left subterm

a

INSPECT (atom) %>

In the above example, the current subterm was at the third argument, thus trying to move
left by 5 argument positions is not possible, and the current subterm stopped at leftmost
position – the first argument.

nrightarrow key Move current subterm right by N positions

nC Move current subterm right by N positions

The rightarrow key (or the equivalent C) moves the current subterm to a sibling subterm
(i.e. fellow argument of the parent structure) that is to the right of it. Consider the
structure foo(a, g(b, [1, 2]), 3), then for the first argument, a, g(b, [1, 2]) is a
right sibling with distance of 1, and 3 is a right sibling with distance of 2. The optional
numeric argument for the command specifies the distance to the left that the current
subterm should be moved. It defaults to 1.

foo(a, g(b, [1, 2]), 3)

INSPECT (integer) %> 2left subterm

a

INSPECT (atom) %>
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If the rightward movement specified would move the argument position beyond the last
argument of the parent term, then the movement will stop at the last argument:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 3<NL>

3

INSPECT (integer) %> right subterm

3

INSPECT (integer) %>

In the above example, the current subterm was at the third (and last) argument, thus
trying to move to the right (by the default 1 position in this case) is not possible, and the
current subterm remains at the third argument.

ndownarrow key Move current subterm down by N levels

nB Move current subterm down by N levels

The down-arrow key moves the current subterm down from its current position. This
command is only valid if the current subterm is a compound term and so has subterms
itself. A structure has in general more than one argument, so there is a choice of which
argument position to move down to. This argument is not directly specified by the user
as part of the command, but is implicitly specified: the argument position selected is the
argument position of the current subterm within its parent:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 2<NL>

g(b, [1, 2])

INSPECT (list 1-head 2-tail) %> 3down subterm 2 for 3 levels

[]

INSPECT (atom) %>

In the above example, the user moves down into the second argument, and then use
the down-arrow key to move down into the second argument for 2 levels – the numeric
argument typed before the arrow key specified the number of levels that the current
subterm was moved down by. The command moves into the second argument because it
was at the second argument position when the command was issue.

However, there is not always an argument position for the current sub-term. For example,
when the current sub-term is at the toplevel of the goal or if it is at an attribute. In these
cases, the default for the argument position to move down into is the first argument:

INSPECT (atom) %> 0<NL>

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> down subterm 1 for 1 levels

a

INSPECT (atom) %>
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In the above example, the down-arrow key is typed at the top-level, and thus the argument
position chosen for moving down is first argument, with the default numeric argument for
the

If the argument position to move into is beyond the range of the current subterm’s number
of arguments, then no move is performed:

(1) 1 CALL foo(a, b, c(d, e)) %> 3<NL>

c(d, e)

INSPECT (c/2) %> Out of range after traversing down arg...

c(d, e)

INSPECT (c/2) %>

In this case, the down-arrow key was typed in the second trace line, which had the current
subterm at the third argument of its parent term, and thus the command tries to move
the new current subterm to the third argument of the current sub-term, but the structure
does not have a third argument and so no move was made. In the case of moving down
multiple levels, then the movement will stop as soon as the argument position to move
down to goes out of range.

Moving down is particularly useful for traversing lists. As discussed, lists are really struc-
tures with arity two, so the #N command would not move to the N th element of the
list. With the down-arrow command , it is possible to move into the N th position in one
command:

[eclipse 30]: foo([1,2,3,4,5,6,7,8,9]).

(1) 1 CALL foo([1, 2, 3, ...]) %> 1<NL>

[1, 2, 3, 4, ...]

INSPECT (list 1-head 2-tail) %> 2<NL>

[2, 3, 4, 5, ...]

INSPECT (list 1-head 2-tail) %> 6down subterm 2 for 6 levels

[8, 9]

INSPECT (list 1-head 2-tail) %>

In order to move down a list, we repeatedly move into the tail of the list – the second
argument position. In order to do this with the down-arrow command, we need to be at
the second argument position first, and this is done in the second trace line. Once this is
done, then it is possible to move arbitrarily far down the list in one go, as is shown in the
example.

. Print structure definition

In ECLiPSe, it is possible to define field names for structures (see section 5.1). If the
inspector encounters such structures, then the user can get the debugger to print out the
field names. Note that this functionality only applies within the inspect subterm mode,
as the debugger command ‘.’ normally prints the source for the predicate. The fact that
a structure has defined field names are indicated by a “struct” in the summary:

:- local struct(capital(city,country)).
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.....

(1) 1 CALL f(capital(london, C)) %> 1<NL>

capital(london, C)

INSPECT (struct capital/2) %> structure definition:

1=city 2=country

%>

In this example, a structure definition was made for captial/2. When this structure is
the current subterm in the inspect mode, the struct in the summary for the structure
indicates that it has a structure definition. For such structures, the field names are printed
by the structure definition command.

If the command is issued for a term that does not have a structure definition, an error
would be reported:

INSPECT (f/1) %> structure definition:

No struct definition for term f/1@eclipse.

%>

p Show subterm path

As the user navigates into a term, then at each level, a particular argument position (or
attribute, in the case of attributed variables) is selected at each level. The user can view
the position the current subterm is at by the p command. For example,

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 1<NL>

1

INSPECT (integer) %> p

Subterm path: 2, 2, 1

%>

The subterm path shows the argument positions taken at each level of the toplevel term
to reach the current subterm, starting from the top.

Extra information (in addition to the numeric argument position) will be printed if the
subterm at a particular level is either a structure with field names or an attributed variable.
For example:

:- local struct(capital(city,country)).

.....

[eclipse 8]: suspend(capital(london, C), 3, C -> inst), f(capital(london, C)).
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....

(2) 1 CALL f(capital(london, C)) %> 1<NL>

capital(london, C)

INSPECT (struct capital/2) %> 2<NL>

C

INSPECT (attributes 1-suspend ) %> 1<NL>

suspend([’SUSP-1-susp’|_244] - _244, [], [])

INSPECT (struct suspend/3) %> 1<NL>

[’SUSP-1-susp’|_244] - _244

INSPECT (-/2) %>

Subterm path: 1, country of capital (2), attr: suspend, inst of suspend (1)

%>

In this example, except for the toplevel argument, all the other positions are either have
field names or are attributes. This is reflected in the path, for example, country of

capital (2) shows that the field name for the selected argument position (2, shown
in brackets) is country, and the structure name is capital. For the ‘position’ of the
selected attribute (suspend) of the attributed variable C, the path position is shown as
attr: suspend.

Interaction between inspect subterm and output modes

The debugger commands that affect the print formats in the debugger also affects the
printed current subterm. Thus, both the print depth and output mode of the printed
subterm can be changed.

The changing of the output modes can have a significant impact on the inspect mode.
This is because for terms which are transformed by write macros before they are printed
(see chapter 12), different terms can be printed depending on the settings of the output
modes. In particular, output transformation is used to hide many of the implementation
related extra fields and even term names of many ECLiPSe data structures (such as those
used in the finite domain library). For the purposes of inspect subterms, the term that is
inspected is always the printed form of the term, and thus changing the output mode can
change the term that is being inspected.

Consider the example of looking at the attribute of a finite domain variable:

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2<NL>

[4..10000000]

INSPECT (list 1-head 2-tail) %> 1<NL>

4..10000000

INSPECT (../2) %> 2up subterm

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> <o>

current output mode is "QPm", toggle char: T

new output mode is "TQPm".
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A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2<NL>

fd(dom([4..10000000], 9999997), [], [], [])

INSPECT (struct fd/4) %> 1<NL>

dom([4..10000000], 9999997)

INSPECT (dom/2) %>

After selecting the output mode T, which turns off any output macros, the internal form of
the attribute is shown. This allows previously hidden fields of the attribute to be examined
by the subterm navigation. Note that if the current subterm is inside a structure which
will be changed by a changed output mode (such as inside the fd attribute), and the output
mode is changed, then until the current subterm is moved out of the structure, the existing
subterm path is still applicable.

Also, after a change in output modes, the current subterm will still be examining the
structure that it obtained from the parent subterm. Consider the finite domain variable
example again:

4..10000000

INSPECT (../2) %> up subterm

[4..10000000] ***** printed structure 1

INSPECT (list 1-head 2-tail) %> <o>

current output mode is "QPm", toggle char: T

new output mode is "TQPm".

[4..10000000]

INSPECT (list 1-head 2-tail) %> up subterm

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2

fd(dom([4..10000000], 9999997), [], [], [])

INSPECT (struct fd/4) %> <o>

current output mode is "QPmT", toggle char: T

new output mode is "QPm".

fd(4..10000000, [], [], []) ***** printed structure 2

INSPECT (struct fd/4) %>

Printed structures 1 and 2 in the above example are at the same position (toplevel of the
finite domain structure), and printed with the same output mode (QPm), but are different
because the structure obtained from the parent subterm is different – in printed structure
2, the output mode was not changed until after the fd/4 structure was the current subterm.

14.6.7 Changing the Settings

The following commands allow to change the parameters which influence the way the tracing
information is displayed or processed.

< par set print depth
Allows to modify the print depth, i.e. the depth up to which nested argument terms are

printed. Everything nested deeper than the specified depth is abbreviated as .... Note
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that the debugger has a private print depth setting with default 5, which is different from
the global setting obtained from get flag/2.

> par set indentation step width
Allows to specify the number of spaces used to indent trace lines according to their depth
level. The default is 0.

m module
Toggles the module printing in the trace line. If enabled, the module from where the

procedure is called is printed in the trace line:

(1) 1 CALL true %> show module

(1) 1 CALL eclipse : true %>

o output mode
This command allows to modify the options used when printing trace lines. It first

prints the current output_mode string, as obtained by get flag/2, then it prompts for
a sequence of characters. If it contains valid output mode flags, the value of these flags
is then inverted. Typing an invalid character will display a list describing the different
options. Note that this command affects the global setting of output_mode.

(1) 1 CALL X is length([1, 2, ...]) %> current output mode

is "QPm", toggle char: V

new output mode is "VQPm".

(1) 1 CALL X_72 is length([1, 2, ...]) %> current output mode

is "QVPm", toggle char: O

new output mode is "OQVPm".

(1) 1 CALL is(X_72, length([1, 2, ...])) %> current output mode

is "OQVPm", toggle char: .

new output mode is ".OQVPm".

(1) 1 CALL is(X_72, length(.(1, .(2, .(...))))) %>

+ set a spy point
Set a spy point on the displayed procedure, the same as using the spy/1 predicate. It is
possible to set a spy point on any existing procedure, even on a built-in on external one.
If the procedure already has a spy point, an error message is printed and any counter is
ignored.

Note that the debugger does not check for spy points that occur inside skipped procedures
or during the execution of any other skip command than the leap command l.

− remove a spy point
Similarly to the previous command, this one removes a spy point from a procedure, if it

has one.

14.6.8 Environment Commands

b break
This command is identical to the break/0 call. A new top-level loop is started with the
debugger switched off. The state of the database and the global settings is the same as
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in the previous top-level loop. After exiting the break level with ^D, or end_of_file the
execution returns to the debugger and the last trace line is redisplayed.

N nodebug permanently
This command switches tracing off for the remainder of the execution as well as for

subsequent top-level queries. It affects the global flag debugging, setting it to nodebug.

14.7 Extending the Debugger

14.7.1 User-defined Ports

The standard set of ports in the debugger’s box model can be extended by the programmer.
This facility is not so much intended for applications, but rather for libraries that want to
allow debugging in terms of concepts of the library. Specific ports can be used to identify the
interesting events during execution of the library code (while the standard tracing of the library
internals can be suppressed by compiling the library in nodebug-mode).
The system provides 4 primitives that can generate 4 kinds of box model ports. When inserted
into the code, and when the debugger is on, they will cause execution to stop and enter the
debugger, displaying a trace line with the user-defined port and data:

• trace call port(+Port, ?Invoc, ?Term) is used to create new ports similar to CALL
ports, but the port name can be chosen freely. Such a port creates a new box. There must
be a corresponding trace exit port/0 to exit the box on success.

• trace exit port is used in conjunction with trace call port/3 to exit a box on success.

• trace point port(+Port, ?Invoc, ?Term) is used to create a standalone port, i.e. a
port that causes the tracer to create a trace line, but does not create, enter or leave any
box.

• trace parent port(+Port) is used to create an additional port for the parent box, but
does not enter or leave the box.

For example, trace call port/3 and trace exit port/0 can be used to create a more readable trace
in the presence of source transformations. Imagine that the goal Y is X*X-1 has been flattened
into the goal sequence *(X,X,T),-(T,1,Y). By inserting the trace primitives the debugger can
still show the original source before transformation:

p(X,Y) :-

trace_call_port(call,_, Y is X*X-1),

*(X,X,T),

-(T,1,Y),

trace_exit_port.

The trace then looks like this:

[eclipse 8]: p(3,Y).

(1) 1 CALL p(3, Y) %> creep

(2) 2 CALL Y is 3 * 3 - 1 %> skip

(2) 2 EXIT 8 is 3 * 3 - 1 %> creep

(1) 1 EXIT p(3, 8) %> creep

Y = 8
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Another example is the insertion of additional ports for existing boxes, in particular the current
parent box:

p :-

trace_parent_port(clause1),

writeln(hello),

fail.

p :-

trace_parent_port(clause2),

writeln(world).

This gives rise to the following trace:

?- p.

(1) 1 CALL p %> creep

(1) 1 CLAUSE1 p %> creep

S (2) 2 CALL writeln(hello) %> creep

hello

S (2) 2 EXIT writeln(hello) %> creep

(3) 2 CALL fail %> creep

(3) 2 FAIL fail %> creep

(1) 1 NEXT p %> creep

(1) 1 CLAUSE2 p %> creep

S (4) 2 CALL writeln(world) %> creep

world

S (4) 2 EXIT writeln(world) %> creep

(1) 1 EXIT p %> creep

Yes (0.00s cpu)

Note that the additional ports share the parent’s invocation number, so the i command can be
used to skip from one to the other.

14.7.2 Attaching a Different User Interface

The tracer consists of a trace generation component (which is part of the ECLiPSe runtime
kernel), and a user interface (which is part of the development system). The standard ECLiPSe

distribution contains two user interfaces, a console-based one, and a graphical one which is part
of tkeclipse. A programmable tracer interface (OPIUM/LSD) is under development in the
group of Mireille Ducasse at IRISA/Rennes. Connecting new interfaces is relatively easy, for
more detailed information contact the ECLiPSe development team.

14.8 Switching To Creep Mode With CTRL-C

When the debugger is on and a program is running, typing CTRL-C prompts for input of
an option. The d-option switches the debugger to creep mode and continues executing the
interrupted program. The debugger will then stop at the next port of the running program.

[eclipse 1]: debug.

Debugger switched on - leap mode
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[eclipse 2]: repeat,fail.

^C

interruption: type a, b, c, d, e, or h for help : ? d

(1) 1 *EXIT repeat %>
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Chapter 15

Development Support Tools

This chapter describes some of the tools and libraries provided by ECLiPSe that assist in program
development and the analysis of program runtime behaviour.

15.1 Available Tools and Libraries

ECLiPSe provides a number of different tools and libraries to assist the programmer with pro-
gram development:

Document Tools for generating documentation from ECLiPSe sources.

Lint Generates warning messages for dubious programming constructs and violation of naming
conventions for an ECLiPSe source module or file.

Pretty printer Tools for pretty-printing a file in different formats.

Xref Enables the analysis of an ECLiPSe source module or file for the construction of a predicate
call graph.

In addition, ECLiPSe provides several tools that aid in the understanding of a programs runtime
behaviour:

Coverage Records the frequency at which various parts of the program are executed.

Debugger Provides a low level view of program activity. Chapter 14 presents a comprehensive
look at debugging of ECLiPSe programs.

Display matrix Shows the values of given terms in a graphical window. Chapter 4 discusses
the use of this tool.

Mode Analyser Collects statistics about the invocation modes of predicates within a running
program in order to assist in the generation of compiler invocation mode directives.

Port Profiler Collects statistics about the running program in terms of box model port coun-
ters.

Timing Profiler Samples the running program at regular intervals to give a statistical sum-
mary of where the execution time is spent.
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Visualisation framework A graphical environment for the visualisation of search and prop-
agation in constraint programs. The Visualisation Tools Manual discusses the use of this
environment.

This section focuses on the program development libraries and two complementary runtime
analysis tools, the profiler and the coverage library. Throughout this chapter, the use of each of
the tools is demonstrated on the following n-queens code:

:- module(queen).

:- export queen/2.

queen(Data, Out) :-

qperm(Data, Out),

safe(Out).

qperm([], []).

qperm([X|Y], [U|V]) :-

qdelete(U, X, Y, Z),

qperm(Z, V).

qdelete(A, A, L, L).

qdelete(X, A, [H|T], [A|R]) :-

qdelete(X, H, T, R).

safe([]).

safe([N|L]) :-

nodiag(L, N, 1),

safe(L).

nodiag([], _, _).

nodiag([N|L], B, D) :-

D =\= N - B,

D =\= B - N,

D1 is D + 1,

nodiag(L, B, D1).

15.2 Heuristic Program Checker

The Heuristic Program Checking tool generates warning messages for dubious programming
constructs and violation of naming conventions for an ECLiPSe source module or file. It is
loaded as follows:

:- lib(lint).

The heuristic rules currently enforced are based on the style guide of Appendix E. These
rules are somewhat limited in scope. The library is distributed as source and serves to provide
a framework for the addition of a more comprehensive set of rules that are tailored to each
individual developer.
Consider the following typographic mistakes in the n-queens example:
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queen(Data, Out) :-

qperm(Datas, Out),

safe(Out).

n0diag([], _, _).

The tool is invoked using the lint/1 predicate with the source file specified as an atom or string:

?- lint(queen).

--- File /tmp/queen.ecl, line 4:

Singleton variables: [Data, Datas]

--- File /tmp/queen.ecl, line 22:

Questionable predicate name: n0diag

Yes (0.01s cpu)

The checker identifies Data and Datas as being singleton variables and is dubious of the n0diag

predicate name. Both are the result of programmer error, Datas should read Data and n0diag

as nodiag. The lint/2 predicate allows a list of options to be specified that turn on and off the
heuristic rules.

15.3 Document Generation Tools

The document generation tools library provides a set of predicates for the generation of doc-
umentation from ECLiPSe program sources. The tools generate documentation by processing
the comment/2 directives in each source file. The following is an example comment for the
n-queens example:

% comment for queen/2

:- comment(queen/2, [

summary: "Program that solves the attacking Queens problem for

an arbitrary number of queens.",

index: ["NQueens Problem"],

args: ["Data": "List modelling initial state of queens on board.",

"Args": "Solution list of Y-coordinate of each queen on the

board."],

amode: queen(+,-),

amode: queen(-,+),

amode: queen(+,+),

resat: yes,
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fail_if: "A solution cannot be found where all queens are safe

from attack by every other.",

see_also:

[queens8/1, queensN/1],

desc: html("The problem is to arrange a specified number of queens

on a chessboard such that no queen attacks any other queen

The predicate takes a list representing the initial state

of the queens on the board, with each element representing

a queen and its current Y-coordinate. If a solution is

found, a list is returned specifying the safe Y-coordinate

for each queen.")

]). % end of comment directive for queen/2

There are two pertinent predicates for document generation. The first, icompile/2 gener-
ates an information file (.eci) by extracting information from a source file (.ecl). The second,
eci to html/3, processes this information file to produce readable HTML and plain text files.
By default, these files are placed in a subdirectory with the same name as the information file,
but without the extension. The generated files are index.html, containing a summary descrip-
tion of the library, plus one HTML and one plain text file for each predicate that was commented
using a comment/2 directive in the source.
The following produces the queen.eci file and a queen directory in the current directory. Within
the queen directory reside index.html, queen-2.html and queen-2.txt:

?- lib(document).

document.ecl compiled traceable 83620 bytes in 0.04 seconds

Yes (0.04s cpu)

?- icompile(queen, ".").

queen.ecl compiled traceable 1432 bytes in 0.01 seconds

/examples/queen.eci generated in 0.00 seconds.

Yes (0.01s cpu)

?- eci_to_html(queen, ".", "").

Yes (0.00s cpu)

15.4 Cross Referencing Tool

The cross referencing library xref analyses an ECLiPSe source module or file and builds its
predicate call graph. The graph can either be returned in the format of lib(graph_algorithms),
as text, or as a graphical display.
The xref/2 predicate generates a call graph for the file File according to the Options list. The
options specify the format of the graph to be generated, whether calls to built in predicates are
displayed and whether it is a caller or callee graph:

?- xref:xref(queen, []).
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nodiag / 3 calls:

nodiag / 3

qdelete / 4 calls:

qdelete / 4

qperm / 2 calls:

qdelete / 4

qperm / 2

queen / 2 calls:

qperm / 2

safe / 1

safe / 1 calls:

nodiag / 3

safe / 1

Yes (0.01s cpu)

?- xref:xref(queen,[builtins:on,output:daVinci]).

WARNING: module ’daVinci’ does not exist, loading library...

daVinci.ecl compiled traceable 5644 bytes in 0.01 seconds

The first xref predicate call generates a textual call graph for the queen module, while the
second generates the daVinci graph illustrated in figure 15.1.

15.5 Pretty Printer Tool

The pretty printer library provides a set of predicates for the printing of a file’s contents as
a file in a number of formats. In particular, an ECLiPSe source file can be converted into an
HTML document with proper indentation, syntax colouring, hyperlinks from predicate uses to
definition, and hyperlinks to documentation.
The pretty print/2 predicate is used to print the file, or list of files. A list of options can be
given which modifies the format of the output file, its location, etc. The following creates a
pretty directory in the current directory. Within the pretty directory reside index.html and
queen.html, where queen.html is the queen module pretty printed in HTML:

?- pretty_printer:pretty_print(queen).

Writing /examples/pretty/queen.html

15.6 Timing Profiler

The profiling tool1 helps to find hot spots in a program that are worth optimising. It can be
used any time with any compiled Prolog code, it is not necessary to use a special compilation

1The profiler requires a small amount of hardware/compiler dependent code and may therefore not be available
on all platforms.
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Figure 15.1: Call graph for queen example with built-in predicates

mode or set any flags. Note however that it is not available on Windows. When

?- profile(Goal).

is called, the profiler executes the Goal in the profiling mode, which means that every 100th of
a second the execution is interrupted and the profiler records the currently executing procedure.
Issuing the following query will result in the profiler recording the currently executing goal 100
times a second.

?- profile(queen([1,2,3,4,5,6,7,8,9],Out)).

goal succeeded

PROFILING STATISTICS

--------------------

Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)

Total user time: 0.03s

Predicate Module %Time Time %Cum

--------------------------------------------------------

qdelete /4 eclipse 50.0% 0.01s 50.0%

nodiag /3 eclipse 50.0% 0.01s 100.0%

Out = [1, 3, 6, 8, 2, 4, 9, 7, 5]
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Yes (0.14s cpu)

From the above result we can see how the profiler output contains four important areas of
information:

1. The first line of output indicates whether the specified goal succeeded, failed or aborted.
The profile/1 predicate itself always succeeds.

2. The line beginning Goal: shows the goal which was profiled.

3. The next line shows the time spent executing the goal.

4. Finally the predicates which were being executed when the profiler sampled, ranked in
decreasing sample count order are shown.

Auxiliary system predicates are printed under a common name without arity, e.g. arithmetic or
all solutions. Predicates which are local to locked modules are printed together on a single line
that contains only the module name. By default only predicates written in Prolog are profiled,
i.e. if a Prolog predicate calls an external or built-in predicate written in C, the time will be
assigned to the Prolog predicate.

The predicate profile(Goal, Flags) can be used to change the way profiling is made, Flags is a
list of flags. Currently only the flag simple is accepted and it causes separate profiling of simple
predicates, i.e. those written in C.

The problem with the results displayed above is that the sampling frequency is too low when
compared to the total user time spent executing the goal. In fact in the above example the
profiler was only able to take two samples before the goal terminated.

The frequency at which the profiler samples is fixed, so in order to obtain more representative
results one should have an auxiliary predicate which calls the goal a number of times, and
compile and profile a call to this auxiliary predicate. eg.

queen_100 :-

(for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9],_Out)).

Note that, when compiled, the above do/2 loop would be efficiently implemented and not cause
overhead that would distort the measurement. Section 5.2 presents a detailed description of
logical loops.

?- profile(queen_100).

goal succeeded

PROFILING STATISTICS

--------------------

Goal: queen_100

Total user time: 3.19s

Predicate Module %Time Time %Cum

--------------------------------------------------------

nodiag /3 eclipse 52.2% 1.67s 52.2%
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qdelete /4 eclipse 27.4% 0.87s 79.6%

qperm /2 eclipse 17.0% 0.54s 96.5%

safe /1 eclipse 2.8% 0.09s 99.4%

queen /2 eclipse 0.6% 0.02s 100.0%

Yes (3.33s cpu)

In the above example, the profiler takes over three hundred samples resulting in a more accurate
view of where the time is being spent in the program. In this instance we can see that more than
half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for optimisation.
This is left as an exercise for the reader.

15.7 Port Profiler

The port profiler is a performance analysis tool based on the idea of counting of events during
program execution. The events that are counted are defined in terms of the ’box model’ of exe-
cution (the same model that the debugger uses, see chapter 14.1). In this box model, predicates
are entered though call, redo or resume ports, and exited through exit, *exit, fail or leave ports.
In addition, other interesting events are indicated by ports as well (next, else, delay).

The usage is as follows:

1. Compile your program in debug mode, as you would normally do during program devel-
opment.

2. Load the port profiler library

3. Run the query which you want to examine, using port profile/2:

?- port_profile(queen([1,2,3,4],Out), []).

This will print the results in a table like the following:

PREDICATE CALLER call exit fail *exit redo

- /3 nodiag /3 46 46 . . .

=\= /2 nodiag /3 46 45 1 . .

qperm /2 qperm /2 30 28 . 16 14

qdelete /4 qperm /2 20 18 . 12 10

nodiag /3 nodiag /3 17 14 3 . .

nodiag /3 safe /1 17 7 10 . .

+ /3 nodiag /3 17 17 . . .

qdelete /4 qdelete /4 10 9 . 3 2

qperm /2 queen /2 1 . . 11 10

safe /1 queen /2 11 1 10 . .

safe /1 safe /1 7 4 3 . .

queen /2 trace_body /2 1 . . 1 .

Each row of the table shows the information for a particular predicate (by default split according
to different caller predicates). The table is sorted according to entry port count (call + redo +
resume). The port counts give information about
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• what are the most frequently called predicates (call ports)

• whether predicates failed unexpectedly (fail ports)

• whether predicates exited nondeterministically (*exit ports), i.e. whether they left behind
any choice-points for backtracking.

• whether nondeterministically exited predicates were ever re-entered to find alternative
solutions (redo ports).

• whether predicates did internal backtracking (next ports) in order to find the right clause.
This may indicate suboptimal indexing.

• how often predicates were delayed and resumed.

For more details about different options and output formats, see the Reference Manual.

15.8 Line coverage

The line coverage library provides a means to ascertain exactly how many times individual
clauses are called during the evaluation of a query.

The library works by placing coverage counters at strategic points throughout the code being
analysed. These counters are incremented each time the evaluation of a query passes them.
There are three locations in which coverage counters can be inserted.

1. At the beginning of a code block.

2. Between predicate calls within a code block.

3. At the end of a code block.

A code block is defined to be a conjunction of predicate calls. ie. a sequence of goals separated
by commas.

The counter values do not only show whether all code points were reached but also whether
subgoals failed or aborted (in which case the counter before a subgoal will have a higher value
than the counter after it).

15.8.1 Compilation

In order to add the coverage counters to code, it must be compiled with the ccompile/1
predicate which can be found in the coverage library.

The ccompile/1 predicate (note the initial ‘c’ stands for coverage) can be used in place of the
normal compile/1 predicate to compile a file with coverage counters.

The following shows the results of compiling the n-queens example:

?- coverage:ccompile(queen).

queen.ecl compiled traceable 6016 bytes in 0.01 seconds

coverage: inserted 20 coverage counters into module queen

Yes (0.14s cpu)
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Once compiled, predicates can be called as usual and will (by default) have no visible side effects.
Internally however, the counters will be incremented as the execution progresses. The following
demonstrates this for a single solution to the queen predicate:

?- queen:queen([1,2,3,4,5,6,7,8,9], Out).

The counter results are retrieved as demonstrated in the subsequent section. The two argument
predicate ccompile/2 can take a list of name:value pairs which can be used to control the
exact manner in which coverage counters are inserted. The documentation for the ccompile/2
predicate provides for a full list of the available flags.

15.8.2 Results

To generate an HTML file containing the coverage counter results, the result/1 predicate is
used:

?- coverage:result(queen).

Writing /examples/coverage/queen.html

index.pl compiled traceable 335304 bytes in 0.17 seconds

Yes (0.18s cpu)

This creates the result file coverage/queens.html which can be viewed using any browser. It
contains a pretty-printed form of the source, annotated with the values of the code coverage
counters as described above. As a side effect, the coverage counters will be reset.

15.9 Mode analysis

The mode analyser library is a tool that assists in the generation of the mode/1 directive for
predicate definitions. This directive informs the compiler that the arguments of the specified
predicate will always have the corresponding form when the predicate is called. The compiler
utilises this information during compilation of the predicate in order to generate more compact
and/or faster code. Specifying the mode of a predicate that has already been compiled has
no effect, unless it is recompiled. If the specified procedure does not exist, a local undefined
procedure is created.

The mode analyser inserts instrumentation into the clause definitions of predicates during com-
pilation in order to record mode usage of each predicate argument. The code should then be
run (as many times as is necessary to capture the most common invocations of each predicate
undergoing analysis). Finally, the results of the analysis are requested and the suggested mode
annotations for each predicate are displayed.

The usage is as follows:

1. Load the mode analyser library:

?- lib(mode_analyser).

2. Compile your program with the mode analyser:

?- analyse(queen).
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3. Run the query which most accurately exercises the invocation modes of the defined pred-
icates:

?- queen:queen([1,2,3,4],Out).

4. Generate the results for the module into which the program was compiled:

?- result([verbose:on])@queen.

This will print the results as follows:

Mode analysis for queen : qdelete / 4:

Results for argument 1:

-: 23 *: 0 +: 0 ++: 0

Results for argument 2:

-: 0 *: 0 +: 0 ++: 23

Results for argument 3:

-: 0 *: 0 +: 0 ++: 23

Results for argument 4:

-: 0 *: 0 +: 23 ++: 0

qdelete(-, ++, ++, +)

Mode analysis for queen : nodiag / 3:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 62

Results for argument 2:

-: 0 *: 0 +: 0 ++: 62

Results for argument 3:

-: 0 *: 0 +: 0 ++: 62

nodiag(++, ++, ++)

Mode analysis for queen : qperm / 2:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 41

Results for argument 2:

-: 0 *: 0 +: 41 ++: 0

qperm(++, +)

Mode analysis for queen : queen / 2:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 1

Results for argument 2:

-: 1 *: 0 +: 0 ++: 0

queen(++, -)
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Mode analysis for queen : safe / 1:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 38

safe(++)

NOTE: It is imperative to understand that the results of mode analysis are merely suggestions
for the invocation modes of a predicate based on runtime information. If there are potential
predicate invocation modes that were not exercised during runtime, the tool is unable to account
for them in its analysis. For the mode specifier ’-’ the mode analyser does not determine whether
the variable occurs in any other argument (i.e. is aliased), this must be manually verified. In
summary, the programmer must verify that the suggested modes are correct before using the
directive in the code. If the instantiation of the predicate call violates its mode declaration, no
exception is raised and its behaviour is undefined.
For more details about invocation mode analysis see the Reference Manual.
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Chapter 16

Attributed Variables

16.1 Introduction

The attributed variable is a special ECLiPSedata type which represents a variable together
with attached attributes. In the literature, attributed variables are sometimes referred to as
“metaterms”. The name metaterm originates from its application in meta-programming: for an
object-level program, a metaterm looks like a variable, but for a meta-program the same variable
is just a piece of data which, possibly together with additional meta-level information, forms the
metaterm.

The attributed variable is a powerful means to implement various extensions of the plain Prolog
language. In particular, it allows the system’s behaviour on unification to be customised. In
most situations, an attributed variable behaves like a normal variable. E.g. it can be unified
with other terms and var/1 succeeds on it. The differences compared to a plain variable are:

• an attributed variable has a number of associated attributes

• the attributes are included in the module system

• when an attributed variable occurs in the unification and in some built-in predicates, each
attribute is processed by a user-defined handler

16.2 Declaration

An attributed variable can have any number of attributes. The attributes are accessed by their
name. Before an attribute can be created and used, it must be declared with the predicate
meta attribute/2. The declaration has the format

meta attribute(Name, HandlerList)

Name is an atom denoting the attribute name and usually it is the name of the module where
this attribute is being created and used. HandlerList is a (possibly empty) list of handler
specifications for this attribute (see Section 16.7).
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16.3 Syntax

The most general attributed variable syntax is

V ar{Name 1 : Attr 1, Name 2 : Attr 2, . . . , Name n : Attr n}

where the syntax of Var is like that of a variable, Name i are attribute names and Attr i
are the values of the corresponding attributes. The expression Var{Attr} is a shorthand
for Var{Module:Attr} where Module is the current module name. The former is called
unqualified and the latter qualified attribute specification. As the attribute name is usually
identical with the source module name, all occurrences of an attributed variable in the source
module may use the unqualified specification.
If there are several occurrences of the same attributed variable in a single term, only one occur-
rence is written with the attribute, the others just refer to the variable’s name, e.g.

p(X, X{attr:Attr})

or

p(X{attr:Attr}, X)

both describe the same term, which has two occurrences of a single attributed variable with
attribute attr:Attr. The following is a syntax error (even when the attributes are identical):

p(X{attr:Attr}, X{attr:Attr})

16.4 Creating Attributed Variables

A new attribute can be added to a variable using the tool predicate

add attribute(Var, Attr).

An attribute whose name is not the current module name can be added using add attribute/3
which is its tool body predicate (exported in sepia_kernel). If Var is a free variable, it will be
bound to a new attributed variable whose attribute corresponding to the current module is Attr
and all its other attributes are free variables. If Var is already an attributed variable and its
attribute is uninstantiated, it will be bound to Attr, otherwise the effect of this predicate will
be the same as unifying Var with another attributed variable whose attribute corresponding to
the current module is Attr.

16.5 Decomposing Attributed Variables

The attributes of an attributed variable can be accessed using one-way unification in a matching
clause, e.g.

get_attribute(X{Name:Attribute}, A) :-

-?->

A = Attribute.

This clause succeeds only when the first argument is an attributed variable, and it binds X

to the whole attributed variable and A to the attribute with name Name. Note that a normal
(unification) clause can not be used to decompose an attributed variable (it would create a new
attributed variable and unify this with the caller argument, but the unification is handled by an
attributed variable handler, see Section 16.7).
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16.6 Attribute Modification

Often an extension needs to modify the data stored in the attribute to reflect changes in the
computation. The usual Prolog way to do this is by reserving one argument in the attribute
structure for this next value. before accessing the most recent attribute value this chain of
values has to be dereferenced until a value is found whose link is still free. A perfect compiler
should be able to detect that the older attribute values are no longer accessed and it would
compile these modifications using destructive assignment. Current compilers are unfortunately
not able to perform this optimization (some systems can reduce these chains during garbage
collection, but until this occurs, the list has to be dereferenced for each access and update). To
avoid performance loss for both attribute updating and access, ECLiPSe provides a predicate for
explicit attribute update: setarg(I, Term, NewArg) will update the I’th argument of Term
to be NewArg. Its previous value will be restored on backtracking.

Libraries which define user-programmable extensions like e.g. fd.pl usually define predicates
that modify the attribute or a part of it, so that an explicit use of the setarg/3 predicate is not
necessary.

16.7 Attributed Variable Handlers

An attributed variable is a variable with some additional information which is ignored by ordi-
nary object level system predicates. Meta level operations on attributed variables are handled by
extensions which know the contents of their attributes and can specify the outcome of each oper-
ation. This mechanism is implemented using attributed variable handlers, which are user-defined
predicates invoked whenever an attributed variable occurs in one of the predefined operations.
The handlers are specified in the attribute declaration meta attribute(Name, HandlerList),
the second argument is a list of handlers in the form

[unify:UnifyHandler, test_unify:TUHandler, ...]

Handlers for operations which are not specified or those that are true/0 are ignored and never
invoked. If Name is an existing extension, the specified handlers replace the current ones.

Whenever one of the specified operations detects an attributed variable, it will invoke all handlers
that were declared for it and each of them receives either the whole attributed variable or its
particular attribute as argument. The system does not check if the attribute that corresponds
to a given handler is instantiated or not; this means that the handler must check itself if the
attributed variable contains any attribute information or not. For instance, if an attributed
variable X{a: , b: , c:f(a)} is unified with the attributed variable Y{a: , b: , c:f(b)}, the handlers
for the attributes a and b should treat this as binding of two plain variables because their
attributes were not involved. Only the handler for c has any work to do here. The library
suspend.pl can be used as a template for writing attributed variable handlers.

The following operations invoke attributed variable handlers:

• unify: the usual unification. The handler procedure is

unify handler(+Term, ?Attribute [,SuspAttr])

The first argument is the term that was unified with the attributed variable, it is either a
nonvariable or an attributed variable. The second argument is directly the contents of the
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attribute slot corresponding to the extension, i.e. it is not the whole attributed variable.
When this handler is invoked, the attributed variable is already bound to Term. The
optional third argument is the suspend-attribute of the former variable; it may be needed
to wake the variable’s ’constrained’ suspension list.

If an attributed variable is unified with a standard variable, the variable is bound to the
attributed variable and no handlers are invoked. If an attributed variable is unified with
another attributed variable or a non-variable, the attributed variable is bound (like a
standard variable) to the other term and all handlers for the unify operation are invoked.
Note that several attributed variable bindings can occur e.g. during a head unification
and also during a single unification of compound terms. The handlers are only invoked at
certain trigger points (usually before the next predicate call).

• test unify: the unification which is not supposed to trigger constraints propagation, it is
used e.g. in the not unify/2 predicate. The handler procedure is

test unify handler(+Term, ?Attribute)

where the arguments are the same as for the unify handler. During the execution of the
handler the attributed variable is bound to Term, however when all local handlers succeed,
all bindings are undone.

• compare instances: computation of instance, subsumption and variance relationship, as
performed by the built-ins instance/2 and variant/2. The handler procedure is

instance handler(-Res, ?TermL, ?TermR)

and its arguments are similar to the ones of the compare instances/3 predicate. The
handler is invoked with one or both of TermL and TermR being attributed variables.
The task of the handler is to compare the two terms and instantiate Res to either = (if
the terms are variants) or < (if TermL is a proper instance of TermR). If the terms are
incomparable, the handler should fail. If TermR is proper instance of TermL, the handler
should either return > or fail. All bindings made in the handler will be undone after
processing the local handlers.

• copy term: the handler is invoked when terms are copied by the copy term/2 or
copy term vars/3 built-ins. The handler procedure is

copy handler(?AttrVar, ?Copy)

AttrVar is the attributed variable encountered in the copied term, Copy is its corresponding
variable in the copy. All extension handlers receive the same arguments. This means that
if the attributed variable should be copied as an attributed variable, the handler must
check if Copy is still a free variable or if it was already bound to an attributed variable by
a previous handler.

• suspensions: this handler is invoked by the suspensions/2 predicate to collect all the
suspension lists inside the attribute. The handler call pattern is

suspensions handler(?AttrVar, -ListOfSuspLists, -Tail)
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AttrVar is an attributed variable. The handler should bind ListOfSuspLists to a list con-
taining all the attribute’s suspension lists and ending with Tail.

• delayed goals number: handler is invoked by the delayed goals number/2 predicate.
The handler call pattern is

delayed goals number handler(?AttrVar, -Number)

AttrVar is the attributed variable encountered in the term, Number is the number of
delayed goals occurring in this attribute. Its main purpose is for the first-fail selection
predicates, i.e. it should return the number of constraints imposed on the variable.

• get bounds: This handler is used by the predicate get var bounds/3 to retrieve in-
formation about the lower and upper bound of a numeric variable. The handler should
therefore only be defined if the attribute contains that kind of information. The handler
call pattern is

get bounds handler(?AttrVar, -Lwb, -Upb)

The handler is only invoked if the variable has the corresponding (non-empty) attribute.
The handler should bind Lwb and Upb to numbers (any numeric type) reflecting the at-
tribute’s information about lower and upper bound of the variable, respectively. If different
attributes return different bounds information, get var bounds/3 will return the inter-
section of these bounds. This can be empty (Lwb > Upb).

• set bounds: This handler is used by the predicate set var bounds/3 to distribute infor-
mation about the lower and upper bound of a numeric variable to all its existing attributes.
The handler should therefore only be defined if the attribute can incorporate this kind of
information. The handler call pattern is

set bounds handler(?AttrVar, +Lwb, +Upb)

The handler is only invoked if the variable has the corresponding (non-empty) attribute.
Lwb and Upb are the numbers that were passed to set var bounds/3, and the handler is
expected to update its own bounds representation accordingly.

• print: attribute printing in write/1,2, writeln/1,2, printf/2,3 when the m option is
specified. The handler procedure is

print handler(?AttrVar, -PrintAttr)

AttrVar is the attributed variable being printed, PrintAttr is the term which will be printed
as a value for this attribute, prefixed by the attribute name. If no handler is specified for
an attribute, or the print handler fails, the attribute will not be printed.

The following handlers are still supported for compatibility, but their use is not recommened:

• pre unify: this is another handler which can be invoked on normal unification, but it is
called before the unification itself occurs. The handler procedure is

pre unify handler(?AttrVar, +Term)
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The first argument is the attributed variable to be unfied, the second argument is the term
it is going to be unified with. This handler is provided only for compatibility with SICStus
Prolog and its use is not recommended, because it is less efficient than the unify handler
and because its semantics is somewhat unclear, there may be cases where changes inside
this handler may have unexpected effects.

• delayed goals: this handler is superseded by the suspensions-handler, which should be
preferred. If there is no suspensions- handler, this handler is invoked by the obsolete
delayed goals/2 predicate. The handler procedure is

delayed goals handler(?AttrVar, ?GoalList, -GoalCont)

AttrVar is the attributed variable encountered in the term, GoalList is an open-ended list
of all delayed goals in this attribute and GoalCont is the tail of this list.

16.7.1 Printing Attributed Variables

The different output predicates treat attributed variables differently. The write/1 predicate
prints the attributes using the print-handlers, while writeq/1 prints the whole attribute, so
that the attributed variable can be read back. The printf/2 predicate has two options to be
combined with the w format: M forces the whole attributed variable to be printed together
with all its attributes in the standard format, so that it can be read back in. With the m option
the attributed variable is printed using the handlers defined for the print operation. If there is
only one handled attribute, the attributed variable is printed as

X{Attr}

where Attr is the value obtained from the handler. If there are several handled attributes, all
attributes are qualified like in

X{a:A, b:B, c:C}.

A simple print handler can just return the attribute literally, like

print_attr(_{Attr}, PrintAttr) ?- PrintAttr=Attr.

An attributed variable X{m:a} with print handler print attr/2 for the m-attribute, can thus
be printed in different ways, e.g.: 1

printf("%w", [X{m:a}]) or write(X{m:a}): X

printf("%vMw", [X{m:a}]) or writeq(X{m:a}): _g246{suspend : _g242, m : a}

printf("%mw", [X{m:a}]): X{a}

printf("%Mw", [X{m:a}]): X{suspend : _g251, m : a}

printf("%Vmw", [X{m:a}]): X_g252{a}

Write macros for attributed variables are not allowed because one extension alone should not
decide whether the other attributes will be printed or not.

1The attribute suspend is always present and defined by system coroutining.
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16.8 Built-Ins and Attributed Variables

free(?Term) This type-checking predicate succeeds iff its argument is an ordinary free variable,
it fails if it is an attributed variable.

meta(?Term) This type-checking predicate succeeds iff its argument is an attributed variable.
For other type testing predicates an attributed variable behaves like a variable.

16.9 Examples of Using Attributed Variables

16.9.1 Variables with Enumerated Domains

As an example, let us implement variables of enumerable types using attributes. We choose to
represent these variable as attributed variables whose attribute is a enum/1 structure with a list
holding the values the variable may take, e.g.

X{enum([a,b,c])}

We have to specify now what should happen when such a variable is bound. This is done by
writing a handler for the unify operation. The predicate unify enum/2 defined below is this
handler. Its first argument is the value that the attributed variable has been bound to, the
second is the attribute that the bound attributed variable had (keep in mind that the system
has already bound the attributed variable to the new value). We distinguish two cases:
First, the attributed variable has been bound to another attributed variable (1st clause of
unify enum/2). In this case, we form the intersection between the two lists of admissible val-
ues. If it is empty, we fail. If it contains exactly one value, we can instantiate the remaining
attributed variable with this value. Otherwise, we bind it to a new attributed variable whose
attribute represents the remaining admissible values.
Second, when the attributed variable has been bound to a non-variable, the task that remains
for the handler is merely to check if this binding was admissible (2nd clause of unify enum/2).

[eclipse 2]: module(enum).

warning: creating a new module in module(enum)

[enum 3]: [user].

:- meta_attribute(enum, [unify:unify_enum/2, print:print_enum/2]).

:- import setarg/3 from sepia_kernel.

% unify_enum(+Term, Attribute)

unify_enum(_, Attr) :-

/*** ANY + VAR ***/

var(Attr). % Ignore if no attribute for this extension

unify_enum(Term, Attr) :-

compound(Attr),

unify_term_enum(Term, Attr).

unify_term_enum(Value, enum(ListY)) :-

nonvar(Value), % The attributed variable was instantiated

/*** NONVAR + META ***/

memberchk(Value, ListY).
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unify_term_enum(Y{AttrY}, AttrX) :-

-?->

unify_enum_enum(Y, AttrX, AttrY).

unify_enum_enum(_, AttrX, AttrY) :-

var(AttrY), % no attribute for this extension

/*** VAR + META ***/

AttrX = AttrY. % share the attribute

unify_enum_enum(Y, enum(ListX), AttrY) :-

nonvar(AttrY),

/*** META + META ***/

AttrY = enum(ListY),

intersection(ListX, ListY, ListXY),

( ListXY = [Val] ->

Y = Val

;

ListXY \= [],

setarg(1, AttrY, ListXY)

).

print_enum(_{enum(List)}, Attr) :-

-?->

Attr = List.

user compiled traceable 1188 bytes in 0.03 seconds

yes.

[enum 4]: A{enum([yellow, blue, white, green])}

= B{enum([orange, blue, red, yellow])}.

A = B = A{[blue, yellow]}

yes.

[enum 5]: A{enum([yellow, blue, white, green])}

= B{enum([orange, blue, red, black])}.

A = B = blue

yes.

[enum 6]: A{enum([yellow, blue, white, green])} = white.

A = white

yes.

[enum 7]: A{enum([yellow, blue, white, green])} = red.

no (more) solution.

Some further remarks on this code: The second clause of unify term enum/2 is a matching
clause, as indicated by the −?− > guard. A matching clause is the only way to decompose an
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attributed variable. Note that this clause matches only calls that have an attributed variable
with nonempty enum attribute on the first argument position.

16.10 Attribute Specification

The structures notation (see section 5.1) is used to define and access variable attributes and
their arguments. This makes the code independent of the number of attributes and positions of
their arguments. Wherever appropriate, the libraries described in this document describe their
attributes in this way, e.g.

suspend{inst : I, constrained : C,bound : B}

says that the structure name is suspend and that it has (at least) three arguments with the
corresponding names.
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Chapter 17

Advanced Control Features

17.1 Introduction

This chapter introduces the control facilities that distinguish the ECLiPSe language from Prolog
by providing a computation rule that is more flexible than simple left-to-right goal selection.
The core feature is the ability to suspend the execution of a goal at some point during execution,
and resume it under certain conditions at a later stage. Together with attributed variables, these
facilities are the prerequisites for the implementation of constraint propagation and similar data-
driven algorithms.

17.2 Concepts

17.2.1 The Structured Resolvent

The term resolvent originates from Logic Programming. It is the set of all goals that need to be
satisfied. The computation typically starts with a resolvent consisting only of the top-level goal
(the initial query). This then gets successively transformed (by substituting goals that match
a clause head with an instance of the clause body, ie. a sequence of sub-goals), and eventually
terminates with one of the trivial goals true or fail. For example, given the program

p :- q, r. % clause 1

q :- true. % clause 2

r :- q. % clause 3

and the goal p, the resolvent goes through the following states before the goal is proven (by
reduction to true) and the computation terminates:

p --1--> (q,r) --2--> (true,r) ----> (r) --3--> (q) --2--> true

While in Prolog the resolvent is always processed from left to right like in this example, the
resolvent in ECLiPSe is more structured, and can be manipulated in a much more flexible way.
This is achieved by two basic mechanisms, suspension and priorities.

Suspended goals form the part of the resolvent which is currently not being considered. This
is typically done when we know that we cannot currently infer any interesting information from
them.
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Prio 1 Prio 2 Prio 11 Prio 12 Suspended

schedule

suspend

Figure 17.1: Structure of the resolvent

The remaining goals are ordered according to their priority. At any time, the system attempts
to solve the most urgent subgoal first. ECLiPSe currently supports a fixed range of 12 different
priorities, priority 1 being the most urgent and 12 the least urgent.
Figure 17.1 shows the structure of the resolvent. When a toplevel goal is launched, it has
priority 12 and is the only member of the resolvent. As execution proceeds, active goals may be
suspended, and suspended goals may be woken and scheduled with a particular priority.

17.2.2 Floundering

The case that a subgoal remains suspended (delayed) at the end of the computation is sometimes
referred to as floundering. When floundering occurs, it means that the resolvent could not be
reduced to true or fail, and that the answer bindings that have been found are valid only under
the assumption that the remaining delayed goals are in fact true. Since such a conditional
answer is normally not satisfactory (even though it may be correct), it is then necessary to
change the control aspect of the program. The solution would usually be to either make further
variable instantiations or to change control annotations. The aim is to get the delayed goals
out of the suspended state and into the scheduled state, where they will eventually be executed
and reduced. As a rule of thumb, goals will not suspend when all their arguments are fully
instantiated. Therefore, a program that makes sure that all its variables are instantiated at the
end of computation will typically not suffer from floundering.

17.3 Suspending Built-Ins and the Suspend-Library

Basic ECLiPSe has two built-in predicates whose behaviour includes suspending: the sound
negation built-in ∼/1 and the sound disequality predicate ∼=/2. Instead of succeeding or
failing, they will suspend when their arguments are insufficiently instantiated to make a decision.
For example

?- X ~= 3.

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

Here, the system does not have enough information to decide whether the query is true or false.
The goal remains delayed and we have a case of floundering (the ECLiPSe toplevel indicates
this situation by printing a message about delayed goals at the end of the computation).
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However, when the variable which was responsible for the suspension gets instantiated later, the
delayed goal will be resumed (woken) and either succeed, fail, or suspend again. In the following
example, the disequality predicate initially suspends, but wakes up later and succeeds or fails,
respectively:

?- X ~= 3, X = 4.

X = 4

Yes (0.00s cpu)

?- X ~= 3, X = 3.

No (0.00s cpu)

Further predicate implementations with the same behaviour (delay until all arguments are
ground) can be found in the suspend library lib(suspend). In particular, it implements all
common arithmetic predicates plus the constraints defined by the Common Arithmetic Solver
Interface (see Constraint Library Manual), for instance

=:=/2, =\=/2, >=/2, =</2, >/2, </2,

$=/2, $\=/2, $>=/2, $=</2, $>/2, $</2,

#=/2, #\=/2, #>=/2, #=</2, #>/2, #</2,

integers/1, reals/1,

The solver will suspend these predicates until all their arguments are ground1.
The suspend library is loaded into ECLiPSe on start-up, but the constraints associated with the
suspend solver are not imported. To use them, either import the suspend library to the current
module, or call the constraint qualified with the module:

suspend:(X > 2), suspend:(X #=< 5)

17.4 Development System Support

As seen in the above example, the top level loop indicates floundering by printing a message
about delayed goals. The command line toplevel then prompts and offers to print a list of all
delayed goals. The Tkeclipse development environment provides better support in the form of
the Delayed Goals Viewer, which can be used to look at all delayed goals or a filtered subset of
them.
The tracer supports advanced control features via the box-model ports DELAY and RESUME.
It also shows goal priorities (if they deviate from the default priority) in angular brackets.

17.5 Declarative Suspension: Delay Clauses

For delaying calls to user-defined Prolog predicates, ECLiPSe provides several alternatives, the
first being delay clauses. Delay clauses are a declarative means (they are in fact meta-clauses)
to specify the conditions under which the predicate should delay. The semantics of delay clauses
is thus cleaner than many alternative approaches to delay primitives.
A delay clause is very similar to a normal Prolog clause. It has the form

delay <Head> if <Body>.

1 Note that more powerful versions of these constraints exist in other solvers such as the interval solver lib(ic).
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A predicate may have one or more delay clauses. They have to be textually before and con-
secutive with the normal clauses of the predicate they belong to. The simplest example for a
delay clause is one that checks if a variable is instantiated:

delay report_binding(X) if var(X).

report_binding(X) :-

printf("Variable has been bound to %w\n", [X]).

The operational semantics of the delay clauses is as follows: when a procedure with delay clauses
is called, then the delay clauses are executed before executing the procedure itself. If one of the
delay clauses succeeds, the call is suspended, otherwise they are all tried in sequence and, if all
delay clauses fail, the procedure is executed as usual.

The mechanism of executing a delay clause is similar to normal Prolog clauses with two excep-
tions:

• the unification of the goal with the delay clause head is not the usual Prolog unification,
but rather unidirectional pattern matching (see also section 5.5). This means that the
variables in the call cannot be bound by the matching, if such a binding would be necessary
to perform the unification, it will fail instead. E.g. the head of the delay clause

delay p(a, X) if var(X).

does not match the goal p(A, b) but it matches the goal p(a, b).

• the delay clauses are deterministic, they leave no choice points. If one delay clause succeeds,
the call is delayed and the following delay clauses are not executed. As soon as the call is
resumed, all delay clauses that may succeed are re-executed.

The reason for using pattern matching instead of unification is to avoid a possible mixing of
meta-level control with the object level, similarly to [3].

The form of the head of a delay clause is not restricted. For the body, the following conditions
hold:

• the body subgoals must not bind any variable in the call and they must not delay them-
selves. The system does not verify these conditions currently.

• it should contain at least one of the following subgoals:

– var/1

– nonground/1

– nonground/2 (see nonground/3)

– \ ==/2

If this is not the case, then the predicate may delay without being linked to a variable,
so it delays forever and cannot be woken again. Experience shows that the above four
primitives suffice to express most usual conditions.
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More Examples

• A predicate that checks if its argument is a proper list of integers. The delay conditions
specify that the predicate should delay if the list is not terminated or if it contains variable
elements. This makes sure that it will never generate list elements, but only acts as a test:

delay integer_list(L) if var(L).

delay integer_list([X|_]) if var(X).

integer_list([]).

integer_list([X|T]) :- integer(X), integer_list(T).

• Delay if the first two arguments are identical and the third is a variable:

delay p(X, X, Y) if var(Y).

• Delay if the argument is a structure whose first subterm is not ground:

delay p(X) if compound(X), arg(1, X, Y), nonground(Y).

• Delay if the argument term contains 2 or more variables:

delay p(X) if nonground(2, X).

• The \ ==/2 predicate as a delaying condition is useful mainly in predicates like X + Y
= Z which need not be delayed if X == Z. Y can be directly bound to 0, provided that
X is later bound to a number (or it is not bound at all) The condition X \== Y makes
sense only if X or Y are nonground: a delay clause

delay p(X, Y) if X \== Y.

executed with the call ?- p(a, b) of course succeeds and the call delays forever, since no
variable binding can wake it.

CAUTION: It may happen that the symbol :- is erroneously used instead of if in the delay
clause. To indicate this error, the compiler complains about redefinition of the built-in predicate
delay/1.

17.6 Explicit supension with suspend/3

While delay-clauses are an elegant, declarative way of specifying how a program should execute,
it is sometimes necessary to be more explicit about suspension and waking conditions. The built-
in predicate suspend/3 is provided for this purpose2. It allows to explicitly create a suspended
goal, specify its priority and its exact waking conditions.
When

suspend(Goal, Prio, CondList)

is called, Goal will be suspended with priority Prio and it will wake up as soon as one of the
conditions specified in the CondList is satisfied. This list contains specifications of the form

2 suspend/3 is itself based on the lower-level primitives make suspension/3 and insert suspension/4, which are
described below.
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Vars − > Cond

to denote that as soon as one of the variables in the term Vars satisfies the condition Cond,
the suspended goal will be woken and then executed as soon as the program priority allows it.
CondList can also be a single specification.

The condition Cond can be the name of a system-defined waking condition, e.g.

[X,Y]->inst

means that as soon as one (or both) of the variables X, Y is instantiated, the suspended goal
will be woken. These variables are also called the suspending variables of the goal.

Cond can also be the specification of a suspension list defined in one of currently loaded library
attributes. E.g. when the interval solver library lib(ic) is loaded, either of

[A,B]->ic:min

[A,B]->ic:(min of ic)

triggers the suspended goal as soon as the minimum element of the domain of either A or B are
updated (see Constraint Library Manual, IC Library).

Another admissible form of condition Cond is

trigger(Name)

which suspends the goal on the global trigger condition Name (see section 17.7.3).

Using suspend/3, we can rewrite our first delay-clause example from above as follows:

report_binding(X) :-

( var(X) ->

suspend(report_binding(X), 0, X->inst)

;

printf("Variable has been bound to %w\n", [X])

).

Here, when the predicate is called with an uninstantiated argument, we explicitly suspend a goal
with the condition that it be woken as soon as X becomes instantiated. The priority is given
as 0, which indicates the default priority (0 is not a valid priority itself). Running this code
produces the following:

?- report_binding(X).

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

When X is later instantiated, it will wake up and print the message:

?- report_binding(X), writeln(here), X = 99.

here

Variable has been bound to 99

X = 99

Yes (0.00s cpu)
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17.7 Waking conditions

The usual purpose of suspending a goal is to wait and resume it later when more information
about its arguments is available. In Logic Programming, this is usually the case when certain
events related to variables occur. When such an event occurs, the suspended goal is passed to
the waking scheduler which puts it at the appropriate place in the priority queue of woken goals
and as soon as it becomes first in the queue, the suspended goal is executed.
The event which causes a suspended goal to be woken is usually related to one or more variables,
for example variable instantiation, or a modification of a variable’s attribute. However, it is also
possible to trigger suspension with symbolic events not related to any variable.

17.7.1 Standard Waking Conditions on Variables

There are three very general standard waking conditions which can be used with any variable.
They are, in order of increasing generality:

inst: wake when a variable gets instantiated

bound: wake when a variable gets instantiated or bound to another variable

constrained: wake when a variable gets instantiated or bound to another variable or becomes
otherwise constrained

Each condition subsumes the preceding, more specific ones.

Waking on Instantiation: inst

To wake a goal when a variable gets instantiated, the inst condition is used. For example the
following code suspends a goal until variable X is instantiated:

?- suspend(writeln(woken(X)), 0, X->inst).

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

If this variable is later instantiated (bound to a non-variable), the goal executes in a data-driven
way:

?- suspend(writeln(woken(X)), 0, X->inst), X = 99.

woken(99)

X = 99

Yes (0.00s cpu)

If we specify several instantiation conditions for the same goal, the goal will wake up as soon as
the first of them occurs:

?- suspend(writeln(woken(X,Y)), 0, [X,Y]->inst), X = 99.

woken(99, Y)

X = 99

Y = Y

Yes (0.00s cpu)
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It is not possible to specify a conjunction of conditions directly!
Let us now suppose we want to implement a predicate succ(X,Y) which is true when Y is the
next integer after X. If we want the predicate to act as a lazy test, we need to let it suspend
until both variables are instantiated. This can be programmed as follows:

succ_lazy(X, Y) :-

( var(X) -> suspend(succ_lazy(X,Y), 0, X->inst)

; var(Y) -> suspend(succ_lazy(X,Y), 0, Y->inst)

; Y =:= X+1

).

The conjunctive condition ”wait until X and Y are instantiated” is implemented by first waiting
for X’s instantiation, then waking up and re-suspending waiting for Y’s instantiation.
A more eager implementation of succ/2 would delay only until a single variable argument is left,
and then compute the variable from the nonvariable argument:

succ_eager(X, Y) :-

( var(X) ->

( var(Y) ->

suspend(succ_eager(X,Y), 0, [X,Y]->inst)

;

X is Y-1

)

;

Y is X+1

).

Here, we suspend only in the case that both arguments are variables, and wake up as soon as
either of them gets instantiated.
Waiting for groundness of a term can be done in a way similar to the way succ lazy/2 waited
for both arguments to be instantiated: we pick any variable in the nonground term and wait
for its instantiation. If this happens, we check whether other variables remain, and if yes, we
re-suspend on one of the remaining variables. The following predicate waits for a term to become
ground, and then calls arithmetic evaluation on it:

eval_lazy(Expr, Result) :-

( nonground(Expr, Var) ->

suspend(eval_lazy(Expr,Result), 0, Var->inst)

;

Result is Expr

).

We have used the built-in predicate nonground/2 which tests a term for groundness and
returns one of its variables if it is nonground. Note also that in this implementation the same
eval_lazy/2 goal gets woken and re-suspended possibly many times. See section 17.9 below for
how to address this inefficiency.

Waking on Binding: bound

Sometimes it is interesting to wake a goal when the number of variables among its arguments
is reduced. This happens not only when a variable disappears due to instantiation, but also
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when two variables get unified (the result being a single variable). Consider the succ eager/2
predicate above: we know that a goal like succ_eager(X,X) must always fail because an integer
cannot be equal to its successor. However, the above implementation does not detect this case
until X gets instantiated.
The bound waking condition subsumes the inst condition, but also wakes when any two of the
variables in the condition specification get unified with each other (aliased). Using this property,
we can improve the implementation of succ eager/2 as follows:

succ_eager1(X, Y) :-

( var(X) ->

( var(Y) ->

X \== Y,

suspend(succ_eager1(X,Y), 0, [X,Y]->bound)

;

X is Y-1

)

;

Y is X+1

).

This gives us the desirable behaviour of failing as soon as possible:

?- succ_eager1(X, Y), X = Y.

No (0.00s cpu)

Note that the built-in predicate ∼=/2 is a similar case and uses the bound waking condition
for the same reason.

Waking on Constraining: constrained

In plain Prolog, variable instantiation is the only way in which a single variable can become
more constrained. In the presence of constraints, there are other ways. The most obvious
example are variable domains: when a variable’s domain gets reduced, the variable becomes
more constrained. This means that a delayed goal that previously still had a chance to succeed,
could now have become impossible to satisfy, and should therefore be checked again.
The purpose of the constrained waking condition is to make it possible to wake a suspended
goal whenever a variable becomes more constrained in a general sense. Having this general
notion of constrained-ness makes it possible to write generic libraries that do interesting things
with constraints and constrained variables without their implementation having to be linked to
a particular constraint-solver3.
The constrained waking condition subsumes the bound condition (which in turn subsumes
the inst condition). While goals suspended on the inst and bound conditions are woken
implicitly by the unification routine, libaries which implement domain variables are responsible
for notifying the system when they constrain a variable. They do so by invoking the built-
ins notify constrained/1 and wake/0 which is the generic way of telling the system that a
variable has been constrained.
The simplest application using the constrained condition is a little debugging support predicate
that prints a variable’s current partial value (e.g. domain) whenever it changes:

3Examples of such libraries are branch and bound, changeset, chr/ech, propia, repair, visualisation.
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report(X) :-

( var(X) ->

writeln(constrained(X)),

suspend(report(X), 1, X->constrained) % (re)suspend

;

writeln(instantiated(X))

).

This now works with any library that implements a notion of constrainedness, e.g. the interval
solver library(ic):

?- report(X), X :: 1..5, X #> 2, X #< 4.

constrained(X)

constrained(X{1 .. 5})

constrained(X{3 .. 5})

instantiated(3)

X = 3

Yes (0.01s cpu)

The report/1 predicate is woken when the domain is initally attached to X, whenever the domain
gets reduced, and finally when X gets instantiated.

17.7.2 Library-defined Waking Conditions on Variables

Constraint-solver libraries typically define additional, specialised waking conditions for the type
of variable that they implement. For instance, the interval solver lib(ic) defines the following
conditions:

min wake when the minimum domain value changes

max wake when the maximum domain value changes

hole wake when the domain gets a new hole

type wake when the variable type changes from real to integer

Obviously, these conditions only make sense for domain variables that are created by the lib(ic)
library, and are mainly useful for implementing extensions to this library, e.g. new constraints.
The library-defined waking conditions can be used with suspend/3 by using one of the following
syntactic forms:

[A, B]->ic:min

[A, B]->ic:(min of ic)

Using these conditions, we can define a more specialised form of the above report/1 predicate
which only wakes up on the specified ic-domain changes:

report_ic(X) :-

( var(X) ->

writeln(newdomain(X)),

suspend(report_ic(X), 1, [X->ic:min,X->ic:max,X->ic:hole])

;

writeln(instantiated(X))

).
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The behaviour is similar to above, the predicate wakes up on every domain change:

?- X::1..5, report_ic(X), X#> 2, X #< 4.

newdomain(X{1 .. 5})

newdomain(X{3 .. 5})

instantiated(3)

X = 3

Yes (0.00s cpu)

Note that we now have to set up the delayed goal after the variable already has a domain.
This is because the ic-specific waking conditions can only be used with ic-variables4, not with
domain-less generic variables.

17.7.3 Global Symbolic Waking Conditions: Triggers

Although waking conditions for a goal are usually related to variables within the goal’s argu-
ments, it is also possible to specify symbolic waking conditions which are unrelated to variables.
These are called triggers and are identified simply by an arbitrary name (an atom). Goals
can be suspended on such triggers, and the trigger can be pulled explicitly by program code in
particular circumstances. By combining triggers with the event mechanism (chapter 13) it is
even possible to wake goals in response to synchronous or asynchronous events.
A goal is suspended on a trigger using the syntax trigger(Name) in suspend/3 as in the
following example:

?- suspend(writeln(woken), 0, trigger(happy)).

There is 1 delayed goal.

Yes (0.00s cpu)

The built-in trigger/1 can then be used to wake the goal:

?- suspend(writeln(woken), 0, trigger(happy)), trigger(happy).

woken

Yes (0.00s cpu)

Of course, symbolic triggers can be used together with other waking conditions to specify alter-
native reasons to wake a goal.

Postponed Goals

There is one system-defined trigger called postponed. It is provided as a way to postpone the
triggering of a goal as much as possible. This trigger is pulled just before the end of certain
encapsulated executions, like

• end of toplevel execution

• inside all-solution predicates (findall/3, setof/3)

• inside bb min/3 and minimize/2

A suspension should be attached to the postponed trigger only when

4more precisely, variables which have an ic-attribute, see chapter 16.
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• it might not have any other waking conditions left

• and it might at the same time have other waking conditions left that could make it fail
during further execution

• and one does not want to execute it now, e.g. because it is known to succeed or re-suspend

An example is a goal that originally woke on modifications of the upper bound of an interval
variable. If the variable gets instantiated to its upper bound, there is no need to wake the
goal (since the bound has not changed), but the variable (and with it the waking condition)
disappears and the goal may be left orphaned.

17.8 Lower-level Primitives

Suspended goals are actually represented by a special opaque data type, called suspension,
which can be explicitly manipulated under program control using the primitives defined in this
section. Although usually a suspended goal waits for some waking condition in order to be
reactivated, the primitives for suspension handling do not enforce this. To provide maximum
flexibility of use, the functionalities of suspending and waking/scheduling are separated from
the trigger mechanisms that cause the waking.

17.8.1 Suspensions and Suspension Lists

A suspension represents a goal that is part of the resolvent. Apart from the goal structure
proper, it holds information that is used for controlling its execution. The components of a
suspension are:

The goal structure A term representing the goal itself, eg. X >Y.

The goal module The module from which the goal was called.

The goal priority The priority with which the goal will be scheduled when it becomes woken.

The state This indicates the current position of the suspension within the resolvent. It is either
suspended (sleeping), scheduled or executed (dead).

Additional data E.g. debugging information.

Suspensions which should be woken by the same event are grouped together in a suspension
list. Suspension lists are either stored in an attribute of an attributed variable or attached to a
symbolic trigger.

17.8.2 Creating Suspended Goals

The most basic primitive to create a suspension is make suspension(Goal, Priority, Susp
[, Module]) where Goal is the goal structure, Priority is a small integer denoting the priority
with which the goal should be woken and Susp is the resulting suspension.
Note that usually make suspension/3,4 is not used directly, but implicitly via suspend/3,4
(described in section 17.6) which in addition attaches the suspension to a trigger condition.
A suspension which has not yet been scheduled for execution and executed, is called sleeping,
a suspension which has already been executed is called executed or dead (since it disappears
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from the resolvent, but see section 17.9 for an exception). A newly created suspension is always
sleeping, however note that due to backtracking, an executed suspension can become sleeping
again. Sometimes we use the term waking, which is less precise and denotes the process of both
scheduling and eventual execution.
By default, suspensions are printed as follows (the variants with invocation numbers are used
when the debugger is active):

’SUSP- 78-susp’ sleeping suspension with id 78
’SUSP- 78-sched’ scheduled suspension with id 78
’SUSP- 78-dead’ dead suspension with id 78

’SUSP-123-susp’ sleeping suspension with invocation number 123
’SUSP-123-sched’ scheduled suspension with invocation number 123
’SUSP-123-dead’ dead suspension with id invocation number 123

It is possible to change the way suspensions are printed by defining a portray/3 transformation
for the term type goal.

17.8.3 Operations on Suspensions

The following summarises the predicates that can be used to create, test, decompose and destroy
suspensions.

make suspension(Goal, Priority, Susp)

make suspension(Goal, Priority, Susp, Module) Create a suspension Susp with a given
priority from a given goal. The goal will subsequently show up as a delayed goal.

is suspension(Susp) Succeeds if Susp is a sleeping or scheduled suspension, fails if it is not
a suspension or a suspension that has been already executed.

type of(S, goal) Succeeds if S is a suspension, no matter if it is sleeping, scheduled or executed.

get suspension data(Susp, Name, Value) Extract any of the information contained in the
suspension: Name can be one of goal, module, priority, state or invoc (debugger
invocation number).

set suspension data(Susp, Name, Value) The priority and invoc (debugger invocation
number) fields of a suspension can be changed using this primitive. If the priority of a
sleeping suspension is changed, this will only have an effect at the time the suspension gets
scheduled. If the suspension is already scheduled, changing priority has no effect, except
for future schedulings of demons (see 17.9).

kill suspension(Susp) Convert the suspension Susp into an executed one, ie. remove the sus-
pended goal from the resolvent. This predicate is meta-logical as its use may change the
semantics of the program.

17.8.4 Examining the Resolvent

The system keeps track of all created suspensions and it uses this data e.g. in the built-in pred-
icates delayed goals/1, suspensions/1, current suspension/1, subcall/2 and to detect
floundering of the query given to the ECLiPSe top-level loop.
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17.8.5 Attaching Suspensions to Variables

Suspensions are attached to variables by means of the attribute mechanism. For this purpose, a
variable attribute needs to have one or more slots reserved for suspension lists. Suspensions
can then be inserted into one or several of those lists using

insert suspension(Vars, Susp, Index) Insert the suspension Susp into the Index’th sus-
pension list of all attributed variables occurring in Vars. The current module specifies
which of the attributes will be taken.

insert suspension(Vars, Susp, Index, Module) Similar to insert suspension/3, but it
inserts the suspension into the attribute specified by Module.

For instance,

insert_suspension(Vars, Susp, inst of suspend, suspend)

inserts the suspension into the instlist of the (system-predefined) suspend attribute of all
variables that occur in Vars, and

insert_suspension(Vars, Susp, max of fd, fd)

would insert the suspension into the max list of the finite-domain attribute of all variables in
Vars.
Note that both predicates find all attributed variables which occur in the general term Vars and
for each of them, locate the attribute which corresponds to the current module or the Module
argument respectively. This attribute must be a structure, otherwise an error is raised, which
means that the attribute has to be initialised before calling insert suspension/4,3. Finally,
the Index’th argument of the attribute is interpreted as a suspension list and the suspension
Susp is inserted at the beginning of this list. A more user-friendly interface to access suspension
lists is provided by the suspend/3 predicate.

17.8.6 User-defined Suspension Lists

Many important attributes and suspension lists are either provided by the suspend-attribute or
by libraries like the interval solver library lib(ic). For those suspension lists, initialisation and
waking is taken care of by the library code.
For the implementation of user-defined suspension lists, the following low-level primitives are
provided:

init suspension list(+Position, +Attribute) Initialises argument Position of Attribute to
an empty suspension list.

merge suspension lists(+Pos1, +Attr1, +Pos2, +Attr2) Destructively appends the first
suspension list (argument Pos1 of Attr1) to the end of the second (argument Pos2 of Attr2).

enter suspension list(+Pos, +Attr, +Susp) Adds the suspension Susp to the suspension
list in the argument position Pos of Attr. The suspension list can be pre-existing, or the
argument could be uninstantiated, in which case a new suspension list will be created.

schedule suspensions(+Position, +Attribute) Takes the suspension list on argument po-
sition Position within Attribute, and schedule them for execution. As a side effect, the
suspension list within Attribute is updated, ie. suspensions which are no longer useful
are removed destructively. See section 17.8.8 for more details on waking.
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17.8.7 Attaching Suspensions to Global Triggers

A single suspension or a list of suspensions can be attached to a symbolic trigger by using
attach suspensions(+Trigger, +Susps). A symbolic trigger can have an arbitrary name
(an atom).

17.8.8 Scheduling Suspensions for Waking

Suspended goals are woken by submitting at least one of the suspension lists in which they
occur to the waking scheduler. The waking scheduler which maintains a global priority queue
inserts them into this queue according to their priority (see figure 17.1). A suspension list can
be passed to the scheduler by either of the predicates schedule suspensions/1 (for triggers)
or schedule suspensions/2 (for uder-defined suspension lists). A suspension which has been
scheduled in this way and awaits its execution is called a scheduled suspension.
Note, however, that scheduling a suspension by means of schedule suspensions/1 or sched-
ule suspensions/2 alone does not implicitly start the waking scheduler. Instead, execution
continues normally with the next goal in sequence after schedule suspensions/1,2. The sched-
uler must be explicitly invoked by calling wake/0. Only then does it start to execute the woken
suspensions.
The reason for having wake/0 is to be able to schedule several suspension lists before the
priority-driven execution begins5.

17.9 Demon Predicates

A common pattern when implementing data-driven algorithms is the following variant of the
report/1 example from above:

report(X) :-

suspend(report1(X), 1, X->constrained). % suspend

report1(X) :-

( var(X) ->

writeln(constrained(X)),

suspend(report(X), 1, X->constrained) % re-suspend

;

writeln(instantiated(X)) % die

).

Here we have a goal that keeps monitoring changes to its variables. To do so, it suspends on
some or all of those variables. When a change occurs, it gets woken, does something, and re-
suspends. The repeated re-suspending has two disadvantages: it can be inefficient, and the goal
does not have a unique identifying suspension that could be easily referred to, because on every
re-suspend a new suspension is created.
To better support this type of goals, ECLiPSe provides a special type of predicate, called a
demon. A predicate is turned into a demon by annotating it with a demon/1 declaration. A
demon goal differs from a normal goal only in its behaviour on waking. While a normal goal dis-
appears from the resolvent when it is woken, the demon remains in the resolvent. Declaratively,

5This mechanism may be reconsidered in a future release
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this corresponds to an implicit recursive call in the body of each demon clause. Or, in other
words, the demon goal forks into one goal that remains in the suspended part of the resolvent,
and an identical one that gets scheduled for execution.

With this functionality, our above example can be done more efficiently. One complication arises,
however. Since the goal implicitly re-suspends, it now has to be explicitly killed when it is no
longer needed. The easiest way to achieve this is to let it remember its own suspension in one
of its arguments. This can then be used to kill the suspension when required:

% A demon that wakes whenever X becomes more constrained

report(X) :-

suspend(report(X, Susp), 1, X->constrained, Susp).

:- demon(report/2).

report(X, Susp) :-

( var(X) ->

writeln(constrained(X)) % implicitly re-suspend

;

writeln(instantiated(X)),

kill_suspension(Susp) % remove from the resolvent

).

17.10 More about Priorities

For the scheduled goals, ECLiPSe uses an execution model which is based on goal priorities and
which guarantees that a scheduled goal with a higher priority will be always executed before any
goal with lower priority. Priority is a small integer number ranging from 1 to 12, 1 being the
highest priority and 12 the lowest (cf. figure 17.1). All goals started from the ECLiPSe top-level
loop or from the command line with the -e option have priority 12. Each suspension and each
goal which is being executed therefore has an associated priority. The priority of the currently
executing goal can be determined with get priority/1.

Priority-based execution is driven by a scheduler: It picks up the scheduled suspension with the
highest priority. If its priority is higher than the priority of the currently executing goal, then
the execution of the current goal is interrupted and the new suspension is executed. This is
repeated until there are no suspensions with priority higher than that of the current goal.

17.10.1 Changing Priority Explicitly

It is also possible to execute a goal with a given priority by means of call priority(Goal, Prio)
which calls Goal with the priority Prio. When a goal is called this way with high priority, it
is effectively made atomic, ie. it will not be interrupted by goals with lower priority that wake
up while it executes. Those goals will all be deferred until exit from call priority/2. This
technique can sometimes improve efficiency. Consider for example the following program:

p(1).

report(Term) :-

writeln(term=Term),

suspend(report(Term),3,Term->inst).
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and the execution

[eclipse 2]: report(f(X,Y,Z)), p(X),p(Y),p(Z).

term = f(X, Y, Z)

term = f(1, Y, Z)

term = f(1, 1, Z)

term = f(1, 1, 1)

report/1 is woken and executed three times, once for each variable binding. If instead we do the
three bindings under high priority, it will only execute once after all bindings have already been
done:

[eclipse 3]: report(f(X,Y,Z)), call_priority((p(X),p(Y),p(Z)), 2).

term = f(X, Y, Z)

term = f(1, 1, 1)

17.10.2 Choice of Priorities

Although the programmer is more or less free to specify which priorities to use, we strongly
recommend to stick to the following scheme (from urgent to less urgent):

debugging (1) goals which don’t contribute to the semantics of the program and always suc-
ceed, e.g. display routines, consistency checks or data breakpoints.

immediate goals which should be woken immediately and which do not do any bindings or other
updates. Examples are quick tests which can immediately fail and thus avoid redundant
execution.

quick fast deterministic goals which may propagate changes to other variables.

normal deterministic goals which should be woken after the quick class.

slow deterministic goals which require a lot of processing, e.g. complicated disjunctive con-
straints.

delayed nondeterministic goals or goals which are extremely slow.

toplevel goal (12) the default priority of the user program.

17.11 Details of the Execution Mechanism

17.11.1 Particularities of Waking by Unification

Goals that are suspended on the inst or bound waking conditions are woken by unifications
of their suspending variables. One suspending variable can be responsible for delaying several
goals, on the other hand one goal can be suspended on several suspending variables (as alternative
waking conditions). This means that when one suspending variable is bound, several delayed
goals may be woken at once. The order of executing woken suspended goals does not necessarily
correspond to the order of their suspending. It is in fact determined by their priorities and is
implementation-dependent within the same priority group.
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The waking process never interrupts unifications and/or a sequence of simple goals. Simple
goals are a subset of the built-ins and can be recognised by their call type flag as returned by
get flag/3, simple goals having the type external. Note also that some predicates, e.g. is/2,
are normally in-line expanded and thus simple, but can be regular when inlining is suppressed,
e.g. by the pragma(noexpand) directive.
ECLiPSe treats simple predicates (including unification) always as a block. Delayed goals are
therefore woken only at the end of a successful unification and/or a sequence of simple goals. If
a suspending variable is bound in a simple goal, the suspended goals are woken only at the end
of the last consecutive simple goal or at the clause end. If the clause contains simple goals at the
beginning of its body, they are considered part of the head (extended head) and if a suspending
variable is bound in the head unification or in a simple predicate in the extended head, the
corresponding delayed goals are woken at the end of the extended head.
A cut is also considered a simple goal and is therefore always executed before waking any
pending suspended goals. This is important to know especially in the situations where the cut
acts like a guard, immediately after the clause neck or after a sequence of simple goals. If the
goals woken by the head unification or by the extended head are considered as constraints on
the suspending variables, the procedure will not behave as expected. For example

filter(_P,[],[]) :- !.

filter(P,[N|LI],[N|NLI]) :-

N mod P =\= 0,

!,

filter(P,LI,NLI).

filter(P,[N|LI],NLI) :-

filter(P,LI,NLI).

delay integers(_, List) if var(List).

integers(_, []).

integers(N, [N|Rest]) :-

N1 is N + 1,

integers(N1, Rest).

?- integers(2, Ints), filter(2, Ints, [X1,X2]).

The idea here is that integers/2 fills a list with integers on demand, i.e. whenever new list
elements appear. Filter/3 is a predicate that removes all integers that are a multiple of P. In
the example query, the call to integers/2 initially delays. When filter/3 is called, Ints gets
instantiated in the head unification of the second clause of filter/3, which will wake up integers/2.
However, since the second clause of filter/3 has an extended head which extends up to the cut,
integers/2 will not actually be executed until after the cut. Therefore, N is not yet instantiated
at the time of the arithmetic test and causes an error message.
The reason why delayed goals are woken after the cut and not before it is that neither of the
two possibilities is always the intended or the correct one, however when goals are woken before
the cut, there is no way to escape it and wake them after, and so if a nondeterministic goal is
woken, it is committed by this cut which was most probably not intended. On the other hand, it
is always possible to force waking before the cut by inserting a regular goal before it, for example
true/0, so the sequence

true, !
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can be viewed as a special cut type.

As a consequence, the example can be fixed by inserting true at the beginning of the second
clause. However, a preferable and more robust way is using the if-then-else construct, which
always forces waking suspended goals before executing the condition. This would also be more
efficient by avoiding the creation of a choice point:

filter(_P,[],[]).

filter(P,[N|LI],LL) :-

(N mod P =\= 0 ->

LL = [N|NLI],

filter(P, LI, NLI)

;

filter(P,LI,LL)

).

17.11.2 Cuts and Suspended Goals

The cut relies on a fixed order of goal execution in that it discards some choice points if all goals
preceding it in the clause body have succeeded. If some of these goals delay without being woken
before the cut, or if the head unification of the clause with the cut wakes any nondeterministic
delayed goal, the completeness of the resulting program is lost and there is no clean way to save
it as long as the cut is used.

The user is strongly discouraged to use non-local cuts together with coroutining, or to be precisely
aware of their scope. The danger of a cut is twofold:

• Delaying out of the scope of a cut: a cut can be executed after some calls preceding it in
the clause (or children of these calls) delay. When they are then woken later, they may
cause the whole execution to fail instead of just the guard before the cut.

• Delaying into the scope of a cut: the head unification of a clause with cuts can wake
delayed goals. If they are nondeterministic, the cut in the body of the waking clause will
commit even the woken goals

17.12 Simulating other System’s Delay-Primitives

It is relatively easy to simulate similar constructs from other systems by using delay clauses, for
example, MU-Prolog’s sound negation predicate ~/1 can be in ECLiPSe simply implemented as

delay ~ X if nonground(X).

~ X :- \+ X .

MU-Prolog’s wait declarations can be in most cases simulated using delay clauses. Although it
is not possible to convert all wait declarations to delay clauses, in the real life examples this can
usually be achieved. The block declarations of SICStus Prolog can be easily expressed as delay
clauses with var/1 and nonground/1 conditions. The freeze/2 predicate (e.g. from SICStus
Prolog, same as geler/2 in Prolog-II) can be expressed as

delay freeze(X, _) if var(X).

freeze(_, Goal) :- call(Goal).
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The transcription of when declarations from NU Prolog basically involves negating them: for
instance, the when declarations

?- flatten([], _) when ever.

?- flatten(A._, _) when A.

can be rewritten as

delay flatten(A, _) if var(A).

delay flatten([A|_], _) if var(A).

Note that in contrast to when declarations, there are no syntactic restrictions on the head of a
delay clause, in particular, it can contain any compound terms and repeated variables. In the
clause body, a delay clause allows more flexibility by supporting programming with (a subset
of) builtins. In general, it is a matter of taste whether specifying delay-conditions or execute-
conditions is more straightforward. However, the semantics of delay clauses is certainly more
intuitive in that missing delay clauses simply imply no delay, while missing when-declarations
imply a most general ’when ever’ declaration.
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Chapter 18

More About Suspension

The fundamentals of goal suspension and waking were described in the previous chapter. This
chapter looks at some applications and examples in greater detail.

18.1 Waiting for Instantiation

Goals that are to be woken when one or more variables become instantiated use the inst list. For
instance, a predicate freeze(Term, Goal) which delays and is woken as soon as any variable
in Term becomes instantiated can be implemented as follows:

freeze(Term, Goal) :-

suspend(Goal, 3, Term->inst).

or equivalently by

freeze(Term, Goal) :-

make_suspension(Goal, 3, Susp),

insert_suspension(Term, Susp, inst of suspend, suspend).

When it is called with a nonground term, it produces a delayed goal and when one variable is
instantiated, the goal is woken:

[eclipse 2]: freeze(X, write(hello)).

X = X

Delayed goals:

write(hello)

yes.

[eclipse 3]: freeze(p(X, Y), write(hello)), X=Y.

X = X

Y = X

Delayed goals:

write(hello)
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yes.

[eclipse 4]: freeze(p(X, Y), write(hello)), Y=1.

hello

X = X

Y = 1

yes.

However, if its argument is ground, it will still produce a suspended goal which may not be what
we expect:

[eclipse 5]: 8.

freeze(a, write(hello)).

Delayed goals:

write(hello)

yes.

To correct this problem, we can test this condition separately:

freeze(Term, Goal) :-

nonground(Term),

!,

suspend(Goal, 3, Term->inst).

freeze(_, Goal) :-

call(Goal).

and get the expected results:

[eclipse 8]: freeze(a, write(hello)).

hello

yes.

Another possibility is to wait until a term becomes ground, i.e. all its variables become instan-
tiated. In this case, it is not necessary to attach the suspension to all variables in the term. The
Goal has to be called when the last variable in Term is instantiated, and so we can pick up
any variable and attach the suspension to it. We may then save some unnecessary waking when
other variables are instantiated before the selected one. To select a variable from the term, we
can use the predicate term variables/2 which extracts all variables from a term. However,
when we already have all variables available, we can in fact dispose of Term which may be huge
and have a complicated structure. Instead, we pick up one variable from the list until we reach
its end:

wait_for_ground(Term, Goal) :-

term_variables(Term, VarList),

wait_for_var(VarList, Goal).

wait_for_var([], Goal) :-

call(Goal).

wait_for_var([X|L], Goal) :-
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(var(X) ->

suspend(wait_for_var([X|L], Goal), 3, X->inst)

;

nonground(X) ->

term_variables(X, Vars),

append(Vars, L, NewVars),

wait_for_var(NewVars, Goal)

;

wait_for_var(L, Goal)

).

18.2 Waiting for Binding

Sometimes we want a goal to be woken when a variable is bound to another one, e.g. to check for
subsumption or disequality. As an example, let us construct the code for the built-in predicate
∼= /2. This predicate imposes the disequality constraint on its two arguments. It works as
follows:

1. It scans the two terms. If they are identical, it fails.

2. If it finds a pair of different arguments at least one of which is a variable, it suspends. If
both arguments are variables, the suspension is placed on the bound suspended list of
both variables. If only one is a variable, the suspension is placed on its inst list, because
in this case the constraint may be falsified only if the variable is instantiated.

3. Otherwise, if it finds a pair of arguments that cannot be unified, it succeeds.

4. Otherwise it means that the two terms are equal and it fails.

The code looks as follows. equal args/3 scans the two arguments. If it finds a pair of uni-
fyable terms, it returns them in its third argument. Otherwise, it calls equal terms/3 which
decomposes the two terms and scans recursively all their arguments.

dif(T1, T2) :-

(equal_args(T1, T2, Vars) ->

(nonvar(Vars) ->

(Vars = inst(V) ->

suspend(dif(T1, T2), 3, V->inst)

;

suspend(dif(T1, T2), 3, Vars->bound)

)

;

fail % nothing to suspend on, they are identical

)

;

true % the terms are different

).

equal_args(A1, A2, Vars) :-
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(A1 == A2 ->

true

;

var(A1) ->

(var(A2) ->

Vars = bound(A1, A2)

;

Vars = inst(A1)

)

;

var(A2) ->

Vars = inst(A2)

;

equal_terms(A1, A2, Vars)

).

equal_terms(R1, R2, Vars) :-

R1 =.. [F|Args1],

R2 =.. [F|Args2],

equal_lists(Args1, Args2, Vars).

equal_lists([], [], _).

equal_lists([X1|A1], [X2|A2], Vars) :-

equal_args(X1, X2, Vars),

(nonvar(Vars) ->

true % we have already found a variable

;

equal_lists(A1, A2, Vars)

).

Note that equal args/3 can yield three possible outcomes: success, failure and delay. Therefore,
if it succeeds, we have to make the distinction between a genuine success and delay, which is
done using its third argument. The predicate dif/2 behaves exactly as the built-in predicate
∼= /2:

[eclipse 26]: dif(X, Y).

X = X

Y = Y

Delayed goals:

dif(X, Y)

yes.

[eclipse 27]: dif(X, Y), X=Y.

no (more) solution.

[eclipse 28]: dif(X, Y), X=f(A, B), Y=f(a, C), B=C, A=a.
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no (more) solution.

[eclipse 29]: dif(X, Y), X=a, Y=b.

X = a

Y = b

yes.

Note also that the scan stops at the first variable being compared to a different term. In this
way, we scan only the part of the terms which is absolutely necessary to detect failure – the two
terms can become equal only if this variable is bound to a matching term.
This approach has one disadvantage, though. We always wake the dif/2 call with the original
terms as arguments. Each time the suspension is woken, we scan the two terms from the
beginning and thus repeat the same operations. If, for instance, the compared terms are lists
with thousands of elements and the first 10000 elements are ground, we spend most of our time
checking them again and again.
The reason for this handling is that the system cannot suspend the execution of dif/2 while
executing its subgoals: it cannot freeze the state of all the active subgoals and their arguments.
There is however a possibility for us to do this explicitly: as soon as we find a variable, we stop
scanning the terms and return a list of continuations for all ancestor compound arguments. In
this way, equal args returns a list of pairs and their continuations which will then be processed
step by step:

• equal args/4 scans again the input arguments. If it finds a pair of unifyable terms, it
inserts it into a difference list.

• equal lists/4 processes the arguments of compound terms. As soon as a variable is found,
it stops looking at following arguments but it appends them into the difference list.

• diff pairs/2 processes this list. If it finds an identical pair, it succeeds, the two terms
are different. Otherwise, it suspends itself on the variables in the matched pair (here the
suspending is simplified to use only the bound list).

• The continuations are just other pairs in the list, so that no special treatment is necessary.

• When the variables suspended upon are instantiated to compound terms, the new terms
are again scanned by equal arg/4, but the new continuations are prepended to the list.
As a matter of fact, it does not matter if we put the new pairs at the beginning or at the
end of the list, but tracing is more natural when we use the fifo format.

• If this list of pairs is exhausted, it means that no potentially non-matching pairs were
found, the two terms are identical and thus the predicate fails. note that this is achieved
by a matching clause for diff pairs/2 which fails if its first argument is a free variable.

• Note the optimisation for lists in equal terms/4: If one term is a list, we pass it directly
to equal lists/4 instead of decomposing each element with functor/3. Obviously, this
optimisation is applicable only if the input terms are known not to contain any pairs which
are not proper lists.

dif2(T1, T2) :-

equal_args(T1, T2, List, Link),
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!,

diff_pairs(List, Link).

d2if(_, _). % succeed if already different

equal_args(A1, A2, L, L) :-

A1 == A2,

!.

equal_args(A1, A2, [A1-A2|Link], Link) :-

(var(A1);var(A2)),

!.

equal_args(A1, A2, List, Link) :-

equal_terms(A1, A2, List, Link).

equal_terms(T1, T2, List, Link) :-

T1 = [_|_],

T2 = [_|_],

!,

equal_lists(T1, T2, List, Link).

equal_terms(T1, T2, List, Link) :-

T1 =.. [F|Args1],

T2 =.. [F|Args2],

equal_lists(Args1, Args2, List, Link).

equal_lists([], [], L, L).

equal_lists([X1|A1], [X2|A2], List, Link) :-

equal_args(X1, X2, List, L1),

(nonvar(List) ->

L1 = [A1-A2|Link]

;

equal_lists(A1, A2, L1, Link)

).

diff_pairs([A1-A2|List], Link) :-

-?->

(A1 == A2 ->

diff_pairs(List, Link)

;

(var(A1); var(A2)) ->

suspend(diff_pairs([A1-A2|List], Link), 3, A1-A2->bound)

;

equal_terms(A1, A2, NewList, NewLink) ->

NewLink = List, % prepend to the list

diff_pairs(NewList, Link)

;

true

).
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Now we can see that compound terms are processed up to the first potentially matching pair
and then the continuations are stored:

[eclipse 30]: dif2(f(g(X, Y), h(Z, 1)), f(g(A, B), h(2, C))).

X = X

...

Delayed goals:

diff_pairs([X - A, [Y] - [B], [h(Z, 1)] - [h(2, C)]|Link], Link)

yes.

When a variable in the first pair is bound, the search proceeds to the next pair:

[eclipse 31]: dif2(f(g(X, Y), h(Z, 1)), f(g(A, B), h(2, C))), X=A.

Y = Y

...

Delayed goals:

diff_pairs([Y - B, [] - [], [h(Z, 1)] - [h(2, C)]|Link], Link)

yes.

dif2/2 does not do any unnecessary processing, so it is asymptotically much better than the
built-in ∼= /2.

This predicate, however, can be used only to impose a constraint on the two terms (i.e. it is a
tell constraint only). It uses the approach of eager failure and lazy success. Since it does not
process the terms completely, it sometimes does not detect success:

[eclipse 55]: dif2(f(X, a), f(b, b)).

X = X

Delayed goals:

diff_pairs([X - b, [a] - [b]|Link], Link)

yes.

If we wanted to write a predicate that suspends if and only if the disequality cannot be decided,
we have to use a different approach. The easiest way would be to process both terms completely
each time the predicate is woken. There are, however, better methods. We can process the
terms once when the predicate dif/2 is called, filter out all possibly matching pairs and then
create a suspension for each of them. As soon as one of the suspensions is woken and it finds an
incompatible binding, the dif/2 predicate can succeed. There are two problems:

• How to report the success? There are N suspensions and each of them may be able to
report success due to its bindings. All others should be disposed of.

This can be solved by introducing a new variable which will be instantiated when the
two terms become non-unifyable. Any predicate can then use this variable to ask or wait
for the result. At the same time, when it is instantiated, all suspensions are woken and
finished.
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• How to find out that the predicate has failed? We split the whole predicate into N inde-
pendent suspensions and only if all of them are eventually woken and they find identical
pairs, the predicate fails. Any single suspension does not know if it is the last one or not.

To cope with this problem, we can use the short circuit technique: Each suspension will
include two additional variables, the first one being shared with the previous suspension
and the second one with the next suspension. All suspensions are thus chained with these
variables. The first variable of the first suspension is instantiated at the beginning. When
a suspension is woken and it finds out that its pair of matched terms became identical, it
binds those additional variables to each other. When all suspensions are woken and their
pairs become identical, the second variable of the last suspension becomes instantiated and
this can be used for notification that the predicate has failed.

dif3(T1, T2, Yes, No) :-

compare_args(T1, T2, no, No, Yes).

compare_args(_, _, _, _, Yes) :-

nonvar(Yes).

compare_args(A1, A2, Link, NewLink, Yes) :-

var(Yes),

(A1 == A2 ->

Link = NewLink % short-cut the links

;

(var(A1);var(A2)) ->

suspend(compare_args(A1, A2, Link, NewLink, Yes), 3,

[[A1|A2]->bound, Yes->inst])

;

compare_terms(A1, A2, Link, NewLink, Yes)

).

compare_terms(T1, T2, Link, NewLink, Yes) :-

T1 =.. [F1|Args1],

T2 =.. [F2|Args2],

(F1 = F2 ->

compare_lists(Args1, Args2, Link, NewLink, Yes)

;

Yes = yes

).

compare_lists([], [], L, L, _).

compare_lists([X1|A1], [X2|A2], Link, NewLink, Yes) :-

compare_args(X1, X2, Link, L1, Yes),

compare_lists(A1, A2, L1, NewLink, Yes).

The variable Yes is instantiated as soon as the constraint becomes true. This will also wake
all pending suspensions which then simply succeed. The argument No of dif3/4 becomes
instantiated to no as soon as all suspensions are woken and their matched pairs become identical:

[eclipse 12]: dif3(f(A, B), f(X, Y), Y, N).
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Y = Y

...

Delayed goals:

compare_args(A, X, no, L1, Y)

compare_args(B, Y, L1, N, Y)

yes.

[eclipse 13]: dif3(f(A, B), f(X, Z), Y, N), A = a, X = b.

Y = yes

N = N

...

yes.

[eclipse 14]: dif3(f(A, B), f(X, Z), Y, N), A=X, B=Z.

Y = Y

N = no

...

yes.

Now we have a constraint predicate that can be used both to impose disequality on two terms
and to query it. For instance, a condition ”if T1 = T2 then X = single else X = double” can be
expressed as

cond(T1, T2, X) :-

dif3(T1, T2, Yes, No),

cond_eval(X, Yes, No).

cond_eval(X, yes, _) :- -?->

X = double.

cond_eval(X, _, no) :- -?->

X = single.

cond_eval(X, Yes, No) :-

var(Yes),

var(No),

suspend(cond_eval(X, Yes, No), 2, Yes-No->inst).

This example could be further extended, e.g. to take care of shared variables, occur check or
propagating from the answer variable (e.g. imposing equality on all matched argument pairs
when the variable Y is instantiated). We leave this as a (rather advanced) exercise to the reader.

18.3 Waiting for other Constraints

The constrained list in the suspend attribute is used for instance in generic predicates which
have to be notified about the possible change of the state of a variable, especially its unifyability
with other terms. Our example with the dif predicate could be for instance extended to work
with finite domain or other constrained variables. The modification is fairly simple:
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• When a variable in one term is matched against a subterm of the other term, it might not
necessarily be unifyable with it, because there might be other constraints imposed on it.
Therefore, not unify/2 must be used to test it explicitly.

• The suspension should be woken not only on binding, but on any constraining and thus
the constrained list has to be used.

The predicate compare args/5 is thus changed as follows:

compare_args(_, _, _, _, Yes) :-

nonvar(Yes).

compare_args(A1, A2, Link, NewLink, Yes) :-

var(Yes),

(A1 == A2 ->

Link = NewLink

;

(var(A1);var(A2)) ->

(not_unify(A1, A2) ->

Yes = yes

;

suspend(compare_args(A1, A2, Link, NewLink, Yes), 3,

[[A1|A2]->constrained, Yes->inst])

)

;

compare_terms(A1, A2, Link, NewLink, Yes)

).

Now our dif3/4 predicate yields correct results even for constrained variables:

[eclipse 1]: dif3(A, B, Y, N), A::1..10, B::20..30.

Y = yes

N = N

A = A{[1..10]}

B = B{[20..30]}

yes.

[eclipse 2]: dif3(A, B, Y, N), A::1..10, B = 5, A ## 5.

Y = yes

N = N

B = 5

A = A{[1..4, 6..10]}

yes.

[eclipse 18]: dif3(A, B, Y, N), A + B $= 1, A $= 1/2.

Y = Y

N = no

B = 1 / 2

A = 1 / 2
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yes.
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Chapter 19

Memory Organisation And Garbage
Collection

19.1 Introduction

This chapter may be skipped on a first reading. Its purpose is to give the advanced user a better
understanding of how the system uses memory resources. In a high level language like Prolog it
is often not obvious for the programmer to see where the system allocates or frees memory.

The sizes of the different memory areas can be queried by means of the predicate statistics/2
and statistics/0 prints a summary of all these data. Here is a sample output:

[eclipse 1]: statistics.

times: [1.12, 0.09, 2.74] seconds

session_time: 2.74 seconds

event_time: 2.74 seconds

global_stack_used: 1936 bytes

global_stack_allocated: 4456448 bytes

global_stack_peak: 4456448 bytes

trail_stack_used: 64 bytes

trail_stack_allocated: 262144 bytes

trail_stack_peak: 4456448 bytes

control_stack_used: 564 bytes

control_stack_allocated:262144 bytes

control_stack_peak: 262144 bytes

local_stack_used: 492 bytes

local_stack_allocated: 262144 bytes

local_stack_peak: 262144 bytes

shared_heap_allocated: 1613824 bytes

shared_heap_used: 1411000 bytes

private_heap_allocated: 73728 bytes

private_heap_used: 36992 bytes

gc_number: 1

gc_collected: 23472.0 bytes

gc_area: 23560 bytes
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gc_ratio: 99.6264855687606 %

gc_time: 0.0 seconds

dictionary_entries: 3252

dict_hash_usage: 2117 / 8192

dict_hash_collisions: 314 / 2117

dict_gc_number: 2

dict_gc_time: 0.01 seconds

The used-figures indicate the actual usage at the moment the statistics built-in was called. The
allocated value is the amount of memory that is reserved for this area and actually occupied
by the ECLiPSe process. The peak value indicates what was the maximum allocated amount
during the session. In the following we will discuss the six memory areas mentioned. The
gc-figures are described in section 19.2.

19.1.1 The Shared/Private Heap

The heap is used to store a variety of data:

• compiled code: The heap is used to store compiled Prolog code. Consequently its size is
increased by the various compile-predicates, the assert-family and by load/1. Space is
freed when single clauses (retract) or whole predicates (abolish) are removed from the
system. Note that space reclaiming is usually delayed in these cases (see trimcore/0),
since the removed code may still be under execution. Erasing a module also reclaims all
the memory occupied by the module’s predicates.

• nonlogical storage: All facilities for storing information across backtracking use the heap
to do so. This includes the handle-based facilities (bags, shelves) as well as the name-based
facilities (records, nonlogical variables and arrays). As a general rule, when a stored term
is overwritten, the space for the old value is reclaimed. All memory related to a nonlogical
store is reclaimed when the store is destroyed (e.g. using erase array/1, erase all/1,
bag abolish/1, shelf abolish/1).

• dictionary: The dictionary is the system’s table of atoms and functors. The dictionary
grows whenever the system encounters an atom or functor that has not been mentioned
so far. The dictionary shrinks on dictionary garbage collections, which are triggered au-
tomatically after a certain number of new entries has been made (see set flag/2). The
dictionary is designed to hold several thousand entries, the current number of entries can
be queried with statistics/0,2.

• various descriptors: The system manages a number of other internal tables (for modules,
predicates, streams, operators, etc.) that are also allocated on the heap. This space is
reclaimed when the related Prolog objects cease to exist.

• I/O-buffers: When streams are opened, the system allocates buffers from the heap. They
are freed when the stream is closed.

• allocation in C-externals: If third party libraries or external predicates written in
C/C++ call malloc() or related C library functions, this space is also allocated from the
heap. It is the allocating code’s responsibility to free this space if it becomes unused.
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Note that the distinction between shared and private heap is only relevant for parallel ECLiPSe

systems, where multiple workers share the shared heap, but have their own private heap and
stacks.

19.1.2 The Local Stack

The Local Stack is very similar to the call/return stack in procedural languages. It holds Prolog
variables and return addresses. Space on this stack is allocated during execution of a clause and
deallocated before the last subgoal is called (due to tail recursion / last call optimisation). This
deallocation can not be done when the clause exits nondeterministically (this can be checked
with the debugger or the profiling facility). However, if a deallocation has been delayed due to
nondeterminism, it is finally done when a cut is executed or when execution fails beyond the
allocation point. Hence the ways to limit growth of the local stack are

• use tail recursion where possible

• avoid unnecessary nondeterminism (cf. 19.1.3)

19.1.3 The Control Stack

The main use of the Control Stack is to store so-called choicepoints. A choicepoint is a description
of the system’s state at a certain point in execution. It is created when more than one clause of
a predicate apply to a given goal. Should the first clause fail, the system will backtrack to the
place where the choice was made, the old state will be restored from the choicepoint and the
next clause will be tried. Disjunctions (;/2) also create choicepoints.
The only way to reduce Control Stack usage is to avoid unnecessary nondeterminism. This
is done by writing deterministic predicates in such a way that they can be recognised by the
system. The debugger can help to identify nondeterministic predicates: When it displays an
*EXIT port instead of EXIT then the predicate has left a choicepoint behind. In this case it
should be checked whether the nondeterminism was intended. If not, the predicate can often be
made deterministic by

• writing the clause heads such that a matching clause can be more easily selected by indexing

• using the if-then-else construct (.. -> .. ; ..)

• deliberate insertion of (green) cuts

19.1.4 The Global Stack

The Global Stack holds Prolog structures, lists, strings and long numbers. So the user’s selection
of data structures is largely responsible for the growth of this stack (cf. 5.4). In coroutining
mode, delayed goals also consume space on the Global Stack. It also stores source variable names
for terms which were read in with the flag variable names being on. When this feature is not
needed, it should be turned off so that space on the global stack is saved.
The global stack grows while a program creates data structures. It is popped only on failure.
ECLiPSe therefore provides a garbage collector for the Global Stack which is called when a
certain amount of new space has been consumed. See section 19.2 for how this process can be
controlled. Note again that unnecessary nondeterminism reduces the amount of garbage that
can be reclaimed and should therefore be avoided.
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19.1.5 The Trail Stack

The Trail Stack is used to record information that is needed on backtracking. It is therefore
closely related to the Control Stack. Ways to reduce Trail Stack consumption are

• avoid unnecessary nondeterminism

• supply mode declarations

The Trail Stack is popped on failure and is garbage collected together with the Global Stack.

19.2 Garbage collection

The four stacks grow an shrink as needed1. In addition, ECLiPSe provides an incremental
garbage collector for the global and the trail stack. It is also equipped with a dictionary garbage
collector that frees memory that is occupied by obsolete atoms and functors. Both collectors are
switched on by default and are automatically invoked from time to time. Nevertheless, there
are some predicates to control their action. The following predicates affect both collectors:

set flag(gc, on). Enable the garbage collector (the default).

set flag(gc, verbose). The same as ’on’, but print a message on every collection (the message
goes to toplevel output):

GC ... global: 96208 - 88504 (92.0 %), trail: 500 - 476 (95.2 %), time: 0.017

It displays the area to be searched for garbage, the amount and percentage of garbage,
and the time for the collection. The message of the dictionary collector is as follows:

DICTIONARY GC ... 2814 - 653, (23.2 %), time: 0.033

It displays the number of dictionary entries before the collection, the number of collected
entries, the percentage of reduction and the collection time.

set flag(gc, off). Disable the garbage collector (and risk an overflow), eg. for time-critical
execution sequences.

Predicates related to the stack collector are:

set flag(gc policy, adaptive). This option affects the triggering heuristics of the garbage col-
lector, together with the gc interval setting. The adaptive policy (the default) minimises
garbage collection time.

set flag(gc policy, fixed). This option affects the triggering heuristics of the garbage collector,
together with the gc interval setting. The fixed policy minimises space consumption.

set flag(gc interval, Nbytes). Specify how often the collector is invoked. Roughly, Nbytes is
the number of bytes that your program can use up before a garbage collection is triggered.
There may be programs that create lots of (useful) lists and structures while leaving few
garbage. This will cause the garbage collector to run frequently while reclaiming little

1provided that the underlying operating system supports this
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space. If you suspect this, you should call statistics/0 and check the garbage ratio. If it is
very low (say below 50%) it may make sense to increase the gc_interval, thus reducing
the number of garbage collections. This is normally only necessary when the gc policy
is set to fixed. With gc policy set to adaptive, the collection intervals will be adjusted
automatically.

garbage collect. Request an immediate collection (only if enabled). The use of this predicate
should be restricted to situations where the automatic triggering performs badly. It should
then be inserted in a place where you know for sure that you have just created a lot of
garbage, eg. before the tail-recursive call in something like

cycle(OldState) :-

transform(OldState, NewState), /* long computation */

!,

garbage_collect, /* OldState is obsolete */

cycle(NewState).

statistics(gc number, N). The number of stack garbage collections performed during this
ECLiPSe session.

statistics(gc collected, Bytes). The amount of global stack space reclaimed by all the garbage
collections in bytes.

statistics(gc area, Bytes). The average global stack area that was scanned by each garbage
collection. This number should be close to the selected gc_interval, if it is much larger,
gc_interval should be increased.

statistics(gc ratio, Percentage). The average percentage of garbage found and reclaimed by
each garbage collection. If this ratio is low, gc_interval should be increased.

statistics(gc time, Seconds). The total cputime spent during all garbage collections.

Predicates related to the dictionary collector are:

set flag(gc interval dict, N). Specify that the dictionary collector should be invoked after N
new dictionary entries have been made.

statistics(dict gc number, N). The number of dictionary garbage collections performed dur-
ing this ECLiPSe session.

statistics(dict gc time, Seconds). The total cputime spent by all dictionary garbage collec-
tions.
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Chapter 20

Operating System Interface

20.1 Introduction

ECLiPSe’s operating system interface consists of a collection of built-in predicates and some
global flags that are accessed with set flag/2, get flag/2 and env/0. They are described in
the following sections. The interface is mostly compatible across Unix and Windows operating
systems.

20.2 Environment Access

A number of predicates and global flags is provided to get more or less useful information from
the operating system environment.

20.2.1 Command Line Arguments

Arguments provided on the UNIX (or DOS) command line are accessed by the builtins argc/1
which gives the number of command line arguments (including the command name itself) and
argv/2 which returns a requested positional argument in string form. If the first argument of
argv/2 is the atom all, then a list of all command line arguments is returned.

20.2.2 Environment Variables

On UNIX, environment variables are another way to pass information to the ECLiPSe process.
Their string value can be read using getenv/2:

[eclipse 1]: getenv(’HOME’, Home).

Home = "/usr/octopus"

yes.

The environment variables available on Window is version dependent, and is not a recommended
method of passing information.

20.2.3 Exiting ECLiPSe

When ECLiPSe is exited, it can give a return code to the operating system. This is done by
using exit/1. It exits ECLiPSe and returns its integer argument to the operating system.
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[eclipse 1]: exit(99).

csh% echo $status

99

Note that halt is equivalent to exit(0).

20.2.4 Time and Date

The current date can be obtained in the form of a UNIX date string:

[eclipse 1]: date(Today).

Today = "Tue May 29 20:49:39 1990\n"

yes.

The library calendar contains a utility predicate to convert this string into a Prolog structure.
Another way to access the current time and date is the global flag unix time. It returns the
current time in the traditional UNIX measure, i.e. in seconds since 00:00:00 GMT Jan 1, 1970:

[eclipse 1]: get_flag(unix_time, Now).

Now = 644008011

yes.

Other interesting timings concern the resource usage of the running ECLiPSe. The statistics/2
builtin gives three different times, the user cpu time, the system cpu time and the elapsed real
time since the process was started (all in seconds):

[eclipse 1]: statistics(times, Used).

Used = [0.916667, 1.61667, 2458.88]

yes.

The first figure (user cpu time) is the same as given by cputime/1.

20.2.5 Host Computer

Access to the name and unique identification of the host computer where the system is running
can be obtained by the two global flags hostname and hostid, accessed via get flag/2 or
env/0. These flags might not be available on all machines, get flag/2 fails in these cases.

20.2.6 Calling C Functions

Other data may be obtained with the predicate call c/2 which allows to call directly any C
function which is linked to the Prolog system. Functions which are not linked can be loaded
dynamically with the load/1 predicate.

20.3 File System

A number of built-in predicates is provided for dealing with files and directories. Here we
consider only the file as a whole, for opening files and accessing their contents refer to chapter
10.
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20.3.1 Current Directory

The current working directory is an important notion in UNIX. It can be read and changed
within the ECLiPSe system by using getcwd/1 and cd/1 respectively. The current working
directory is accessible as a global flag as well. Reading and writing this flag is equivalent to the
use of getcwd/1 and cd/1:

[eclipse 1]: getcwd(Where).

Where = "/usr/name/prolog"

yes.

[eclipse 2]: cd(..).

yes.

[eclipse 3]: get_flag(cwd, Where)

Where = "/usr/name"

yes.

All ECLiPSe built-ins that take file names as arguments accept absolute pathnames as well as
relative pathnames starting at the current directory.

20.3.2 Looking at Directories

To look at the contents of a directory, read directory/4 is available. It takes a directory
pathname and a filename pattern and returns a list of subdirectories and a list of files matching
the pattern. The following metacharacters are recognised in the pattern: * matches an arbitrary
sequence of characters, ? matches any single character, [] matches one of the characters inside
the brackets unless the first one is a ˆ in which case it matches any character but those inside
the brackets.

[eclipse 1]: read_directory("/usr/john", "*", Dirlist, Filelist).

Dirlist = ["subdir1", "subdir2"]

Filelist = ["one.c", "two.c", "three.pl", "four.pl"]

yes.

20.3.3 Checking Files

For checking the existence of files, exists/1 or the more powerful existing file/4 is used. For
accessing any file properties there is get file info/3. It can return file permissions, type, owner,
size, inode, number of links as well as creation, access and modification times (as defined by
the UNIX system call stat(2); not all entries are meaningful under Windows), and accessibility
information. It fails when the specified file does not exist. Refer to the reference manual or
help/1 for details.

20.3.4 Renaming and Removing Files

For these basic operations with files, rename/2 and delete/1 are provided.
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20.3.5 Filenames

The filenames used by ECLiPSe is in the Unix format, including on Window platforms, with
the addition that the disk such as C: is indicated by //C/, so a Windows filename such as
"C:\my\path\name.ecl" should be writen as "//C/my/path/name.pl". The utility os file name/2
provides for the interconversion between the format used in ECLiPSe and the Operating Systems’
format.

The utility pathname/4 is provided to ease the handling of filenames. It takes a full pathname
and cuts it into the directory pathname, the filename proper and a suffix ( the part beginning
with the last dot in the string). It also expands symbolic pathnames, starting with ~, ~user or
$var.

[eclipse 1]: Name = "~octopus/prolog/file.pl",

pathname(Name, Path, File, Suffix).

Path = "/usr/octopus/prolog/"

File = "file.pl"

Name = "~octopus/prolog/file.pl"

Suffix = ".pl"

yes.

20.4 Creating Communicating Processes

ECLiPSe provides all the necessary built-ins needed to create UNIX processes and establish
communication between them. A ECLiPSe process can communicate with other processes via
streams and by sending and receiving signals.

20.4.1 Process creation

The built-ins of the exec group and sh/1 fork a new process and execute the command given
as the first argument. Sorted by their versatility, there are:

• sh(Command)

• exec(Command, Streams)

• exec(Command, Streams, ProcessId)

• exec group(Command, Streams, ProcessId)

With sh/1 (or its synonym system/1) it is possible to call and execute any UNIX command
from withing ECLiPSe. However it is not possible to communicate with the process. Moreover,
the ECLiPSe process just waits until the command has been executed.

The exec group makes it possible to set up communication links with the child process by
specifying the Streams argument. It is a list of the form

[Stdin, Stdout, Stderr]

and specifies which ECLiPSe stream should be connected to the stdin, stdout or stderr of the
child respectively. Unless null is specified, this will establish pipes to be created between the
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ECLiPSe process and the child. On Berkeley UNIX systems the streams can be specified as
sigio(Stream) which will setup the pipe such that the signal sigio is issued every time new data
appears on the pipe. Thus, by defining a suitable interrupt handler, it is possible to service this
stream in a completely asynchronous way.

20.4.2 Process control

The sh/1 and exec/2 built-ins both block the ECLiPSe process until the child has finished.
For more sophisticated applications, the processes have to run in parallel and be synchronised
explicitly. This can be achieved with exec/3 or exec group/3. These return immediately after
having created the child process and unify its process identifier (Pid) with the their argument.
The Pid can be used to

• send signals to the process, using the built-in kill(Pid, Signal)

• wait for the process to terminate and obtain its return status wait(Pid, Status)

The difference between exec/3 and exec group/3 is that the latter creates a new process group
for the child, such that the child does not get the interrupt, hangup and kill signals that are
sent to the parent.
The process identifier of the running ECLiPSe and of its parent process are available as the
global flags pid and ppid respectively. They can be accessed using get flag/2 or env/0.
Here is an example of how to connect the UNIX utility bc (the arbitrary-precision arithmetic
language) to a ECLiPSe process. We first create the process with two pipes for the child’s
standard input and output. Then, by writing and reading these streams, the processes can
communicate in a straightforward way. Note that it is usually necessary to flush the output
after writing into a pipe:

[eclipse 1]: exec(bc, [in,out], P).

P = 9759

yes.

[eclipse 2]: writeln(in, "12345678902321 * 2132"), flush(in).

yes.

[eclipse 3]: read_string(out, "\n", _, Result).

Result = "26320987419748372"

yes.

In this example the child process can be terminated by closing its standard input (in other cases
it may be necessary to send a signal). The built-in wait/2 is then used to wait for the process
to terminate and to obtain its exit status. Don’t forget to close the ECLiPSe streams that were
opend by exec/3:

[eclipse 4]: close(in), wait(P,S).

P = 9759

S = 0 More? (;)

yes.
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[eclipse 5]: at_eof(out), close(out).

yes.

20.4.3 Interprocess Signals

The UNIX (or the appropriate Windows) signals are all mapped to ECLiPSe interrupts. Their
names and numbers may vary on different machines. Refer to the operating system documen-
tation for details.
The way to deal with incoming signals is to define a Prolog or external predicate and declare it as
the interrupt handler for this interrupt (using set interrupt handler/2). Interrupt handlers
can be established for all signals except those that are not allowed to be caught by the process
(like e.g. the kill signal 9). For a description of event handling in general see chapter 13.
For explicitly sending signals to other processes kill/2 is provided, which is a direct interface to
the UNIX system call kill(2). Note that some signals can be set up to be raised automatically,
e.g. sigio can be raised when data arrives on a pipe.
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Chapter 21

Interprocess Communication

ECLiPSe contains built-in predicates that support interprocess communications using sockets.
Sockets implement bidirectional channels that can connect multiple processes on different ma-
chines in different networks. The socket predicates are directly mapped to the system calls and
therefore detailed information can be found in the Unix manuals.

Sockets in general allow a networked communication among many processes, where each packet
sent by one process can be sent to different address. In order to limit the number of necessary
built-in predicates, ECLiPSe supports only point-to-point communication based on stream or
datagram sockets, or many-to-one communication based on datagrams. Broadcasting as well
as using one socket to send data to different addresses is not supported, except that datagram
sockets can be re-connected, so that the same socket is directed to another address. Below we
describe the basic communication types that are available in ECLiPSe.

Note that the sockets streams in ECLiPSe are buffered like all other streams, and so it is
necessary to flush the buffer in order to actually send the data to the socket. This can be done
either with the flush/1 predicate or with the option %b in printf/2, 3.

21.1 Socket Domains

Currently there are two available domains, unix and internet. The communication in the unix
domain is limited to a single machine running under an Unix operating system, and the sockets
are associated to files in this machine’s file system.

The internet domain can be used to connect any two machines which are connected through
the network. It can also connect two processes on the same machine. The address of a socket is
then identified by the host name and the port number. The host name is the same as obtained
e.g. with the get flag(hostname, Host). The port identifies the channel on the host which is
used for the communication. This is available under both Unix and Windows operating systems.

21.2 Stream Connection (internet domain)

This type of communication is very similar to pipes, the stream communication is reliable and
there are no boundaries between the messages. Stream sockets always require explicit connection
from both communicating processes.

After a socket is created with the socket/3 predicate, one of the processes, the server, gives it a
name and waits for a connection. The other process uses the same name when connecting to the
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former process. After the connection is established, both processes can read and write on the
socket and so the difference between the server and the client disappears. The socket addresses
contain the host name and the port number. Since one port number identifies the socket on a
given host, the process cannot itself specify the port number it wants to use because it can be
already in use by another process. Therefore, the safe approach is to use the default and let the
system specify the port number, which is achieved by leaving the port uninstantiated. Since the
host is always known, it can also be left uninstantiated. The client, however, has to specify both
the host name and the port number:

server:

[eclipse 10]: socket(internet, stream, s), bind(s, X).

X = acrab5 / 3789

yes.

[eclipse 11]: listen(s, 1), accept(s, From, news).

<blocks waiting for a connection>

client:

[eclipse 26]: socket(internet, stream, s), connect(s, acrab5/3789).

yes.

[eclipse 27]: printf(s, "%w. %b", message(client)), read(s, Msg).

server:

From = acrab4 / 1627

yes.

[eclipse 12]: read(news, Msg), printf(news, "%w. %b", message(server)).

Msg = message(client)

yes.

client:

Msg = message(server)

yes.

21.3 Datagram Connection (internet domain)

This type of communication is the most general one offered by ECLiPSe. It is based on packets
sent from one process to another, perhaps across a network. Any machine which is reachable
over the network can participate in the communication.
The communication protocol does not guarantee that the message will always be delivered, but
normally it will be. Every packet represents a message which is read separately at the system
level, however at the Prolog level the packet boundaries are not visible1. The difference to
stream communication is that there is no obligatory connection between the server and the
client. First the socket has to be created, and then the process which wants to read from the it

1The packet boundaries are not of much interest in Prolog because every Prolog term represents itself a message
with clear boundaries.
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binds the socket to a name. Any other process can then connect directly to this socket using the
connect/2 predicate and send data there. This connection can be temporary, and after writing
the message to the socket the process can connect it to another socket, or just disconnect it by
calling connect(Socket, 0).

Such datagram connection works only in one direction, namely from the process that called
connect/2 to the process that called bind/2, however the connection in the other direction
can be established in the same way.

Since ECLiPSe does not provide a link to the system call sendto(), the address where the packet
should be sent to can be specified only using connect/2. If the next packet is to be sent to a
different address, a new connect/2 call can be used. The socket can be disconnected by calling
connect(s, 0/0).

The functionality of recvfrom() is not available, i.e. the sender has to identify itself explicitly in
the message if it wants the receiver to know who the sender was.

Below is an example of a program that starts ECLiPSe on all available machines which are not
highly loaded and accepts a hello message from them. Note the use of rsh to invoke the process
on the remote machine and pass it the host name and port address. Note that this example is
Unix specific.

% Invoke ECLiPSe on all available machines and accept a hello message

% from them.

connect_machines :-

machine_list(List), % make a list of machines from ruptime

socket(internet, datagram, sigio(s)), % signal when data comes

bind(s, Address),

set_interrupt_handler(io, io_handler/0),

connect_machines(List, Address).

% As soon as a message arrives to the socket, the io signal will

% be sent and the handler reads the message.

io_handler :-

set_flag(enable_interrupts, off),

read_string(s, "\n", _, Message),

writeln(Message),

set_flag(enable_interrupts, on).

% Invoke eclipse on all machines with small load and let them execute

% the start/0 predicate

connect_machines([info(RHost, UpTime, Users, L1, _, _)|Rest], Host/Port) :-

UpTime > 0, % it is not down

L1 < 0.5, % load not too high

Users < 3, % not too many users

!,

concat_string(, Command),

exec([’rsh’, RHost, ’eclipse’, Host, Port, ’-b’,

’/home/lp/micha/sepia4/up.pl’, ’-e’, ’start’], [], _),

connect_machines(Rest, Host/Port).
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connect_machines([_|Rest], Address) :-

connect_machines(Rest, Address).

connect_machines([], _).

% ECLiPSe on remote hosts is invoked with

% eclipse host port -b file.pl -e start

% It connects to the socket of the main process,

% sends it a hello message and exits.

start :-

is_built_in(socket/3), % to ignore non-BSD machines

argv(1, SHost),

argv(2, SPort),

atom_string(Host, SHost),

number_string(Port, SPort),

get_flag(hostname, LHost),

socket(internet, datagram, s), % create the socket

connect(s, Host/Port), % connect to the main process

printf(s, "hello from %s\n%b", LHost).

% Invoke ruptime(1) and parse its output to a list of accessible

% machines in the form

% info(Host, UpTime, Users, Load1, Load2, Load3).

machine_list(List) :-

% exec/2 cannot be used as it could overflow

% the pipe and then block

exec([’ruptime’, ’-l’], [null, S], P),

parse_ruptime(S, List),

close(S),

wait(P, _),

!.

% Parse the output of ruptime

parse_ruptime(S, [Info|List]) :-

parse_uptime_record(S, Info),

!,

parse_ruptime(S, List).

parse_ruptime(_, []).

% parse one line of the ruptime output

parse_uptime_record(S, info(Host, Time, Users, Load1, Load2, Load3)) :-

read_token(S, Host, _),

Host \== end_of_file,

read_token(S, Up, _),

(Up == up ->

read_time(S, Time),

read_token(S, ’,’, _),

read_token(S, Users, _),
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read_token(S, _, _),

read_token(S, ’,’, _),

read_token(S, load, _),

read_token(S, Load1, _),

read_token(S, ’,’, _),

read_token(S, Load2, _),

read_token(S, ’,’, _),

read_token(S, Load3, _)

;

read_time(S, _),

Time = 0

).

% Parse the up/down time and if the machine is down, return 0

read_time(S, Time) :-

read_token(S, T1, _),

(read_token(S, +, _) ->

Days = T1,

read_token(S, Hours, _),

read_token(S, :, _)

;

Days = 0,

Hours = T1

),

read_token(S, Mins, _),

Time is ((24 * Days) + Hours) * 60 + Mins.

and here is a script of the session:

[eclipse 1]: [up].

up.pl compiled traceable 4772 bytes in 0.08 seconds

yes.

[eclipse 2]: connect_machines.

sending to mimas3

sending to mimas8

sending to acrab23

sending to europa1

sending to europa5

sending to regulus2

sending to miranda5

sending to mimas2

sending to triton6

sending to europa2

sending to acrab7

sending to europa3

sending to sirius

sending to miranda6
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sending to charon6

sending to acrab13

sending to triton1

sending to acrab20

sending to triton4

sending to charon2

sending to triton5

sending to acrab24

sending to acrab21

sending to scorpio

sending to acrab14

sending to janus5

yes.

[eclipse 3]: hello from mimas3

eclipse: Command not found. % eclipse not installed here

hello from regulus2

hello from mimas8

hello from acrab20

hello from europa1

hello from mimas2

hello from miranda6

hello from miranda5

hello from europa3

hello from charon6

hello from charon2

hello from acrab24

hello from triton5

hello from acrab21

hello from janus5

hello from triton4

hello from triton6

hello from europa2

hello from europa5

hello from acrab23

hello from triton1

hello from acrab14

hello from acrab13

hello from acrab7

21.4 Stream Connection (unix domain)

The sequence of operations is the same as for the internet domain, however in the unix domain
the socket addresses are the file names:

server:

[eclipse 10]: socket(unix, stream, s), bind(s, ’/tmp/sock’).
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yes.

[eclipse 11]: listen(s, 1), accept(s, _, news).

<blocks waiting for a connection>

client:

[eclipse 26]: socket(unix, stream, s), connect(s, ’/tmp/sock’).

yes.

[eclipse 27]: printf(s, "%w. %b", message(client)), read(s, Msg).

server:

[eclipse 12]: read(news, Msg), printf(news, "%w. %b", message(server)).

Msg = message(client)

yes.

client:

Msg = message(server)

yes.

21.5 Datagram Connection (unix domain)

This is similar to datagram connection in the internet domain, except that it is limited to
communications between two processes on the same Unix machine.

Again, like in the internet domain, the connection needs to be established in both directions if
bi-direction communication is required:

server:

% Make a named socket and read two terms from it

[eclipse 10]: socket(unix, datagram, s), bind(s, ’/tmp/sock’).

yes.

[eclipse 11]: read(s, X), read(s, Y).

process1:

% Connect a socket to the server and write one term

[eclipse 32]: socket(unix, datagram, s), connect(s, ’/tmp/sock’).

yes.

[eclipse 33]: printf(s, "%w. %b", message(process1)).

process2:

% Connect a named socket to the server and write another term

[eclipse 15]: socket(unix, datagram, s), connect(s, ’/tmp/sock’),

bind(s, ’/tmp/socka’).
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yes.

[eclipse 16]: printf(s, "%w. %b", message(process2)).

yes.

% And now disconnect the output socket from the server

[eclipse 17]: connect(s, 0).

yes.

server:

% Now the server can read the two terms

X = message(process1)

Y = message(process2)

yes.

% and it writes one term to the second process on the same socket

[eclipse 12]: connect(s, ’/tmp/socka’),

printf(s, "%w. %b", message(server)).

process2:

%

[eclipse 18]: read(s, Msg).

Msg = message(server)

yes.
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Chapter 22

Porting Applications to ECLiPSe

The ECLiPSe system is to a large extent compatible with Prolog systems of the Edinburgh
family, and one of the requirements during the development of ECLiPSe was to minimise the
effort required to port programs written in other dialects to ECLiPSe. However, there are some
differences. When you want to run an existing Prolog application on the ECLiPSe system, you
have basically two choices: Using a compatibility language dialect, or modifying your program.

22.1 Using the compatibility language dialect

The ECLiPSe compatibility language dialects are the fastest way to get a program running that
was originally written for a different system. To use a particular language dialect, a module
should be created with that language dialect using module/3. The packages contain the neces-
sary code to make ECLiPSe emulate the behaviour of the other system to a large extent within
the module. Compatibility dialects exist for:

• ISO Standard Prolog (module(mymodulename, [], iso))

• C-Prolog (module(mymodulename, [], cprolog))

• Quintus Prolog (module(mymodulename, [], quintus))

• SICStus Prolog, (module(mymodulename, [], sicstus))

See the Reference Manual for details on the compatibility provided by the language dialects. The
language dialects are just modules which provides the necessary code and exports to emulate
a particular Prolog dialect. This module is imported instead of the default eclipse language
dialect which provides the ECLiPSe language. The source code of the language dialect module
is provided in the ECLiPSe library directory. Using this as a guideline, it should be easy to
write similar packages for other systems, as long as their syntax does not deviate too much from
the Edinburgh tradition.
The following problems can occur despite the use of compatibility packages:

22.1.1 Compiler versus Interpreter

If your program was written for an interpreter, e.g. C-Prolog, you have to be aware that ECLiPSe

is a compiling system. There is a distinction between static and dynamic predicates. By default,
a predicate is static. This means that its clauses have to be be compiled as a whole (they must

221



not be spread over multiple files), its source code is not stored in the system, and it can not be
modified (only recompiled as a whole). In contrast, a dynamic predicate may be modified by
compiling or asserting new clauses and by retracting clauses. Its source code can be accessed
using clause/1,2 or listing/0,1 A predicate is dynamic when it is explicitly declared as such
or when it was created using assert/1. Porting programs from an interpreter usually requires
the addition of some dynamic declarations. In the worst case, when (almost) all procedures
have to be dynamic, the flag all dynamic can be set instead.

22.2 Porting Programs to plain ECLiPSe

If you want to use ECLiPSe to do further development of your application, it is probably
advantageous to modify it such that it runs under plain ECLiPSe. In the following we summarise
the main aspects that have to be considered when doing so.

• In general, it is almost always possible to add to your program a small routine that fixes
the problem, rather than to modify the source of the application in many places. E.g.
name clashes are easier fixed by using the local/1 declaration rather than to rename the
clashing predicate in the whole application program.

• Due to lack of standardisation, some subtle differences in the syntax exist between Prolog
systems. See A.4 for details. ECLiPSe has a number of options that make it possible to
configure its behaviour as desired.

• ECLiPSe has the string data type which is not present in Prolog of the Edinburgh family.
Double-quoted items are parsed as strings in ECLiPSe, while they are lists of integers in
other systems and when the compatibility packages are used (cf. chapter 5.4).

• I/O predicates of the see and tell group are not builtins in ECLiPSe, but they are provided
in the cio library. Call lib(cio) in order to have them available (cf. appendix A). Similarly
for numbervars/3.

• In ECLiPSe, some builtins raise events in cases where they just fail in other systems, e.g.
arg(1,2,X) fails in C-Prolog, but raises a type error in ECLiPSe. If some code relies on
such behaviour, it is best to modify it by adding an explicit check like

..., compound(T), arg(N, T, X), ...

Another alternative is to redefine the arg/3 builtin, using :/2 to access the original version:

:- local arg/3.

arg(N, T, X) :-

compound(X),

eclipse_language:arg(N, T, X).

A third alternative is to define an error handler which will fail the predicate whenever the
event is raised. In this case:

my_type_error(_, arg(_, _, _)) :- !, fail.

my_type_error(E, Goal) :- error(default(E), Goal).

:- set_error_handler(5, my_type_error/2).
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• As the ECLiPSe compiler does not accept procedures whose clauses are not consecutive in
a file, you have to load the library scattered.pl if you want to compile such procedures.

22.3 Exploiting ECLiPSe Features

When rewriting existing applications as well as when writing new programs, it is useful to bear
in mind important ECLiPSe features which can make programs easier to write and/or faster:

• The maximum performance is obtained when calling nodbgcomp/0 at the beginning of
the session, before compiling any program and loading any libraries.

• ECLiPSe arrays and global variables (setval/2, getval/2) are usually more suitable to
store permanent data than assert/1 is, and are usually faster.

• ECLiPSe has a number of language extensions which make programming easier, see chapter
5.

• The predicates get flag/2, get flag/3, get file info/3, get stream info/3, get var in-
fo/3 give a lot of useful information about the system and the data.

• The ECLiPSe macros often help to solve syntactic problems (see chapter 12).

• The TkECLiPSe GUI provides many features that should make developing programs easier
than with the traditional tty interface.

• It is worth familiarising oneself with the debugger’s features, see chapter 14.

• ECLiPSe is highly customizable, even problems which seemingly require modification of
the ECLiPSe sources can very often be solved at the Prolog level.
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Appendix A

Syntax

A.1 Introduction

This chapter provides a definition of the syntax of the ECLiPSe Prolog language. A complete
specification of the syntax is provided and comparison to other commercial Prolog systems are
made. The ECLiPSe syntax is based on that of Edinburgh Prolog ([1]).

A.2 Notation

The following notation is used in the syntax specification in this chapter:

• a term h is a term which is the head of the clause.

• a term h(N) is a term h of maximum precedence N.

• a term g is a term which is a goal (body) of the clause.

• a term g(N) is a term g of maximum precedence N.

• a term a is a term which is an argument of a compound term or a list.

• a term(N) can be any term (term h, term a or term h) of maximum precedence N.

• fx(N) is a prefix operator of precedence N which is not right associative.

• fy(N) is a prefix operator of precedence N which is right associative.

• similar definitions apply for infix (xfx, xfy, yfx) and postfix (xf, yf) operators.

A.2.1 Character Classes

The following character classes exist:
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Character Class Notation Used Default Members

upper case UC all upper case letters
underline UL _

lower case LC all lower case letters
digit N digits
blank space BS space, tab and nonprintable ASCII characters
end of line NL line feed
atom quote AQ ’

string quote SQ "

list quote LQ
radix RA
ascii AS
solo SL ! ;

special DS ( [ { ) ] } , |

line comment CM %

escape ES \

first comment CM1 /

second comment CM2 *

symbol SY # + - . : < = > ? @ ^ ‘ ~ $ &

terminator TS
The character class of any character can be modified by a chtab-declaration.

A.2.2 Groups of characters

Group Type Notation Valid Characters

alphanumerical ALP UC UL LC N
any character ANY
non escape NES any character except escape
sign SGN + -

A.2.3 Valid Tokens

Terms are defined in terms of tokens, and tokens are defined in terms of characters and character
classes. Individual tokens can be read with the predicates read token/2 and read token/3.
The description of the valid tokens follows.

Constants

1. atoms

ATOM = (LC ALP*)

| (SY | CM1 | CM2 | ES)+

| (AQ (NES | ES ANY+)* AQ)

| SL

| []
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| {}

| |

2. numbers

(a) integers

INT = [SGN] N+

(b) based integers

INTBAS = [SGN] N+ (AQ | RA) (N | LC | UC)+

The base must be an integer between 1 and 36 included, the value being valid for this
base.

If the syntax option iso base prefix is active, the syntax for based integers is instead

INTBAS = [SGN] 0 (b | o | x) (N | LC | UC)+

which allows binary, octal and hexadecimal numbers respectively.

(c) character codes

INTCHAR = [SGN] 0 (AQ | RA) ANY | AS ANY

The value of the integer is the character code of the last character.

(d) rationals

RAT = [SGN] N+ UL N+

(e) floats

FLOAT = [SGN] N+ . N+ [ (e | E) [SGN] N+ | Inf ]

| [SGN] N+ (e | E) [SGN] N+

checks are performed that the numbers are in a valid range.

(f) bounded reals

BREAL = FLOAT UL UL FLOAT

where the first float must be less or equal to the second.

If the syntax option blanks after sign is active, then blank space (BS*) is allowed between
the sign and the following digits.

3. strings

STRING = SQ (NES | ES ANY+ | SQ BS* SQ)* SQ

By default, consecutive strings are concatenated into a single string. This behaviour can
be disabled by the syntax option doubled quote is quote, which causes doubled quotes
to be interpreted as a single occurrence of the quote within the string.
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4. lists of character codes

LIST = LQ (NES | ES ANY+ | LQ BS* LQ)* LQ

By default, consecutive character lists are concatenated into a single character list. This
behaviour can be disabled by the syntax option doubled quote is quote, which causes
doubled quotes to be interpreted as a single occurrence of the quote within the string.

Variables

VAR = (UC | UL) ALP*

End of clause

EOCL = . (BS | NL | <end of file>) | TS | <end of file>

A.2.4 Escape Sequences within Strings and Atoms

Within atoms and strings, the escape sequences (ES ANY+) are interpreted: if the sequence
matches one of the following valid escape sequences, the corresponding special character is
inserted into the quoted item.

Escape Sequence Result
ES a ASCII alert (7)
ES b ASCII backspace (8)
ES f ASCII form feed (12)
ES n ASCII newline (10)
ES r ASCII carriage return (13)
ES t ASCII tabulation (9)
ES v ASCII vertical tab (11)
ES e ASCII escape (27)
ES d ASCII delete (127)
ES ES the ES character itself
ES AQ the AQ character itself
ES SQ the SQ character itself
ES LQ the LQ character itself
ES NL ignored
ES c (BS|NL)* ignored
ES three octal digits character whose character code is the given octal value
ES x hex digits ES character whose character code is the given hexadecimal value

Any other character following the ES constitutes a syntax error. If the syntax option iso escapes
is active, the octal escape sequence can be of any length and must be terminated with an ES
character.

A.3 Formal definition of clause syntax

What follows is the specification of the syntax. The terminal symbols are written in UPPER
CASE or as the character sequence they consist of.
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program ::= clause EOCL

| clause EOCL program

clause ::= head

| head rulech goals

| rulech goals

head ::= term_h

goals ::= term_g

| goals , goals

| goals ; goals

| goals -> goals

| goals -> goals ; goals

term_h ::= term_h(0)

| term(1200)

term_g ::= term_g(0)

| term(1200)

term(0) ::= VAR /* not a term_h */

| attr_var /* not a term_h */

| ATOM

| structure

| structure_with_fields

| subscript

| list

| STRING /* not a term_h nor a term_g */

| number /* not a term_h nor a term_g */

| bterm

term(N) ::= term(0)

| prefix_expression(N)

| infix_expression(N)

| postfix_expression(N)

prefix_expression(N) ::= fx(N) term(N-1)

| fy(N) term(N)

| fxx(N) term(N-1) term(N-1)

| fxy(N) term(N-1) term(N)

infix_expression(N) ::= term(N-1) xfx(N) term(N-1)

| term(N) yfx(N) term(N-1)

| term(N-1) xfy(N) term(N)

postfix_expression(N) ::= term(N-1) xf(N)
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| term(N) yf(N)

attr_var ::= VAR { attributes }

/* Note: no space before { */

attributes ::= attribute

| attribute , attributes

attribute ::= qualified_attribute

| nonqualified_attribute

qualified_attribute ::= ATOM : nonqualified_attribute

nonqualified_attribute ::= term_a

structure ::= functor ( termlist )

/* Note: no space before ( */

structure_with_fields ::= functor { termlist }

| functor { }

/* Note: no space before { */

subscript ::= structure list

| VAR list

/* Note: no space before list */

termlist ::= term_a

| term_a , termlist

list ::= [ listexpr ]

| .(term_a, term_a)

listexpr ::= term_a

| term_a | term_a

| term_a , listexpr

term_a ::= term(1200)

/* Note: it depends on syntax_options */

number ::= INT

| INTBAS

| INTCHAR

| RAT

| FLOAT

| BREAL

bterm ::= ( clause )
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| { clause }

functor ::= ATOM /* arity > 0 */

rulech ::= :-

| ?-

A.3.1 Comments

There are two types of comments: bracketed comments, which are enclosed by CM1-CM2 and
CM2-CM1, and the end-of-line comment, which is enclosed by CM and NL. Both types of
comment behave as separators. When the syntax option nested comments is on (the default is
off), bracketed comments can be nested.

A.3.2 Operators

In Prolog, the user is able to modify the syntax dynamically by explicitly declaring new operators.
The builtin op/3 performs this task. As in Edinburgh Prolog, a lower precedence value means
that the operator binds stronger (1 strongest, 1200 weakest).
Any atom (whether symbolic, alphanumeric, or quoted) can be declared as an operator. Once
an operator has been declared, the parser will accept the corresponding operator notation, and
certain output builtins will produce the operator notation if possible. There are three classes of
operators: prefix, infix and postfix.

• When f is declared prefix unary (fx or fy), then the term f(X) can alternatively be written
as f X.

• When f is declared prefix binary (fxx or fxy), then the term f(X,Y) can alternatively be
written as f X Y.

• When f is declared postfix (xf or yf), then the term f(X) can alternatively be written as
X f.

• When f is declared infix (xfx, xfy or yfx), then the term f(X,Y) can alternatively be
written as X f Y.

An operator can belong to more than one class, e.g. the plus sign is both a prefix and an infix
operator at the same time.
In the associativity specification of an operator (e.g. fx, yfx), x represents an argument whose
precedence must be lower than that of the operator. y represents an argument whose precedence
must be lower or equal to that of the operator. y should be used if one wants to allow chaining
of operators. The position of the y will determine the grouping within a chain of operators. For
example:

Example declaration will allow to stand for

---------------------------------------------------------------

:- op(500,xfx,in). A in B in(A,B)

:- op(500,xfy,in). A in B in C in(A,in(B,C))

:- op(500,yfx,in). A in B in C in(in(A,B),C)

:- op(500,fx ,pre). pre A pre(A)
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:- op(500,fy ,pre). pre pre A pre(pre(A))

:- op(500, xf,post). A post post(A)

:- op(500, yf,post). A post post post(post(A))

:- op(500,fxx,bin). bin A B bin(A,B)

:- op(500,fxy,bin). bin A bin B C bin(A,bin(B,C))

Operator declarations are usually local to a module, but they can be exported and imported. The
operator visible in a module is either the local one (if any), an imported one, or a predefined one.
Some operators are pre-defined (see Appendix B on page 237). They may be locally redefined
if desired.

Note that parentheses are used to build expressions with precedence zero and thus to override
operator declarations1.

A.3.3 Operator Ambiguities

Unlike the canonical syntax, operator syntax can lead to ambiguities.

• For instance, when a prefix operator is followed by an infix or postfix operator, the prefix
is often not meant to be a prefix operator, but simply the left hand side argument of
the following infix or postfix. In order to decide whether that is the case, ECLiPSe uses
the operator’s relative precedences and their associativities, and, if necessary, a two-token
lookahead. If this rules out the prefix-interpretation, then the prefix is treated as a simple
atom. In the rare case where this limited lookahead is not enough to disambigute, the
prefix must be explicitly enclosed in parentheses.

• Another source of ambiguity are operators which have been declared both infix and postfix.
In this case, ECLiPSe uses a one-token lookahead to check whether the infix-interpretation
can be ruled out. If yes, the operator is interpreted as postfix, otherwise as infix. Again,
in rare cases parentheses may be necessary to enforce the interpretation as postfix.

• When a binary prefix operator is followed by an infix operator, then either of them could be
the main functor. Faced with the ambiguity, the system will prefer the infix interpretation.
To force the binary prefix to be recognised, the infix must be enclosed in parentheses.

A.4 Syntax Differences between ECLiPSe and other Prologs

ECLiPSe supports the following extensions of Prolog syntax:

• Attributed variables: X{Attr}

• Rational numbers: 3_4

• Bounded real numbers: 1.99__2.01

• Array subscripts: Matrix[3,4]

• Structures with named fields: emp{age:33,salary:33000}

1 Quotes, on the other hand, are used to build atoms from characters with different or mixed character classes;
they do not change the precedence of operators
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• Binary prefix operators: some X p(X)

Some of these extensions can be disabled via syntax option settings (this is done for example by
the compatibility packages). In addition to the above extensions, the following minor differences
exist between default ECLiPSe syntax and most Prolog systems:

• In ECLiPSe, end of file is accepted as fullstop

• By default, an unquoted vertical bar can be used as an atom or functor (controlled by the
syntax option bar is no atom).

• By default, operators with precedence higher than 1000 are allowed in a comma-separated
list of terms, i.e. structure arguments and lists. The ambiguity is resolved by considering
commas as argument separators rather than operators inside the term. Thus e.g.

p(a :- b, c)

is accepted and parsed as p/2. This behaviour can be disabled (and turned into a syntax
error) by setting the syntax option limit arg precedence.

• By default, double-quoted items are parsed as strings, not as character lists. This behaviour
can be changed via set chtab/2 which allows string-quotes, list-quotes and atom-quotes
to be redefined.

• By default, consecutive string- or list-quotes have the effect of concatenating the quoted
items, while consecutive atom-quotes have no special meaning. The syntax option dou-
bled quote is quote changes this.

• By default, blank space between a sign and a number is significant: When there is no space
between sign and number, the sign is taken as part of the number. With space, the sign
is taken as prefix operator. This is controlled by the syntax option blanks after sign.

A.5 Changing the Parser behaviour

Some of these properties can be changed by choosing one of the following syntax options. The
following options exist:

bar is no atom disallow the use of an unquoted vertical bar as atom or functor (and turns it
into a synonym for a semicolon instead).

based bignums Allow base notation even to write integers longer than the wordsize (this
implies they are always positive because the most significant bit is not interpreted as a
sign bit).

blanks after sign ignore blank space between a sign and a number (by default, this space is
significant and will lead to the sign being taken as prefix operator rather than the number’s
sign).

doubled quote is quote parse a pair of quotes within a quoted item as one occurrence of the
quote within the string. If this option is off (the default), consecutive string-quoted and
list-quoted items are parsed as a single (concatenated) item, and consecutive quoted atoms
are parsed as consecutive atoms.
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iso escapes ISO-Prolog compatible escape sequences within strings and atoms.

iso base prefix allow binary, octal or hexadecimal numbers to be written with 0b, 0o or 0x
prefix respectively, and disallow the base’number notation.

limit arg precedence do not allow terms with a precedence higher than 999 as structure
arguments, unless parenthesised.

nested comments allow bracketed comments to be nested.

nl in quotes allow newlines to occur inside quotes.

no array subscripts disallow the ECLiPSe specific array-subscript syntax.

no attributes disallow the ECLiPSe specific syntax for variable attributes in curly braces.

no blanks do not allow blanks between functor an opening parenthesis

no curly arguments disallow the ECLiPSe specific syntax for structures with named argu-
ments in curly braces.

read floats as breals read all floating point numbers as bounded reals rather than as floats.
The resulting breal is a small interval enclosing the true value of the number in decimal
notation.

var functor is apply allow variables as functors, and parse a term like X(A,B,C) as apply(X,[A,B,C]).

A number of further syntax options is provided for the purpose of parsing non-Prolog-like lan-
guages, in particular the Zinc family:

atom subscripts allow subscripts after atoms, and parse a term like a[B,C] as subscript(a,[B,C]).

general subscripts allow subscripts after atoms, parenthesized subterms and subscripted terms,
and parse a term like a[B][C] as subscript(subscript(a,[B]),[C]), or (a-b)[C] as
subscript(a-b,[C]).

curly args as list parse the arguments of a term in curly brackets as a list, i.e. parse {a,b,c}

as {}([a,b,c]) instead of the default {}((a,b,c)).

Syntax option settings can be local to a module or exported, e.g.

:- local syntax_option(not nl_in_quotes).

:- export syntax_option(var_functor_is_apply).

A.6 Short and Canonical Syntax

The following table summarises the correspondence between the short syntax forms (supported
by the parser and the term writer) and their corresponding canonical forms. Usually, the pro-
grammer does not need to be concerned about the canonical represention because the short
syntax is accepted by the parser and reproduced by the term writer (unless canonical writing is
explicitly requested).
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Known as Short Canonical Active

------------------------------------------------------------------------

List [A|B] .(A,B) always

Curly brackets {A} {}(A) always

Subscripted variable X[...] subscript(X, [...]) default

Subscripted struct S[...] subscript(S, [...]) default

Declared structure f{...} with(f, [...]) default

Attributed variable X{...} ’with attributes’(X, [...]) default

Variable functor X(...) apply(X, [...]) optional

Here A,B stands for arbitrary terms, X for a variable, S for a compound term in canoncial
syntax, f for an arbitrary functor, and the ellipsis for a comma-separated sequence of arbitrary
terms.
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Appendix B

Operators

The following table summarises the predefined global operators in ECLiPSe. They can be
redefined or erased on a per-module basis by hiding them with a user-defined local operator
using op/3.

Prec Assoc Operators

1200 xfx [-->, :-, ?-, if]

1200 fx [:-, ?-]

1190 fy [help]

1190 fx [delay]

1180 fx [-?->]

1170 xfy [else]

1160 fx [if]

1150 xfx [then]

1100 xfy [;, do, ’|’]

1050 xfy [->]

1050 xfx [*->, except, from]

1050 fy [import, reexport]

1000 xfy [,]

1000 fy [abolish, demon, dynamic, export, global,

listing, local, mode, nospy, parallel, skipped,

spy, traceable, unskipped, untraceable]

900 fy [\+, not, once, ~]

700 xfx [#<, #<=, #=, #=<, #>, #>=, #\=, ::,

<, =, =.., =:=, =<, ==, =\=, >, >=,

@<, @=<, @>, @>=, \=, \==, is, ~=]

650 xfx [@, of, with]

600 xfy [:]

600 xfx [..]

500 yfx [+, -, /\, \/]

400 yfx [*, /, //, <<, >>, div, mod, rem]

200 xfy [^]

200 fy [+, -, \]
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Appendix C

Events

We list here the ECLiPSe event types together with the default event handlers and their descrip-
tion. Unless otherwise specified, the arguments that the system passes to the event handler
are

First Argument Second Argument Third Argument

Event number Culprit goal Caller Module

If the caller module is unknown, a free variable is passed.

C.1 Event Types

C.1.1 Argument Types and Values

Event Event Type Default Event Handler

1 general error error handler / 2
2 term of an unknown type error handler / 2
4 instantiation fault error handler / 4
5 type error error handler / 4
6 out of range error handler / 4
7 string contains unexpected characters error handler / 2
8 bad argument list error handler / 2
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C.1.2 Arithmetic, Environment

Event Event Type Default Event Handler

15 creating parallel choice point fail / 0
16 failing to parallel choice point fail / 0
17 recomputation failed error handler / 2
20 arithmetic exception error handler / 2
21 undefined arithmetic expression error handler / 4
23 comparison trap compare handler / 4
24 number expected error handler / 2
25 integer overflow integer overflow handler / 2
30 trying to write a read-only flag error handler / 2
31 arity limit exceeded error handler / 2
32 no handler for event warning handler / 2
33 event queue overflow error handler / 2

C.1.3 Data and Memory Areas, Predicates, Operators

Event Event Type Default Event Handler

40 stale object handle error handler / 2
41 array or global variable does not exist undef array handler / 3
42 redefining an existing array make array handler / 4
43 multiple definition postfix/infix error handler / 2
44 record already exists error handler / 2
45 record does not exist undef record handler / 2
50 trying to modify a read-only ground term error handler / 2
60 referring to an undefined procedure error handler / 4
61 inconsistent tool redefinition error handler / 4
62 inconsistent procedure redefinition error handler / 4
63 procedure not dynamic error handler / 4
64 procedure already dynamic dynamic handler / 3
65 procedure already defined error handler / 4
66 trying to modify a system predicate error handler / 4
67 procedure is not yet loaded error handler / 4
68 calling an undefined procedure call handler / 4
69 autoload event autoload handler / 4
70 accessing an undefined dynamic procedure undef dynamic handler / 3
71 procedure already parallel error handler / 2
72 accessing an undefined operator error handler / 2
73 redefining an existing operator true / 0
74 hiding an existing global operator true / 0
75 referring to a deprecated predicate declaration warning handler

/ 3
76 predicate declared but not defined declaration warning handler

/ 3
77 predicate used but not declared or defined declaration warning handler

/ 3
78 calling a procedure with a reserved name error handler / 2
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C.1.4 Modules, Visibility

Event Event Type Default Event Handler

80 not a module error handler / 2
81 module/1 can appear only as a directive error handler / 2
82 trying to access a locked module locked access handler / 2
83 creating a new module warning handler / 2
84 referring to non-exported predicate declaration warning handler

/ 3
85 referring to non-existing module declaration warning handler

/ 3
86 lookup module does not exist no lookup module handler /

4
87 attempt to redefine an existing local item warning handler / 3
88 attempt to redefine an existing exported item warning handler / 3
89 attempt to redefine an already imported item warning handler / 3
90 procedure is already reexported error handler / 4
91 not a tool procedure error handler / 2
92 trying to redefine an existing local procedure error handler / 4
93 trying to redefine an existing exported proce-

dure
error handler / 4

94 trying to redefine an existing imported proce-
dure

error handler / 4

96 ambiguous import ambiguous import resolve / 3
97 module already exists error handler / 2
98 key not correct error handler / 2
99 unresolved ambiguous import ambiguous import warn / 3
100 accessing a procedure defined in another module undef dynamic handler / 3
101 trying to erase a module from itself error handler / 2
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C.1.5 Syntax Errors, Parsing

Event Event Type Default Event Handler

110 syntax error: parser error handler / 2
111 syntax error: list tail ended improperly parser error handler / 2
112 syntax error: illegal character in a quoted token parser error handler / 2
113 syntax error: unexpected comma parser error handler / 2
114 syntax error: unexpected token parser error handler / 2
115 syntax error: unexpected end of file parser error handler / 2
116 syntax error: numeric constant out of range parser error handler / 2
117 syntax error: bracket necessary parser error handler / 2
118 syntax error: unexpected fullstop parser error handler / 2
119 syntax error: postfix/infix operator expected parser error handler / 2
120 syntax error: wrong solo char parser error handler / 2
121 syntax error: space between functor and open

bracket
parser error handler / 2

122 syntax error: variable with multiple attributes parser error handler / 2
123 illegal iteration specifier in do-loop error handler / 4
124 syntax error : prefix operator followed by infix

operator
parser error handler / 2

125 syntax error : unexpected closing bracket parser error handler / 2
126 syntax error : grammar rule head is not valid parser error handler / 2
127 syntax error : grammar rule body is not valid parser error handler / 2
128 syntax error : in source transformation parser error handler / 2
129 syntax error: source transformation floundered parser error handler / 2
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C.1.6 Compilation, Run-Time System, Execution

Event Event Type Default Event Handler

130 syntax error: illegal head compiler error handler / 2
131 syntax error: illegal goal compiler error handler / 2
132 syntax error: term of an unknown type compiler error handler / 2
133 loading the library true / 0
134 procedure clauses are not consecutive compiler error handler / 2
135 trying to redefine a protected procedure compiler error handler / 2
136 trying to redefine a built-in predicate compiler error handler / 2
137 trying to redefine a procedure with another type compiler error handler / 2
138 singleton local variable in do-loop singleton in loop / 2
139 compiled or dumped file message compiled file handler / 3
140 undefined instruction error handler / 2
141 unimplemented functionality error handler / 2
142 built-in predicate not available on this system error handler / 2
143 compiled query failed compiler error handler / 2
144 a cut is not allowed in a condition compiler error handler / 2
145 procedure being redefined in another file redef other file handler / 2
146 start of compilation true / 0
147 compilation aborted compiler abort handler / 3
148 bad pragma pragma handler / 3
149 code unit loaded unit loaded handler / 3

The handlers for these events receive the following arguments:
Event Second Argument Third Argument

130 Culprit clause Module
131 Culprit clause Module
132 Culprit clause Module
133 Library name (string) undefined
134 Procedure Name/Arity Module
135 Procedure Name/Arity Module
136 Procedure Name/Arity Module
137 Procedure Name/Arity Module
138 Variable name (atom) undefined
139 (File, Size, Time), see below Module
140 ’Emulate’ undefined
141 Goal Module
142 Goal Module
143 Goal Module
144 Goal (if an execution error) or Culprit clause (if

compiler error)
Module

145 (Name/Arity, OldFile, NewFile) Module
146 File Module
147 File
148 Clause Module
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The second argument for the event 139 depends on the predicate where it was raised:

• compile/1, 2 - (file name, code size, compile time)

• compile stream/1 - (’string’, code size, compile time) with a string stream

• compile stream/1 - (file name, code size, compile time) with a stream associated to a
file

C.1.7 Top-Level

Event Event Type Default Event Handler

150 start of eclipse execution sepia start / 0
151 eclipse restart true / 0
152 end of eclipse execution sepia end / 0
153 toplevel: print prompt toplevel prompt / 2
154 toplevel: start of query execution true / 0
155 toplevel: print values print values / 3
156 toplevel: print answer tty ask more / 2
157 error exit error exit / 0
158 toplevel: entering break level start break / 3
159 toplevel: leaving break level end break / 3

These events are not errors but rather hooks to allow users to modify the behaviour of the
ECLiPSe toplevel. Therefore the arguments that are passed to the handler are not the erroneous
goal and the caller module but defined as follows:
Event Second Argument Third Argument

150 A free variable. If the handler binds the variable
to an atom, this name is used as the toplevel
module name

undefined

151 undefined undefined
152 The argument is the number that ECLiPSe will

return to the operating system
undefined

153 current toplevel module current toplevel module
154 a structure of the form

goal(Goal, VarList, NewGoal, NewVarList),

where Goal is the goal that is about to be exe-
cuted and VarList is the list that associates the
variables in Goal with their names (like in read-
var/3). NewGoal and NewVarList are free vari-
ables. If the handler binds NewVarList then the
toplevel will use NewGoal and NewVarList to
replace Goal and VarList in the current query.

current toplevel module
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Event Second Argument Third Argument

155 A list associating the variable names with their
values after the query has been executed.

current toplevel module

156 An atom stating the answer to the query that
was just executed. The possible values are:
yes, last_yes or no if the query had no vari-
ables, more_answers, last_answer if the query
contained variables and bindings were printed,
no_answer if a query containing variables failed.

current toplevel module

157 undefined undefined
158 break level current toplevel module
159 break level current toplevel module

When the handler for event 152 ”end of eclipse execution”calls exit block, ECLiPSe is not exited.
This is a way to prevent accidental exits from the system. Failure of the handler is ignored.

C.1.8 Macro Transformation Errors, Lexical Analyser

Event Event Type Default Event Handler

160 global macro transformation already exists error handler / 4
161 macro transformation already defined in this

module
macro handler / 3

162 no macro transformation defined in this module warning handler / 2
163 illegal attempt to remove the last member of a

character class
error handler / 2

164 toplevel: print banner tty banner / 2
165 can’t compile an attributed variable (use

add attribute/2,3)
error handler / 2

166 file successfully processed record compiled file handler
/ 3

167 initialization/finalization goal failed or aborted warning handler / 3

The event 164 is raised whenever the toplevel loop is restarted.

Event Second Argument Third Argument

164 the banner string
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C.1.9 I/O, Operating System, External Interface

Event Event Type Default Event Handler

170 system interface error system error handler / 4
171 File does not exist : error handler / 2
172 File is not open : error handler / 2
173 library not found error handler / 2
174 child process terminated due to signal error handler / 2
175 child process stopped error handler / 2
176 message passing error error handler / 2
177 shared library not found error handler / 2
190 end of file reached eof handler / 4
191 output error output error handler / 4
192 illegal stream mode error handler / 2
193 illegal stream specification error handler / 2
194 too many symbolic names of a stream error handler / 2
195 yield on flush io yield handler / 2
196 trying to modify a system stream close handler / 2
197 use ’input’ or ’output’ instead of ’user’ error handler / 2
198 reading past the file end past eof handler / 2
210 Remember() not inside a backtracking predicate error handler / 2
211 External function does not exist error handler / 2
212 External function returned invalid code error handler / 2
213 Error in external function error handler / 2
214 Licensing problem error handler / 2
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C.1.10 Debugging, Object Files

Event Event Type Default Event Handler

230 uncaught exception error handler / 2
231 default help/0 message fail / 0
249 debugger new suspensions event bip delay / 0
250 debugger init event trace start handler tty / 0
251 debugger builtin fail event bip port / 4
252 debugger port event trace line handler tty / 2
253 debugger call event ncall / 2
254 debugger exit event nexit / 1
255 debugger redo event redo / 5
256 debugger delay event ndelay / 2
257 debugger wake event resume / 2
258 debugger builtin call event bip port / 4
259 debugger builtin exit event bip port / 4
260 unexpected end of file error handler / 2
261 invalid saved state error handler / 2
262 can not allocate required space error handler / 2
263 can not save or restore from another break level

than level 0
error handler / 2

264 not an eclipse object file compiled file handler / 3
265 bad eclipse object file version compiled file handler / 3
267 predicate not implemented in this version error handler / 2
268 predicate not supported in parallel session error handler / 2
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These handlers receive special arguments:
Event Second Argument Third Argument

252 trace line{port:Port,frame:Frame} undefined
264 (File, [], []) undefined
265 (File, [], []) undefined

C.1.11 Extensions

Event Event Type Default Event Handler

270 undefined variable attribute error handler / 2
271 bad format of the variable attribute error handler / 2
272 delay clause may cause indefinite delay warning handler / 2
273 delayed goals left delayed goals handler / 3
274 stack of woken lists empty error handler / 2
280 Found a solution with cost cost handler / 2

The handlers for these events receive the following arguments:
Event Second Argument Third Argument

272 Culprit clause Module
273 list of sleeping suspensions undefined
280 Cost, Goal undefined

C.2 Stack Overflows

When a stack overflows, the system performs an exit block/1 with an appropriate exit tag, ie.

global trail overflow for overflows of the global/trail stack that holds all the program’s data
structures.

local control overflow for overflows of the local/control stack that holds information related
to the control flow.

These exits can be caught by wrapping a goal that is likely to overflow the stacks into an
appropriate block/3, e.g.

..., block(big_goal(X), global_trail_overflow, react_to_overflow), ...

In the debugger, you can locate the overflow by jumping to a LEAVE port (z command). See
chapter 19 for more details on memory usage.
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C.3 ECLiPSe Fatal Errors

A fatal error cannot be caught by the user. When they occur, the system performs a warm
restart. The following fatal errors may be generated by ECLiPSe:

*** Fatal error: Out of memory - no more swap space The available memory (usually
swap space) on the computer has been used up either by the application or some external
process.

*** Fatal error: Internal error - memory corrupted This signals an inconsistency in the
system’s internal data structures. The reason can be either a bug in the ECLiPSe system
itself or in an external predicate provided by the user.

C.4 User-Defined Events

User-defined events should use atomic event names rather than numbers. See set event handler/2.

249



250



Appendix D

ECLiPSe Command Line Options

The ECLiPSe system has several parameters which may be specified on the command line at
invocation time. All the parameters are available with the tty eclipse; with tkeclipse, only
the -g and -l parameters are available. The parameters are as follows:

−b bootfile Compile the file bootfile before starting the session. Multiple -b options are allowed.
The file name is expected to be in the operating system’s syntax. The file is processed by
ensure loaded/1, i.e. it can be a precompiled file or a source file, and file extensions are
added as specified there.

−e goal Instead of starting an interactive toplevel, the system will execute the goal goal. goal
is given in normal Prolog syntax, and has to be quoted if it contains any characters that
would normally be interpreted by the shell. The -e option can be used together with the
-b option and is executed afterwards. Only one -e option is allowed.

The exit status of the ECLiPSe process reflects success or failure of the executed Prolog
goal (0 for success, 1 for failure, 2 for abort).

When you only have a runtime installation of eclipse, the -e option is compulsory because
a runtime system does not have an interactive toplevel.

−g size This option specifies to which limit the memory consumption of the ECLiPSe global/trail
stack can grow. The size is specified in kilobytes (followed by an optional K), in megabytes
(followed by M) or in gigabytes (followed by G). The default is 128M, ie. 128 Megabytes.
The amount required for this stack depends on the program’s data structures and may
need to be increased for very large applications.

−l size This option specifies to which limit the memory consumption of the ECLiPSe lo-
cal/control stack can grow. The size is specified in kilobytes (followed by an optional
K), in megabytes (followed by M) or in gigabytes (followed by G). The default is 128M,
ie. 128 Megabytes. The local/control stack is unlikely to require more than this default.
If it does, it is probably caused by a programming error.

−D directory This options allows to explicitly specify the ECLiPSe installation directory,
i.e. the directory under which the system tries to find the ECLiPSe runtime system and
libraries. This option overrides (and renders unnecessary) any setting of the ECLIPSEDIR
environment variable (Unix) or, respectively, an ECLIPSEDIR registry entry (Windows)
that may be in effect.
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− − The ECLiPSe system will ignore this argument and everything that follows on the comm-
mand line. The Prolog program will only see the part of the command line that follows
this argument.
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Appendix E

Style Guide

Every ECLiPSe programming project should adopt a number of style rules. This appendix gives
only a sample set of rules, which can serve as a guideline. Project teams should adapt them to
their own needs and taste.

E.1 Style rules

1. There is one directory containing all code and its documentation (using sub-directories).

2. Filenames are of form [a-z][a-z ]+ with extension .ecl .

3. One file per module, one module per file.

4. Each module is documented with comment directives.

5. All required interfaces are defined in separate spec files which are included in the source
with a comment include directive. This helps to separate specification and implementation
code.

6. The actual data of the problem is loaded dynamically from the Java interface; for stand-
alone testing data files from the data directory are included in the correct modules.

7. The file name is equal to the module name.

8. Predicate names are of form [a-z][a-z ]*[0-9]* . Underscores are used to separate words.
Digits should only be used at the end of the name. Words should be English.

9. Variable names are of form [A-Z ][a-zA-Z]*[0-9]* . Separate words with capital letters.
Digits should only be used at the end. Words should be English.

10. The code should not contain singleton variables, unless their names start with . The final
program may not generate singleton warnings.

11. Each exported predicate is documented with a comment directive.

12. Clauses for a predicate must be consecutive.

13. Base clauses should be stated before recursive cases.
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14. Input arguments should be placed before output arguments.

15. Predicates which are not exported should be documented with a single line comment. It
is possible to use comment directives instead.

16. The sequence of predicates in a file is top-down with a (possibly empty) utility section at
the end.

17. All structures are defined in one file (e.g. flow structures.ecl) and are documented with
comment directives.

18. Terms should not be used; instead use named structures.

19. When possible, use do-loops instead of recursion.

20. When possible, use separate predicates instead of disjunction or if-then-else.

21. There should be no nested if-then-else construct in the code.

22. All input data should be converted into structures at the beginning of the program; there
should be no direct access to the data afterwards.

23. All integer constants should be parametrized via facts. There should be no integer values
(others than 0 and 1) in rules.

24. The final code should not use failure-loops; they are acceptable for debugging or testing
purposes.

25. Cuts (!) should be inserted only to eliminate clearly defined choice points.

26. The final code may not contain open choice points, except for alternative solutions that
still can be explored. This is verified with the tracer tool in the debugger.

27. Customizable data facts should always be at the end of a file; their use is deprecated.

28. The predicate member/2 should only be used where backtracking is required; otherwise
use memberchk/2 to avoid hidden choice points.

29. The final code may not contain dead code except in the file/module unsupported.ecl. This
file should contain all program pieces which are kept for information/debugging, but which
are not part of the deliverable.

30. The test set(s) should exercise 100 percent of the final code. Conformity is checked with
the line coverage profiler.

31. Explicit unification (=/2) should be replaced with unification inside terms where possible.

32. There is a top-level file (top.ecl) which can be used to generated all on-line documentation
automatically.

33. For each module, a module diagram is provided.

34. For the top-level files, component diagrams are provided.

35. Don’t use ’,’/2 to make tuples.
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36. Don’t use lists to make tuples.

37. Avoid append/3 where possible, use accumulators instead.

E.2 Module structure

The general form of a module is:

1. module definition

2. module comment or inclusion of a spec file

3. exported/reexported predicates

4. used modules

5. used libraries

6. local variable definitions

7. other global operations and settings

8. predicate definitions

E.3 Predicate definition

The general form of a predicate definition is:

1. predicate comment directive

2. mode declaration

3. predicate body
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Appendix F

Restrictions and Limits

The ECLiPSe implementation tries to impose as few limits as possible. The existing limits are:

1. The maximum arity of a predicate in ECLiPSe is 255 (this value can be queried using
get flag(max predicate arity,X)). Note however that the arity of compound terms is un-
limited.

2. The maximum arity of external predicates in the current implementation of ECLiPSe is
16.

3. The stack and heap sizes have virtual memory limits which can be changed using the -g,
-l, -s and -p command line options or the ec set option function in case of an embedded
ECLiPSe.

4. When the occur check is disabled (the default) it is possible (and sometimes useful) to
create cyclic data structures. E.g. the unification of X and g(X) in

X = g(X)

will result in a cyclic structure

X = g(g(g(g(g(...)))))

Not all ECLiPSe built-in predicates handle cyclic terms gracefully. Care must be taken
with all predicates which traverse the whole term, e.g. copy term/2, nonground/1,
term variables/2, term hash/4, writeq/2, assert/1, compile term/1. These will
typically loop or overflow a stack when applied to cyclic terms. Note however that, start-
ing from version 5.6, cyclic terms are allowed in all heap copying predicates (setval/2,
bag enter/2, shelf set/3, store set/3, record/2, etc).
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Index

∗− >/2, 42

− — remove a spy point (debugger cmd), 143

−X, 3

−− >/2, 106

− >/2, 42, 54

−?− >/1, 41

< — print depth (debugger cmd), 125

< — set print depth (debugger cmd), 142

</2, 69

> — set indentation step width (debugger cmd),
143

>/2, 69

>=/2, 69

>> — compound iterator construct, 32

?X, 3

\=/2, 54

\ ==/2, 54, 172, 173

?−/2, 41

∼/1, 170

∼=/2, 170, 177

’.’/2, 43, 48, 50

’C’/3, 109

* — compound iterator construct, 32

+ — set a spy point (debugger cmd), 143

++X, 3

+/3, 74

+X, 3

, — compound iterator construct, 31

,/2, 54

–D (command line option), 251

–b (command line option), 251

–e (command line option), 251

–g (command line option), 251

–l (command line option), 251

. — Print structure definition (debugger cmd),
139

. — print definition (debugger cmd), 132

.eclipse_history, 15

.eclipserc, 17
: /2, 61, 65, 117
:/2, 55
;/2, 54, 122, 203
=</2, 69
=/2, 54, 55, 71
=:=/2, 55, 69
==/2, 54, 55, 71
=\=/2, 69
? — help (debugger cmd), 133
[], 5
@/2, 64, 65, 127
~/1, 187
0 — Move current subterm to toplevel (debug-

ger cmd), 136

a — abort (debugger cmd), 131
A — Move current subterm up by N levels (de-

bugger cmd), 135
abolish, 202
abort/0, 119
accept/3, 86, 88
accessible, 60
add attribute/3, 160
add attribute/2, 160
after events, 113
als/1, 56
ambiguity, 232
ambiguity warning, 60
anonymous variable, 6
arg/3, 37, 38, 55, 84
argc/1, 207
argv/2, 207
arithmetic, 69

built-ins, 69
coroutining, 75
expressions, 73
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functions, 71

predefined arithmetic functions, 71

prefer rationals, 73

types, 70

user defined arithmetic, 73

arity, 3

array, 37

array/1, 81

arrays, 202

non-logical, 81

asm:wam/1, 56

assert/1, 44, 97, 99, 102, 202, 222, 223, 257

at/2, 92

atom, 3

atom/1, 54

atom string/2, 40

atomic, 3

atomic/1, 54

atoms, 39

attach suspensions/2, 183

attach tools/0, 23

attached/1, 25

attribute, 182

specification

qualified, 160

unqualified, 160

attributed variable, 228

attributed variables, 159–167

handlers, 161

b — break (debugger cmd), 143

B — Move current subterm down by N levels
(debugger cmd), 138

backtracking, 13

bag abolish/1, 202

bag create/1, 78

bag dissolve/2, 78

bag enter/2, 78

bag retrieve/2, 78

bags, 202

bb min/3, 179

bignum, 70

bind/2, 215

block/3, 117, 123, 248

Blocks, 117

body, 5

body of a clause, 3

bounded reals, 71

break/0, 143

breal, 71

breal/1, 54

breal/2, 71

buffered output, 91

bug reports, 2

built in procedure, 3

c — creep (debugger cmd), 129

C — Move current subterm right by N positions
(debugger cmd), 137

call/1, 52, 127

call c/2, 208

call priority/2, 184

callable term, 4

caller module, 65

cancel after event/2, 113

ccompile

coverage, 155, 156

ccompile/1, 155

ccompile/2, 156

cd/1, 209

character class, 90, 225

character lists, 39

CHIP, 1

choicepoint, 203

clause, 4, 5

body, 3

goal, 5

head, 5

matching, 41

program, 5

termination, 13

unit, 4

clause/1, 102

clause/1,2, 222

code coverage, 147

command line options, 207, 251

–b, 251

–e, 251

comment directive, 253

comment/2, 47, 149

compare instances/3, 162

compare instances handler, 162

comparison

arithmetic, 69
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compilation
nesting compile commands, 15

compile/1, 12, 17, 43, 64, 102, 202
compile/1, 2, 244
compile/2, 13, 43, 46
compile stream/1, 43, 244
compile stream/2, 43
compile term/1, 44, 51, 257
compile term/2, 44, 51
compile term annotated/3, 51
compile stream/1, 43
compile stream/2, 43
compile term/1, 44
compile term/2, 44
compiler

arithmetic, 74
compiler macros, 101
compound term, 4
compound/1, 54
connect/2, 215
constant, 4
constrained, 197
container, 58
control stack, 203
copy term/2, 80, 162, 257
copy term vars/3, 162
copy term handler, 162
coroutining, 175, 189

arithmetic, 75
count — iterator construct, 31
coverage, 155
coverage counters, 155
cputime/1, 74, 208
create module/1, 51, 66
create module/3, 66
curly braces, 27
current after events/1, 114
current array/2, 82
current compiled file/3, 50
current error/1, 116
current interrupt/2, 119
current module/1, 65
current suspension/1, 181
current array/2, 82
current error/1, 116
current stream/1, 88
cut, 186, 187, 254

cut warnings, 187

cyclic terms, 257

d — delayed goals (debugger cmd), 131

D — Move current subterm left by N positions
(debugger cmd), 137

database, 99

dbgcomp/0, 127

DCG, 106

dead code, 254

debug/0, 126

debug/1, 128

debug output, 124

Debugger Commands, 129

debugging/0, 126

decval/1, 80, 82

default/0, 119

definite clause grammar, 106

definition, 58, 60

delay

arithmetic, 75

delay clauses, 171

delayed goals/1, 181

delayed goals/2, 164

delayed goals number/2, 163

delayed goals handler, 164

delayed goals number handler, 163

delete/1, 209

demon, 183

demon/1, 183

determinism, 4

dictionary, 202

dictionary identifier, 4

DID, 4

dif/2, 192, 193, 195

difference list, 4

dim/2, 37, 38

directive, 6

discontiguous/1, 46

disjunction, 254

display/1, 96

do/2, 29

document (library), 147

double float, 70

downarrow key — Move current subterm down
by N levels (debugger cmd), 138

dynamic procedure, 4
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dynamic/1, 46, 97, 98

eci to html/3, 150

ECLiPSe, 1

eclipse language, 65

eclipse object suffix, 49

ECLIPSEINIT, 17

ECLIPSELIBRARYPATH, 16

elif/1, 48

else/0, 48

endif/0, 48

ensure loaded/1, 50, 59, 251

ensure loaded/1, 50

enter suspension list/3, 182

env/0, 207, 208, 211

erase all/1, 202

erase array/1, 81, 202

erase module/1, 66

erase array/1, 81

error, 85

error handlers, 239

error/2, 116

error/3, 116

error id/2, 116

error id/2, 116

errors, 115

handlers, 117

user defined, 118

event handlers, 239

event/1, 112, 120

event after/2, 113

event after every/2, 113

event create/3, 112

events, 111, 179

events after/1, 113

events nodefer/0, 115

exec/2, 86, 88, 210, 211

exec/3, 86, 88, 210, 211

exec group/3, 86, 88, 211

exec group/3, 210

existing file/4, 209

existing file/4, 209

exists/1, 209

exit status, 251

exit/1, 12, 207

exit block/1, 115, 117, 123, 125, 248

Exiting ECLiPSe, 12

expand clause/2, 99
export/1, 6, 27, 29, 47, 58, 59, 101
exporting, 58
extended head, 186
extension, 44
external procedure, 4

f — fail (debugger cmd), 131
fact, 4
factorial function, 73
fail/0, 117
failure loop, 254
fatal errors, 249
fcompile/1, 49
fib/2, 79
Fibonacci, 79
file name, 253
finalization, 66
findall/3, 55, 179
float/1, 54
float/2, 71
floating point numbers, 70
floundering, 170, 181
flush/1, 91, 213
for — iterator construct, 31
foreach — iterator construct, 30
foreacharg — iterator construct, 30
foreachelem — iterator construct, 30
foreachindex — iterator construct, 31
format string, 95
free variable, 5
free/1, 54, 165
freeze/2, 187
fromto — iterator construct, 30
fullstop, 13
functor, 4, 5

of a procedure, 6
functor/3, 37, 193

G — all ancestors (debugger cmd), 132
g — ancestor (debugger cmd), 133
garbage collection, 204
garbage collect/0, 205
get/1, 89
get/1, 2, 89
get/2, 89
get event handler/3, 112, 116
get file info/3, 209
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get flag/2, 11, 16, 17, 70, 143, 207, 208, 211,
233

get flag/3, 44, 65, 186
get interrupt handler/3, 119
get module info/3, 65, 67
get priority/1, 184
get stream/2, 86
get stream info/3, 89, 92
get suspension data/3, 181
get var bounds/3, 163
get bounds handler, 163
get event handler/3, 112, 116
get file info/2, 209
get file info/3, 209
get flag/2, 208, 211
getcwd/1, 40, 209
getenv/2, 207
getval/2, 80, 81, 83
global flag

prefer rationals, 73
global flags, 70
global reference, 77, 83
global stack, 203
goal, 5
goal expansion, 52
grammar rules, 106
ground term, 5

h — help (debugger cmd), 133
halt/0, 12, 120, 207
hash table, 79
head of a clause, 5
head of a pair, 5
heap, 202
help, 15
help/0, 12
help/1, 12, 209
history, 14
hostid, 208
hostname, 208

i — invocation skip (debugger cmd), 130
icompile/2, 150
if then else, 254
if/1, 48
import/1, 47, 59, 103
importing, 59
include/1, 48, 63

incval/1, 80, 82
indexing, 40
infix, 231
infix/postfix ambiguity, 232
inheritance, 28
init suspension list/2, 182
initialisation file, 17
initialization, 66
initialization/1, 59
inline/2, 52, 103
inlining, 52
input, 85
input/output, 85
insert suspension/3, 182
insert suspension/4, 182
insert suspension/4,3, 182
Inspect subterm commands (debugger), 133

interaction with output modes, 141
instance/2, 162
instantiated variable, 5
integer constants, 254
integer/1, 54
integer/2, 71
integers, 70
interrupt, 14
interrupts, 118

tkeclipse, 120
interval arithmetic, 71
is/2, 49, 69, 74, 75, 186
is dynamic/1, 97
is suspension/1, 181
is dynamic/1, 97
iteration, 29

j — jump to level (debugger cmd), 130

kill/2, 119, 211, 212
kill suspension/1, 181
kill display matrix/1, 21

l — leap (debugger cmd), 129
language, 65
leftarrow key — Move current subterm left by

N positions (debugger cmd), 136
lib(suspend), 171
lib(timeout), 115
lib/1, 16, 47, 50, 59
libraries, 15, 58
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library

coverage, 155

suspend.pl, 161

library search path, 16

library(asm), 56

library(hash), 79

library(source processor), 56, 90

library path, 16

line coverage, 155

lint (library), 147

lint/1, 149

lint/2, 149

list, 5

difference, 4

list error/3, 116

listing/0,1, 222

load/1, 202, 208

local stack, 203

local/1, 27, 47, 59, 60, 81, 101, 222

lock/0, 67

lock pass/1, 67

locking, 66

log output, 86

logical update semantics, 99

lookup module, 65

loop name — iterator construct, 32

loops, 29

m — module (debugger cmd), 125, 143

macro

no macro expansion, 103

write, 164

macro expansion, 101

macro/3, 53, 102, 103

macro expansion, 104

macros

clause, 102

compiler, 101

goal, 102

protect arg, 102

read, 101, 102

term, 102

top only, 103

type, 102

write, 101, 102

mailing list, 2

make/0, 13, 50

make display matrix/2, 19, 20

make display matrix/5, 19

make suspension/3, 123, 181

make suspension/3,4, 180

make suspension/4, 181

make display matrix/2, 20

make display matrix/5, 20

matching, 41, 166, 172

matmult/3, 38

matrix, 37

MegaLog, 1

member/2, 254

memberchk/2, 254

memoization, 79

memory usage, 201

merge suspension lists/4, 182

meta-predicates, 63

meta/1, 54, 165

meta attribute/2, 47, 159

metaterms, 159

minimize/2, 179

mode, 5

mode declaration, 51

mode/1, 51

module/1, 47, 50, 58, 65

module/3, 47, 65, 221

modules, 57

multifor — iterator construct, 31

n — nodebug (debugger cmd), 130

N — nodebug permanently (debugger cmd),
144

name conflict, 60

Name/Arity, 3, 5

named structure, 254

nil, 5

nl/0, 91

nl/1, 91

no macro expansion/1, 28, 103

nodbgcomp/0, 16, 127, 223

nodebug/0, 126

Non-logical Variables, 80

nonground/1, 54, 172, 187, 257

nonground/2, 176

nonground/3, 172

nonlogical variables, 202

nonvar/1, 54
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nospy/1, 125, 126
not/1, 54
not unify/2, 162, 198
notify constrained/1, 177
notrace/0, 126
null, 85
number, 5
number/1, 54
number string/2, 40
numbervars/3, 222

o — output mode (debugger cmd), 125, 143
object code, 49
of/2, 27
op/3, 58, 231, 237
open/3, 6, 86, 92, 93
open/4, 86, 93
operator, 231
operators, 237
optimisation, 147
os file name/2, 210
output, 85
output options, 94
output mode, 164
overflow, stack, 248

p — Show subterm path (debugger cmd), 140
pair, 5

head, 5
tail, 5

param — iterator construct, 31
pathname/4, 210
pattern matching, 166, 172
pause/0, 14
performance, 147
phrase/3, 107, 108
pid (global flag), 211
pipe streams, 88
plus/3, 75
port profiler (library), 154
portray/3, 103, 181
postfix, 231
postponed, 179
ppid (global flag), 211
pragma, 48
pre unify handler, 163
pred/1, 65, 125
predicate, 5

predicate name, 253
PredSpec, 5
prefer rationals, 70, 73
prefix, 231
prefix ambiguity, 232
prefix/infix ambiguity, 232
pretty print/2, 151
pretty printer (library), 147
print handler, 163
print/1, 96
printf/2, 91, 95, 102, 164
printf/2, 3, 213
printf/2,3, 163
printf/3, 91, 94, 95
priority, 169
private heap, 202
procedure

built in, 3
dynamic, 4
external, 4
functor, 6
regular, 6
simple, 6
static, 6
tool, 63

profile/1, 152
profiling, 147, 151
program analysis, 147
program clause, 5
Prolog, 169
prolog_suffix, 17
prolog suffix, 44
properties

module, 65
predicate, 65

put/1, 89
put/1, 2, 89
put/2, 89

q — query the failure culprit (debugger cmd),
130

qualified acccess, 61
qualified attribute specification, 160
query, 6, 13, 15

rational numbers, 70
rational/1, 54
rational/2, 71
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read macros, 101

read mode, 85

read/1, 64, 85, 90, 101

read/1, 2, 90

read/2, 90

read annotated/3, 101

read directory/4, 209

read string/3, 90

read string/3,4, 40

read string/4, 90

read term/2, 90

read term/3, 90

read token/2, 89, 226

read token/3, 89, 226

read directory/4, 209

readvar/3, 90, 244

real/1, 54

record/2, 64

redefinition error, 60

redefinition warning, 60

redirecting streams, 88

reexport/1, 47, 62

reference, 77, 83

Reference Manual, 155, 158

regular procedure, 6

rename/2, 209

reset error handlers/0, 116

reset event handler/1, 116

resolvent, 169

result

coverage, 156

result/1, 156

retract/1, 97, 99, 102, 202

rightarrow key — Move current subterm right
by N positions (debugger cmd), 137

runtime system, 58

s — skip (debugger cmd), 129

Saros, 44

schedule suspensions/1, 183

schedule suspensions/2, 182, 183

seek/2, 91, 92

SEPIA, 1

set chtab/2, 41, 226, 233

set event handler/2, 112, 116, 249

set flag/2, 11, 16, 17, 127, 202, 207

set flag/3, 125, 126, 128

set interrupt handler/2, 212
set stream/2, 6, 86, 88
set stream property/3, 89, 91, 96
set suspension data/3, 181
set var bounds/3, 163
set bounds handler, 163
set event handler/2, 112, 116
set flag/2, 204
set interrupt handler/2, 119
setarg/3, 84, 161
setof/3, 55, 127, 179
setval/2, 80, 81, 83
setval/2, getval/2, 223
sh/1, 210, 211
shared heap, 202
shelf, 78
shelf abolish/1, 202
shelf create/2, 78
shelf create/3, 78
shelf get/3, 78
shelf inc/2, 78
shelf set/3, 78
shelves, 202
simple goals, 186
simple procedure, 6
sin/2, 74
singleton, 253
skipped/1, 126, 128
socket streams, 88
socket/3, 86, 88, 213
sort/2, 55
source files, 62
source transformation, 101
SpecList, 6
split string/4, 90
spy point, 124, 126, 129

add, 143
remove, 143

spy/1, 125, 126, 143
spy term/2, 131
spy var/1, 131
stack overflow, 248
stacks, 203
start tracing, 128
static procedure, 6
statistics/0, 11, 201
statistics/0,2, 202
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statistics/2, 11, 201, 205, 208
stderr, 85
stdin, 85
stdout, 85
store, 79
store/ 1, 79
store create/1, 79
store delete/2, 79
store erase/1, 79
store get/3, 79
store set/3, 79
stored keys/2, 79
stored keys and values/2, 79
stream, 6
streams, 85
string, 6
string/1, 54
string code/3, 39
string length/2, 74
string list/2, 40
strings, 38
struct/1, 27
structure, 6, 57, 228
structures, 27, 55
subcall/2, 127, 181
subscript, 228
subscript/2, 38
subscript/3, 38
succ/2, 75
suffix, 44
suspend, 175, 189
suspend library, 171
suspend/3, 123, 173, 174, 178, 179, 182
suspend/3,4, 180
suspend/4, 123
suspended goal, 169
suspending variables, 174, 185
suspension, 180–183

creating, 180
executed, 181
sleeping, 180
waking, 181

suspension list, 180, 182
suspensions handler, 162
suspensions/1, 181
suspensions/2, 162
symbolic waking condition, 179, 183

syntax, 58

syntax differences of ECLiPSe, 232

syntax option, 233

system/1, 210

tail of a pair, 5

term, 6

callable, 4

compound, 4

constant, 4

ground, 5

variable, 6

term hash/4, 257

term string/2, 40

term variables/2, 190, 257

test unify handler, 162

throw/1, 119

timed events, 113

timers, 113

times/3, 75

tkeclipse, 44

token, 89

token class, 90

tool

system, 64

tool/2, 64

tool body/3, 65

Tools, 63

tools/0, 24

top level loop, 12, 171

toplevel module, 58

trace/0, 126

trace/1, 126, 128

trace call port/3, 144

trace exit port/0, 144

trace parent port/1, 144

trace point port/3, 144

traceable/1, 125

trail stack, 204

trigger, 179, 183

trigger/1, 114, 179

trimcore/0, 202

true/0, 98, 117, 119, 161, 186

twice/1, 63

tyi/1, 89

tyi/1, 2, 89

tyi/2, 89

266



tyo/1, 89
tyo/1, 2, 89
tyo/2, 89
type

breal, 71
float, 70
integer, 70
rational, 70

type macros, 102
type of/2, 105, 181

u — scheduled goals (debugger cmd), 131
unification

pattern matching, 166
unify handler, 161
uninstantiated variable, 5
unit clause, 4
unlock/2, 67
unskipped/1, 126
untraceable/1, 125
uparrow key — Move current subterm up by N

levels (debugger cmd), 135
update mode, 85
update struct/4, 28
use module/1, 16, 47, 50, 59, 103
use module/1, 50
user, 86
user group, 2

v — var/term modification skip (debugger cmd),
130

var/1, 42, 54, 159, 172, 187
variable, 6

anonymous, 6
free, 5
instantiated, 5
uninstantiated, 5

variable name, 253
variable output, 91
variable/1, 81
variable names, 91
variables, 13
variant/2, 162
visible, 60, 61

w — write source context for current goal (de-
bugger cmd), 132

wait/2, 211

wake/0, 177, 183
waking, 183, 185
waking/1, 127
warning output, 85
when declarations, 188
windows, 152
with/2, 27
write macros, 101
write mode, 85
write/1, 64, 85, 90, 96, 164
write/1, 2, 90
write/1,2, 163
write/2, 90
write canonical/1, 96
write history/0, 15
write term/2, 95
write term/3, 94, 95
writeln/1, 91, 96
writeln/1,2, 163
writeln/2, 91
writeq/1, 90, 96, 164
writeq/1, 2, 90
writeq/2, 90, 257

x — examine goal (debugger cmd), 133
xref (library), 147
xref/2, 150

z — zap (debugger cmd), 131
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