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Chapter 1

Introduction

1.1 What is ECL'PS® ?

ECLPS® (ECL‘PS® Common Logic Programming System) is a Prolog based system whose aim
is to serve as a platform for integrating various Logic Programming extensions, in particular
Constraint Logic Programming (CLP). The kernel of ECL/PS® is an efficient implementation
of standard (Edinburgh-like) Prolog as described in basic Prolog texts [2]. It is built around
an incremental compiler which compiles the ECL'PS® source into WAM-like code [13], and an
emulator of this abstract code.

1.2 Overview

The ECL/PS® logic programming system was originally an integration of ECRC’s SEPIA, Mega-
Log and (parts of the) CHIP systems. It was then further developed into a Constraint Logic
Programming system with a focus on hybrid problem solving and solver integration. The docu-
mentation is organised as follows:

The User Manual describes the functionality of the ECL'PS® kernel (this document).

The Constraint Library Manual describes the major ECL!PS® libraries, in particular the
ones implementing constraint solvers.

The Interfacing and Embedding Manual describes how to interface ECL’PS® to other pro-
gramming languages, and in particular how to embed it into an application as a component.

The Reference Manual contains detailed descriptions of all the Built-in predicates and the li-
braries. This information is also available from the development system’s help/1 command
and the tkeclipse library browser.

The Visualisation Manual describes the facilities for the visualisation of constraint propa-
gation and search.

All the documentation can be accessed using an html browser (refer to the eclipse installation
directory under doc/index.html).



1.3 Further Information

ECL!PS® was initially developed at the European Computer-Industry Research Centre (ECRC)
in Munich, and then at IC-Parc, Imperial College in London until the end of 2005. It is now
an open-source project, with the support of Cisco Systems. Up-to-date information, including
ordering information can be obtained from the ECLPS® web site

http://www.eclipse-clp.org/eclipse

or by sending email to
eclipse-request@ecllipse-clp.org

There is also an ECL?PS® user group mailing list. Contributions to this list can be sent to
eclipse-users@eclipse-clp.org

and requests for being added to or removed from this list to majordomo@eclipse-clp.org.

1.4 Reporting Problems

In order to make ECL’PS® as useful and reliable as possible, we would like to encourage users
to submit problem reports via the web site

http://www.eclipse-clp.org/eclipse/bugs.html
or by e-mail to

eclipse-bugs@eclipse-clp.org



Chapter 2

Terminology

This chapter defines the terminology which is used throughout the manual and in related doc-
umentation.

+X This denotes an input argument. Such an argument must be instantiated before a built-in
is called.

++4X This denotes a ground argument. Such an argument must can be complex, but must be
fully instantiated, i.e. not contain any variables.

—X This denotes an output argument. Such an argument must be not instantiated before a
built-in is called.

?X This denotes an input or an output argument. Such an argument may be either instantiated
or not when a built-in is called.

Arity Arity is the number of arguments to a term. Atoms are considered as functors with zero
arity. The notation Name/Arity is used to specify a functor of name Name with arity
Arity.

Atom An arbitrary name chosen by the user to represent objects from the problem domain. A
Prolog atom corresponds to an identifier in other languages.

Atomic An atom, string or a number. A terms which does not contain other terms.

Body A clause body can either be of the form
Goal_1, Goal_2, ..., Goal_k
or simply
Goal

Each Goal i must be a callable term.

Built-in Procedures These are predicates provided for the user by the ECL'PS¢ system, they
are either written in Prolog or in the implementation language (usually “C”).

Clause See program clause or goal.



Callable Term A callable term is either a compound term or an atom.

Compound Term Compound terms are of the form
f(t_1, t_2, ..., t_n)

where fis the functor of the compound term and ¢_¢ are terms, n is its arity. Lists and
Pairs are also compound terms.

Determinism The determinism specification of a built-in or library predicate says how many
solutions the predicate can have, and whether it can fail. The six determinism groups are
defined as follows:

Maximum number of solutions

|
Can fail? I 0 1 > 1
____________ o
no |  erroneous det multi
yes | failure semidet nondet

This classification is borrowed from the Mercury programming language, but in ECL/PS®
only used for the purpose of documentation. Note that the determinism of a predicate
usually depends on its calling mode.

Mode A predicate mode is a particular instantiation pattern of its arguments at call time. Such
a pattern is usually written as a predicate template, e.g.

p(+,-)

where the symbols +, +4, — and 7 represent instantiated, ground, uninstantiated and
unknown arguments repsectively.

DID Each atom created within ECL'PS® is assigned a unique identifier called the dictionary
identifier or DID.

Difference List A difference list is a special kind of a list. Instead of being ended by nil, a
difference list has an uninstantiated tail so that new elements can be appended to it in
constant time. A difference list is written as List - Tail where List is the beginning of the
list and Tail is its uninstantiated tail. Programs that use difference lists are usually more
efficient and always much less readable than programs without them.

Dynamic Procedures These are procedures which can be modified clause-wise, by adding or
removing one clause at a time. Note that this class of procedure is equivalent to interpreted
procedures in other Prolog systems. See also static procedures.

External Procedures These are procedures which are defined in a language other than Prolog,
and explicitly connected to Prolog predicates by the user.

Fact A fact or unit clause is a term of the form:

Head.



where Head is a structure or an atom. A fact may be considered to be a rule whose body
is always true.

Functor A functor is characterised by its name which is an atom, and its arity which is its
number of arguments.

Goal Clause See query.
Ground A term is ground when it does not contain any uninstantiated variables.
Head A head is a structure or an atom.

Instantiated A variable is instantiated when it has been bound to an atomic or a compound
term as opposed to being uninstantiated or free. See also ground.

List A list is a special type of term within Prolog. It is a recursive data structure consisting of
pairs (whose tails are lists). A list is either the atom [] called nil as in LISP, or a pair
whose tail is a list. The notation :

[a, b, cl
is shorthand for:

fa | [b | [c | [11]]

Name/Arity The notation Name/Arity is used to specify a functor of name Name with arity
Arity.

Pair A pair is a compound term with the functor ./2 (dot) which is written as :
[(H|T]

H is the head of the pair and T its tail.
Predicate A predicate is another term for a procedure.

PredSpec This is similar to the notation Name/Arity. Some built-ins allow the arity to be
omitted and to specify Name only. This stands for all (visible) predicates with that name
and any arity.

Program Clause A program clause or clause is either the term
Head :- Body.

i.e. a compound term with the functor :-/2, or only a fact.

Query A query has the same form as Body and is also called a goal. Such clauses occur mainly
as input to the top level Prolog loop and in files being compiled, then they have the form

:- Goal_1, ..., Goal_k.



or
?- Goal_1, ..., Goal_k.

Regular Prolog Procedure A regular (Prolog) procedure is a sequence of user clauses whose
heads have the same functor, which then identifies the user procedure.

Simple Procedures Apart from regular procedures ECL!PS® recognises simple procedures
which are written not in Prolog but in the implementation language, i.e. C and which
are deterministic. There is a functor associated with each simple procedure, so that any
procedure recognisable by ECL‘PS® is identified by a functor, or a compound term with
this functor (or atom).

SpecList The SpecList notation means a sequence of terms of the form:
name_1/a_1, name_2/a_2, ..., name_k/a_k.

The SpecList notation is used in many built-ins, for example, to specify a list of procedures
in the export/1 predicate.

Static Procedures These are procedures which can only be changed as a whole unit, i.e.
removed or replaced.

Stream This is an I/O channel identifier and can be a physical stream number, one of the
pre-defined stream identifiers (input, output, error, warning_output, log_output, null) or a
user defined stream name (defined using set_stream/2 or open/3).

Structures Compound terms which are not pairs are also called structures.

Term A term is the basic data type in Prolog. It is either a wvariable, a constant, i.e. an atom,
a number or a string, or a compound term.

The notation Pred/N1, N2 is often used in this documentation as a shorthand for Pred/N1,
Pred/N2.



Chapter 3

Getting started with ECL'PS®

3.1 How do I install the ECL'PS® system?

Please see the installation notes that came with ECL‘PS®. For Unix/Linux systems, these are
in the file README_UNIX. For Windows, they are in the file README_WIN.TXT.

Please note that choices made at installation time can affect which options are available in the
installed system.

3.2 How do I run my ECL'PS® programs?

There are two ways of running ECL'PS® programs. The first is using tkeclipse, which provides
an interactive graphical user interface to the ECL'PS® compiler and system. The second is using
eclipse, which provides a more traditional command-line interface. We recommend you use
TKkECL!PS® unless you have some reason to prefer a command-line interface.

3.3 How do I use tkeclipse?

3.3.1 Getting started

To start TkECL/PS®, either type the command tkeclipse at an operating system command-
line prompt, or select TKkECL!PS® from the program menu on Windows. This will bring up the
TKkECL'PS® top-level, which is shown in Figure 3.1.

Note that help on TkECL!PS® and its component tools is available from the Help menu in the
top-level window. If you need more information than can be found in this manual, try looking
in the Help menu.

3.4 How do I write an ECL'PS‘ program?

You need to use an editor to write your programs. ECLPS® does not come with an editor, but
any editor that can save plain text files can be used. Save your program as a plain text file, and
you can then compile the program into ECL‘PS® and run it.

With TKkECL?PS®, you can specify the editor you want to use, and this editor will be started
by TKECL'PS®, e.g. when you select a file in the ‘Edit’ option under the File menu. The
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Figure 3.1: TKECL!PS® top-level

default values are the value of the VISUAL environment variable under Unix, or Wordpad
under Windows. This can be changed with the Preference Editor under the Tools menu.

3.4.1 Compiling a program

From the File menu, select the Compile ... option. This will bring up a file selection dialog.
Select the file you wish to compile, and click on the Open button. This will compile the file and
any others it depends on. Messages indicating which files have been compiled and describing
any errors encountered will be displayed in the bottom portion of the TKkECL'PS® window
(Output and Error Messages).

If a file has been modified since it was compiled, it may be recompiled by clicking on the make
button. This recompiles any files which have become out-of-date.

For more information on program compilation and the compiler, please see chapter 6

3.4.2 Executing a query

To execute a query, first enter it into the Query Entry text field. You will also need to specify
which module the query should be run from, by selecting the appropriate entry from the drop-
down list to the left of the Query Entry field. Normally, the default selection of eclipse will
be fine; this will allow access to all ECL‘PS® built-ins and all predicates that have not explicitly
been compiled into a different module. Selecting another module for the query is only needed
if you wish to call a predicate which is not visible from the eclipse module, in which case you
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need to select that module. (For more information about the module system, please see chapter
7)

To actually execute the query, either hit the Enter key while editing the query, or click on the
run button. TkECL!PS® maintains a history of commands entered during the session, and these
may be recalled either by using the drop-down list to the right of the Query Entry field, or by
using the up and down arrow keys while editing the Query Entry field.

If ECL'PS® cannot find a solution to the query, it will print No in the Results section of the
TKkECLPS® window. If it finds a solution and knows there are no more, it will print it in the
Results section, and then print Yes. If it finds a solution and there may be more, it will print
the solution found as before, print More, and enable the more button. Clicking on the more
button tells ECLPS® to try to find another solution. In all cases it also prints the total time
taken to execute the query.

Note that a query can be interrupted during execution by clicking on the interrupt button.

3.4.3 Editing a file

If you wish to edit a file (e.g. a program source file), then you may do so by selecting the
Edit ... option from the File menu. This will bring up a file selection dialog. Select the file
you wish to edit, and click on the Open button.

When you have finished editing the file, save it. After you’ve saved it, if you wish to update the
version compiled into ECL‘PS® (assuming it had been compiled previously), simply click on the
make button.

You can change which program is used to edit your file by using the TKkECL'PS® Preference
Editor, available from the Tools menu.

3.4.4 Debugging a program

To help diagnose problems in ECL!PS® programs, TkECL!PS® provides the tracer. This can be
invoked by selecting the Tracer option from the Tools menu. The next time a goal is executed,
the tracer window will become active, allowing you to step through the program’s execution and
examine the program’s state as it executes.

The tracer displays the current call stack and a trace log. By using the left mouse button in
the Call Stack region of the tracer window, you can bring up a menu of additional operations
you can perform on that goal, such as inspecting it, or setting a spy point on the predicate in
question. Selecting Configure filter ... from the Options menu of the tracer will launch
the conditional filter. This filter allows you to specify conditions on which the tracer should stop
at a debug port. This can be very useful for skipping over unwanted debug ports.

For more information on using the tracer, please see the online help, available by selecting
Tracer Help from the Help menu.

Other TKECL’PS® tools which are useful while using the tracer are:

e the predicate browser (available by selecting the Predicate Browser option from the
Tools menu), which is useful for setting or removing spy points on predicates, or for
setting the start_tracing flag which activates the tracer when a particular predicate is
called for the first time; and

e the term inspector (available by double left clicking on a term from the stack window, or
by selecting the Inspector option from the Tools menu), which is useful for examining
and browse the arguments of a term in detail.
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e the delayed goals browser (available by selecting the Delayed Goals option from the Tools
menu), which allows you to inspect the current list of delayed goals.

e the display matrix (available either from calls in user’s code, or by interactively selecting
terms to be observed from the inspector, tracer or delay goals tools), which allows you to
monitor any changes to a term and its arguments.

More information about debugging in ECL!PS® may be found in chapter 14.

3.4.5 Getting help

More detailed help than is provided here can be obtained online for all the features of TkECL/PS®.
Simply select the entry from the Help menu on TkECL!PS®’s top-level window which corresponds
to the topic or tool you are interested in.

3.4.6 Other tools

TKkECLPS® comes with a number of useful tools. Some have been mentioned above, but here is
a more complete list. Note that we only provide brief descriptions here; for more details, please
see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code and have it compiled. This is useful
for quick experimentation, but not for larger examples or programs you wish to keep, since the
source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source files have been compiled in the
current ECL!PS® session. You can select files to edit them, or compile them individually, as well
as adding new files.

Predicate Browser

This tool allows you to browse through the modules and predicates which have been compiled
in the current session. It also lets you alter some properties of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicates selected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allowing a spy point to be placed on the
predicate and the source code viewed.

Tracer

As discussed in section 3.4.4, the tracer is useful for debugging programs. See also chapter [14|
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Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation
panel can be launched which provides arrow buttons as an alternative way to navigate the tree.
Note that while the inspector window is open, interaction with other TkECL!PS® windows is dis-
allowed. This prevents the term from changing while being inspected. To continue TkECL/PS®,
the inspector window must be closed.

Global Settings

This tool allows the setting of some global flags governing the way ECL‘PS® behaves. See also
the documentation for the set_flag/2 and get_flag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usage of the ECL'PS® system, up-
dated at regular intervals. See also the documentation for the statistics/0 and statistics/2
predicates.

Simple Query

This tool allows the user to send a simple query to ECL’PS® even while ECL/PS® is running
some program and the Toplevel Query Entry window is unavailable. Note that the reply is
shown in EXDR format (see the ECL‘PS® Embedding and Interfacing Manual).

Library Help

This tool allows you to browse the online help for the ECL!PS® libraries. On the left is a tree
display of the libraries available and the predicates they provide.

e Double clicking on a node in this tree either expands it or collapses it again.
e Clicking on an entry displays help for that entry to the right.

e Double clicking on a word in the right-hand pane searches for help entries containing that
string.

You can also enter a search string or a predicate specification manually in the text entry box
at the top right. If there is only one match, detailed help for that predicate is displayed. If
there are multiple matches, only very brief help is displayed for each; to get detailed help, try
specifying the module and/or the arity of the predicate in the text field.

3.4.7 Preference Editor

This tool allows you to edit and set various user preferences. This include parameters for how
TKkECL'PS® will start up, e.g. the amount of memory it will be able to use, and a initial
query to execute; and parameters which affects the appearance of TKECL!PS®, such as the fonts
TKkECL'PS® uses.
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3.5 How do I use eclipse?

3.5.1 Getting started

To start ECL'PS®, type the command eclipse at an operating system command-line prompt.
This will display something like this:

% eclipse

ECLiPSe Constraint Logic Programming System [kernel]

Kernel and basic libraries copyright Cisco Technology Inc

Academic licensing through Imperial College London, see legal/licence_acad.txt
GMP library copyright Free Software Foundation, see legal/lgpl.txt

For other libraries see their individual copyright notices

Version X.Y #Z, DAY MONTH DD HH:MM YYYY

leclipse 1]:

The list in square brackets on the first line specifies the configuration of the running system,
i.e. the language extensions that are present. The copyright and version information is followed
by the prompt [eclipse 1]:, which tells the user that the top-level loop is waiting for a user
query in the module eclipse. The predicate help/0 gives general help and help/1 gives help
about specific built-in predicates.

3.5.2 Interacting with the top level loop

The ECLPS® prompt [eclipse 1]: indicates that ECL!PS® is at the top level and the opened
module is eclipse. The top level loop is a procedure which repetitively prompts the user for a
query, executes it and reports its result, i.e. either the answer variable bindings or the failure
message. There is always exactly one module opened in the top level and its name is printed in
the prompt. From this point it is possible to enter ECLPS® goals, e.g. to pose queries, to enter
an ECL/PS® program from the keyboard or to compile a program from a file. Goals are entered
after the prompt and are terminated by full stop and newline.

The ECL'PS® system may be exited by typing CTRL-D (UNIX) or CTRL-Z + RETURN
(Windows) at the top level prompt, or by calling either the halt/0 or the exit/1 predicates.

3.5.3 Compiling a program

The square brackets [...] or the compile/1 predicate are used to compile ECL‘PS® source from
a file. If the goal

compile(myfile).
or the short-hand notation
[myfile] .

is called, either as a query at the top level or within another goal, the system looks for the file
myfile or for a file called myfile.pl or myfile.ecl and compiles it. The short-hand notation
may also be used to compile several files in sequence:

[ file_1, file_ 2, ..., file_n ]
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The compile/2 predicate may be used to compile a file or list of files into a module specified
in the second argument.

If a file has been modified since it was compiled, it may be recompiled by invoking the make/0
predicate. This recompiles any files which have become out-of-date.

For more information on program compilation and the compiler, please see chapter 6

3.5.4 Entering a program from the terminal

Programs can be entered directly from the terminal, as well as being read from files. To do
this, simply compile the special file user. That is, [user]. or compile(user). at a top level
prompt. The system then displays the compiler prompt (which is a blank by default) and waits
for a sequence of clauses. Each of the clauses is terminated by a full stop.  (If the fullstop
is omitted the system just sits waiting, because it supposes the clause is not terminated. If
you omit the stop by accident simply type it in on the following line, and then proceed to type
in the program clauses, each followed by a full stop and carriage return.) To return to the
top level prompt, type CTRL-D (UNIX), CTRL-Z + RETURN (Windows) or enter the atom
end_of_file followed by fullstop and RETURN.

For example:

[eclipse 1]: [user].

father (abraham, isaac).
father(isaac, jacob).
father(jacob, joseph).
ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).

°D

user compiled traceable 516 bytes in 0.00 seconds
yes.

[eclipse 2]:

The two predicates father/2 and ancestor/2 are now compiled and can be used.

3.5.5 Executing a query

Once a set of clauses has been compiled, it may be queried in the usual Prolog manner. If there
are no uninstantiated variables in the query, the system replies ’yes’ or 'no’ and prompts for
another query, for example:

leclipse 1]: father(jacob, joseph).
yes.
[eclipse 2]:

If there are uninstantiated variables in the query, the system will attempt to find an instantiation
of them which will satisfy the query, and if successful it will display one such instantiation. It
will then wait for a further instruction: either a <CR> (“newline” or “return”) or a semi-colon ’;’.
A return will end the query successfully. A semi-colon will initiate backtracking in an attempt
to find another solution to the query. Note that it is not necessary to type a new line after the
semicolon — one keystroke is enough. When the top level loop can detect that there are no
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further solutions, it does not wait for the semicolon or newline, but it displays directly the next
prompt. For example in a query on a family database:

leclipse 2]: father(X, Y).
X = abraham
Y = isaac  More? (;) (’;? typed)

X = isaac
Y = jacob
yes.

[eclipse 3]:

Queries may be extended over more than one line. When this is done the prompt changes to a
tabulation character, i.e. the input is indented to indicate that the query is not yet completed.
The fullstop marks the end of the input.

3.5.6 Interrupting the execution

If a program is executing, it may be interrupted by typing CTRL-C (interrupt in the UNIX
environment). This will invoke the corresponding interrupt handler (see section [13.3). By
default, the system prints a menu offering some alternatives:

~C
interruption: type a, b, c, e, or h for help : ? help
a : abort
b : break level
c : continue
e : exit
h : help

interruption: type a, b, c, e, or h for help : ?

The a option returns to the toplevel, b starts a nested toplevel, ¢ continues the interrupted
execution, d switches the debugger to creep mode (provided it is running), and e is an emergency
exit of the whole ECL'PS® session.

The execution of ECL‘PS® may be suspended by typing CTRL-Z (suspend) or by calling
pause/0. This will suspend the ECL‘PS® process and return the UNIX prompt. Entering the
shell command fg will return to ECL'PS®. Note that this feature may not be available on all
systems.

3.5.7 Debugging a program

Please see the chapters on debugging in the tutorial and user manuals for more details. The
tutorial chapter covers the TkKECL*PS® debugging in a tutorial style tour, and the user manual
chapter covers debugging in general and the command-line debugger in particular.
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3.5.8 The history mechanism

The ECL?PS® toplevel loop provides a simple history mechanism which allows the examination
and repetition of previous queries. The history list is printed with the command h. A previous
query is invoked by typing either its absolute number or its relative negative offset from the
current query number (i.e. —1 will execute the previous query). The current query number is
displayed in the toplevel prompt.

The history is initialized from the file .eclipse_history in the current directory or in the home
directory. This file contains the history goals, each ended by a fullstop. The current history can
be written using the predicate write_history/0 from the util library.

3.5.9 Getting help

Detailed documentation about all the predicates in the ECL!PS¢ libraries can be obtained online
through the help facility. It has two modes of operation. First, when a fragment of a built-in
name is specified, a list of short descriptions of all built-ins whose name contains the specified
string is printed. For example,

:— help(write).

will print one-line descriptions about write/1, writeclause/2, etc. When a unique specification
is given, the full description of the specified built-in is displayed, e.g. in

:= help(write/1).

3.6 How do I make things happen at compile time?

A file being compiled may contain queries. These are goals preceded by either the symbol “?-”
or the symbol “:-”. As soon as a query or command is encountered in the compilation of a file,
the ECL'PS® system will try to satisfy it. Thus by inserting goals in this fashion, things can be
made to happen at compile time.

In particular, a file can contain a directive to the system to compile another file, and so large
programs can be split between files, while still only requiring a single simple command to compile
them. When this happens, ECL‘PS® interprets the pathnames of the nested compiled files
relative to the directory of the parent compiled file; if, for example, the user calls

leclipse 1]: compile(’src/pl/prog’).
and the file src/pl/prog.pl contains a query
:- [partl, part2].

then the system searches for the files part1.pl and part2.pl in the directory src/pl and not in
the current directory. Usually larger ECL’PS® programs have one main file which contains only
commands to compile all the subfiles. In ECL!PS€ it is possible to compile this main file from
any directory. (Note that if your program is large enough to warrant breaking into multiple files
(let alone multiple directories), it is probably worth turning the constituent components into
modules — see chapter [7)
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3.7 How do I use ECL'PS¢ libraries in my programs?

A number of files containing library predicates are supplied with the ECL‘PS® system. These
predicates provide utility functions for general use. They are usually installed in an ECLPS®
library directory (or directories). These predicates are either loaded automatically by ECL/PS®
or may be loaded “by hand”.

During the execution of an ECL!PS® program, the system may dynamically load files containing
library predicates. When this happens, the user is informed by a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use_module/1
predicates. E.g. to load the library called 1ists, use one of the following goals:

lib(lists)
use_module(library(lists))

This will load the library file unless it has been already loaded. In particular, a program can
ensure that a given library is loaded when it is compiled, by including an appropriate directive
in the source, e.g. := 1lib(lists).

Library files are found by searching the library path and by appending a suffix to the library
name. The search path used when loading libraries is specified by the global flag library_path
using the get_flag/2 and set_flag/2 predicates. This flag contains a list of strings containing
the pathnames of the directories to be searched when loading a library file. User libraries may
be be added to the system simply by copying the desired file into the ECL‘PS® library directory.
Alternatively the library_path flag may be updated to point at a number of user specific
directories. The following example illustrates how a directive may be added to a file to add a
user-defined library in front of any existing system libraries.

?7- get_flag(library_path,Path),
set_flag(library_path, ["/home/myuser/mylibs" | Path]).

The UNIX environment variable ECLIPSELIBRARYPATH may also be used to specify the initial
setting of the library path. The syntax is similar to the syntax of the UNIX PATH variable, i.e.
a list of directory names separated by colons. The directories will be prepended to the standard
library path in the given order.

3.8 How do I make my programs run faster?

By default, ECL’PS® compiles programs as traceable, which means that they can be traced
using the built-in debugger. To obtain maximum efficiency, the directive nodbgcomp /0 should
be used, which will set some flags to produce a more efficient and shorter code:

[eclipse 2]: nodbgcomp.

yes.

[eclipse 3]: [user].

father (abraham, isaac).

father(isaac, jacob).

father(jacob, joseph).

ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).
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user compiled optimized 396 bytes in 0.02 seconds

yes.
[eclipse 4]:

Section 6.9 contains more detailed discussion on other techniques which can be used to optimise
your programs.

3.9 Other tips

3.9.1 Initialisation at start-up

If you wish to have ECL'PS® do or execute things at startup time, you can achieve this in
TkECL!PS® by setting the initial query call in the Preference editor; and in the command-line
eclipse by putting via a .eclipserc file.

For eclipse, before displaying the initial prompt, the system checks whether there is a file
called .eclipserc in the current directory and if not, in the user’s home directory. If such a file
is found, ECLPS® compiles it first. Thus it is possible to put various initialisation commands
into this file. ECL/PS® has many possibilities to change its default behaviour and setting up a
.eclipserc file is a convenient way to achieve this. A different name for the initialisation file
can be specified in the environment variable ECLIPSEINIT. If ECLIPSEINIT is set to an empty
string, no initialisation is done. If the system is started with a -e option, then the .eclipserc
file is ignored.

For TKECL'PS®, the system will make the initial query call as set in the Preference Editor
before giving control to the user. This call can be set to compile an initialisation file. This can
be the .eclipserc file, or some other file if the user want to initialise the system differently in
TKkECL'PS®.

3.9.2 Recommended file names

It is recommended programming practice to give the Prolog source programs the suffix .pl, or
.ecl if it contains ECL'PS¢ specific code. It is not enforced by the system, but it simplifies
managing the source programs. The compile/1 predicate automatically adds the suffix to the
filename, so that it does not need to be specified; if the literal filename can not be found, the
system tries appending each of the valid suffixes in turn and tries to find the resulting filename.
The system’s list of valid Prolog suffixes is in the global flag prolog_suffix and can be examined
and modified using get_flag/2 and set_flag/2. For example, to add the new suffix “.pro” use:

get_flag(prolog_suffix, 01d), set_flag(prolog_suffix, [".pro"|0ld]).
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Chapter 4

The TKkECL'PS¢ Development Tools

TKkECL'PS® is a graphical user interface to ECL‘PS®. It is an alternative to the traditional
textual line-based user interface, providing multiple windows, menus and buttons to assist the
user in interacting with ECL'PS®. It consists of two major components:

e A graphical top-level.

e A suite of development tools for aiding the development of ECL!PS® code.

TkECL!PS® is implemented in the Tcl/Tk scripting language/graphical toolkit [12], using the
new ECL'PS® Tcl/Tk interface [11]. The development tools are designed to be independent of
the top-level, so the user can develop their own applications with a graphical front end written
in Tcl/Tk, replacing the TKkECL'PS® top-level, but still using the development tools.

Chapter [3] gave an introduction to using TkECL'PS® from a user’s point of view. This chapter
focuses on how to use the tools from a programmer’s point of view (i.e. how to include them in a
program). In particular it discusses in detail the display matrix tool, which can be invoked in
user’s ECL'PS® code; and also how to use the development tools in the user’s own applications.

4.1 Display Matrix

This tool provides a method to display the values of terms in a matrix form. It is particularly

useful because it can display the attributes of an attributed Variable The predicate which

invokes the display matrix is considered a no-op in the tty-based ECLiPS@, and so the same

code can be run without modification from either eclipse or tkeclipse, though the matrix

display is only presented to the user in the latter.

This tool is invoked using either the make_display_matrix/2 predicate or the make_display_matrix/5
predicate. Adding a call to one of these predicates should be the only change you need to make

to your code. For example, in the following fragment of a N-queens program, only one extra line

has been added to invoke a display matrix:

queens (N, List) :-

! The display matrix tools is similar to the variable display of Grace. The main differences are: it can display
all attributes, not just the finite domain attribute; the attributes can only be observed, not changed; and the
labelling strategy cannot be changed.

2Unless it is attached to the remote development tools, in which case the display matrix is invoked.
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1 || _aza{[l .. 41} _ad{[ .. 41} _aad[l .. 4]} _abF{ .. 4}
Continue | stop none | stop all | 1 Update on ground  Kill display

Figure 4.1: Display Matrix Tool for 4-Queens (Initial)

_o4{[3, 41} a2, 4]} _96HIZ, 3]}
Continue | stop none | stop all | 1 Update on ground  Kill display

Figure 4.2: Display Matrix Tool for 4-Queens (During execution)

length(List, N),

List :: 1..N,

make_display_matrix(List/0, queens),

% sets up a matrix with all variables in 1 row. This is the only
% extra goal that has to be added to enable monitoring
alldistinct(List),

constrain_queens(List),

labeling(List).

Figures [4.1 and [4.2 show the tool invoked with the example N-Queens programs for 4 Queens,
at the start initially and during the execution of the program. The name of the display window
is specified by the second argument of make_display_matrix/2, along with the module it is
in. The values of the terms are shown in the matrix, which can be one dimensional (as in this
case), or two dimensional. Spy points can be set on each individual cell of the matrix so that
execution will stop when the cell is updated. The matrix can be killed using the ‘Kill display’
button. Left-clicking on a cell will bring up a menu which shows the current and previous value
of the term in the cell (the current value is shown because the space available in the cell may be
too small to fully display the term), and allows the user to inspect the term using the inspector.
Note that the display matrix can be used independently of, or in conjunction with, the tracer.
Multiple display matrices can be created to view different terms.

The following predicates are available in conjunction with the display matrix:

make_display_matrix(+Terms, +Name)

make_display matrix(+Terms, +Prio, +Type, +CondList, +Name)

These predicates create a display matrix of terms that can be monitored under TkECL!PS®.
The two argument form is a simplification of the five argument form, with defaults settings for
the extra arguments. Terms is a list or array of terms to be displayed. A List can be specified
in the form List/N, where N is the number of elements per row of the matrix. If N is 0, then
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the list will be displayed in one row (it could also be omitted in this case). The extra arguments
are used to control how the display is updated.

The terms are monitored by placing a demon suspension on the variables in each term. When
a demon wakes, the new value of the term it is associated with is sent to the display matrix
(and possibly updated, depending on the interactive settings on the matrix). When the new
value is backtracked, the old value is sent to the display matrix. The other arguments in this
predicate is used to control when the demon wakes, and what sort of information is monitored.
Prio is the priority that the demon should be suspended at, Type is designed to specify the
attributes that is being monitored (currently all attributes are monitored, and Type is a dummy
argument), CondList is the suspension list that the demon should be added to. Depending on
these arguments, the level of monitoring can be controlled. Note that it is possible for the display
matrix to show values that are out of date because the change was not monitored.

The display matrix will be removed on backtracking. However, it will not be removed if
make_display_matrix has been cut — kill_display_matrix/1 can be used to explicitly remove
the matrix in this case.

kill display_matrix(4+Name)

This predicate destroys an existing display matrix. Name is an atomic term which identifies the
matrix.

Destroys an existing display matrix. The display matrix is removed from being displayed.

4.1.1 Invoking display matrix tool interactively

Display matricies can be created interactively when a program is executing, if the program is
being debugged with the tracer tool. The user can select terms that are to be observed by a
display matrix while at a debug port. This can be done from the inspector, the tracer, and the
delay goal tools. See the online help files (available from the help menu of TkECL?PS¢) for more
details.

4.2 Using the development tools in applications

The user can develop their own ECL!PS¢ applications using the development tools independent
of the TKECL*PS® toplevel. There are two ways to do this, depending on if the user is also
using the embedding Tcl/Tk interface (see the Embedding and Interfacing Manual) to provide
a graphical front end:

e The user is using the embedding Tcl/Tk interface, and is thus developing a graphical front
end in Tk. In this case the user can use the development tools via the embedding interface.
This is described in section [4.2.1]

e The user is not using the embedding Tcl/Tk interface. In this case the user can use

the development tools remotely, by using the remote_tools library. This is described in
section 4.2.2.

4.2.1 Using the Development tools in the Tcl/Tk Embedding Interface

The development tool suite was designed to be independent of the TkKECL!PS® top-level so that
they can be used in a user’s application. In effect, the user can replace the TKECL!PS® top-level
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with their own alternative top-level. Two simple examples in which this is done are provided in
the 1ib_tcl library as example.tcl and examplel.tcl. In addition, tkeclipse itself, in the
file tkeclipse.pl, can be seen as a more complex example usage of the interface.

In order to use the Tcl/Tk interface, the system must be initialised as described in the Embedding
manual. In addition, the user’s Tcl code should probably also be provided as a package using
Tcl’s package facility, in order to allow the program to run in a different directory. See the
Fmbedding manual and the example programs for more details on the initialisation needed.
The user should most likely provide a connection for the output stream of ECL!PS¢ so that out-
put from ECL?PS® will go somewhere in the GUI. In addition, especially during the development,
it is also useful to connect the error stream to some window so that errors (such as ECL'PS®
compilation errors) are seen by the user. This can be done using the ec_queue_connect Tcl
command described in the embedding manual.

Output from ECL?PS® need not be sent to a Tk window directly. The Tcl/Tk code which
receives the output can operate on it before displaying it. It is intended that all such graphical
operations should be performed on the Tcl side, rather than having some primitives provided
on the ECL'PS® side.

The user can also provide balloon-help to his/her own application. The balloon help package is
part of the Megawidget developed by Jeffrey Hobbs and used in TkECL/PS®. In order to define
a balloon help for a particular widget, the following Tcl code is needed:

balloonhelp <path> <text>

where <path> is the pathname of the widget, and <text> is the text that the user wants to
display in the balloon.

4.2.2 Using the Remote Development Tools

The user can also use the development tools via the remote_tools library. In this case, the
development tools are run as a separate program from the ECL’PS® session, and is attached to
it via the Tcl/Tk remote interface (see the Embedding and Interfacing Manual). This allows any
ECL’PS® session to use the development tools, as long as there is the capability for graphical
display.

The main purpose for the remote_tools library is to allow the user to use the development tools
in situations where (s)he cannot use the Tcl/Tk embedding interface, e.g. if ECL'PS® is already
embedded into another programming language, or if the user needs to use the tty interface for
ECL'PS©.

Once attached to an ECLPS® session, the remote development tools has its own window as
shown in Figure [4.3. The Tools menu is the same as in TkECL'PS®, providing access to the
same suite of development tools. The main body of the window consists of one button and a
status indicator. The indicator shows wheather the tools can be used or not (the tools cannot be
used when the ECL'PS® is active), and the button is used to pass control explicitly to ECL'PSe.
The ECL'PS® session and the development tools are two separate processes (and in fact they
can be running on different machines) that are connected to each other via the remote Tcl/Tk
interface. The interactions of the two processes are synchronised in that there is a thread-like
flow of control between them: only one process can be ‘active’ at any time. The interaction
is similar to the standard interaction between a debugger and the program being debugged
— debugging commands can only be issued while the execution of the program is suspended.
In the same way, the user can only interact with the remote tools window when execution in
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—1 a| J] =] | tktools,tcl —| a1 d]l= 2] tktools.tcl
File Tools Help File Tools Help
|I I TkTools Active
| ] Resume ECLiPSe I ]

Figure 4.3: Remote Development Tools Toplevel (left: ECL!PS® active; right: remote tools
active)

the ECL'PS® session is suspended. The toplevel window of the remote tools has an indicator
showing which side has control (see Figure|4.3). To allow ECL!PS® to resume execution, control
is transferred back from the remote tools to ECL/PS®. This can either be done automatically
from the tools (e.g. when one of the debug buttons is pressed in the tracer tool), or control
can be transferred explicitly back to ECL/PS® via the “Resume ECLiPSe” button on the remote
tools window.

Starting Remote Tools

To use the remote tools, the user must first load the remote_tools library with 1ib(remote_tools).
After loading the library, the user can start the remote tools by starting the development tools
as a separate program and then manually attach the program to the ECL'PS® session. This
allows the development tools to be run on a different machine from the ECL!PS® session. In
this case, the user initiates the attachment in ECL!PS® with attach_tools/0:

[eclipse 2]: attach_tools.
Socket created at address holborn.icparc.ic.ac.uk/22849

ECL!PS® prints the host and port address it expects the remote tools to attach to, and execution
is now suspended waiting for the remote tools to attach. This is done by running the tktools
program, which is located with the other ECLPS® executables. As stated, this program can be
run on a different machine from the ECL/PS® session, as long as the two are connected via a
network such as the internet. A connection window is then displayed as shown:
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—) o) Il = | Connecting tktools to,..

Specify hostname and port number of
ECLiIPSe session to connect to {Use
attach tools/0 from lib{remote tools) in
ECLiPSe session).

Host: IIncthnst

Port:

The same ‘host’ and ‘port’ fields as printed by the ECL/PS® session should be entered. The
default ‘host’ field is ‘localhost’. This will work if the remote tools are ran on the same machine
as the ECL'PS® session. Otherwise the full name of the ‘host’ as given by attach_tools/0 needs
to be entered:

i 1
Conrnecting tktoolsz to,,.

Specify hostname and port number of
ECLiIPSe session to connect to {Use
attach tools/0 from lib{remote tools) in
ECLiPSe session).

Host: Ihnlhnrn.icparc.ic.ac.uk

Port: |22545

Typing return in the ‘port’ field will start the attachment, and with success, the remote tools
window (see Figure(4.3) will be displayed. The attach tools/0 predicate will also return.

The user is not able to immediately interact directly with the remote tools, as the ECL/PS®
session is initially given control. The user can use the ECL'PS® session as normal, with the
additional availability of the development tools. For example, the display matrix predicates can
be used as in TKECL!PS®. Also, the tracer tool replaces the previous tracing facilities of the
ECL‘PS® session (this would typically be the command-line debugger).

The tools can be triggered by events in the ECL'PS® session as described above. In order to
use the tools in a more interactive way, control should be handed over to the remote tools. This
can be done by calling the tools/0 predicate. When the remote tools have control, the user can
now interactively select development tools from the Tools menu.

The remote_tools library provides several predicates to facilitate the use of the remote develop-
ment tools:

tools Explicitly hands over control to the remote development tools. The tools window can then
be used interactively. Execution on the ECLPS® session is suspended until the remote
tools allows ECLPS® to resume, at which point the predicate succeeds. The predicate will
abort if the development tools is disconnected from the ECL!PS® session.
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attached(?ControlStream) Checks if the remote development tools have been attached to
this ECL*PS€ session or not. If attached, the predicate succeeds and unifies ControlStream
with the stream name of the control stream. If not attached, th predicate fails.

Once attached, the remote development tools should be connected until the user quits the session.
Although it is possible to disconnect the tools from the ECL*PS¢ session (from the File menu in
the development tools window). This is not recommended, as there would not be any debugging
facilities available after the disconnection — the original tracer would not be restored.

It is possible to attach the remote development tools to any ECL/PS® session, including one that
is using the embedding Tcl/Tk interface (and indeed, to TkKECL!PS® itself). However, using the
tools via the embedding interface is usually the better option if available, because the tools are
more tightly coupled to ECL‘PS® in this case. This means that the communications between
ECLPS® and the tools are more efficient (and hence something like the display matrix would
perform more efficiently).
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Chapter 5

ECL‘PS¢-specific Language Features

ECL!PS¢ is a logic programming language derived from Prolog. This chapter describes ECL/PS®-
specific language constructs that have been introduced to overcome some of the main deficiencies
of Prolog.

5.1 Structure Notation

ECL’PS® structure notation provides a way to use structures with field names. It is intended
to make programs more readable and easier to modify, without compromising efficiency (it is
implemented by preprocessing).

A structure is declared by specifying a template like this

:— local struct( book(author, title, year, publisher) ).
Structures with the functor book/4 can then be written as

book{}
book{title:’tom sawyer’}
book{title:’tom sawyer’, year:1886, author:twain}

which translate to the corresponding forms

book(_, _, _, _)
book(_, ’tom sawyer’, _, _)
book(twain, ’tom sawyer’, 1886, _)

This transformation is done by the parser, therefore it can be used in any context and is as
efficient as using the structures directly.
The argument index of a field in a structure can be obtained using a term of the form

FieldName of StructName
E.g. to access (ie. unify) a single argument of a structure, use arg/3 like this:
., arg(year of book, B, Y),
which is translated into
., arg(3, B, Y),

If a program is consistently written using curly-brace and of syntax, then the struct-declaration
can be modified (fields added or rearranged) without having to update the code anywhere else.
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5.1.1 TUpdating Structures

To construct an updated structure, i.e. a structure which is similar to an existing structure
except that one or more fields have new values, use the update_struct/4 built-in, which allows
to do that without having to mention all the other field names in the structure.

5.1.2 Arity and Functor of Structures

The arity of a structure can be symbolically written using of/2 as follows:
property(arity) of StructName
For example,

?- printf("A book has ’%d fields’%n", [property(arity) of bookl]).
A book has 4 fields
Yes.

Similarly, the whole StructName/Arity specification can be written as
property(functor) of StructName

which is used for the portray-declaration in the example below.

5.1.3 Printing Structures

When structures are printed, they are not translated back into the curly-brace-syntax by default.
The reason this is not done is that this can be bulky if all fields are printed, and often it is
desirable to hide some of the fields anyway.

A good way to control printing of big structures is to write special purpose portray-transformations
for them, for instance

:— local portray(property(functor) of book, tr_book_out/2, []).
tr_book_out (book{author:A,title: T},
no_macro_expansion(book{author:A,title:T})).

which will cause book/4 structures to be printed like
book{author:twain, title:tom sawyerl}

while the other two arguments remain hidden.

5.1.4 Inheritance

Structures can be declared to contain other structures, in which case they inherit the base
structure’s field names. Consider the following declarations:

:— local struct(person(name,address,age)).
:= local struct(employee(p:person,salary)).

The employee structure contains a field p which is a person structure. Field names of the
person structure can now be used as if they were field names of the employee structure:
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leclipse 1]: Emp = employee{name:john,salary:2000%}.
Emp = employee(person(john, _105, _106), 2000)
yes.

Note that, as long as the curly-brace and of syntax is used, the employee structure can be
viewed either as nested or as flat, depending on what is more convenient in a given situation.
In particular, the embedded structure can still be accessed as a whole:

[eclipse 1]:
Emp = employee{name: john,age:30,salary:2000,address:here},
arg(name of employee, Emp, Name),
arg(age of employee, Emp, Age),
arg(salary of employee, Emp, Salary),
arg(address of employee, Emp, Address),
arg(p of employee, Emp, Person).

Emp = employee(person(john, here, 30), 2000)
Name = john

Age = 30

Salary = 2000

Address = here

Person = person(john, here, 30)

yes.

The indices of nested structures expand into lists of integers rather than simple integers, e.g.
age of employee expands into [1,3].
5.1.5 Visibility

Structure declaration can be local to a module (when declared as above) or exported when
declared as

:— export struct(...).

in the module.

5.2 Loop/Iterator Constructs

Many types of simple iterations are inconvenient to write in the form of recursive predicates.
ECL’PS® therefore provides a logical iteration construct do/2, which can be understood either
by itself or by its translation to an equivalent recursion.

A simple example is the traversal of a list

main :-
write_list([1,2,3]).

write_list([]).

write_list([X|Xs]) :-
writeln(X),
write_list(Xs).
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which can be written as follows without the need for an auxiliary predicate:

main :-
( foreach(X, [1,2,3]) do
writeln(X)
).

This looks very much like a loop in a procedural language. However, due to the relational nature
of logic programming, the same foreach- construct can be used not only to control iteration
over an existing list, but also to build a new list during an iteration. For example

main :-
( foreach(X, [1,2,3]), foreach(Y, Negatives) do
Y is X
),

writeln(Negatives).

will print [-1, -2, -3].
The general form of a do-loop is

( IterationSpecs do Goals )
and it corresponds to a call to an auxiliary recursive predicate of the form

do__n(...).
do__n(...) :- Goals, do__n(...).

The IterationSpecs determine the number of times the loop is executed (i.e. the termination
condition), and the way information is passed into the loop, from one iteration to the next, and
out of the loop.

IterationSpecs is one (or a comma-separated sequence) of the following;:

fromto(First,In,Out,Last)
iterate Goals starting with In=First until Out=Last. In and Out are local variables in
Goals. For all but the first iteration, the value of In is the same as the value of Out in the
previous iteration.

foreach(X,List)
iterate Goals with X ranging over all elements of List. X is a local variable in Goals. Can
also be used for constructing a list.

foreacharg(X,Struct)
iterate Goals with X ranging over all elements of Struct. X is a local variable in Goals.
Cannot be used for constructing a term.

foreacharg(X,Struct,Idx)
same as before, but Idx is set to the argument position of X in Struct, i.e. arg(Idx, Struct, X)
is true. Idx is a local variable in Goals.

foreachelem(X,Array)
like foreacharg/2, but iterates over all elements of an array of arbitrary dimension. The
order is the natural order, i.e. if Array = [1([]J(a, b, ¢c), [1(d, e, £)), then for suc-
cessive iterations X is bound in turn to a, b, ¢, d, e and f. X is a local variable in Goals.
Cannot be used for constructing a term.
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foreachelem(X,Array,Idx)
same as before, but Idx is set to the index position of X in Array, i.e. subscript (Array, Idx, X)
is true. Idx is a local variable in Goals.

foreachindex(Idx,Array)
like foreachelem/3, but returns just the index position and not the element.

for(I,MinExpr,MaxExpr)
iterate Goals with I ranging over integers from MinExpr to MaxExpr. I is a local variable
in Goals. MinExpr and MaxExpr can be arithmetic expressions. Can be used only for
controlling iteration, i.e. MaxExpr cannot be uninstantiated.

for(I, MinExpr,MaxExpr,Increment)
same as before, but Increment can be specified (it defaults to 1).

multifor(List,MinList,MaxList)
like for/3, but allows iteration over multiple indices (saves writing nested loops). Each
element of List takes a value between the corresponding elements in MinList and MaxList.
Successive iterations go through the possible combinations of values for List in lexico-
graphic order. List is a local variable in Goals. MinList and MaxList must be either lists
of arithmetic expressions evaluating to integers, or arithmetic expressions evaluating to
integers (in the latter case they are treated as lists containing the (evaluated) integer re-
peated an appropriate number of times). At least one of List, MinList and MaxList must
be a list of fixed length at call time so that it is known how many indices are to be iterated.

multifor(List,MinList,MaxList,IncrementList)
same as before, but IncrementList can be specified (i.e. how much to increment each
element of List by). IncrementList must be either a list of arithmetic expressions evaluating
to non-zero integers, or an arithmetic expression evaluating to a non-zero integer (in which
case all elements are incremented by this amount). IncrementList defaults to 1.

count(I,Min,Max)
iterate Goals with I ranging over integers from Min up to Max. I is a local variable in
Goals. Can be used for controlling iteration as well as counting, i.e. Max can be a variable.

param(Varl,Var2,...)
for declaring variables in Goals global, ie shared with the context. CAUTION: By default,
variables in Goals are local!

Note that fromto/4 is the most general specifier (subsuming the functionality of all the others),
but foreach/2, foreacharg/2,3, foreachelem/2,3, foreachindex/2, count/3, for/3,4, multifor/3,4
and param/N are convenient shorthands.

There are three ways to combine the above specifiers in a single do loop:

IterSpecl, IterSpec2 (“synchronous iteration”)
This is the normal way to combine iteration specifiers: simply provide a comma-separated
sequence of them. The specifiers are iterated synchronously; that is, they all take their
first “value” for the first execution of Goals, their second “value” for the second execution
of Goals, etc. The order in which they are written does not matter, and the set of local
variables in Goals is the union of those of IterSpecl and IterSpec2.
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When multiple iteration specifiers are given in this way, typically not all of them will
impose a termination condition on the loop (e.g. foreach with an uninstantiated list and
count with an uninstantiated maximum do not impose a termination condition), but at
least one of them should do so. If several specifiers impose termination conditions, then
these conditions must coincide, i.e. specify the same number of iterations.

IterSpecl * IterSpec2 (“cross product”)
This iterates over the cross product of IterSpecl and IterSpec2. The sequence of iteration
is to iterate IterSpec2 completely for a given “value” of IterSpecl before doing the same
with the next “value” of IterSpecl, and so on. The set of local variables in Goals is the
union of those of IterSpecl and IterSpec2.

IterSpecl >> IterSpec2 (“nested iteration”)
Like ( IterSpecl do ( IterSpec2 do Goals ) ), including with respect to scoping. The local
variables in Goals are those of IterSpec2; in particular, those of IterSpecl are not available
unless IterSpec2 passes them through, e.g. using a param. Similarly, the only “external”
variables available as inputs to IterSpec2 are the locals of IterSpecl; variables from outside
the loop are not available unless passed through by IterSpecl, e.g. using a param.

Syntactically, the do-operator binds like the semicolon, i.e. less than comma. That means that
the whole do-construct should always be enclosed in parentheses (see examples).
Unless you use :-pragma(noexpand) or :-dbgcomp, the do-construct is compiled into an efficient
auxiliary predicate named do_nnn, where nnn is a unique integer. This will be visible during
debugging. To make debugging easier, it is possible to give the loop a user-defined name by
adding loop_name(Name) to the iteration specifiers. Name must be an atom, and is used as
the name of the auxiliary predicate into which the loop is compiled (instead of do_nnn). The
name should therefore not clash with other predicate names in the same module.
5.2.1 Examples
Iterate over list

foreach(X,[1,2,3]) do writeln(X).
Maplist (construct a new list from an existing list)

(foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).
Sumlist

(foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).

Reverse list

(foreach(X,[1,2,3]1), fromto([],In,0ut, Rev) do Out=[X|In]). % or:
(foreach(X,[1,2,3]), fromto([],In,[X|In],Rev) do true).

Iterate over integers from 1 up to 5

for(I,1,5) do writeln(I). % or:
count(I,1,5) do writeln(I).
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Iterate over integers from 5 down to 1
(for(I,5,1,-1) do writeln(I)).
Make list of integers [1,2,3,4,5]

(for(I,1,5), foreach(I,List) do true). % or:
(count(I,1,5), foreach(I,List) do true).

Make a list of length 3

(foreach(_,List), for(_,1,3) do true). % or:
(foreach(_,List), count(_,1,3) do true).

Get the length of a list
(foreach(_, [a,b,c]), count(_,1,N) do true).
Actually, the length/2 builtin is (almost)
length(List, N) :- (foreach(_,List), count(_,1,N) do true).
Iterate [L,J] over [1,1], [1,2], [1,3], [2,1], ..., [3,3]:
(multifor([I,J],1,3) do writeln([I,J])).
Similar, but have different start/stop values for I and J:
(multifor([I,J], [2,1], [4,5]) do writeln([I,J])).
Similar, but only do odd values for the second variable:
(multifor(List, [2,1], [4,5], [1,2]) do writeln(List)).
Filter list elements

(foreach(X, [5,3,8,1,4,6]), fromto(List,Out,In,[]) do
X>3 -> Out=[X|In] ; Out=In).

Iterate over structure arguments
(foreacharg(X,s(a,b,c,d,e)) do writeln(X)).
Collect args in list (bad example, use =.. if you really want to do that!)
(foreacharg(X,s(a,b,c,d,e)), foreach(X,List) do true).
Collect args reverse
(foreacharg(X,s(a,b,c,d,e)), fromto([],In, [X|In],List) do true).
or like this:

S = s(a,b,c,d,e), functor(S, _, N),
(for(I,N,1,-1), foreach(A,List), param(S) do arg(I,S,A)).

Rotate args in a struct
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S0 = s(a,b,c,d,e), functor(SO, F, N), functor(Si, F, N),
(foreacharg(X,S0,I), param(S1, N) do Il is (I mod N)+1, arg(I1,S1,X)).

Flatten an array into a list

(foreachelem(X, []1([1(5,1,2),[1(3,3,2))), foreach(X,List) do true).

Transpose a 2D array

A=1[1(1¢,1,2,01¢,3,2)), dim(A, [R,C]), dim(T, [C,R]),
(foreachelem(X,A,[I,J]), param(T) do X is T[J,I]).

Same, using foreachindex

A=10111¢,1,2,01(3,3,2)), dim(A, [R,C]), dim(T, [C,R]),
(foreachindex([I,J],A), param(A, T) do
subscript(A, [I,J], X), subscript(T, [J,I], X)).

The following two are equivalent

foreach(X,[1,2,3]) do writeln(X).
fromto([1,2,3],In,0ut,[]) do In=[X|0ut], writeln(X).

The following two are equivalent

count(I,1,5) do writeln(I).
fromto(0,I0,I,5) do I is IO+1, writeln(I).

Some examples for nested loops. Print all pairs of list elements:

Xs = [1,2,3,4],

( foreach(X, Xs), param(Xs) do
( foreach(Y,Xs), param(X) do

writeln(X-Y)

)

).

% or

Xs = [1,2,3,4],

( foreach(X, Xs) * foreach(Y, Xs) do
writeln(X-Y)

).

and the same without symmetries:

Xs = [1,2,3,4],
( fromto(Xs, [X|Xs1], Xsi1, []1) do
( foreach(Y,Xs1), param(X) do
writeln(X-Y)
)
).
% or
Xs = [1,2,3,4],
( fromto(Xs, [X|Xs1], Xs1, [1) >> ( foreach(Y,Xsl), param(X) ) do
writeln(X-Y)
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Find all pairs of list elements and collect them in a result list:

pairs(Xs, Ys, Zs) :-

(
foreach(X,Xs),
fromto(Zs, Zs4, Zs1l, [1),
param(Ys)
do
(
foreach(Y,Ys),
fromto(Zs4, Zs3, Zs2, Zsl),
param(X)
do
Zs3 = [X-Y|Zs2]
)
).
% or
pairs(Xs, Ys, Zs) :-
(
foreach(X, Xs) * foreach(Y, Ys),
foreach(Z, Zs)
do
Z = X-Y
).

Flatten a 2-dimensional matrix into a list:

flatten_matrix(Mat, Xs) :-
dim(Mat, [M,N]),

(
for(I,1,M),
fromto(Xs, Xs4, Xs1, [1),
param(Mat,N)
do
(
for(J,1,N),
fromto(Xs4, [X|Xs2], Xs2, Xsl1),
param(Mat,I)
do
subscript(Mat, [I,J], X)
)
).

Same using * to avoid nesting:

flatten_matrix(Mat, Xs) :-
dim(Mat, [M,N]),
(
for(I, 1, M) * for(J, 1, N),
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foreach(X, Xs),
param(Mat)
do

subscript(Mat, [I,J], X)
).

Same using multifor to avoid nesting:

flatten_matrix(Mat, Xs) :-
dim(Mat, [M,N]),

(
multifor([I,J], 1, [M,NI1),
foreach(X, Xs),
param(Mat)
do
subscript(Mat, [I,J], X)
).

Same for an array of arbitrary dimension:

flatten_array(Array, Xs) :-
dim(Array, Dims),

(
multifor(Idx, 1, Dims),
foreach(X, Xs),
param(Array)
do
subscript (Array, Idx, X)
).

Same but returns the elements in the reverse order:

flatten_array(Array, Xs) :-
dim(Array, Dims),

(
multifor(Idx, Dims, 1, -1),
foreach(X, Xs),
param(Array)

do
subscript (Array, Idx, X)

).

Flatten nested lists one level (cf. flatten/2 which flattens completely):

List = [[a,b],[[c,d,e]l, [£f]1],[gl],
(foreach(Xs,List) >> foreach(X,Xs), foreach(X,Ys) do true).

Iterate over all ordered pairs of integers 1..4 (param(I) required to make I available in body of
loop):

(for(I,1,4) > (for(J,I+1,4), param(I)) do writeln(I-J)).
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Same for general 1..N (param(N) required to make N available to second for):

N=4,
((for(I,1,N), param(N)) >> (for(J,I+1,N), param(I)) do writeln(I-J)).

5.3 Array Notation

Since our language has no type declarations, there is really no difference between a structure
and an array. In fact, a structure can always be used as an array, creating it with functor/3
and accessing elements with arg/3. However, this can look clumsy, especially in arithmetic
expressions.

ECLPS® therefore provides array syntax which enables the programmer to write code like

leclipse 1]: Prime = a(2,3,5,7,11), X is Prime[2] + Prime[4].
X =10

Prime = a(2, 3, 5, 7, 11)

yes.

Within expressions, array elements can be written as variable-indexlist or structure-indexlist
sequences, e.g.

X[3] + M[3,4] + s(4,5,6)[3]

Indices run from 1 up to the arity of the array-structure. The number of array dimensions is
not limited.

To create multi-dimensional arrays conveniently, the built-in dim/2 is provided (it can also be
used backwards to access the array dimensions):

leclipse]l: dim(M,[3,4]), dim(M,D).

M= [1(01(_131, _132, _133, _134),
[1(_126, _127, _128, _129),
[1(_121, _122, _123, _124))
D = [3, 4]
yes.
Although dim/2 creates all structures with the functor [ ], this has no significance other than

reminding the programmer that these structures are intended to represent arrays.
Array notation is especially useful within loops. Here is the code for a matrix multiplication
routine:

matmult (M1, M2, M3) :-
dim(M1, [MaxIJ,MaxK]),
dim(M2, [MaxK,MaxIJ]),
dim (M3, [MaxIJ,MaxIJ]),
(
for(I,1,Max1J),
param(M1,M2,M3,MaxIJ,MaxK)
do
(
for(J,1,MaxIJ),
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param(M1,M2,M3,1,MaxK)

do
(
for(K,1,MaxK),
fromto(0,Sum0,Suml,Sum),
param(M1,M2,1,J)
do
Suml is SumO + M1[I,K] * M2[K,J]
),
subscript (M3, [I,J], Sum)
)

5.3.1 Implementation Note

Array syntax is implemented by parsing variable-list and structure-list sequences as terms with
the functor subscript/2. For example:

X[3] -—=> subscript(X, [3])
M[3,4] -—> subscript(M, [3,4])
s(4,5,6) [3] —-—=> subscript(s(4,5,6), [3])

If such a term is then used within an arithmetic expression, a result argument is added and the
built-in predicate subscript/3 is called, which is a generalised form of arg/3 and extracts the
indicated array element.

When printed, subscript/2 terms are again printed in array notation, unless the print-option to
suppress operator notation (”O”) is used.

5.4 The String Data Type

In the Prolog community there have been ongoing discussions about the need to have a special
string data type. The main argument against strings is that everything that can be done with
strings can as well be done with atoms or with lists, depending on the application. Nevertheless,
in ECL'PS® it was decided to have the string data type, so that users that are aware of the
advantages and disadvantages of the different data types can always choose the most appropriate
one. The system provides efficient builtins for converting from one data type to another.

5.4.1 Choosing The Appropriate Data Type
Strings, atoms and character lists differ in space consumption and in the time needed for per-
forming operations on the data.

Strings vs. Character Lists

Let us first compare strings with character lists. The space consumption of a string is always
less than that of the corresponding list. For long strings, it is asymptotically 16 times more
compact. Items of both types are allocated on the global stack, which means that the space is
reclaimed on failure and on garbage collection.
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For the complexity of operations it must be kept in mind that the string type is essentially
an array representation, ie. every character in the string can be immediately accessed via its
index. The list representation allows only sequential access. The time complexity for extracting
a substring when the position is given is therefore only dependent on the size of the substring
for strings, while for lists it is also dependent on the position of the substring. Comparing two
strings is of the same order as comparing two lists, but faster by a constant factor. If a string
is to be processed character by character, this is easier to do using the list representation, since
using strings involves keeping index counters and calling the string code/3 predicate.

The higher memory consumption of lists is sometimes compensated by the property that when
two lists are concatenated, only the first one needs to be copied, while the list that makes up
the tail of the concatenated list can be shared. When two string are concatenated, both strings
must be copied to form the new one.

Strings vs. Atoms

At a first glance, an atom does not look too different from a string. In ECL!PS®, many predicates
accept both strings and atoms (e.g. the file name in open/3) and some predicates are provided
in two versions, one for atoms and one for strings (e.g. concat_atoms/3 and concat_strings/3).
However, internally these data types are quite different. While a string is simply stored as a
character sequence, an atom is mapped into an internal constant. This mapping is done via a
table called the dictionary. A consequence of this representation is that copying and comparing
atoms is a unit time operation, while for strings both is proportional to the string length. On
the other hand, each time an atom is read into the system, it has to be looked up and possibly
entered into the dictionary, which implies some overhead. The dictionary is a much less dynamic
memory area than the global stack. That means that once an atom has been entered there, this
space will only be reclaimed by a relatively expensive dictionary garbage collection. It is therefore
in general not a good idea to have a program creating new atoms dynamically at runtime.
Atoms should always be preferred when they are involved in unification and matching. As
opposed to strings, they can be used for indexing clauses of predicates. Consider the following
example:

[eclipse 1]: [user].
afather(mary, george).
afather (john, george).
afather(sue, harry).
afather(george, edward).

sfather("mary", "george").
sfather("john", "george").
sfather("sue", "harry").
sfather ("george", "edward").

user compiled 676 bytes in 0.00 seconds

yes.
[eclipse 2]: afather(sue,X).

X = harry
yes.
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[eclipse 3]: sfather("sue",X).
X = "harry" More? (;)

no (more) solution.

The predicate with atoms is indezxed, that means that the matching clause is directly selected
and the determinacy of the call is recognised (the system does not prompt for more solutions).
When the names are instead written as strings, the system attempts to unify the call with the
first clause, then the second and so on until a match is found. This is much slower than the
indexed access. Moreover the call leaves a choicepoint behind (as shown by the more-prompt).

Conclusion

Atoms should be used for representing (naming) the items that a program reasons about, much
like enumeration constants in PASCAL. If used like this, an atom is in fact indivisible and there
should be no need to ever consider the atom name as a sequence of characters.

When a program deals with text processing, it should choose between string and list represen-
tation. When there is a lot of manipulation on the single character level, it is probably best to
use the character list representation, since this makes it very easy to write recursive predicates
walking through the text.

The string type can be viewed as being a compromise between atoms and lists. It should be
used when handling large amounts of input, when the extreme flexibility of lists is not needed,
when space is a problem or when handling very temporary data.

5.4.2 Builtin Support for Strings

Most ECL!PS¢ builtins that deliver text objects (like getcwd/1, read_string/3,4 and many
others) return strings. Strings can be created and their contents may be read using the string
stream feature (cf. section[10.3.1). By means of the builtins atom string/2, string list/2,
number_string/2 and term_string/2, strings can easily be converted to other data types.

5.4.3 Quoted lists

As already discussed, many Prologs use the double quotes as a notation for lists of characters. By
default, ECL'PS® does not provide any syntactical support for such quoted lists. However, the
user can manipulate the quotes by means of the set_chtab/2 predicate. A quote is defined by
setting the character class of the chosen character to string_quote, list_quote or atom_quote
respectively. To create a list quote (which is not available by default) one may use:

[eclipse 1]: set_chtab(0’¢, list_quote).

yes.
[eclipse 2]: X = ‘text‘, Y = "text", type_of(X, TX), type_of(Y, TY).

X = [116, 101, 120, 116]
TX = compound

Y = "text"

TY = string
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yes.

5.5 Matching Clauses

When Prolog systems look for clauses that match a given call, they use full unification of the goal
with the clause head (but usually without the occur check). Sometimes it is useful or necessary
to use pattern matching instead of full unification, i.e. during the matching only variables in
the clause head can be bound, the call variables must not be changed. This means that the call
must be an instance of the clause head.

The operator -7-> at the beginning of the clause body specifies that one-way matching should
be used instead of full unification in the clause head:

p(£(X)) :-
~7->

q(X).

Using the ?- operator in the neck of the clause (instead of : -) is an alternative way of expressing
the same, so the following is equivalent to the above:

p(£(X)) ?-
q(X).

Pattern matching can be used for several purposes:

e Generic pattern matching when looking for clauses whose heads are more general than the
call.

e Decomposing attributed variables [4]. When an attributed variable occurs in the head
of a matching clause, it is not unified with the call argument (which would trigger the
unification handlers) but instead, the call argument is decomposed into the variable and
its attribute(s):

get_attr (X{A}, Attr) :-
-7->

A = Attr.

This predicate can be used to return the attribute of a given attributed variable and fail
if it is not one.

e Replacing other metalogical operations, e.g. var/1 test. Since a nonvariable in the head
of a matching clause matches only a nonvariable, explicit variable tests and/or cuts may
become obsolete.

If some argument positions of a matching clause are declared as output in a mode declaration,
then they are not unified using pattern matching but normal unification, in this case then the
variable is normally bound. The above example can thus be also written as

:- mode get_attr(?, -).
get_attr (X{A}, A) :-
-7->

true.

but in this case it must not be called with its second argument already instantiated.

41



5.6 Soft Cut

Sometimes it is useful to be able to remove a choice point which is not the last one and to keep
the following ones, for example when defining an if-then-else construct which backtracks also
into the condition. This functionality is usually called soft cut in the Prolog folklore.

Softcuts are written as:

Ax—>B;C

If A succeeds, B is executed and on backtracking subsequent solutions of A followed by B are
returned, but C is never executed. If A fails straight away, C is executed. The behaviour of
«— > /2 is similar to — >/2 with the exception that — >/2 cuts both A and the disjunction if
A succeeds, whereas *— >/2 cuts only the disjunction.
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Chapter 6

The Compiler

ECL’PS® has an efficient incremental compiler which compiles Prolog source into the instructions
of an abstract machine and they are then executed by an emulator. The compiler is very fast, it
compiles about 1000 lines/sec. on a Sun-4, and this makes the usual debugging cycle acceptably
short. Unlike other Prolog systems, the ECL!PS® compiler generates code that can be used for
debugging, so that no separate interpreter is necessary, and also the debugged code runs faster.
The ECLPS® compiler is interactive and incremental, which means that Prolog programs are
compiled during a ECL?PS¢ session directly into the Prolog database.

In addition, object code of ECL'PS® programs can be generated and stored into a file, which
can then be loaded into a different session of ECL'PS®. See section 6.10 for more details.

6.1 Program Source

When reading the input source, the compiler distinguishes clauses and directives. Directives
are terms with main functor :-/1 or ?-/1. When the compiler encounters them, it executes
immediately their first argument as a Prolog goal. If this goal succeeds, the compiler continues
to the next input term without reporting the answer to the user. If the directive fails, an event
is raised.

All other input terms are interpreted as clauses to be compiled. A sequence of consecutive
clauses whose heads have the same functor is interpreted as one procedure, and so e.g. if the
clauses of one procedure are mixed with directives or with clauses for another procedure, the
compiler takes them as several different procedures. To allow the user to write non-consecutive
procedures, the compiler raises an event whenever it encounters several procedures with the
same name and arity in one file, or when a procedure defined in one file is being redefined in
another file. Default action for the former is to emit a warning, for the latter the new procedure
just replaces the old one. The library scattered redefines the former handler so that procedures
which are scattered in one file are accepted as normal static procedures.

6.2 Procedure Types

Procedures can be static and dynamic and this feature can be queried with the stability
flag of get_flag/3.

Static procedures are compiled as one unit, they are thus executed more efficiently, and they can
be modified only by replacing them by another procedure. By contrast, dynamic procedures are
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compiled clause-wise, they are executed slightly less efficiently, but their source form can also be
retrieved, and they can be modified by adding or removing single clauses or clause sequences.
By default all procedures are static, dynamic procedures must be declared by the dynamic/1
declaration, except that undefined procedures for which assert /1,2 is called are silently declared
as dynamic by the event handler, and so no declaration is needed.

When compiling static procedures, the compiler remembers their position in the file, which can
be then queried by get_flag/3. The library scattered actually uses this feature to retrieve
predicates whose clauses are not consecutive.

6.3 Compiler Modes

The compiler has several modes of operation, each mode generating code with different proper-
ties. The operating mode is controlled by a set of global flags, which may be modified at any
time, even during the compilation so that a part of the program is compiled in a different mode.
These flags and the associated modes are listed below.

debug_compile When this flag is on, the compiler generates code which can be traced with
the debugger. To generate optimised (untraceable) code, this flag must be switched off.
This can also be achieved by the use of nodebug compiler pragma in the program:

:- pragma(nodebug) .

occur_check When this flag is on, the compiled code will perform the occur check if necessary.
This means that every time a variable will be unified with a compound term that might
already contain a reference to this variable, the compound term will be scanned for this
occurrence and if it is found, the unification fails. In this way, the creation of infinite
(cyclic) terms is impossible and thus the behaviour of the system is closer to the first order
logic theory. Unifications with the occur check may sometimes be very slow, and most
Prolog programs do not need it, because no cyclic terms are created. Note that this flag
must be set both at compile time and at runtime in order to actually perform the checks.
In particular, as ECL‘PS® built-ins are compiled without this flag set, the builtins will not
perform the check.

variable_names ECL‘PS® can remember the source variable names of the input variables.
When this flag is on, the compiled predicates will keep the names of the source variables
and will display them whenever the variables are printed. In this case the usage of the
global stack and code space is slightly higher (to store the name), and the efficiency of the
code is marginally lower. Setting this flag to check singletons has the same effect as on,
but additionally, the compiler will issue warnings about variables which occur only once
in a clause and whose names do not start with an underscore character.

all_ dynamic When this flag is on, all procedures are compiled as dynamic ones (and there is no
equivalent static/1 declaration). It can be used to port programs from older interpreters
which rely heavily on the fact that all predicates in these interpreters were dynamic.
Another possible use is to switch it on at the beginning of a file that contains many
dynamic predicates and switch it off at its end.

macro_expansion This is in fact a parser flag, is enables or disables the macro transformation
(see Chapter 12) for the input source.
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goal expansion Specifies whether to apply goal-macros or not (see Chapter [12).

6.4 Compiler Input
The compiler normally reads a file up to its end. The file end can also be simulated with a clause
end_of_file.

The file is normally read consecutively, however the compiler uses the normal ECL‘PS® I/0
streams, and so if during the compilation the stream pointer is modified (e.g. by seek/2 or
read/2), the compiler continues at the specified plac.

There are several built-in predicates which invoke the compiler:

compile(File) This is the standard compiler predicate. The contents of the file is compiled
according to the current state of the global flags.

compile(File, Module) This predicate is used to compile the contents of a file into a specified
module, without having to use the module declaration in the file itself.

include(File) This predicate is similar to the compile predicate, except that it is treated as
an in place inclusion of File by fcompile/1 (see section . Like compile, File can
be a single file, or a list of files.

compile_stream(Stream) This predicate compiles a given stream up to its end or to the
end_of _file clause. It can be used when the input file is already open, e.g. when the
beginning of the file does not contain compiler input, or when the input has to be processed
in a non-consecutive way.

compile_term(Clauses) This predicate is used to compile a given term, usually a list of
clauses and directives. Unlike assert/1 it compiles a static procedure, and so it can be
used to compile a procedure which is dynamically created and then used as a static one.
For more information please refer to [10].

ensure_loaded(File) This predicate compiles the specified file if it has not been compiled yet
or if it has been modified since the last compilation.

make This predicate recompiles all files that have been modified since their last compilation.

lib(File) This predicate is used to ensure that a specified library file is loaded. If this library
is not yet compiled, the system will look in all directories in the library_path flag for a
file with this name. When the file is found, it is compiled and the system remembers it.

current_compiled _file(File, Time, Module) This predicate returns on backtracking all
files that have been compiled in this session, together with the module from where the
compilation was done and the modification time stamp of the file at the time it was
compiled.

! An example of using this feature is the library ifdef.
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compiled_file(File, Line) This predicate allows to access the compiled file during the compi-
lation. If it is called during the compilation, it returns the name of the file being compiled
and the current line in it%. If some I /O operations are performed on the compiler stream,
it influences the compiler, e.g. some procedures can be omitted and some compiled several
times. An example of its use is the library ifdef which implements a C-like conditional
compilation.

assert(Clause) This predicate compiles the given clause of a dynamic predicate.

6.5 Module Compilation

One source file can contain several modules and one module may spread over several ﬁleﬂ.
The module structure is controlled by the module/1 directive which tells the compiler that
all subsequent input up to the end of file or another module directive will be part of the given
module.

When it encounters the module/1 directive, the compiler first erases previous contents of this
module, if there was any, before starting to compile predicates into it. This means that if the
contents of a module has to be generated incrementally, the module directive cannot be used
because the previous contents of the module would be destroyed. In this case the predicate
compile(File, Module) should be used.

6.6 Mode Declarations

Mode declarations are a way for the user to give some additional information to the compiler,
thus enabling it to do a better job. The ECL'PS¢ compiler makes use of the mode information
mainly to improve indexing and to reduce code size.

Mode declarations are optional. They specify the argument instantiation patterns that a predi-
cate will be called with at runtime, for example:

:- mode p(+), q(-), r(++, 7).
The possible argument modes and their meaning are:
+ - The argument is instantiated, i.e. it is not a variable.
+-+ - The argument is ground.

— - The argument is not instantiated, it must be a free variable without any constraints, espe-
cially it must not occur in any other argument and it cannot be a suspending variable.

? - The mode is not known or it is neither of the above ones.

Note that, if the actual instantiation of a predicate call violates its mode declaration, the be-
haviour is undefined. Usually, an unexpected failure occurs in this case.

2 This is in fact ambiguous; the system predicate compiled_stream /1 which is exported from the module
sepia_kernel is more precise.
3This style is not recommended.
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6.7 Inlining

To improve efficiency, calls to user-defined predicates can be preprocessed and transformed at
compile time. The directive inline/2, e.g.

:- inline(mypred/1, mytranspred/2).

arranges for mytranspred/2 to be invoked at compile time for each call to the predicate mypred/1
before this call is being compiled.

The transformation predicate receives the original call to mypred/1 as its first argument, and is
expected to return a replacement goal in its second argument. This replacement goal replaces
the original call in the compiled code. Usually, the replacement goal would be semantically
equivalent, but more efficient than the original goal. When the transformation predicate fails,
the original goal is not replaced.

Typically, a predicate would be defined together with the corresponding inlining transformation
predicate, e.g.

:— inline(double/2, trans_double/2).

double(X, Y) :-
Y is 2xX.

trans_double(double(X, Y), Y=Result) :-
not nonground(X), % if X already known at compile time:

Result is 2x*X. % do calculation at compile time!

All compiled calls to double/2 will now be preprocessed by being passed to trans_double/2. E.g.
if we now compile the following predicate involving double/2

sample :-
double(12,Y), ..., double(Y,Z).

the first call to double will be replaced by Y=24 while the second one will be unaffected. The
code that the compiler sees and compiles is therefore

sample :-
Y=24, ..., double(Y,Z).

Note that meta-calls (e.g. via call/1) are never preprocessed, they always go directly to the
definition of double/2.
Transformation can be disabled for debugging purposes by adding

:—- pragma(noexpand) .

to the compiled file, or by setting the global flag

:- set_flag(goal_expansion, off).
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6.8 Compiler Pragmas

Compiler pragmas are compiler directives which instruct the compiler to emit a particular code
type. Their syntax is similar to directives:

:— pragma(Option) .

It is not possible to have several pragmas grouped together and separated by commas like goals,
every pragma must be specified separately. Option can be one of the following:

e debug - generate code which can be inspected with the debugger. This overrides the
global setting of the debug_compile flag.

e nodebug - generate optimized code with no debugger support. This overrides the global
setting of the debug_compile flag.

e silent_debug - generate code which cannot be inspected by the debugger, but which allows
to debug predicates called by it. This is similar to setting the leash flag of all subgoals
in the following clauses to notrace. This option is useful e.g. for library predicates which
call other Prolog predicates: the user wants to see in the debugger the call to the library
predicate and to the invoked predicate, but no internal calls in the library predicates.

e expand - do in-line expansion of some subgoals, like =/2, is/2 and others. This code can
still be inspected with the debugger but the expanded subgoals look differently than in
the normal debugged code, or their arguments cannot be seen. This pragma overrides the
global setting of the goal_expansion flag.

e noexpand - inhibit the in-line goal expansion. This pragma overrides the global setting
of the goal_expansion flag.

e skip - set the skip flag of all following predicates to on.
e noskip - set the skip flag of all following predicates to off.

e system - set the type flag of all following predicates to built_in. Moreover, all following
predicates will have unspecified source_file and source_line flags.

By default, the compiler works as if the pragmas debug, expand and noskip were specified.
The pragma is active from its specification in the file until the file end or until it is disabled by
another pragma. Recursive compilations or calls to other compiling predicates are not affected
by the pragma. Pragmas which have the same effect as global flags override the global flags if
they specify more optimized code. For instance, the pragma debug has no effect if the global
flag debug_compile is off, but the pragma nodebug overrides the global flag debug_compile
being on.

The pragmas are useful mainly for libraries and other programs that should be always compiled
in a particular mode independently of the global flags setting.

6.9 Writing Efficient Code

The ECL'PS® compiler tries its best, however there are some constructs which can be compiled
more efficiently than others. On the other hand, many Prolog programmers overemphasize the
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importance of efficient code and write completely unreadable programs which can be only hardly
maintained and which are only marginally faster than simple, straightforward and readable
programs. The advice is therefore Try the simple and straightforward solution first! The
second rule is to keep this original program even if you try to optimise it. You may find out
that the optimisation was not worth the effort.

To achieve the maximum speed of your programs, you must produce the optimised code with
the flag debug_compile being off, e.g. by calling set_flag(debug compile, off), or using
the pragma nodebug. Setting the flag variable_names can also cause slight performance
degradations and it is thus better to have it off, unless variable names have to be kept. Unlike
in the previous releases, the flag coroutine has now no influence on the execution speed. Some
programs spend a lot of time in the garbage collection, collecting the stacks and/or the dictionary.
If the space is known to be deallocated anyway, e.g. on failure, the programs can be often speeded
up considerably by switching the garbage collector off or by increasing the gc_interval flag.
As the global stack expands automatically, this does not cause any stack overflow, but it may
of course exhaust the machine memory

When the program is running and its speed is still not satisfactory, use the profiling tools. The
profiler can tell you which predicates are the most expensive ones, and the statistics tool tells
you why. A program may spend its time in a predicate because the predicate itself is very time
consuming, or because it was frequently executed. The statistics tool gives you this information.
It can also tell whether the predicate was slow because it has created a choice point or because
there was too much backtracking due to bad indexing.

One of the very important points is the selection of the clause that matches the current call. If
there is only one clause that can potentially match, the compiler is expected to recognise this
and generate code that will directly execute the right clause instead of trying several subsequent
clauses until the matching one is found. Unlike most of the current Prolog compilers, the
ECL!PS® compiler tries to base this selection (indexing) on the most suitable argument of the
predicatéz.ltis therefore not necessary to reorder the predicate arguments so that the first one
is the crucial argument for indexing. However, the decision is still based only on one argument.
If it is necessary to look at two arguments in order to select the matching clause, e.g. in

pa, a) :- a.
p(b, a) :- b.
p(a, b) :- c.
p(d, b) :- d.
p(b, ¢c) :- e.

and if it is crucial that this procedure is executed as fast as possible, it is necessary to define an
auxiliary procedure which can be indexed on the other argument:

p(X, a) :- pa(X).

p(X, b) :- pb(X).

p(b, c) :- e.

pa(a) :- a. pa(b) :- b.

pb(a) :- c. pb(d) :- 4.

4The standard approach is to index only on the first argument
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The compiler also tries to use for indexing all type-testing information that appears at the
beginning of the clause body:

e Type testing predicates free/1, var/1, meta/1, atom/1, integer/1, rational/1, float/1,
breal/1, real/1, number/1, string/1, atomic/1, compound/1, nonvar/1 and non-
ground/1.

e Explicit unification and value testing =/2, ==/2, \==/2 and \=/2.
e Combinations of tests with ,/2, ;/2, not/1, — >/2.

e Arithmetic testing predicates </2, =</2, >/2, >=/2 if one argument is an integer
constant and the other one known to be of the integer type.

e A cut after the type tests.

If the compiler can decide about the clause selection at compile time, the type tests are never
executed and thus they incur no overhead. When the clauses are not disjoint because of the type
tests, either a cut after the test or more tests into the other clauses can be added. For example,
the following procedure will be recognised as deterministic and all tests are optimised away:

% a procedure without cuts

p(X) :- var(X),

p(X) :- (atom(X); integer(X)), X \= [1,
p(X) :- nonvar(X), X = [_|_],

p(X) :- nonvar(X), X = [],

Another example:

% A procedure with cuts
pX{_} 7= 1,

pX) - var(X), !,

p(X) :- integer(X),
pX) :- real(X),
p([HITI) - ...

pCll) - ...

Integers less than or greater than a constant can also be recognised by the compiler:

pX) :- integer(X), X < 5,
p(7) = ...
p(9) :-

p(X) integer(X), X >= 15,

If the clause contains tests of several head arguments, only the first one is taken into account
for indexing.
Here are some more hints for efficient coding with ECL‘PS¢:

e Arguments which are repeated in the clause head and in the first regular goal in the body
do not require any data moving and thus they do not cost anything. For example,

p(x: Y: Z, T: U) e q(X, Y, Z’ T, U)-
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is as expensive as
P :— q.

On the other hand, switching arguments requires data moves and so
p(A, B, C) :- q(B, C, A).

is significantly more expensive.

e When accessing an argument of a structure whose functor is known, unification is better
than arg/3. Note, however, that for better maintainability the structure notation (see
section [5.1) should be used to define the structures.

e Tests are generally rather slow unless they can be compiled away (see indexing).

e When processing all arguments of a structure, using =../2 and list predicates is always
faster, more readable and easier analyzable by automated tools than using functor/3 and
arg/3 loops.

e Similarly, when adding one new element to a structure, using =../2 and append/3 is
faster than functor/arg.

e Waking is less expensive than metacalling and more expensive than direct calling. Meta-
calls, although generally slow, are still a lot faster than in some other Prolog systems.

e Sorting using sort/2 is very efficient and it does not use much space. Using setof/3,
findall/3 etc. is also efficient enough to be used every time a list of all solutions is needed.

e using not not Goal is optimised in the compiler to use only one choice point.
e =/2 when expanded by the compiler, is faster than ==/2 or =:=/2.
e :/2 is optimised away by the compiler if both argument are known.

e Using several clauses is much more efficient than using a disjunction if the clause heads
contain nonvariables which can be used for indexing. If no indexing can be made anyway,
using a disjunction is slightly faster.

e Conditionals with — >; are compiled more efficiently if the condition is a simple built-in
test. However, using several clauses can be faster if the compiler optimises the test away.

6.10 Compiling and loading object code

Traditionally when an ECL?PS® file is compiled, it is loaded immediately into the system. Some-
time it is useful to generate ‘object code’ which can then be loaded later, perhaps even in a
different session of ECL/PS®, maybe on a different platform. This functionality is provided by
the fcompile library.

In order to use this facility, the fcompile library should be loaded first:

:= lib(fcompile).
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fcompile(+File) can then be used to generate an object file from an ECLPS® source file. The
object file has the same base name as the source file File, but with the suffix .eco attached.
fcompile generates an object file by compiling an ECL‘PS¢ source file normally, and then
disassembling the compiled code into an object form, which is written to the object file. This
object form is platform independent and can be loaded into ECL‘PS® running on a different
platform from the one that generated it (see section[6.10.1! for restrictions).

The object file is generated in the current working directory.

Options can be specified for fcompile by using fcompile/2.

fcompile is designed mainly for generating an object file for a whole module. The include direc-
tive allows multiple source files to be compiled into one object file. When fcompile encounters
an include directive in the source file:

:— include(File).

it will generate the object code for the file(s) in File in place of the directive. The effect is as
if the actual source code for file(s) was written at the point of the include directive. Note that
this can have a different semantics from recursively compiling files using the compile directive,
because any new module in a recursively compiled file ends with the end of that file. With
include, any new modules defined in that file will not end with the file. Thus, a compile
directive should not be changed to an include directive if the target file contains definitions for
a separate module.

The object code file (with .eco suffix) will be loaded in preference to the Prolog source file by
use_module/1 and lib/1,2 if both files are present. On the other hand, the compile predicates
expect a source file and will normally not load an object code file.

The compiler generates different object code depending on the settings of various pragmas. It
is the settings of the pragmas at the time the object code is generated that determines what
codes are generated, rather than at load time. The load time pragma settings have no effect
on the object code that is loaded in, so for example, if the code was generated while the debug
pragma is on, but loaded while the nodebug pragma is on, the loaded code is still the debuggable,
non-optimised code.

Note that in addition to generating the object code for predicates found in the source file,
fcompile also generates the object code of any auxiliary predicates that are called in the source
file. These are the predicates that are generated by the compiler (such as the do/2 iterator).
A warning is generated if a file contains more than one module. These warnings often indicates
that files have been incorrectly omitted or included in the include directive.

fcompile/1,2 can be used to generate non-source versions of programs for delivery.

6.10.1 Restrictions

Currently, the compiler generates the auxiliary predicates for the do iterator using a global
counter to name the predicates. Unfortunately this means that if an object file with auxiliary
predicates is loaded into a module that already has existing code that contains auxiliary pred-
icates, naming conflict can occur and the old auxiliaries may be replaced. It is thus strongly
recommended that object files should not be loaded into an existing module. This will only be
a problem if the file does not contain any module declarations that redefines the module (i.e.
module/1), as these redefinition will erase the old copy of the module.

The predicate generates the object code by first compiling the program and then outputting
the object code. Directives, which are executed in a normal compilation process, will not be
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executed during the output of the object code (but the directives themselves will be added to the
object code so that they will be executed when the code is loaded). This can lead to differences
between loading the object code and compiling the program if the directive affects the compiled
code during the compilation (e.g. determining which files to load by a conditional in a directive).
If macro transformation is defined (via macro/3 declarations) in the module that is fcompiled,
then the “protecting functor” no_macro_expansion (see section(12.2) should be used to prevent
the macro definition itself from being transformed when the definition is generated by fcompile.
For example:

:— local macro(no_marco_transformation(foo/1), trans_foo/2, []).

the no_macro_transformation/1 wrapper prevents this instance of foo/1 from being trans-
formed when the directive is generated by fcompile. Note that this is only needed if all terms
are transformed, and not for goals or clause transformation.

Object file portability

One restriction does apply between platforms of different word sizes: integers which fit in the
word size of one platform but not the other are represented differently internally in ECL/PSe.
Specifically, integers which takes between 32 and 64 bits to represent are treated as normal
integers on a 64 bit machine, but as bignums (see section [8.2.1) on 32 bit machines. This
difference is normally invisible, but if such numbers occur as constants in the program code (i.e.
their values appear textually), they can lead to different low-level compiled abstract code on
the different platforms. Avoid using such constants if you want the object code to be portable
across different word sizes (they can always be computed at run-time, e.g. writing 2734 instead
of 17179869184).

6.11 Abstract Code Listing

The built-in predicate als/1 lists the abstract code of the given predicate and it can thus be
used by experts to check if the predicate was compiled as expected.
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Chapter 7

Module System

7.1 Basics

7.1.1 Purpose of Modules

The purpose of the module system is to provide a way to package a piece of code in such a way
that

e internals are hidden
e it has a clearly defined interface
e naming conflicts are avoided

In particular, this helps with

e Structuring of large applications: Modules should be used to break application programs
into natural components and to define the interfaces between them.

e Provision of libraries: All ECL*PS€ libraries are modules. Their interfaces are defined in
terms of what the module makes visible to the world.

e Different implementations of the same predicate: In constraint programming it is quite
common to have different implementations of a constraint, which all have the same declar-
ative meaning but different operational behaviour (e.g. different amount of propagation,
using different algorithms, exhibiting different performance characteristics). The module
system supports that by allowing to specify easily which version(s) of a predicate should
be used in a particular context.

7.1.2 What is under Visibility Control?

The ECL'PS® module system governs the visibility of the following entities:

Predicate names Predicates can always be used in the module where they are defined and
optionally in other modules when they are made available.

Structure names Structure declarations can be valid only local to a module or shared between
several modules.
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Syntax settings These include operator declarations op/3, syntax options and character classes.
This means in particular that different modules can use different language dialects (e.g.
ECL‘PS¢ vs. ISO-Prolog).

Container names These include the names of record keys, nonlogical variables and references.
They are always local to the module where they are declared.

Initialization and Finalization goals Modules can have initialization and finalization goals
attached, see section[7.4.3]

Note that every definition (predicate, structure etc) is in some module, there is no space outside
the modules. When you don’t explicitly specify a module, you inherit the module from the
context in which you do an operation. When you are using an interactive ECL!PS® toplevel, a
prompt will tell you in which module your input is read and interpreted.

7.1.3 What Modules are There?

The module system is flat, i.e. no module is part of another module, and module names must
be unique. There are

e a few basic modules that are part of the ECLPS® runtime system and are always there.
The most important one is called eclipse_language and is by default imported into all
other modules.

e the library modules: every library consists of at least one module. By convention, that
module name is the library name and same as the base part of the library filename.

e the application-defined modules: these are created by the application programmer.

e in an interactive ECL’PS® toplevel there is one module in which queries entered by the
user are read and executed. That module name is displayed in a prompt.

7.2 Getting Started

7.2.1 Creating a Module

You create a module simply by starting your program code with a module/1 directive. This
should usually be placed at the beginning of the source file and looks like

:= module (mymodule) .

As a rule, the module name should be chosen to be the same as the file’s base name (the
filename without directory/folder and suffix/extension part). E.g. the module mymodule might
be contained in a file mymodule.ecl.

Anything you define in your module is by default local to that module.

7.2.2 Exporting

A definition is made available to the outside world by exporting it. All the exports of a module
together form the module’s interface. Exporting is done with the export/1 directive, which
can take different forms depending on the kind of the exported item.

Predicates are exported as follows:
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:— export p/2.

pX,Y) :-

Structures are exported by defining them with an export/1 instead of a local/1 directive, e.g.
:— export struct(book(author,title,publisher)).
And the same holds for operators and other syntax settings:

:— export op(500, xfx, before).

:— export chtab(0’$, lower_case).

:— export syntax_option(no_array_subscripts).
:— export macro(pretty/1, tr_pretty/2, [1).

All these declarations are valid locally in the module where they appear and in every module
that imports them.
Initialization goals are exported as follows:

:— export initialization(writeln("I have been imported")).
Unlike the other declarations above, an exported initialization/1 directive is not executed
locally in they module where it appears, but only in the context of the module where it gets
imported!.
7.2.3 Importing

In order to use a definition that has been exported elsewhere, it has to be imported. Often it
is desirable to import another module’s interface as a whole, i.e. everything it exports. This is
achieved by an import /1 directive of the form

:— import amodule.

If the module is in a file and has to be compiled first, then use_module/1 can be used, which
is a combination of ensure_loaded /1 (see chapter|6) and import/1:

:— use_module("/home/util/amodule").

If the module is a library in one of ECLPS®’s library directories, then it can be loaded and
imported by

:— use_module(library(hash)).
or simply using lib/1 as in
:- lib(hash).

It is also possible to import only a part of another module’s interface, using an import-from
directive

:- import p/2 from amodule.

Note that this is the only form of import that can refer to a module that has not yet been loaded,
and therefore allows a restricted form of circularity in the import structure.

! for local initialization use :- local initialization(...).
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7.2.4 Definitions, Visibility and Accessibility
For a given predicate name and arity the following rules hold:
e Every module can contain at most one definition
— this definition may be local or exported
e In every module, at most one definition is visible

— if there is a definition in the module itself, this is also the visible one in the module
— otherwise, if there is an (unambiguous) import or reexport, this is the visible one

— otherwise no definition is visible
e All exported definitions are accessible everywhere

— this might require explicit module qualification (see[7.3.2)

7.3 Advanced Topics

7.3.1 Solving Name Conflicts

Name conflicts occur in two flavours:

Import/Import conflict: this is the case when two or more imported modules provide a
predicate of the same name.

Import/Local conflict: this is the case when a local (or exported) predicate has the same
name as a predicate provided from an imported module.

Conflicts of the first type are accepted silently by the system as long as there is no reference to
the conflict predicate. Only when an attempt is made to access the conflict predicate is an error
raised. The conflict can be resolved by explicitly importing one of the versions, e.g.

:— lib(ria). % exports #>= / 2
:- lib(eplex). % exports #>= / 2
:— import (#>=)/2 from ria. ¥ resolves the conflict

Alternatively, the conflict can remain unresolved and qualified access can be used whenever the
predicates are referred to (see[7.3.2).

Conflicts of the second type give rise to an error or warning message when the compiler en-
counters the local (re)definition. To avoid that, an explicit local/1 declaration has to be used:

:— local write/1.

write(X) :- % my own version of write/1

Note that the local/1-declaration must occur textually before any use of the predicate inside
the module.
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7.3.2 Qualified Access via :/2

Normally, it is convenient to import predicates which are needed. By importing, they become
visible and can be used within the module in the same way as local definitions. However,
sometimes it is preferable to explicitly specify from which module a definition is meant to be
taken. This is the case for example when multiple versions of the predicate are needed, or when
the presence of a local definition makes it impossible to import a predicate of the same name
from elsewhere. A call with explicit module qualification is done using : /2 and looks like this:

lists:print_list([1,2,3])

Here, the module where the definition of print_list/1 is looked up (the lookup module) is
explicitly specified. To call print_list/1 like this, it is not necessary to make print_list/1 visible.
The only requirement is that it is exported (or reexported) from the module lists.

Note that, if the called predicate is in operator notation, it will often be necessary to use brackets,
e.g. in

., ria: (X #>=Y),

The : /2 primitive can be used to resolve import conflicts, i.e. the case where the same name is
exported from more than one module and both are needed. In this case, none of the conflicting

predicates is imported - an attempt to call the unqualified predicate raises an error. The solution
is to qualify every reference with the module name:

:— lib(ria). % exports #>= / 2
:- lib(eplex). % exports #>= / 2

., ria: (X #>=Y),
., eplex: (X #>=Y),

Another case is the situation that a module wants to define a predicate of a given name but
at the same time use a predicate of the same name from another module. It is not possible to
import the predicate because of the name conflict with the local definition. Explicit qualification
must be used instead:

:- 1ib(lists).

print_list(List) :-
writeln("This is the list"),
lists:print_list(List).

A more unusual feature, which is however very appropriate for constraint programming, is the
possibility to call several versions of the same predicate by specifying several lookup modules:

., [ria,eplex]: (X #>= Y),
which has exactly the same meaning as
., ria: (X #>= Y), eplex: (X #>=Y),

Note that the modules do not have to be known at compile time, i.e. it is allowed to write code
like

after(X, Y, Solver) :-
Solver: (X #>= Y).

However, this is likely to be less efficient because it prevents compile-time optimizations.
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7.3.3 Reexport - Making Modules from Modules

To allow more flexibility in the design of module interfaces, and to avoid duplication of defini-
tions, it is possible to re-export definitions. A reexport is an import combined with an export.
That means that a reexported definition becomes visible inside the reexporting module and is
at the same time exported again. A user of a module’s interface sees no difference between
exported and reexported deﬁnition.

There are 3 forms of the reexport/1 directive. To reexport the complete module interface of
another module, use

:— reexport amodule.

To reexport only an explicitly enumerated selection, use
:— reexport p/1,q/2 from amodule.

To reexport everything except some explicitly enumerated items, use
:- reexport amodule except p/2,q/3.

These facilities make it possible to extend, modify, restrict or combine modules into new modules,
as illustrated in figure [7.1.

Extend: Restrict:

reexport export reexport except

; define

Modify: Combine:

reexport except export reexport reexport

Figure 7.1: Making modules from modules with reexport

7.3.4 Modules and Source Files

When a source file contains no module directives, it becomes part of the module from which its
compilation was invoked. This makes it possible to write small programs without caring about
modules. However, serious applications should be structured into modules.

2 except that reexported predicates retain their original definition module
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Often it is the most appropriate to have one file per module and to have the file name match
the module name.

It is however possible to have several modules in one file, e.g. a main module and one or more
auxiliary modules - in that case the name of the main module should match the filename. Every
module-directive in the file marks the end of the previous module and the start of the next one.
It is also possible to spread the contents of a module over several files. In this case, there should
be a main file whose filename matches the module name, and the other files should be referenced
from the main file using the include/1 directive, e.g.

:- module(bigmodule) .
:— include(partl).
:— include(part2).

7.3.5 Tools and Caller Modules
Tools

There are predicates in a modular system that need to know from which module they were called
(since this may be different from the module in which they were defined). The most common
case is where a predicate is a meta-predicate, i.e. a predicate that has another goal or predicate
name as an argument. Other cases are I/O predicates - they need to be executed in a certain
module context in order to obey the correct syntax of this module. In ECL*PS¢, such predicates
that need to know their caller module are called tool predicateﬁ .

Tool predicates must be declared. As a consequence, the system will automatically add a caller
module argument whenever such a tool predicate is called.

Consider for example a predicate that calls another predicate twice. The naive version of this
predicate looks like

twice(Goal) :-
call(Goal),
call(Goal).

As long as no modules are involved, this works fine. Now consider the situation where the
definition of twice/1 and a call of twice/1 are in two different modules:

:= module(stuff).

:— export twice/1.

twice(Goal) :-
call(Goal),
call(Goal).

:- module (main) .
:— import stuff.

top :- twice(hello).

hello :- writeln(hi).

3 Many Prolog systems call them meta-predicates.
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This will not work because hello/0 is only visible in module main and an attempt to call it from
within twice/1 in module stuff will raise an error. The solution is to declare twice/1 as a tool
and change the code as follows:

:— module(stuff).

:— export twice/1.

:— tool(twice/1, twice/2).

twice(Goal, Module) :-
call(Goal)@Module,
call(Goal)@Module.

What happens now is that the call to twice/1 in module main
., twice(hello),

is effectively replaced by the system with a call to twice/2 where the additional argument is the
module in which the call occurs:

., twice(hello, main),
This caller module is then used by twice/2 to execute
., call(hello)@main,

The call(Goal)@Module construct means that the call is supposed to happen in the context
of module main.
The debugger trace shows what happens:

[main 5]: top.

(1) 1 CALL top
(2) 2 CALL twice(hello)
(3) 3 CALL twice(hello, main)
(4) 4 CALL call(hello) @ main
(5) 5 CALL call(hello)
(6) 6 CALL hello

S (7) 7 CALL writeln(hi)

hi

S (7) 7 EXIT writeln(hi)

(6) 6 EXIT hello

One complication that can arise when you use tools is that the compiler must know that a
predicate is a tool in order to properly compile a call to the tool. If the call occurs textually
before the tool declaration, this will therefore give rise to an inconsistent tool redefinition
error. The tool/2 declaration must therefore occur before any call to the tool.

System Tools

Many of the system built-in predicates are in fact tools, e.g. read/1, write/1, record/2,
compile/1, etc. All predicates which handle modular items must be tools so that they know
from which module they have been called. In case that the built-in predicate has to be executed
in a different module (this is very often the case inside user tool predicates), the @ /2 construct
must be used, e.g.

current_predicate(P) @ SomeModule
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7.3.6 Lookup Module vs Caller Module

The following table summarises the different call patterns with and without module specifica-
tions. There are only two basic rules to remember:

e : /2 specifies the lookup module (to find the definition)

e @ /2 specifies the caller module (to know the context)

Call inside module(m) Module where definition | Caller module argument
of twice/1 is looked up | added to twice/1

oo, twice(X), ... m m

oy Im : twice(X), ... Im m

o, twice(X) @ cm, ... m cm

oy Im ¢ twice(X) @ cm, ... Im cm

..., call(twice(X)) @ cm, ... cm cm

7.3.7 The Module Interface

The primitive current_module/1 can be used to check for the existence of a module, or to
enumerate all currently defined modules.

Further details about existing modules can be retrieved using get_module_info/3, in particular
information about the module’s interface, what other modules it uses and whether it is locked

(see[7.4.4).

7.3.8 Module-related Predicate Properties

Information about a predicate’s properties can be retrieved using the get_flag/3 primitive or
printed using pred/1. The module-related predicate properties are

defined (on/off) indicates whether code for the predicate has already been compiled. If not,
only a declaration was encountered.

definition_module (an atom) the module where the predicate is defined.

visibility (local/exported/reexported/imported) indicates the visibility of the predicate in the
caller module.

tool (on/off) indicates whether the predicate has been declared a tool.

For tool predicates, tool_ body/3 can be used to retrieve the predicate it maps to when the
module argument is added.
To get information about a predicate visible in a different module, use for instance

get_flag(p/3, visibility, V) @ othermodule

7.4 Less Common Topics

7.4.1 Modules Using Other Languages

Modules created with the module/1 directive automatically import the module eclipse_language,
which provides the standard set of ECL*PS® built-in predicates. To create a module that uses a
different language dialect, use module/3. For instance
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:- module(mystdcode, [], iso).

creates a module in which you can use ISO Standard Prolo, but not all of ECLPS®’s usual
language features. Note that the third argument (here iso) simply specifies a library which
implements the desired language, so new languages can be added easily.

7.4.2 Creating and Erasing Modules at Runtime

A module can also be created explicitly by a running program with create_module/1 or cre-
ate_module/3 and erased with erase_module/1. The latter should be used with care, erasing
a module while a predicate defined in that module is being executed can provoke unpredictable
results. The same holds for trying to erase essential system modules.

7.4.3 Initialization and Finalization

Sometimes modules have global state which needs to be initialised or finalised. For this purpose,
modules can have

Local Initialization Goals: these are specified as
:— local initialization(Goal).
and are executed just after the module containing them has been loaded.
Exported Initialization Goals: these are specified as
:— export initialization(Goal).

and are executed whenever the module containing the declaration gets imported into an-
other module. The call will happen in the context of the importing module.

Finalization Goals: these are specified as
:— local finalization(Goal).

and are executed just before the module containing them gets erased. Modules can get
erased either explicitly through erase_module/1 or implicitly when the module is re-
compiled, or when the ECL'PS® session is exited. Finalization goals should not do any
I/O because in the case of an embedded ECLiPSe, I/O may no longer be available at
finalization time.

7.4.4 Locking Modules

By default, ECL'PS® does not strictly enforce the hiding of module internals. This facilitates
program development as is makes it possible to inspect and trace without being too concerned
about module boundaries. E.g. you can set a spy point on a local predicate p/3 in module
othermod by calling:

:- spy(p/3)Q@othermod.

“to the extent implemented by ECL'PS®’s compatibility library
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Once a module implementation is stable and there is a need for privacy, it is possible to lock a
module. Locking makes it impossible to access internal, local items from outside the module.
Of course, the module can still be used though its interface. The built-in predicates related to
locking are lock/1 which provides a definitive lock, lock/2 which allows subsequent unlocking
using a password ( unlock/2), and get_module_info/3 which allows to check whether a module
is locked.
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Chapter 8

Arithmetic Evaluation

8.1 Built-Ins to Evaluate Arithmetic Expressions

Unlike other languages, Prolog usually interprets an arithmetic expression like 3 + 4 as a
compound term with functor 4+ and two arguments. Therefore a query like 3 + 4 = 7 fails
because a compound term does not unify with a number. The evaluation of an arithmetic
expression has to be explicitly requested by using one of the built-ins described below.

The basic predicate for evaluating an arithmetic expression is is/2. Apart from that only the 6
arithmetic comparison predicates evaluate arithmetic expressions automatically.

Result is Expression Expression is a valid arithmetic expression and Result is an uninstan-
tiated variable or a number. The system evaluates Expression which yields a numeric
result. This result is then unified with Result. An error occurs if Expression is not a
valid arithmetic expression or if the evaluated value and Result are of different types.

Exprl < Expr2 succeeds if (after evaluation and type coercion) Exprl is less than Expr2.

Exprl >= Expr2 succeeds if (after evaluation and type coercion) Exprl is greater or equal to
Expr2.

Exprl > Expr2 succeeds if (after evaluation and type coercion) Exprl is greater than Expr2.

Exprl =< Expr2 succeeds if (after evaluation and type coercion) Exprl is less or equal to
Expr2.

Exprl =:= Expr2 succeeds if (after evaluation and type coercion) Exprl is equal to Expr2.

Exprl =\= Expr2 succeeds if (after evaluation and type coercion) Exprl is not equal to
Expr2.

8.1.1 Arithmetic Evaluation vs Arithmetic Constraint Solving

This chapter deals purely with the evaluation of arithmetic expressions containing numbers. No
uninstantiated variables must occur within the expressions at the time they are evaluated. This
is exactly like arithmetic evaluation in procedural languages.

As opposed to that, in arithmetic constraint solving one can state equalities and inequalities
involving variables, and a constraint solver tries to find values for these variables which satisfy
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these constraints. Note that ECLPS® uses the same syntax in both cases, but different imple-
mentations providing different solving capabilities. See the chapter Common Solver Interface
in the Constraint Library Manual for an overview.

8.2 Numeric Types and Type Conversions

ECL’PS® distinguishes four types of numbers: integers, rationals, floats and bounded reals.

8.2.1 Integers

The magnitude of integers is only limited by your available memory. However, integers that fit
into the word size of your computer are represented more efficiently (this distinction is invisible
to the user). Integers are written in decimal notation or in base notation, e.g.:

0 3 -5 1024 16°f3ae 0’a 15511210043330985984000000

8.2.2 Rationals

Rational numbers implement the corresponding mathematical domain, i.e. ratios of two integers
(numerator and denominator). ECL‘PS® represents rationals in a canonical form where the
greatest common divisor of numerator and denominator is 1 and the denominator is positive.
Rational constants are written as numerator and denominator separated by an underscore, e.g.

1.3 -30517578125_32768 0_1

Rational arithmetic is arbitrarily precise. When the global flag prefer_rationals is set, the
system uses rational arithmetic wherever possible. In particular, dividing two integers then
yields a precise rational rather than a float result.

8.2.3 Floating Point Numbers

Floating point numbers conceptually correspond to the mathematical domain of real numbers,
but are not precisely represented. Floats are written with decimal point and/or an exponent,

e.g.
0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECL!PS® uses double precision ﬂoatsm.

8.2.4 Bounded Real Numbers

It is a well known problem that floating point arithmetic suffers from rounding errors. To provide
safe arithmetic over the real numbers, ECL'PS® also implements bounded real. A bounded
real consists of a pair of floating point numbers which constitute a safe lower and upper bound
for the real number that is being represented. Bounded reals are written as two floating point
numbers separated by two underscores, e.g.

L ECL!PS® versions older than 5.5 optionally supported single precision floats. This is no longer the case.
2 We have chosen to use the term bounded real rather than interval in order to avoid confusion with interval
variables as used in the interval arithmetic constraint solvers
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-0.001__0.001 3.141592653__3.141592654 1e308__1.0Inf

A bounded real is a representation for a real number that definitely lies somewhere between the
two bounds, but the exact value cannot be determined E Bounded reals are usually not typed
in by the user, they are normally the result of a computation or type coercion.

All computations with bounded reals give safe results, taking rounding errors into account. This
is achieved by doing interval arithmetic on the bounds and rounding the results outwards. The
resulting bounded real is then guaranteed to enclose the true real result.

Computations with floating point values result in uncertainties about the correct result. Bounded
reals make this uncertainty explicit. A consequence of this is that sometimes it is conceptu-
ally not possible to decide whether two bounded reals are identical or not. This occurs when
the bounds of the compared intervals overlap. In this case, the arithmetic comparisons leave
a (ground) delayed goal behind which can then be inspected by the user to decide whether
the match is considered close enough. The syntactial comparisons like =/2 and ==/2 treat
bounded reals simply as a pair of bounds, and consider them equal when the bounds are equal.

8.2.5 Type Conversions

Note that numbers of different types never unify, e.g. 3, 3_1, 3.0 and 3.0_3.0 are all different.
Use the arithmetic comparison predicates when you want to compare numeric values. When
numbers of different types occur as arguments of an arithmetic operation or comparison, the
types are first made equal by converting to the more general of the two types, i.e. the rightmost
one in the sequence

integer — rational — float — bounded real

The operation or comparison is then carried out with this type and the result is of this type as
well, unless otherwise specified. Beware of the potential loss of precision in the rational — float
conversion! Note that the system never does automatic conversions in the opposite direction.
Such conversion must be programmed explicitly using the integer, rational, float and breal
functions.

8.3 Arithmetic Functions

8.3.1 Predefined Arithmetic Functions

The following predefined arithmetic functions are available. E, E1 and E2 stand for arbitrary
arithmetic expressions.

3This is in contrast to a floating point number, which represents a real number which lies somewhere in the
vicinity of the float
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Function Description Argument Types Result Type
+E unary plus number number
-E unary minus number number
abs(E) absolute value number number
sgn(E) sign value number integer
floor(E) round down to integral value number number
ceiling(E) round up to integral value number number
round(E) round to nearest integral value number number
truncate(E) truncate to integral value number number
El + E2 addition number x number number
El - E2 subtraction number x number number
El * E2 multiplication number X number number
El/ E2 division number x number see below
El// E2 integer division (truncate) integer x integer  integer
El rem E2 integer remainder integer X integer integer
E1l div E2 integer division (floor) integer X integer  integer
E1 mod E2 integer modulus integer X integer integer
ged(E1,E2) greatest common divisor integer X integer integer
lem(E1,E2) least common multiple integer X integer integer
E1 " E2 power operation number X number number
min(E1,E2) minimum of 2 values number X number number
max(E1,E2) maximum of 2 values number X number number
\ E bitwise complement integer integer
E1 /\ E2 bitwise conjunction integer X integer integer
E1\/ E2 bitwise disjunction integer X integer  integer
xor(E1,E2) bitwise exclusive disjunction integer X integer integer
El >> E2 shift E1 right by E2 bits integer X integer integer
El << E2 shift E1 left by E2 bits integer X integer integer
sin(E) trigonometric function number real
cos(E) trigonometric function number real
tan(E) trigonometric function number real
asin(E) trigonometric function number real
acos(E) trigonometric function number real
atan(E) trigonometric function number real
atan(E1,E1) trigonometric function number X number real
exp(E) exponential function e* number real
In(E) natural logarithm number real
sqrt(E) square root number real

pi the constant pi = 3.1415926... — float

e the constant e = 2.7182818... — float
fix(E) convert to integer (truncate) number integer
integer(E) convert to integer (exact) number integer
float(E) convert to float number float
breal(E) convert to bounded real number breal
rational(E) convert to rational number rational
rationalize(E) convert to rational number rational
numerator(E) extract numerator of a rational integer or rational integer
denominator(E) extract denominator of a rational integer or rational integer
sum(L) sum of list elements 70 list number
min(L) minimum of list elements list number
max(L) maximum of list elements list number
eval(E) evaluate runtime expression term number



Argument types other than specified yield a type error. As an argument type, number stands
for integer, rational, float or breal with the type conversions as specified above. As a result type,
number stands for the more general of the argument types, and real stands for float or breal.
The division operator / yields either a rational or a float result, depending on the value of the
global flag prefer_rationals. The same is true for the result of ~ if an integer is raised to a
negative integral power.

The integer division // rounds the result towards zero (truncates), while the div division rounds
towards negative infinity (floor). Each division function is paired with a corresponding remainder
function: (rem computes the remainder corresponding to //, and mod computes the remainder
corresponding to div 4. The remainder results differ only in the case where the two arguments
have opposite signs. The relationship between them is as follows:

X =:
X =:

XremY) + X//Y) xY
(Xmod V) + (X div Y) * Y

This table gives an overview:

10 x 3 -10 x 3 10 x -3 -10 x -3

// 3 -3 -3 3
rem 1 -1 1 -1
div 3 -4 -4 3
mod 1 2 -2 -1

8.3.2 Evaluation Mechanism

An arithmetic expression is a Prolog term that is made up of variables, numbers, atoms and
compound terms, e.g.

3% 1.5 +Y / sqrt(pi)

Compound terms are evaluated by first evaluating their arguments and then calling the cor-
responding evaluation predicate. The evaluation predicate associated with a compound term
func(a_1,..,a n) is the predicate func/(n+1). It receives a_l,..,a_n as its first n arguments
and returns a numeric result as its last argument. This result is then used in the arithmetic
computation. For instance, the expression above would be evaluated by the goal sequence

*(3,1.5,T1), sqrt(3.14159,T2), /(Y,T2,T3), +(T1,T3,T4)

where T'¢ are auxiliary variables created by the system to hold intermediate results.
Although this evaluation mechanism is usually transparent to the user, it becomes visible when
errors occur, when subgoals are delayed, or when inline-expanded code is traced.

8.3.3 User Defined Arithmetic Functions

This evaluation mechanism outlined above is not restricted to the predefined arithmetic functions
shown in the table. In fact it works for all atoms and compound terms. It is therefore possible
to define a new arithmetic operation by just defining an evaluating predicate:

“Caution: In ECL'PS® versions up to 5.8, mod was the remainder corresponding to //, i.e. behaved like rem
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leclipse 1]: [user].

:- op(200, yf, !). % let’s have some syntaxtic sugar
(N, F) :- fac(N, 1, F).

fac(0, FO, F) :- !, F=FO.

fac(N, FO, F) :- N1 is N-1, F1 is FO#N, fac(N1, F1, F).

user compiled traceable 504 bytes in 0.00 seconds
yes.

[eclipse 2]: X is 23!. % calls !/2

X = 25852016738884976640000
yes.

Note that this mechanism is not only useful for user-defined predicates, but can also be used to
call ECL'PS® built-ins inside arithmetic expressions, eg.

T is cputime - TO.
L is string_length("abcde") - 1.

which call cputime/1 and string length /2 respectively. Any predicate that returns a number
as its last argument can be used in a similar manner.

However there is a difference compared to the evaluation of the predefined arithmetic functions
(as listed in the table above): The arguments of the user-defined arithmetic expression are not
evaluated but passed unchanged to the evaluating predicate. E.g. the expression twice(3+4)
is transformed into the goal twice(3+4, Result) rather than twice(7, Result). This makes
sense because otherwise it would not be possible to pass any compound term to the predicate.
If evaluation is wanted, the user-defined predicate can explicitly call is/2 or use eval/1.

8.3.4 Runtime Expressions

In order to enable efficient compilation of arithmetic expressions, ECL‘PS¢ requires that vari-
ables in compiled arithmetic expressions must be bound to numbers at runtime, not symbolic
expressions. E.g. in the following code p/1 will only work when called with a numerical argu-
ment, else it will raise error 24:

p(Number) :- Res is 1 + Number,

To make it work even when the argument gets bound to a symbolic expression at runtime, use
eval/1 as in the following example:

p(Expr) :- Res is 1 + eval(Expr),

If the expression is the only argument of is/2, the eval/1 may be omitted.

8.4 Low Level Arithmetic Builtins

The low level builtins (like +/3, sin/2 etc.) which are used to evaluate the predefined arith-
metic functions can also be called directly, but this is not recommended for portability reasons.
Moreover, there is no need to use them directly since the ECL!PS¢ compiler will transform all
arithmetic expressions into calls to the corresponding low level builtins.
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8.5 The Multi-Directional Arithmetic Predicates

A drawback of arithmetic using is/2 is that the right hand side must be fully instantiated at
evaluation time. Often it is desirable to have predicates that define true logic relationships
between their arguments like “Z is the sum of X and Y”. For integer addition and multiplication
this is provided as:

succ(X, Y) True if X and Y are natural numbers, and Y is one greater than X. At most one
of X, Y can be a variable.

plus(X, Y, Z) True if the sum of X and Y is Z. At most one of X, Y, Z can be a variable.
times(X, Y, Z) True if the product of X and Y is Z. At most one of X, Y, Z can be a variable.

They work only with integer arguments but any single argument can be a variable which is
then instantiated so that the relation holds. If more than one argument is uninstantiated, an
instantiation fault is produced.

Note that if one of the first two arguments is a variable, a solution doesn’t necessarily exist. For
example, the following goal has no integer solution :

leclipse 1]: times(2, X, 3).

no (more) solution.

Since any one of the arguments of these two predicates can be a variable, it does not make much
sense to use them in arithmetic expressions where always the first arguments are taken as input
and the last one as output.

8.6 Arithmetic and Coroutining

Arithmetic comparisons can be delayed until their arguments are instantiated instead of gener-
ating an instantiation fault by passing the comparison to the suspend solver (see section [17.3).
This gives a form of coroutining.
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Chapter 9

Non-logical Storage and References

9.1 Introduction

This chapter describes primitives that allow to break the normal logic programming rules in two
ways:

e information can be saved across logical failures and backtracking
e information can be accessed by naming rather than by argument passing

Obviously, these facilities must be used with care and should always be encapsulated in an
interface that provides logical semantics.

ECLiPSe provides several facilities to store information across backtracking. The following table
gives an overview. If at all possible, the handle-based facilities (bags, shelves and stores) should
be preferred because they lead to cleaner, reentrant code (without global state) and reduce the
risk of memory leaks.

Facility Type Access See

shelves array by handle shelf create/2,3
bags unordered bag by handle bag create/1

stores hash table by handle store_create/1
named shelves array by name  shelf/2

named stores hash table by name  store/1

non-logical variables | single cell by name  variable/1
non-logical arrays array by name  array/1,2

records ordered list by name  record/1,2
dynamic predicates | ordered list by name  dynamic/1,assert/1

The other facility described here, Global References, does not store information across failure,
but provides a means to give a name to an otherwise logical data structure. See section

9.2 Bags

A bag is an anonymous object which can be used to store information across failures. A bag
is unordered and untyped. Any ECL‘PS® term can be stored in a bag. Bags are referred
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to by a handle. An empty bag is created using bag _create/1, data is stored in the bag by
invoking bag_enter/2, and the stored data can be retrieved as a list with bag retrieve/2 or
bag_dissolve/2.

A typical application is the implementation of the findall/3 predicate or similar functionality.
As opposed to the use of record/2 or assert/1, the solution using bags is more efficient, more
robust, and trivially reentrant.

simple_findall(Goal, Solutions) :-
bag_create(Bag),

(
call(Goal),
bag_enter (Bag, Goal),
fail
true
)

bag_dissolve(Bag, Solutions).

9.3 Shelves

A shelf is an anonymous object which can be used to store information across failures. A typical
application is counting of solutions, keeping track of the best solution, aggregating information
across multiple solutions etc.

A shelf is an object with multiple slots whose contents survive backtracking. The content of
each slot can be set and retrieved individually, or the whole shelf can be retrieved as a term.
Shelves are referred to by handle, not by name, so they make it easy to write robust, reentrant
code. A shelf disappears when the system backtracks over its creation, when the shelf handle
gets garbage collected, or when it is explicitly destroyed.

A shelf is initialised using shelf_create/2 or shelf create/3. Data is stored in the slots (or
the shelf as a whole) with shelf set/3 and retrieved with shelf get/3.

Example: Counting how many solutions a goal has:

count_solutions(Goal, Total) :-
shelf_create(count(0), Shelf),

(
call(Goal),
shelf_get(Shelf, 1, 01d),
New is 01d + 1,
shelf_set(Shelf, 1, New),
fail
shelf_get(Shelf, 1, Total)
).

In this particular example, we could have used shelf inc/2 to increment the counter.
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9.4 Stores

A store is an anonymous object which can be used to store information across failures. A typical
application is aggregating information across multiple solutions. Note that, if it is not necessary
to save information across backtracking, the use of the library(hash) is more appropriate and
efficient than the facilities described here.

A store is a hash table which can store arbitrary terms under arbitrary ground keys. Modifica-
tions of a store, as well as the entries within it, survive backtracking. The basic operations on
stores are entering and looking up information under a key, or retrieving the store contents as a
whole.

Stores come in two flavours: anonymous stores are created with store_create/1 and referred
to by handle, while named stores are created with a store/ 1 declaration and referred to by
their name within a module. If possible, anonymous stores should be preferred because they
make it easier to write robust, reentrant code. For example, an anonymous store automatically
disappears when the system backtracks over its creation, or when the store handle gets garbage
collected. Named stores, on the other hand, must be explicitly destroyed in order to free the
associated memory.

Data is entered into a store using store_set/3 and retrieved using store_get/3. It is possible to
retrieve all keys with stored_keys/2 or the full contents of the table with stored_keys_and_values/2.
Entries can be deleted via store_delete/2 or store_erase/1.

A typical use of stores is for the implementation of memoization. The following is an implemen-
tation of the Fibonacci function, which uses a store to remember previously computed results.
It consists of the declaration of a named store, a wrapper predicate fib/2 that handles storage
and lookup of results, and the standard recursive definition fib_naive/2:

:— local store(fib).

fib(N, F) :-
( store_get(fib, N, FN) ->
F = FN % use a stored result

fib_naive(N, F),
store_set(fib, N, F) % store computed result

fib_naive (0, 0).

fib_naive(1l, 1).

fib_naive(N, F) :-
N1 is N-1, N2 is N-2,
fib(N1, F1), fib(N2, F2),
F is F1 + F2.

Using this definition, large function values can be efficiently computed:
7- £ib(300, F).
F = 222232244629420445529739893461909967206666939096499764990979600
Yes (0.00s cpu)
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The next example shows the use of an anonymous store, for computing how many solutions of
each kind a goal has. The store is used to maintain counter values, using the solution term as
the key to distinguish the different counters:

solutions_profile(Sol, Goal, Profile) :-
store_create(Store),

(

call(Goal),

store_inc(Store, Sol),

fail

stored_keys_and_values(Store, Profile)
).

Running this code produces for example:

?7- solutions_profile(X, member(X, [a, b, ¢, b, a, bl), R).
X=X

R=[a-2,b-3, c-1]

Yes (0.00s cpu)

9.5 Non-logical Variables

Non-logical variables in ECL/PS® are a means of storing a copy of a Prolog term under a name
(an atom). The atom is the name and the associated term is the value of the non-logical variable.
This term may be of any form, whether an integer or a huge compound structure. Note that
the associated term is being copied and so if it is not ground, the retrieved term is not strictly
identical to the stored one but is a variant of i. There are two fundamental operations that can
be performed on a non-logical variable: setting the variable (giving it a value), and referencing
the variable (finding the value currently associated with it).

The value of a non-logical variable is set using the setval/2 predicate. This has the format

setval(Name, Value)
For instance, the goal
setval(firm, 3)

gives the non-logical variable firm the value 3. The value of a non-logical variable is retrieved
using the getval/2 predicate. The goal

getval (firm, X)

will unify X to the value of the non-logical variable firm, which has been previously set by
setval/2. If no value has been previously set, the call raises an exception. If the value of a non-
logical variable is an integer, the predicates incval/1 and decval/1 may be used to increment
and decrement the value of the variable, respectively. The predicates incval/1 and decval/1
may be used e.g. in a failure-driven loop to provide an incremental count across failures as in
the example:

! Though this feature could be used to make a copy of a term with new variables, it is cleaner and more
efficient to use copy_term/2 for that purpose
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count_solutions(Goal, _) :-
setval (count, 0),
call(Goal),
incval (count),
fail.
count_solutions(_, N) :-
getval(count, N).

However, code like this should be used carefully. Apart from being a non-logical feature, it also
causes the code to be not reentrant. I.e. if count_solutions/2 would be called recursively from
inside Goal, this would smash the counter and yield incorrect result.

The visibility of a non-logical variable is local to the module where it is first set. It is good style
to declare them using local/1 variable/1 declarations. E.g. in the above example one should
use

:— local variable(count).

If it is necessary to access the value of a variable in other modules, exported access predicates
should be provided.

9.6 Non-logical Arrays

Non-logical arrays are a generalisation of the non-logical variable, capable of storing multiple
values. Arrays have to be declared in advance. They have a fixed number of dimensions and a
fixed size in each dimension. Arrays in ECL'PS® are managed solely by special predicates. In
these predicates, arrays are represented by compound terms, e.g. matrix(5, 8) where matrix
is the name of the array, the arity of 2 specifies the number of dimensions, and the integers 5
and 8 specify the size in each dimension. The number of elements this array can hold is thus
5*8 = 40. The elements of this array can be addressed from matrix(0,0) up to matrix(4,7).
An array must be explicitly created using a local/1 array/1 declaration, e.g.

:- local array(matrix(5, 8)).

The array is only accessible from within the module where it was declared. The declaration will
create a two-dimensional, 5-by-8 array with 40 elements matrix(0,0) to matrix(4, 7). Arrays can
be erased using the predicate erase_array/1, e.g.

erase_array(matrix/2).

The value of an element of the array is set using the setval/2 predicate. The first argument of
setval/2 specifies the element which is to be set, the second specifies the value to assign to it.
The goal

setval (matrix(3, 2), plato)

sets the value of element (3, 2) of array matrix to the atom plato. Similarly, values of array
elements are retrieved by use of the getval/2 predicate. The first argument of getval/2 specifies
the element to be referenced, the second is unified with the value of that element. Thus if the
value of matrix(3, 2) had been set as above, the goal

2A similar problem can occur when the counter is used by an interrupt handler
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getval (matrix(3, 2), Val)

would unify Val with the atom plato. Similarly to non-logical variables, the value of integer
array elements can be updated using incval/1 and decval/1.

It is possible to declare arrays whose elements are constrained to belong to certain types. This
allows ECL'PS® to increase time and space efficiency of array element manipulation. Such an
array is created for instance by the predicate

:= local array(primes(100),integer).

The second argument specifies the type of the elements of the array. It takes as value an atom
from the list float (for floating point numbers), integer (for integers), byte (an integer modulo
256), or prolog (any Prolog term - the resulting array is the same as if no type was specified).
When a typed array is created, the value of each element is initialised to zero in the case of
byte, integer and float, and to an uninstantiated variable in the case of prolog. Whenever
a typed array element is set, type checking is carried out.

As an example of the use of a typed array, consider the following goal, which creates a 3-by-3
matrix describing a 90 degree rotation about the x-axis of a Cartesian coordinate system.

:- local array(rotate(3, 3), integer).
:— setval(rotate(0, 0), 1),
setval (rotate(1, 2), -1),
setval(rotate(2, 1), 1).

(The other elements of the above array are automatically initialised to zero).
The predicate current_array /2 is provided to find the size, type and visibility of defined arrays.
of the array and its type to be found:

current_array(Array, Props)

where Array is the array specification as in the declaration (but it may be uninstantiated or
partially instantiated), and Props is a list indicating the array’s type and visibility. Non-logical
variables are also returned, with Array being an atom and their type is prolog.

leclipse 1]: local(array(pair(2))),
setval (count, 3),
local(array(count(3,4,5), integer)).

yes.
[eclipse 2]: current_array(Array, Props).

pair(2)
[prolog, locall] More? (;)

Array
Props

Array = count
Props [prolog, locall More? (;)

Array = count(3, 4, 5)
Props [integer, locall More? (;)
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no (more) solution.
leclipse 3]: current_array(count(X,Y,Z), _).

X=3
Y =4
Z=5
yes

9.7 Global References

Terms stored in non-logical variables and arrays are copies of the setval/2 arguments, and the
terms obtained by getval/2 are thus not identical to the original terms, in particular their
variables are different. Sometimes it is necessary to be able to access the original term with its
variables, i.e. to have global variables in the meaning of conventional programming languages.
A typical example is global state that a set of predicates wants to share without having to pass
an argument pair through all the predicate invocations.

ECLPS*® offers the possibility to store references to general terms and to access them even inside
predicates that have no common variables with the predicate that has stored them. They are
stored in so-called references. For example,

:= local reference(p).
or
:— local reference(p, 0).

creates a named reference p (with an initial value of 0) which can be used to store references
to terms. This reference is accessed and modified in the same way as non-logical variables, with
setval/2 and getval/2, but the following points are different for references:

e the accessed term is identical to the stored term (with its current substitutions):

[eclipse 1]: local reference(a), variable(b).

yes.
[eclipse 2]: Term = p(X), setval(a, Term), getval(a, Y), Y == Term.
X=X

Y = p(X)

Term = p(X)

yes.

[eclipse 3]: Term = p(X), setval(b, Term), getval(b, Y), Y == Term.

no (more) solution.

e the modifications are backtrackable, when the execution fails over the setval/2 call, the
previous value of the global reference is restored

leclipse 4]: setval(a, 1), (setval(a, 2), getval(a, X); getval(a, Y)).
X =2
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Y=Y More? (;)

X=X
Yy=1

e there are no arrays of references, but the same effect can be achieved by storing a structure
in a reference and using the structure’s arguments. The arguments can then be accessed
and modified using arg/3 and setarg/3 respectively.

The use of references should be considered carefully. Their overuse can lead to programs which
are difficult to understand and difficult to optimize. Typical applications use at most a single
reference per module, for example to hold state that would otherwise have to be passed via
additional arguments through many predicate invocations.
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Chapter 10

Input and Output

10.1 Streams

Input and output in ECL/PS® is done via communication channels called streams. They are
usually associated with either a file, a terminal, a socket, a pipe, or in-memory queues and
buffers. The streams may be opened for input only (read mode), output only (write mode), or
for both input and output (update mode).

10.1.1 Predefined Streams

Every ECL!PS® session has 4 predefined system streams:

stdin The standard input stream.

stdout The standard output stream.

stderr The standard error stream.

null A dummy stream, output to it is discarded, on input it always gives end of file.

In a stand-alone ECL!PS€ stdin, stdout and stderr are connected to the corresponding standard
I/O descriptors of the process. In an embedded ECL/PS®, the meaning of stdin, stdout and
stderr is determined by the ECL!PS® initialisation options.

Moreover, every ECL!PS® session defines the following symbolic stream names, which are used
for certain categories of input/output:

input Used by the input predicates that do not have an explicit stream argument, e.g. read/1.
This is by default the same as stdin, but can be redirected.

output Used by the output predicates that do not have an explicit stream argument, e.g.
write/1. This is by default the same as stdout, but can be redirected.

error Output for error messages and all messages about exceptional states. This is by default
the same as stderr, but can be redirected.

warning output Used by the system to output warning messages. This is by default the same
as stdout, but can be redirected.
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log_output Used by the system to output log messages, e.g. messages about garbage collection
activity. This is by default the same as stdout, but can be redirected.

user This identifier is provided for compatibility with Prolog systems and it is identical with
stdin and stdout depending on the context where it is used.

’ Symbolic Stream \ System Stream ‘
input | 0 (stdin)
output | 1 (stdout)
warning_output | 1 (stdout)
log_output | 1 (stdout)
error | 2 (stderr)
3 (null)

Initial assignment of symbolic stream names

10.1.2 Stream Identifiers and Aliases

Every stream is identified by a small integerE, but it can have several symbolic names (aliases),
which are atoms. Most of the built-in predicates that require a stream to be specified have a
stream argument at the first position, e.g. write(Stream, Term). This argument can be either
the stream number or a symbolic stream name.

An alias name can be given to a stream either when it is created or explicitly by invoking
set_stream/2:

set_stream(Alias, Stream)
To find the corresponding stream number, use get_stream/2:
get_stream(StreamOrAlias, StreamNr)

get_stream/2 can also be used to check whether two stream names are aliases of each other.

10.1.3 Opening New Streams

Streams provide a uniform interface to a variety of I/O devices and pseudo-devices. The following
table gives an overview of how streams on the different devices are opened.

’ I/O device ‘ How to open

tty implicit (stdin,stdout,stderr) or open/3 of a device file
file open(FileName, Mode, Stream)

string open(string(String), Mode, Stream)

queue open(queue(String), Mode, Stream)

pipe exec/2, exec/3 and exec_group/3
socket socket/3 and accept/3
null implicit (null stream)
How to open streams onto the different I/O devices

Most streams are opened for input or output by means of the open/3 or open/4 predicate.
The goals

! Note that the stream numbers are not the same as UNIX file descriptors
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open(SourceSink, Mode, Stream)
open(SourceSink, Mode, Stream, Options)

open a communication channel with SourceSink.

If SourceSink is an atom or a string, a file is being opened and SourceSink takes the form of a file
name in the host machine environment. ECL’PS® uses an operating system independent path
name syntax, where the components are separated by forward slashes. The following forms are
possible:

e absolute path name, e.g. /usr/peter/prolog/file.pl

e relative to the current directory, e.g. prolog/file.pl

e relative to the own home directory, e.g. ~/prolog/file.pl

e start with an environment variable, e.g. SHOME /prolog/file.pl

e relative to a user’s home directory, e.g. ~“peter/prolog/file.pl (UNIX only)
e specifying a drive name, e.g. //C/prolog/file.pl (Windows only)

Note that path names usually have to be quoted (in single or double quotes) because they contain
non-alphanumeric characters.

If SourceSink is of the form string(InitString) a pseudo-file in memory is opened, see section
If SourceSink is of the form queue (InitString) a pseudo-pipe in memory is opened, see section
Mode must be one of the atoms read, write, append or update, which means that the stream
is to be opened for input, output, output at the end of the existing stream, or both input and
output, respectively. Opening a file in write mode will create it if it does not exist, and erase the
previous contents if it does exist. Opening a file in append mode will keep the current contents
of the file and start writing at its end.

Stream is a symbolic stream identifier or an uninstantiated variable. If it is uninstantiated, the
system will bind it to an identifier (the stream number):

[eclipse 1]: open(new_file, write, Stream).
Stream = 6

yes.

If the stream argument is an atomic name, this name becomes an alias for the (hidden) stream
number:

[eclipse 1]: open(new_file, write, new_stream).
yes.

The stream identifier (symbolic or numeric) may then be used in predicates which have a named
stream as one of their arguments. For example

open("foo", update, Stream), write(Stream, subject), close(Stream).
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will write the atom subject to the file ‘foo’ and close the stream subsequently.

It is recommended style not to use symbolic stream names in code that is meant to be reused.
This is because the stream names are global, there is the possibility of name clashes, and the
code will not be reentrant. It is cleaner to open streams with a variable for the stream identifier
and pass the identifier as an argument wherever it is needed.

Socket streams are not opened with open/3, but with the special primitives socket/3 and
accept /3. More details are in chapter 21|
A further group of primitives which open streams implicitly is exec/2, exec/3 and and exec_group/3.

They open pipes which connect directly to the I/O channels of the executed process. See chapter
20 for details.

10.1.4 Closing Streams

The predicate

close(Stream)
is used to close an open stream. If a stream has several alias names, closing any of them will
close the actual stream. All the other aliases should be closed as well (or redirected to streams

that are still open), because otherwise they will continue to refer to the number of the already
closed stream.

When an attempt is made to close a redirected system stream (e.g. output), the stream is closed,
but the system stream is reset to its default setting.

10.1.5 Redirecting Streams

The set_stream/2 primitive can be used to redirect an already existing symbolic stream to a
new actual stream. This is particularly useful to redirect e.g. the default output stream

set_stream(output, MyStream)
so that all standard output is redirected to some other destination (e.g. an opened file instead of
the terminal). Note that the stream modes (read/write) must be compatible. The redirection
is terminated by calling

close(output)

which will reestablish the original meaning of the output stream.

10.1.6 Finding Streams

The predicate
current_stream(?Stream)
can be used to backtrack over all the currently opened stream indentifiers (but not their aliases).
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10.1.7 Stream Properties

A stream’s properties can be accessed using get_stream_info/3
get_stream_info(+Stream, +Property, -Value)

e.g. its mode, line number, file name etc. Some stream properties can be modified using
set_stream property/3

set_stream_property(+Stream, +Property, +Value)

e.g. the end-of-line sequence used, the flushing behaviour, the event-raising behaviour, the
prompt etc.

10.2 Communication via Streams

The contents of a stream may be interpreted in one of the three basic ways. The first one is to
consider it as a sequence of characters, so that the basic unit to be read or written is a character.
The second one interprets the stream as a sequence of tokens, thus providing an interface to the
Prolog lexical analyzer and the third one is to consider a stream as a sequence of Prolog terms.

10.2.1 Character I/0O

The get/1, 2 and put/1, 2 predicates corresponds to the first way of looking at streams. The
call

get (Char)

takes the next character from the current input stream and matches it as a single character with
Char. Note that a character in ECL'PS€ is represented as an integer corresponding to the ASCII
code of the character. If the end of file has been reached then an exception is raised. The call

put (Char)

puts the char Char on to the current output stream. The predicates
get(Stream, Char)

and
put(Stream, Char)

work similarly on the specified stream.
The input and output is normally buffered by ECL‘PS®. To make I/O in raw mode, without
buffering, the predicates tyi/1, 2 and tyo/1, 2 are provided.

10.2.2 Token I/O

The predicates read_token/2 and read_token/3

read_token(Token, Class)
read_token(Stream, Token, Class)
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represent the second way of interpreting stream contents. They read the next token from the
current input stream, unify it with Token, and its token class is unified with Class. A token is
either a sequence of characters with the same or compatible character class, e.g. ab_1A, then it is
a Prolog constant or variable, or a single character, e.g. ’)’. The token class represents the type
of the token and its special meaning, e.g. fullstop, comma, open_par, etc. The exact definition
of character classes and tokens can be found in appendices/A.2.1/and [A.2.3] respectively.

A further, very flexible possibility to read a sequence of characters is provided by the built-ins
read_string/3 and read_string/4

read_string(Delimiters, Length, String)
read_string(Stream, Delimiters, Length, String)

Here, the input is read up to a specified delimiter or up to a specified length, and returned as
an ECL'PS® string.
In particular, one line of input can be read as follows:

read_line(Stream, String) :-
read_string(Stream, end_of_line, _Length, String).

Once a string has been read, string manipulation predicates like split_string/4 can be used to
break it up into smaller components.

10.2.3 Term I/0O

The read/1, 2 and write/1, 2 predicates correspond to the third way of looking at streams.
For input, the goal

read(Term)

reads the next ECLPS® term from the current input stream and unifies it with Term. The input
term must be followed by a full stop, that is, a ’.” character followed by a layout character (tab,
space or newline) or by the end of file. The exact definition of the term syntax can be found in
appendix

If end of file has been reached then an exception is raised, the default handler causes the atom
end_of_file to be returned. A term may be read from a stream other than the current input
stream by the call

read(Stream, Term)

which reads the term from the named stream.

For additional information about other options for reading terms, in particular for how to get
variable names, refer to readvar/3, read_term/2 and read_term/3. For reading and pro-
cessing complete ECL/PS® source code files, use the library(source_processor).

For output, the goal

write(Term)

writes Term to the current output stream. This is done by taking the current operator
declarations into account. Output produced by the write/1, 2 predicate is not (necessarily) in
a form suitable for subsequent input to a Prolog program using the read/1 predicate, for this
purpose writeq/1, 2 is to be used. The goal
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write(Stream, Term)

writes Term to the named output stream. For more details about how to output terms in
different formats, see section [10.4.

When the flag variable_names is switched off, the output predicates are not able to write free
variables in their source form, i.e. with the correct variable names. Then the variables are
output in the form

N

where N is a number which identifies the variable (but note that these numbers may change on
garbage collection and can therefore not be used to identify the variable in a more permanent
way). Occasionally the number will be prefixed with the lower-case letter 1, indicating that the
variable is in a short-lived memory area called the local stack (see(19).

10.2.4 Newlines

Newlines should be output using either nl/0, nl/1, writeln/1, writeln/2, or using the "%n”
format with printf/2, printf/3. All those will produce a LF or CRLF sequence, depending on
the stream property settings (see set_stream property/3).

10.2.5 General Parsing and Text Generation

Reading and writing of I/O formats that cannot be handled by the methods discussed above are
probably best done using Definite Clause Grammar (DCG) rules. See chapter[12.3 for details.

10.2.6 Flushing

On most devices, output is buffered, i.e. any output does not appear immediately on the file,
pipe or socket, but goes into a buffer first. To make sure the data is actually written to the
device, the stream usually has to be flushed using flush/1. If this is forgotten, the receiving
end of a pipe or socket may hang in a blocking read operation.

It is possible to configure a stream such that it is automatically flushed at every line end (see
set_stream property/3).

10.2.7 Prompting
Input streams on terminals can be configured to print a prompt whenever input is required, see

set_stream_property/3.

10.2.8 Positioning

Streams that are opened on files or strings can be positioned, ie. the read/write position can be
moved forward or backwards. This is not possible on pipes, sockets, queues and terminals.

To specify a position in the file to write to or read from, the predicate seek/2 is provided. The
call

seek(Stream, Pointer)
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moves the current position in the file (the ’file pointer’) to the offset Pointer (a number specifying
the length in bytes) from the start of the file. If Pointer is the atom end_of file the current
position is moved to the end of the file. Hence a file could be open in append mode using

open(File, update, Stream), seek(Stream, end_of_file)

The current position in a file may be found by the predicate at/2. The call
at(Stream, Pointer)

unifies Pointer with the current position in the file. The predicate
at_eof (Stream)

succeeds if the current position in the given stream is at the file end.

10.3 In-memory Streams

There are two kinds of in-memory streams, string streams and queues. String streams be-
have much like files, they can be read, written, positioned etc, but they are implemented as
buffer in memory. Queues are intended mainly for message-passing-style communication be-
tween ECL/PS®and a host language, and they are also implemented as memory buffers.

10.3.1 String Streams

In ECL!PS® it is possible to associate a stream with a Prolog string in its memory, and this
string is then used in the same way as a file for the input and output operations. A string stream
is opened like a file by the open/3 predicate call

open(string(InitString), Mode, Stream)

where InitString can be a ECL!PS® string or a variable and represents the initial contents of the
string stream. If a variable is supplied for InitString, the initial value of the string stream is the
empty string and the variable is bound to this value:

leclipse 1]: open(string(S), update, s).
g = nn
yes.

Once a string stream is opened, all predicates using streams can take it as argument and perform
I/O on it. In particular the predicates seek/2 and at/2 can be used with them.

While writing into a stream changes the stream contents destructively, the initial string that has
been opened will never be affected. The new stream contents can be retrieved either by reading
from the string stream, or as a whole by using get_stream_info/3:

[eclipse 1]: S = "abcdef", open(string(S), write, s), write(s, ---).
S = "abcdef"
yes.

[eclipse 2]: get_stream_info(s, name, S).
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S = "———def"
yes.
leclipse 3]: seek(s, 1), write(s, .), get_stream_info(s, name, S).

S = "-.-def"

yes.

[eclipse 4]: seek(s, end_of_file), write(s, ine),
get_stream_info(s, name, S).

S = "-.-define"
yes.

10.3.2 Queue streams

A queue stream is opened by the open/3 predicate
open(queue (InitString), Mode, Stream)

The initial queue contents is InitString. It can be seen as a string which gets extended at its
end on writing and consumed at its beginning on reading.

[eclipse 11]: open(queue(""), update, q), write(q, hello), write(q, " wo").

yes.
leclipse 12]: read_string(q, " ", _, X).

S = "hello"

yes.

leclipse 13]: write(q, "rld"), read(q, X).
S = world

yes.

[eclipse 14]: at_eof(q).

yes.

It is not allowed to seek on a queue. Therefore, once something is read from a queue, it is no
longer accessible. A queue is considered to be at its end-of-file position when it is currently
empty, however this is no longer the case when the queue is written again.

A useful feature of queues is that they can raise a synchronous event when data arrives on the
empty queue. To create such an event-raising queue, this has to be specified as an option when
opening the queue with open/4. In the example we have chosen the same name for the stream
and for the event, which is not necessary but convenient when the same handler is going to be
used for different queues:

[eclipse 1]: [user].
handle_queue_event(Q) :-
read_string(Q, "", _, Data),
printf ("Queue %s received data: %s\n", [Q,Datal).
yes.
[eclipse 2]: set_event_handler(eventq, handle_queue_event/1).
yes.
[eclipse 3]: open(queue(""), update, eventq, [event(eventq)]).
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yes.
leclipse 4]: write(eventq, hello).
Queue eventq received data: hello
yes.

10.4 Term Output Formats

10.4.1 Write_term and Printf

The way ECL'PS® terms are printed can be customised in a number of ways. The most flexible
predicates to print terms are write_term/3 and printf/3. They both allow all variants of term
output, but the format is specified in a different way. The following figure gives an overview.
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Output Option for | Format Meaning
write_term/2,3 char for
printf
%..w
as(term) do not assume any particular meaning of the printed term
as(clause) C print the term as a clause (apply clause transformations)
as(goal) G print the term as a goal (apply goal transformations)
attributes(none) do not print any variable attributes
attributes(pretty) m print attributes using the corresponding print handlers
attributes(full) M print the full contents of all variable attributes
compact(false) print extra blank space (around operators, after commas,
etc.) for better readability
compact(true) K don’t print blank space unless necessary
depth(Max) <Max> | print the term only up to a maximum nesting depth of Max
(a positive integer)
depth(0) observe the stream-specific or global flag 'print_depth’
depth(full) D print the whole term (may loop when the term is cyclic!)
dotlists(false) write lists in square bracket notation, e.g. [a,b]
dotlists(true) write lists as terms with functor ./2
newlines(false) print newlines inside quotes as escape sequence \n
newlines(true) N print newlines as line breaks even inside quotes
numbervars(false) do not treat "$VAR’/1 terms specially
numbervars(true) I print terms of the form ’$VAR’(N) as named variables:
'$VAR’(0) is printed as A, '$VAR’(25) as Z, '$VAR’(26) as
A1l and so on. When the argument is an atom or a string,
just this argument is printed.
operators(true) obey operator declarations and print prefix/infix/postfix
operators(false) O ignore operator declarations and print functor notation
portrayed(false) do not use portray/1,2
portrayed(true) P call the user-defined predicate portray/1,2 for printing
quoted(false) do not print quotes around strings or atoms
quoted(true) Q quote strings and atoms if necessary
transform(true) apply portray transformations (write macros)
transform false) T do not apply portray transformations (write macros).
variables(default) print variables using their source name (if available)
variables(raw) v print variables using a system-generated name, e.g. _123
variables(full) A% print variables using source name followed by a number, e.g.
Alpha_132
variables(anonymous)| _ print every variable as a simple underscore

Overview of term output options (see write_term/3 for more details)

The write_term/2 and write_term/3 predicates print a single ECL‘PS® term and accept a
list of output options (first column in the table[10.4.1).

The printf/2 and printf/3 predicates are similar to C’s printf(3) function, but provide ad-
ditional format characters for printing ECL’PS® terms. The basic format string for printing
arbitrary terms is "%w”. Additional format characters can go between % and w, according to
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the second column in the table10.4.1.
For example, the following pairs of printing goals are equivalent:

printf ("Ymw", [X]) <-> write_term(X, [attributes(pretty)l])
printf ("%0.w", [X]) <-> write_term(X, [operators(false),dotlist(true)])
printf("%5_w", [X]) <-> write_term(X, [depth(5),variables(anonymous)])

10.4.2 Other Term Output Predicates

The other term output predicates write/1, writeln/1, writeq/1, write_canonical/1, dis-
play/1, print/1 can all be defined in terms of write_term/2 (or, similarly in terms of printf/2)
as follows:

write(X) :— write_term(X, []).

writeln(X) :— write_term(X, []), nl.

writeq(X) :- write_term(X, [variables(raw), attributes(full),
transform(false), quoted(true), depth(full)]).

write_canonical(X) :- write_term(X, [variables(raw), attributes(full),

transform(false), quoted(true), depth(full),
dotlist(true), operators(false)]).
display(X) :- write_term(X, [dotlist(true), operators(false)]).
print (X) :— write_term(X, [portrayed(true)]).

10.4.3 Default Output Options

It is possible to set default output options for an output stream in order to globally affect all
output to this particular stream. The set_stream _property/3 predicate can be used to assign
default options (in the same form as accepted by write_term/3) to a stream. These options will
then be observed by all output predicates which do not override the particular option.
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Chapter 11

Dynamic Code

An ECL!PS® predicate can be made dynamic. That is, it can have clauses added and removed
from its definition at run time. This chapter discusses how to do this, and what the implications
are.

11.1 Compiling Procedures as Dynamic or Static

If it is intended that a procedure be altered through the use of assert/1 and retract/1,
the system should be informed that the procedure will be dynamic, since these predicates are
designed to work on dynamic procedures. If assert/1 is applied on a non-existing procedure,
an error is raised, however the default error handler for this error only declares the procedure
as dynamic and then makes the assertion.

A procedure is by default static unless it has been specifically declared as dynamic. Clauses of
static procedures must always be consecutive, they may not be separated in one or more source
files or by the user from the top level. If the static procedure clauses are not consecutive, each of
the consecutive parts is taken as a separate procedure which redefines the previous occurrence of
that procedure, and so only the last one will remain. However, whenever the compiler encounters
nonconsecutive clauses of a static procedure in one file, it raises an exception whose default
handler prints a warning but it continues to compile the rest of the file.

If a procedure is to be dynamic the ECL'PS¢ system should be given a specific dynamic decla-
ration A dynamic declaration takes the form

:— dynamic Speclist.

The predicate is_dynamic/1 may be used to check if a procedure is dynamic:
is_dynamic(Name/Arity) .

When the goal
compile(Somefile)

is executed and Somefile contains clauses for procedures that have already been defined in
the Prolog database, those procedures are treated in one of two ways: If such a procedure is
dynamic, its clauses compiled from Somefile are added to the database (just as would happen
if they were asserted), and the existing clauses are not affected. For example, if the following
clauses have already been compiled:
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:— dynamic city/1.

city(london).
city(paris).

and the file Somefile contains the following Prolog code:

city(munich) .
city(tokyo).

then compiling Somefile will cause adding the clauses for city/1 to those already compiled, as
city /1 has been declared dynamic. Thus the query city(X) will give:

[eclipse 5]: city(X).

X = london More? (;)
X = paris More? (;)
X = munich More? (;)
X = tokyo

yes.

If, however, the compiled procedure is static, the new clauses in Somefile replace the old
procedure. Thus, if the following clauses have been compiled:

city(london) .
city(paris).

and the file Somefile contains the following Prolog code:

city(munich).
city(tokyo) .

when Somefile is compiled, then the procedure city/1 is redefined. Thus the query city(X)
will give:

[eclipse 5]: city(X).

X = munich More? (;)
X = tokyo
yes.

When the dynamic/1 declaration is used on a procedure that is already dynamic, which may
happen for instance by recompiling a file with this declaration inside, the system raises the error
64, 'procedure already dynamic’. The default handler for this error, however, will only erase all
existing clauses for the specified procedure, so that when such a file is recompiled several times
during its debugging, the system behaves as expected, the existing clauses are always replaced.
The handler for this error can of course be changed if required. If it is set to true/0, for instance,
the dynamic/1 declaration is be just silently accepted without erasing any clauses and without
printing an error message.
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11.2 Altering programs at run time

The Prolog database can be updated during the execution of a program. ECLPS® allows the
user to modify procedures dynamically by adding new clauses via assert/1 and by removing
some clauses via retract/1. These predicates operate on dynamic procedures; if it is required
that the definition of a procedure be altered through assertion and retraction, the procedure
should therefore first be declared dynamic (see the previous section). The effect of assert/1
and retract/1 on static procedures is explained below.

The effect of the goal

assert (ProcClause)
where ProcClaus is a clause of the procedure Proc, is as follows.

1. If Proc has not been previously defined, the assertion raises an exception, however the
default handler for this exception just declares the given procedure silently as dynamic
and executes the assertion.

2. If Proc is already defined as a dynamic procedure, the assertion adds ProcClause to the
database after any clauses already existing for Proc.

3. If Proc is already defined as a static procedure, then the assertion raises an exception.
The goal
retract(Clause)

will unify Clause with a clause on the dynamic database and remove it. If Clause does not
specify a dynamic procedure, an exception is raised.

ECL’PS®’s dynamic database features the so-called logical update semantics. This means that
any change in the database that occurs as a result of executing one of the builtins of the abolish,
assert or retract family affects only those goals that start executing afterwards. For every call
to a dynamic procedure, the procedure is virtually frozen at call time.

Tt should be remembered that because of the definition of the syntax of a term, to assert a procedure of the
form p :- q,r it is necessary to enclose it in parentheses: assert((p:-q,r)).
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Chapter 12

ECL‘PS® Macros

12.1 Introduction

ECL’PS® provides a general mechanism to perform macro expansion of Prolog terms. Macro
expansion can be performed in 3 situations:

read macros they are expanded just after a Prolog term has been read by the ECL/PS® parser.
Note that the parser is not only used during comilation but by all term-reading predi-
cates.

compiler macros they are expanded only during compilation and only when a term occurs in
a certain context (clause or goal).

write macros they are expanded just before a Prolog term is printed by one of the output
predicates

Macros are attached to classes of terms specified by their functors or by their type. Macros
obey the module system’s visibility rules. They may be either local or exported. The macro
expansion is performed by a user-defined Prolog predicate.

12.2 Using the macros

The following declarations and built-ins control macro expansion:

local macro(+TermClass, +TransPred, +Options) define a macro for the given Term-
Class. The transformation will be performed by the predicate TransPred.

export macro(+TermClass, +TransPred, +Options) as above, but available to other mod-
ules.

erase_macro(+TermClass, +Options) erase a currently defined macro for TermClass. This
can only be done in the module where the definition was made.

current_macro(?TermClass, ?TransPred, ?Options, 7Module) retrieve information about
currently defined visible macros.

Macros are selectively applied only to terms of the specified class. TermClass can take two
forms:
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Name/Arity transform all terms with the specified functor

type(Type) transform all terms of the specified type, where Type is one of compound, string,
integer, rational, float, breal, atom, goalﬁ.

The +TransPred argument specifies the predicate that will perform the transformation. It has
to be of arity 2 or 3 and should have the form:

trans_function(01dTerm, NewTerm [, Module]) :- ...

At transformation time, the system will call TransPred in the module where macro/3 was
invoked. The term to transform is passed as the first argument, the second is a free variable
which the transformation predicate should bind to the transformed term, and the optional third
argument is the module where the term is read or written.

Options is a list which may be empty (in this case the macro defaults to a local read term macro)
or contain specifications from the following categories:

e mode

read: This is a read macro and shall be applied after reading a term (default).

write: This is a write macro and shall be applied before printing a term.

e type

term: Transform all terms (default).

clause: Transform only if the term is a program clause, i.e. inside compile/1, assert/1
etc. Write macros are applied using the 'C’ option in the printf/2 predicate.

goal: Goal-read-macros are transformed only if the term is a subgoal in the body of a
program clause. Goal-write macros are applied using the G’ option in the printf/2
predicate.

e additional specification

protect_arg: Disable transformation of subterms (optional).

top_only: Consider only the whole term, not subterms (optional).
The following shorthands exist:

local/export portray(4+TermClass, +TransPred, +Options) portray/3 is like macro/3,
but the write-option is implied.

inline(4+PredSpec, +TransPred) inline/2 is the same as a goal-read-macro. The visibility
is inherited from the transformed predicate.

Here is an example of a conditional read macro:

[eclipse 1]: [user].

trans_a(a(X,Y), b(Y)) :- % transform a/2 into b/1,
number (X) , % but only under these
X > 0. % conditions

Ytype(goal) stands for suspensions.
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:— local macro(a/2, trans_a/2, [1).

user compiled traceable 204 bytes in 0.00 seconds
yes.
[eclipse 2]: read(X).
a(1l, hello).
X = b(hello) % transformed
yes.
[eclipse 3]: read(X).
a(-1, bye).
X = a(-1, bye) % not transformed
yes.

If the transformation function fails, the term is not transformed. Thus, a(1, zzz) is transformed
into b(zzz) but a(-1, zzz) is not transformed. The arguments are transformed bottom-up. It
is possible to protect the subterms of a transformed term by specifying the flag protect_arg.
A term can be protected against transformation by quoting it with the “protecting functor” (by
default it is no_macro_expansion/1):

[eclipse 4]: read(X).
a(l, no_macro_expansion(a(l, zzz))).
X = bla(l, zzz)).

Note that the protecting functor is itself defined as a macro:

trprotect (no_macro_expansion(X), X).
:- export macro(no_macro_expansion/1, trprotect/2, [protect_argl).

A local macro is only visible in the module where it has been defined. When it is defined as
exported, then it is copied to all other modules that contain a use_module/1 or import/1 for
this module. The transformation function should also be exported in this case. There are a few
global macros predefined by the system, e.g. for -==>/2 (grammar rules, see below) or with/2
and of/2 (structure syntax, see section [5.1). These predefined macros can be hidden by local
macro definitions.

The global flag macro_expansion can be used to disable macro expansion globally, e.g. for
debugging purposes. Use set_flag(macro_expansion, off) to do so.

The next example shows the use of a type macro. Suppose we want to represent integers as s/1
terms:

leclipse 1]: [user].

tr_int (0, 0).

tr_int (N, s(8)) :- N > 0, N1 is N-1, tr_int(N1, S).
:— local macro(type(integer), tr_int/2, []).

yes.
[eclipse 2]: read(X).
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X = s(s(s(0)))

yes.

When we want to convert the s/1 terms back to normal integers so that they are printed in the
familiar form, we can use a write macro. Note that we first erase the read macro for integers,
otherwise we would get unexpected effects since all integers occurring in the definition of tr_s/2
would turn into s/1 structures:

[eclipse 3]: erase_macro(type(integer)).

yes.
[eclipse 4]:
tr_s(0, 0).

tr_s(s(8), N)

[user].

:— tr_s(S, N1), N is Ni+1.

:— local macro(s/1, tr_s/2, [write]).

yes.

[eclipse 2]: write(s(s(s(0)))).

3
yes.

12.3 Definite Clause Grammars — DCGs

Grammar rules are described in many standard Prolog texts ([2]). In ECLPS® they are provided
by a predefined globaﬁ macro for -->/2. When the parser reads a clause whose main functor is
-->/2, it transforms it according to the standard rules. The syntax for DCGs is as follows:

grammar_rule

grammar_head
grammar_head

grammar_body
grammar_body
grammar_body
grammar_body
grammar_body
grammar_body
grammar_body

grammar_head, [’-->’], grammar_body.

non_terminal.
non_terminal, [’,’], terminal.

grammar_body, [’,’], grammar_body.
grammar_body, [’;’], grammar_body.
grammar_body, [’->’], grammar_body.
grammar_body, [’[’], grammar_body.
iteration_spec, [’do’], grammar_body.
[’-7->’], grammar_body.
grammar_body_item.

grammar_body_item --> [’!°].

grammar_body_item --> [’{’], Prolog_goals, [’}’].
grammar_body_item --> non_terminal.
grammar_body_item --> terminal.

2 So that the user can redefine it with a local one.
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The non-terminals are syntactically identical to prolog goals (atom, compound term or variable),
the terminals are lists of prolog terms (typically characters or tokens). Every term is transformed,
unless it is enclosed in curly brackets. The control constructs like conjunction ,/2, disjunction
(;/2 or 1/2), the cut (1/0), the condition (->/1) and do-loops do not need to be enclosed in
curly brackets.

The grammar can be accessed with the built-in phrase/3. The first argument of phrase/3 is
the name of the grammar to be used, the second argument one is a list containing the input to
be parsed. If the parsing is successful the built-in will succeed. For instance with the grammar

a-—> [1 | [z], a.

phrase(a, X, [1) will give on backtracking: X = [z] ; X = [z, z] ; X = [z, z, z] ;

12.3.1 Simple DCG example

The following example illustrates a simple grammar declared using the DCGs.

sentence --> imperative, noun_phrase(Number), verb_phrase(Number).

imperative, [youl --> [].
imperative --> [].

noun_phrase (Number) --> determiner, noun(Number).
noun_phrase (Number) --> pronom(Number) .

verb_phrase (Number) --> verb(Number) .
verb_phrase (Number) --> verb(Number), noun_phrase(_).

determiner --> [the].

noun(singular) --> [man].
noun(singular) --> [apple].
noun(plural) --> [men].
noun(plural) --> [apples].

verb(singular) --> [eats].
verb(singular) --> [sings].
verb(plural) --> [eat].
verb(plural) --> [sing].

pronom(plural) --> [you].

The above grammar may be successfully parsed using phrase/3. If the predicate succeeds then
the input has been parsed successfully.

leclipse 1]: phrase(sentence, [the,man,eats,the,apple]l, [1).

yes.
[eclipse 2]: phrase(sentence, [the,men,eat], []).
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yes.
leclipse 3]: phrase(sentence, [the,men,eats], []).

no.
[eclipse 4]: phrase(sentence, [eat,the,apples], []).

yes.
[eclipse 5]: phrase(sentence, [you,eat,the,man], []).

yes.

The predicate phrase/3 may be used to return the point at which parsing of a grammar fails
— if the returned list is empty then the input has been successfully parsed.

leclipse 1]: phrase(sentence, [the,man,eats,something,nasty],X).
X = [something, nasty] More? (;)

no (more) solution.
[eclipse 2]: phrase(sentence, [eat,the,apples],X).

X

[the, apples] More? (;)

X (] More? (;)

no (more) solution.
[eclipse 3]: phrase(sentence, [hello,there],X).

no (more) solution.

12.3.2 Mapping to Prolog Clauses

Grammar rule are translated to Prolog clauses by adding two arguments which represent the
input before and after the nonterminal which is represented by the rule. The effect of the
transformation can be observed, e.g. by switching on the all_dynamic flag so that the compiled

clauses can be listed:

[eclipse 1]: set_flag(all_dynamic, on), [user].

p(X) --> q(X).
p(X) --> [a].

user compiled traceable 296 bytes in 0.25 seconds
yes.

[eclipse 2]: listing.

p(_g212, _g214, _g216) :-
q(_g212, _g214, _g216).

p(_g212, _g214, _g216) :-
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_g214 = [al|_g216].

yes.

12.3.3 Parsing other Data Structures

DCGs are in principle not limited to the parsing of lists. The predicate *C’/3 is responsible for
reading resp. generating the input tokens. The default definition is

’C’ ([Token|Rest], Token, Rest).

The first argument represents the parsing input before consuming Token and Rest is the input
after consuming Token.

By redefining 'C’/3, it is possible to apply a DCG to other input sources than a list, e.g. to parse
directly from an I/O stream:

:— local ’C’/3.

’C’ (Stream-Pos0, Token, Stream-Posl) :-
seek(Stream, Pos0),
read_string(Stream, " ", _, TokenString),
atom_string(Token, TokenString),
at(Stream, Posl).

sentence --> noun, [is], adjective.
noun --> [prolog] ; [lisp].
adjective --> [boring] ; [great].

This can then be applied to a string as follows:

[eclipse 1]: String = "prolog is great", open(String, string, S),
phrase(sentence, S-0, S-End).

End = 15

yes.

Here is another redefinition of 'C’/3, using a similar idea, which allows the direct parsing of
ECL’PS® strings as sequences of characters:

:= local ’C’/3.

’C’ (String-PosO, Char, String-Posl) :-
PosO =< string_length(String),
string_code(String, Pos0O, Char),
Posl is PosO+1.

anagram --> [].
anagram --> [_].
anagram --> [C], anagram, [C].

This can then be applied to a string as follows:
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[eclipse 1]: phrase(anagram, "abba"-1, "abba"-5).
yes.

leclipse 2]: phrase(anagram, "abca"-1, "abca"-5).
no (more) solution.

Unlike the default definition, these redefinitions of ’C’/3 are not bi-directional. Consequently,
the grammar rules using them can only be used for parsing, not for generating sentences.

Note that every grammar rule uses that definition of ’C’/3 which is visible in the module where
the grammar rule itself is defined.
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Chapter 13

Events and Interrupts

The normal execution of a Prolog program may be interrupted by Events and Interrupts:

Events

they may occur asynchronously (posted by the environment) or synchronously (raised
by the program itself).

they are handled synchronously by a handler goal that is inserted into the resolvent.

the handler can cause the interrupted execution to fail or to abort.

e the handler can interact with the interrupted execution only via nonlogical features
(e.g. global variable or references).

e the handler can cause waking of delayed goals via symbolic triggers.

Errors
Errors can be viewed as a special case of events. They are raised by built-in predicates
(e.g. when the arguments are of the wrong type) and usually pass the culprit goal to the
error handler.

Interrupts
Interrupts usually originate from the operating system, e.g. on a Unix host, signals are
mapped to ECL'PS® interrupts.

e they occur asynchronously, but may be mapped into a sychronous event.

e certain predefined actions (like aborting) can be performed asynchronously

13.1 Events

13.1.1 Event Identifiers and Event Handling

Events are identified by names (atoms) or by anonymous handles.

When an event is raised, a call to the appropriate handler is inserted into the resolvent (the
sequence of executing goals). The handler will be executed as soon as possible, which means at
the next synchronous point in execution, which is usually just before the next regular predicate
is invoked. Note that there are a few built-in predicates that can run for a long time and will
not allow handlers to be executed until they return (e.g. read/1, sort/4).
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Creating Named Events

A named event is created by defining a handler for it using set_event_handler/2:

:— set_event_handler (hello, my_handler/1).
my_handler (Event) :-
<code to deal with Event>

A handler for a named event can have zero or one arguments. When invoked, the first argument
is the event identifier, in this case the atom ’hello’. It is not possible to pass other information
to the handler.

The handler for a defined event can be queried using get_event_handler/3.

Creating Anonymous Events

An anonymous event is created with the builtin event_create/3:
., event_create(my_other_handler(...), [], Event),

The builtin takes a handler goal and creates an anonymous event handle Event. This handle is
the only way to identify the event, and therefore must be passed to any program location that
wants to raise the event. The handler goal can be of any arity and can take arbitrary arguments.
Typically, these arguments would include the Event handle itself and other ground arguments
(variables should not be passed because when the event is raised, a copy of the handler goal
with fresh variables will be executed).

13.1.2 Raising Events

Events can be raised in the following different ways:
e Explicitly by the ECL‘PS® program itself, using event /1.

e By foreign code (C/C++) using the ec_post_event() function.

Via signals/interrupts by setting the interrupt handler to event /1.

Via I/O streams (e.g. queues can be configured to raise an event when they get written
into).

e Via timers, so-called after-events

Raising Events Explicitly

To raise an event from within ECL‘PS® code, call event/1 with the event identifier as its
argument. If no handler has been defined, a warning will be raised:

?7- event(hello).
WARNING: no handler for event in hello
Yes (0.00s cpu)

The event can be an anonymous event handle, e.g.
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?7- event_create(writeln(handling(E)), [1, E), event(E).
handling(’EVENT’ (16’ edbc0Ob20))

E = ’EVENT’ (16’ edbc0b20)

Yes (0.00s cpu)

Raising events explicitly is mainly useful for test purposes, since it is almost the same as calling
the handler directly.

Raising Events from Foreign Code

To raise an event from within foreign C/C++ code, call
ec_post_event (ec_atom(ec_did("hello",0)));

This works both when the foreign code is called from ECL‘PS® or when ECL!PS® is embedded
into a foreign code host program.

Timed Events (after events)

An event can be triggered after a specified amount of elapsed time. The event is then handled
sychronously by ECLPS®. These events are known as after events, as they are set up so that
the event occurs after a certain amount of elapsed time. They are setup by one of the following
predicates:

event_after(4+EventId, +Time) This sets up an event Eventld so that the event is raised
once after Time seconds of elapsed time from when the predicate is executed. Eventld is an
event identifier and Time is a positive number.

event_after_every(+Eventld, +Time) This sets up an event Eventld so that the event is
raised every Time seconds has elapsed from when the predicate is executed.

events_after (+EventList) This sets up a series of after events specified in EventList, which
is list of events in the form Eventld-Time, or Eventld-every(Time), specifying a single event or
a repeated event respectively.

The Time parameter is actually the minimum of elapsed time before the event is raised. Factors
constraining the actual time of raising of the event include the granularity of the system clock,
and also that ECL!PS® must be in a state where it can synchronously process the event — it
needs to be where it can make a procedure call.

Once an after event has been set up, it is pending until it is raised. In the case of
event_after_every/2, the event will always be pending because it is rasied repeatedly. A
pending event can be cancelled so that it will not be raised:

cancel _after_event(+Eventld, -Cancelled) This finds and cancels all pending after events
with name Eventld and returns the actually cancelled ones in a list.
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current_after_events(-Events) This returns a list of all pending after events.

The after event mechanism allows multiple events to make use of the timing mechanism inde-
pendently of each other. The same event can be setup multiple times with multiple calls to
event_after/2 and event_after_every/2. The cancel_after_event/2 predicate will cancel
all instances of an event.

By default, the after event feature uses the real timer. The timer can be switched to the virtual
timer, in which case the elapsed time measured is user CPU tim This setting is specified by
the ECL'PS® environment flag after_event_timer (see get_flag/2, set_flag/2). Note that if the
timer is changed while some after event is still pending, these events will no longer be processed.
The timer should therefore not be changed once after events are initiated.

Currently, the virtual timer is not available on the Windows platform. In addition, the user
should should not make use of these timers for their own purpose if they plan to use the after
event mechanism.

13.1.3 Events and Waking

Using the suspension and event handling mechanisms together, a goal can be added to the
resolvent and executed after a defined elapsed time. To achieve this, the goal is suspended and
attached to a symbolic trigger, which is triggered by an afer-event handler. The goal behaves
‘logically’, in that if the execution backtracks pass the point in which the suspended goal is
created, the goal will disappear from the resolvent as expected and thus not be executed. The
event will still be raised, but there will not be a suspended goal to wake up. Note that if the
execution finishes before the suspended goal is due to be woken up, it will also not enter the
resolvent and is thus not executed.

The following is an example for waking a goal with a timed event. Once monitor (X) is called,
the current value of X will be printed every second until the query finishes or is backtracked

over:
:— set_event_handler (monvar, trigger/1).
monitor(Var) :-
suspend (m(Var), 3, trigger(monvar)),
event_after_every(monvar, 1).
:— demon m/1.
m(Var) :- writeln(Var).

:- monitor(Var), <do_something>.

Note the need to declare m/1 as a demon: otherwise, once m/1 is woken up once, it will disappear
from the resolvent and the next monvar event will not have a suspended m/1 to wake up. Note
also that it is necessary to connect the event machanism to the waking mechanism by setting
the event handler to trigger/1.

13.1.4 Aborting an Execution with Events

Typically, event handlers would perform some action and then succeed, letting the interrupted
exectuion continue unharmed. Event handlers for asynchronous events should never fail, be-

!This is time that the CPU spends on executing user code, i.e. the ECLPS® program.
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cause the failure will be inserted in a random place in resolvent, and the effect will be unpre-
dictable. It is however sometimes useful to allow an asynchronous event to abort an execution
(via exit_block/1), e.g. to implement timeouts?.

When dealing with events that occur asynchronously (in particular after-events), and event
handlers that cause the execution to abort, it is often a problem that event handlers may be
interrupted or preempted by other event handlers. This can be avoided by use of the event-defer
mechanism. Events can be declared with the defer-property, which means that all further event
handling is temporarily suppressed as soon as the handling of this event begins. In this case, the
event handler is responsible for reenabling event handling explicitly before returning by calling
events_nodefer/0. For instance:

:- set_event_handler(my_event, defers(my_handler/0)).

my_after_handler :- % event handling is deferred at this point
<deal with event>,
events_nodefer. % allow other events to be handled again

In the presence of other event handlers which can cause aborts, this will protect the handler
code from being preempted.

13.2 Errors

Error handling is one particular use of events. The main property of error events is that they
have a culprit goal, ie. the goal that detected or caused the error. The error handler obtains
that goal as an argument.

The errors that the system raises have numerical identifiers, as documented in appendix [C.
User-defined errors have atomic names, they are the same as events. Whenever an error occurs,
the ECLPS® system identifies the type of error, and calls the appropriate handler. For each
type of error, it is possible for the user to define a separate handler. This definition will replace
the default error handling routine for that particular error - all other errors will still be handled
by their respective handlers. It is of course possible to associate the same user defined error
handler to more than one error type.

When a goal is called and produces an error, execution of the goal is aborted and the appropriate
error handler is invoked. This invocation of the error handler is seen as replacing the invocation
of the erroneous goal:

e If the error handler fails it has the same effect as if the erroneous goal failed.

e If the error handler succeeds, possibly binding some variables, the execution continues at
the point behind the call of the erroneous goal.

e If the handler calls exit_block/1, it has the same effect as if this was done by the erroneous
goal itself.

For errors that are classified as warnings the second point is somewhat different: If the handler
succeeds, the goal that raised the warning is allowed to continue execution.

2Since implementing reliable timeouts is a nontrivial task, we recommend the use of lib(timeout) for this
purpose.
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Apart from binding variables in the erroneous goal, error handlers can also leave backtrack
points. However, if the error was raised by an external or a builtin that is implemented as an
external, these choicepoints are discardedgﬁ,

13.2.1 Error Handlers

The predicate set_event_handler/2 is used to assign a procedure as an error handler. The call
set_event_handler (ErrorId, PredSpec)

sets the event handler for error type Errorld to the procedure specified by PredSpec, which must
be of the form Name/Arity.

The corresponding predicate get_event_handler /3 may be used to identify the current handler
for a particular error. The call

get_event_handler (ErrorId, PredSpec, HomeModule)

will, provided FErrorld is a valid error identifier, unify PredSpec with the specification of the
current handler for error Errorld in the form Name/Arity, and HomeModule will be unified with
the module where the error handler has been defined. Note that this error handler might not
be visible from every module and therefore may not be callable.

To re-install the system’s error handler in case the user error handler is no longer needed,
reset_event_handler/1 should be used. reset_error_handlers/0 resets all error handlers to
their default values.

To enable the user to conveniently write predicates with error checking the built-ins

error (ErrorId, Goal)
error (ErrorId, Goal, Module)

are provided to raise the error Errorld (an error number or a name atom) with the culprit Goal.
Inside tool procedures it is usually necessary to use error/3 in order to pass the caller module
to the error handler. Typical error checking code looks like this

increment (X, X1) :-
( integer(X) ->
X1 is X + 1

error(5, increment (X, X1))

).

The predicate current_error/1 can be used to yield all valid error numbers, a valid error is that
one to which an error message and an error handler are associated. The predicate error_id/2
gives the corresponding error message to the specified error number. To ease the search for the
appropriate error number, the library util contains the predicate

util:list_error(Text, N, Message)

3 This is necessary because the compiler recognises simple predicates as deterministic at compile time and so
if a simple predicate would cause the invocation of a non-deterministic error handler, the generated code may no
longer be correct.
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which returns on backtracking all the errors whose error message contains the string Tezt.

The ability to define any Prolog predicate as the error handler permits a great deal of flexibility
in error handling. However, this flexibility should be used with caution. The action of an
error handler could have side effects altering the correctness of a program; indeed it could be
responsible for further errors being introduced. One particular area of danger is in the use of
input and output streams by error handlers.

13.2.2 Arguments of Error Handlers

An error handler has 4 optional arguments.
1. The first argument is the number or atom that identifies the error.

2. The second argument is the culprit (a structure corresponding to the call which caused
the error). For instance, if, say, a type error occurs upon calling the second goal of the
procedure p(2, Z):

pX, V) :- aX), bX, Y), c(Y).

the structure given to the error handler is b(2, Y). Note that the handler could bind Y
which would have the same effect as if b/2 had done the binding.

3. The third argument is only defined for a subset of the existing errors. If the error oc-
curred inside a tool body, it holds the caller module, otherwise it is identical to the fourth
argumentE.

4. The fourth argument is the lookup module for the culprit goal. This is needed for example
when the handler wants to call the culprit reliably, using a qualified call via : /2.

The error handler is free to ignore some of these arguments, i.e. it can have any arity from 0 to
4. The first argument is provided for the case that the same procedure serves as the handler for
several error types - then it can distinguish which is the actual error type. An error handler is
just an ordinary Prolog procedure and thus within it a call may be made to any other procedure,
or any built in predicate; this in particular means that a call to exit_block/1 may be made (see
the section on the block/3 predicate). This will work ’through’ the call to the error handler,
and so an exit may be made from within the handler out of the current block (i.e. back to
the corresponding call of the block/3 predicate). Specifying the predicates true/0 or fail/0 as
error handlers will make the erroneous predicate succeed (without binding any further variables)
or fail respectively.

The following two templates are the most common for error handlers. The first simply prints
an error message and aborts:

my_error_handler(ErrorId, Goal, ContextModule) :-
printf(error, "Error %w in %w in module %w/n",
[ErrorId,Goal,ContextModule]),
abort.

The following handler tries to repair the error and call the goal again:

4 Note that some events are not errors but are used for different purposes. In thoses cases the second and third
argument are sometimes used differently. See Appendix[C]for details.
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my_error_repair_handler(ErrorId, Goal, ContextModule, LookupModule) :-
% repair the error
. some code to repair the cause for the error ...
% try call the erroneous goal again
LookupModule : Goal @ ContextModule.

13.2.3 User Defined Errors

The following example illustrates the use of a user-defined error. We declare a handler for the
event ’'Invalid command’ and raise the new error in the application code

% Command error handler - output invalid command, sound bell and abort
command_error_handler(_, Command) :-

printf ("\007\nInvalid command: %w\n", [Command]),

abort.

% Activate the handler
:— set_event_handler(’Invalid command’, command_error_handler/2).

% top command processing loop
go :-
writeln("Enter command."),
read (Command) ,
( valid_command (Command)->
process_command (Command) ,

go

error (’Invalid command’,Command) % Call the error handler

% Some valid commands
valid_command(start).
valid_command(stop) .

13.3 Interrupts

Operating systems such as Unix provide a notion of asynchronous interrupts or signals. In a
standalone ECL‘PS® system, the signals can be handled by defining interrupt handlers for them.
In fact, a set of default handlers is already predefined in this case.

In an embedded ECLPS®, signals are usually handled by the host application, and it is recom-
mended to use the event mechanism described above (the ec_post_event() library function) to
communicate between the host application and the ECLPS® code. However, even in this set-
ting, ECL’PS® can also handle signals directly, provided the programmer sets up a corresponding
interrupt handler.
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13.3.1 Interrupt Identifiers

Interrupts are identified either by their signal number (Unix) or by a name which is derived from
the name the signal has in the operating system. Most built-ins understand both identifiers.
It is usually more portable to use the symbolic name. The built-in current_interrupt/2 is
provided to check and/or generate the valid interrupt numbers and their mnemonic names.

13.3.2 Asynchronous handling

When an interrupt happens, the ECL!PS¢ system calls an interrupt handling routine in a manner
very similar to the case of event handling. The only argument to the handler is the interrupt
number. Just as event handlers may be user defined, so it is possible to define interrupt handlers.
The goal

set_interrupt_handler (N, PredSpec)

assigns the procedure specified by PredSpec as the interrupt handler for the interrupt identified
by N (a number or a name). Some interrupts cannot be caught by the user (e.g. the kill signal),
trying to establish a handler for them yields an error message. Note that PredSpec should be
one of the predefined handlers. The use of general user defined predicates is deprecated because
of portability considerations.

To test interrupt handlers, the built-in kill/2 may be used to send a signal to the own process.
The predicate get_interrupt_handler/3 may be used to find the current interrupt handler for
an interrupt N, in the same manner as get_event_handler:

get_interrupt_handler (N, PredSpec, HomeModule)

An interrupt handler has one optional argument, which is the interrupt number. There is no
argument corresponding to the error culprit, since the interrupt has no relation to the currently
executed predicate. A handler may be defined which takes no argument (such as when the
handler is defined for only one interrupt type). If the handler has one argument, the identifier
of the interrupt is passed to the handler when it is called.
The following is the list of predefined interrupt handlers:

default/0
performs the standard UNIX handling of the specified interrupt (signal). Setting this
handler is equivalent to calling signal(N, SIG-DFL) on the C level. Thus e.g. specifying

?- set_interrupt_handler(int, default/0)

will exit the ECLPS® system when AC is pressed.

true/0
This is equivalent to calling signal(N, SIG-IGN) on the C level, ie. the interrupt is ignored.

throw/1
Invoke ezit_block/1 with the interupt’s symbolic name.

abort/0
Invoke exit_block(abort).
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halt/0
Terminate the ECL'PS® process.

internal/0 Used by ECL/PS® to implement internal functionality like the profiler. This is not
intended to be used by the user.

event/1
The signal is handled by posting a (synchronous) event. The event name is the symbolic
name of the interrupt.

Apart from these special cases, all other arguments will result in the specified predicate to be
called when the appropriate interrupt occurs. This general asynchronous interrupt handling
is not supported on all hardware/platforms, neither in an embedded ECL'PS® (including the
tkeclipse development environment), and is therefore deprecated.
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Chapter 14

Debugging

14.1 The Box Model

The ECL'PS® debugger is based on a port model which is an extension of the classical Box
Model commonly used in Prolog debugging.

A procedure invocation (or goal) is represented by a box with entry and exit ports. Each time a
procedure is invoked, a box is created and given a unique invocation number. The invocations
of subgoals of this procedure are seen as boxes inside this procedure box.

Tracing the flow of the execution consists in tracing the crossing of the execution flow through
any of the port of the box.

The five basic ports of the box model of ECL‘PS® are the CALL, EXIT, REDO, FAIL and
NEXT ports, the suspension facilities are traced through the DELAY and RESUME ports, and
the exceptional exit is indicated by LEAVE.

CALL: When a procedure is invoked, the flow of the execution enters the procedure box by
its CALL port and enters the first clause box which could (since not all clauses are tried,
some of them being sure to fail, i.e. indexing is shown) unify with the goal. It may happen
that a procedure is called with arguments that make it sure to fail (because of indexing).
In such cases, the flow does not enter any clause box.

For each CALL port a new procedure box is created and is given:
e an invocation number that is one higher than that given for the most recent CALL

port. This allows to uniquely identify a procedure invocation and all its corresponding
ports.

e a level that is one higher than that of its parent goal.

The displayed variable instantiations are the ones at call time, i.e. before the head unifi-
cation of any clause.

EXIT: When a clause of a predicate succeeds (i.e. unification succeeded and all procedures
called by the clause succeeded), the flow gets out of the box by the EXIT port of both
boxes (only the EXIT port of the procedure boz is traced).

When a procedure exits non-deterministically (and there are still other clauses to try on
that procedure or one of its children goals has alternatives which could be resatisfied), the
EXIT port is traced with an asterisk (*EXIT). When the last possibly matching clause of
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Figure 14.1: The box model

a procedure is exited, the exit is traced without asterisk. This means that this procedure
box will never be retried as there is no other untried alternative.

The instantiations shown in the EXIT port are the ones at exit time, they result from the
(successful) execution of the procedure.

FAIL: When a clause of a procedure fails (because head unification failed or because a sub-goal
failed), the flow of the execution exits the clause box and leaves the procedure box via
the FAIL port. Note that the debugger cannot display any argument information at FAIL
ports (an ellipsis . .. is displayed instead for each argument).

NEXT: If a clause fails and there is another possibly matching clause to try, then that one
is tried for unification. The flow of the execution from the failure of one clause to the
head unification of a following clause is traced as a NEXT port. The displayed variable
instantiations are the same as those of the corresponding CALL or REDO port.

ELSE: This is similar to the NEXT port, but indicates that the next branch of a disjunction
(;/2) it tried after the previous branch failed. The predicate that gets displayed with the
port is the predicate which contains the disjunction (the immediate ancestor).

REDO: When a procedure box is exited trough an *EXIT port, the box can be retried later
to get a new solution. This will happen when a later goal fails. The backtracking will
cause failing of all procedures that do not have any alternative, then the execution flow
will enter a procedure box that an contains alternative through a REDO port.

Two situations may occur: either the last tried clause has called a procedure that has left
a choice point (it has exited through an *EXIT port). In that case the nested procedure
box is re-entered though another REDO-port.
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Otherwise, if the last clause tried does not contain any nondeterministically exited boxes,
but there are other untried clauses in the procedure box, the next possibly matching clause
will be tried.

The last REDO port in such a sequence is the one which contains the actual alternative
that is tried. The variable instantiations for all REDO ports in such a sequence are the
ones corresponding to the call time of the last one.

LEAVE: This port allows to trace the execution of a the block/3 and exit_block/1 predicates
within the box model. The predicate block/3 is traced as a normal procedure. If the
goal in its first argument fails, block/3 fails, if it exits, block/3 exits. If the predicate
exit_block/1 is called (and exited since it never fails), all the goals inside the matching
block are left through a special port called LEAVE, so that each entry port matches with
an exit port. The recover procedure (in the third argument of block/3) is then called
and traced normally and block/3 will exit or fail (or even leave) depending on the recover
procedure.

As with the FAIL port, no argument value are displayed in the LEAVE port.

DELAY: The displayed goal becomes suspended. This is a singleton port, it does not enter
or leave a box. However, a new invocation number is assigned to the delayed goal, and
this number will be used in the matching RESUME port. The DELAY port is caused by
one of the built-in predicates suspend/3, suspend/4, make_suspension/3 or a delay
clause. The port is displayed just after the delayed goal has been created.

RESUME: When a waking condition causes the resuming of a delayed goal, the procedure box
is entered through its RESUME port. The box then behaves as if it had been entered
through its CALL port. The invocation number is the same as in its previous DELAY
port. which makes it easy to identify corresponding delay and resume events. However
the depth level of the RESUME corresponds to the waking situation. It is traced like a
subgoal of the goal which has caused the waking.

In the rest of this chapter the user interface to the debugger is described, including the commands
available in the debugger itself as well as built-in predicates which influence it. Some of the
debugger commands are explained using an excerpt of a debugger session. In these examples,
the user input is always underlined (it is in fact not always output as typed) to distinguish it
from the computer output.

14.2 Format of the Tracing Messages

All trace messages are output to the debug_output stream.
The format of one trace line is as follows:

S+(4) 2 *EXIT<5> module:foo(one, X, two) %>
123 456 7 8 9 10

1. The first character shows some properties of the displayed procedure. It may be one of

e C - an external procedure, not implemented in Prolog

e S - a skipped procedure, i.e. a procedure whose subgoals are not traced
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. A4’ displayed here shows that the procedure has a spy point set.

. The number between parentheses shows the box invocation number of this procedure call.
Since each box has a unique invocation number, it can be used to identify ports that
belong to the same box. It also shows how many procedure redos have been made since
the beginning of the query. Only boxes that can be traced obtain an invocation number,
for instance subgoals of a procedure which is compiled in debug mode or has its skip-flag
set are not numbered.

When a delayed goal is resumed, it keeps the invocation number it was assigned when
it delayed. This makes it easy to follow all ports of a specified call even in data-driven
computation.

. The second number shows the level or depth of the goal, i.e. the number of its ancestor
boxes. When a subgoal is called, the level increases and after exit it decreases again. The
initial level is 1.

Since a resumed goal is considered to be a descendant of the procedure that woke it, the
level of a resumed goal may be different from the level the goal had when it delayed.

. An asterisk before an EXIT means that this procedure is nondeterministic and that it
might be resatisfied.

. The next word is the name of the port. It might be missing if the displayed goal is not the
current position in the execution (e.g. when examining ancestors or delayed goals).

CALL a procedure is called for the first time concerning a particular invocation,
DELAY a procedure delays,

EXIT a procedure succeeds,

FAIL a procedure fails, there is no (other) solution,

LEAVE aprocedure is left before having failed or exited because of a call to exit_block/1,

NEXT the next possibly matching clause of a procedure is tried because unification failed
or a sub-goal failed,

ELSE the next branch of a disjunction is tried because some goal in the previous branch
failed.

REDO a procedure that already gave a solution is called again for an alternative,

RESUME a procedure is woken (the flow enters the procedure box as for a call) because
of a unification of a suspending variable,

. This only appears if the goal is executing at a different priority than 12, the normal priority.
The number between the angled brackets shows the priority (between 1 and 11) that the
goal is executed at.

. For the tty debugger, the optional module name followed by a colon. Printing of the
module can be enabled and disabled by the debugger command m. If it is enabled, the
module from where the procedure is called is displayed. By default the module printing
is disabled. With tkeclipse, the module name is not displayed with the traceline, instead,
you can get the information by right holding the mouse button over the trace line in the
call stack window.
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9. The goal is printed according to the current instantiations of its variables. Arguments of
the form ... represent subterm that are not printed due to the depth limit in effect. The
depth limit can be changed using the < command.

The goal is printed with the current output_mode settings. which can be changed using
the o command.

10. The prompt of the debugger, which means that it is waiting for a command from the user.
Note there is no prompt when tkeclipse tracer is used.

14.3 Debugging-related Predicate Properties

Predicates have a number of properties which can be listed using the pred/1 built-in. The
following predicate flags and properties affect the way the predicate is traced by the debugger:

debugged
Indicates whether the predicate has been compiled in debug-compile mode. If on, calls to
the predicate’s subgoal will be traced. The value of this property can only be changed by
re-compiling the predicate in a different mode.

leash
If notrace, no port of the predicate will be shown in the trace (but the invocations will be
counted nevertheless). If stop, the ports of this predicate will be shown and the debugger
will stop and await new commands. (The print setting is currently not supported). The
value of this property can be changed with traceable/1, untraceable/1 or set_flag/3.

Spy
If on, the predicate has a spy-point and the debugger will stop at its ports when in leap

mode. The value of this property can be changed with spy/1, nospy/1 or set_flag/3.

skipped
If on, the predicate’s subgoal will not be traced even if it has been compiled in debug-
compile mode. The value of this property can be changed with skipped/1, unskipped/1
or set_flag/3.

start_tracing
If on, a call to the predicate will activate the debugger if it is not already running. Only
the execution within this predicate’s box will be traced. This is useful for debugging part of
a big program without having to change the source code. The effect is similar to wrapping
all call of the predicate into trace/1.

14.4 Starting the Debugger

Several methods can be used to switch the debugger on. If the textual interactive top-level
is used, the commands trace/0 and debug/0 are used to switch the debugger on for the
following queries typed from the top-level. trace/0 will switch the debugger to creep mode
whereas debug/0 will switch it in it leap mode.

For the tkeclipse graphical toplevel, the debugger may be switched on by starting the tracer
from the Tools menu before executing the query. This puts the debugger in creep mode.
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When the debugger is in it creep mode, it will prompt for a command at the crossing of the first
port of a leashed procedure. When the debugger is in leap mode, it will prompt for a command
at the first port of a leashed procedure that has a spy point. The debugger is switched off either
from the toplevel with the commands nodebug/0 or notrace/0, or by typing n or N to the
debugger prompt.

A spy point can be set on a procedure using spy/1 (which will also switch the debugger to leap)
and removed with nospy/1. They both accept a SpecList as argument. Note that set_flag/3
can be used to set and reset spy points without switching the debugger on and without printing
messages.

debugging/0 can be used to list the spied predicates and the current debugger mode.

[eclipse 1]: spy writeln/1.
spypoint added to writeln / 1.

yes.

Debugger switched on - leap mode
[eclipse 2]: debugging.

Debug mode is leap

writeln / 1 is being spied

yes.
leclipse 3]: true, writeln(hello), true.
B+(2) 0 CALL writeln(hello) %> 1 leap
hello

B+(2) 0 EXIT writeln(hello) %> c creep
B (3) 0 CALL true %> 1 leap

yes.
[eclipse 4]: trace.
Debugger switched to creep mode

yes.
leclipse 5]: true, writeln(hello), true.
B (1) 0 CALL true %> c creep

B (1) 0 EXIT true %> c creep

B+(2) 0 CALL writeln(hello) %> 1 leap
hello

B+(2) 0 EXIT writeln(hello) %> 1 leap

yes.

14.5 Debugging Parts of Programs

14.5.1 Mixing debuggable and non-debuggable code

The debugger can trace only procedures which have been compiled in debug mode. The com-
piler debug mode is by default switched on and it can be changed globally by setting the flag
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debug_compile with the set_flag/2 predicate or using dbgcomp/0 or nodbgcomp/0. The
global compiler debug mode can be overruled on a file-by-file basis using one of the compiler
pragmas

:— pragma(nodebug) .
:- pragma(debug) .

Once a program (or a part of it) has been debugged, it can be compiled in nodbgcomp mode so
that all optimisations are done by the compiler. The advantages of non-debugged procedures
are

e They run slightly faster than the debugged procedures when the debugger is switched off.
When the debugger is switched on, the non-debugged procedures run considerably faster
than the debugged ones and so the user can selectively influence the speed of the code
which is being traced as well as its space consumption.

e Their code is shorter than that of the debugged procedures.

Although only procedures compiled in the dbgcomp mode can be traced, it is possible to mix the
execution of procedures in both modes. Then, calls of nodbgcomp procedures from dbgcomp ones
are traced, however further execution within nodbgcomp procedures, i.e. the execution of their
subgoals, no matter in which mode, is not traced. In particular, when a nodbgcomp procedure
calls a dbgcomp one, the latter is normally not traced. There are two important exceptions from
this rule:

e When a debuggable procedure has delayed and its DELAY port has been traced, then its
RESUME port is also traced, even when it is woken inside non-debuggable code.

e When non-debuggable code meta-calls a debuggable procedure (i.e. via call/1), then this
procedure can be traced. This is a useful feature for the implementation of meta- predi-
cates like setof/3, because it allows to hide the details of the setof-implementation, while
allowing to trace the argument goal.

Setting a procedure to skipped (with set_flag/3 or skipped/1 ) is another way to speed up the
execution of procedures that do not need to be debugged. The debugger will ignore everything
that is called inside the skipped procedure like for a procedure compiled in nodbgcomp mode.
However, the debugger will keep track of the execution of a procedure skipped with the command
s of the debugger so that it will be possible to ’creep’ in it on later backtracking or switch the
debugger to creep mode while the skip is running (e.g. by interrupting a looping predicate with
"C and switching to creep mode).

The two predicates trace/1 and debug/1 can be used to switch on the debugger in the middle of
a program. They execute their argument in creep or leap mode respectively. This is particularly
useful when debugging large programs that take too much time (or need a lot of memory) to
run completely with the debugger.

[eclipse 1]: debugging.
Debugger is switched off

yes.
[eclipse 2]: big_goall, trace(buggy_goal), big_goal2.
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Start debugging - creep mode
(1) 0 CALL Dbuggy_goal %> c creep
(1) 0 EXIT Dbuggy_goal %> c creep
Stop debugging.

yes.

It is also possible to enable the debugger in the middle of execution without changing the code.
To do so, use set_flag/3 to set the start_tracing flag of the predicate of interest. Tracing will
then start (in leap mode) at every call of this predicateE. To see the starting predicate itself, set
a spy point in addition to the start_tracing flag:

[eclipse 1]: debugging.
Debugger is switched off

yes.
[eclipse 2]: set_flag(buggy_goal/0, start_tracing, on),
set_flag(buggy_goal/0, spy, on).

yes.
[eclipse 3]: big_goall, buggy_goal, big_goal2.
+(0) 0 CALL buggy_goal %> creep
+(0) 0 EXIT buggy_goal %> creep

yes.

In tkeclipse, the debugger can also be started in this way. The tracer tool will popup at the
appropriate predicate if it has not been invoked already. The start_tracing flag can also be set
with the predicate browser tool.

14.6 Using the Debugger via the Command Line Interface

This section describe the commands available at the debugger prompt in the debugger’s com-
mand line interface (for the graphical user interface, please refer to the online documentation).
Commands are entered by typing the corresponding key (without newline), the case of the letters
is significant. The action of some of them is immediate, others require additional parameters
to be typed afterwards. Since the ECLPS® debugger has the possibility to display not only
the goal that is currently being executed (the current goal or procedure), but also its ancestors,
some of the commands may work on the displayed procedure whatever it is, and others on the
current one.

14.6.1 Counters and Command Arguments

Some debugger commands accept a counter (a small integer number) before the command letter
(e.g. ¢ creep). The number is just prefixed to the command and terminated by the command
letter itself. If a counter is given for a command that doesn’t accept a counter, it is ignored.

Lprovided the call has been compiled in debug_compile mode, or the call is a meta-call
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When a counter is used and is valid for the command, the command is repeated, decrementing
the counter until zero. When repeating the command, the command and the remaining counter
value is printed after the debugger prompt instead of waiting for user input.

Some commands prompt for a parameter, e.g. the j (jump) command asks for the number of the
level to which to jump. Usually the parameter has a sensible default value (which is printed in
square backets). If just a newline is typed, then the default value is taken. If a valid parameter
value is typed, followed by newline, this value is taken. If an illegal letter is typed, the command
is aborted.

14.6.2 Commands to Continue Execution

All commands in this section continue program execution. They difference between them is the
condition under which execution will stop the next time. When execution stops again, the next
trace line is printed and a new command is accepted.

nc  creep
This command allows exhaustive tracing: the execution stops at the next port of any
leashed procedure. No further parameters are required, a counter n will repeat the com-
mand n times. It always applies on the current procedure, even when the displayed pro-
cedure is not the current one (e.g. during term inspection). An alias for the ¢ command
is to just type newline (Return-key).

ns  skip
If given at an entry port of a box (CALL, RESUME, REDO), this command skips the
execution until an exit port of this box (EXIT, FAIL, LEAVE). If given in an exit port it
works like creep. (Note that sometimes the i command is more appropriate, since it skips
to the next port of the current box, no matter which). A counter, if specified, repeats this
command.

nl  leap
Continues to the next spy point (any port of a procedure which has its spy flag set). A
counter, if specified, repeats this command.

i par invocation skip
Continue to the next port of the box with the invocation number specified. The default
invocation number is the one of the current box. Common uses for this command are to
skip from CALL to NEXT, from NEXT to NEXT/EXIT/FAIL, from *EXIT to REDO,
or from DELAY to RESUME.

j par jump to level
Continue to the next port with the specified nesting level (which can be higher or lower
than the current one). The default is the parent’s level, i.e. to continue until the current
box is exited, ignoring all the remaining subgoals of the current clause. This is particularly
useful when a ¢ (creep) has been typed where a s (skip) was wanted.

n nodebug
This command switches tracing off for the remainder of the execution. However, the next
top-level query will be traced again. Use N to switch tracing off permanently.
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query the failure culprit

The purpose of this command is to find out why a goal has failed (FAIL) or was aborted
with an exit_block (LEAVE). It prints the invocation number of the goal which caused the
failure. You can then re-run the program in creep mode and type q at the first command
prompt. This will then offer you to jump to the CALL port of the culprit goal.

[eclipse 3]: p.

(1) 1 CALL p %> skip

(1) 1 FAIL p %> query culprit
failure culprit was (3) - rerun and type q to jump there %> nodebug?
No (0.00s cpu)

[eclipse 4]: p.
(1) 1 CALL p %> query culprit
failure culprit was (3) - jump to invoc: [3]?
(3) 3 CALL r(1) %> creep
(3) 3 FAIL «r(...) %> creep
(2) 2 FAIL q %> creep
(1) 1 FAIL p %> creep
No (0.01s cpu)

var/term modification skip

This command sets up a monitor on the currently displayed term, which will cause a
MODIFY-port to be raised on each modification to any variable in the term. These ports
will all have a unique invocation number which is assigned and printed at the time the
command is issued. This number can then be used with the i command to skip to where
the modifications happen.

[eclipse 4]: [X, Y] :: 1..9, X #>=Y, Y#>1.
(1) 1 CALL [X, Y] :: 1..9 %> var/term spy? L[y]

Var/term spy set up with invocation number (2) %> jump to invoc: [1]7
(2) 3 MODIFY ([X{[1..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]7
(2) 4 MODIFY [X{[2..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]7

Note that these monitors can also be set up from within the program code using one of
the built-ins spy_var/1 or spy_term/2.

Z par zap

This command allows to skip over, or to a specified port. When this command is executed,

the debugger prompts for a port name (e.g. fail) or a negated port name (e.g. ~exit).
Execution then continues until the specified port appears or, in the negated case, until a
port other than the specified one appears. The default is the negation of the current port,
which is useful when exiting from a deep recursion (a long sequence of EXIT or FAIL
ports).

14.6.3 Commands to Modify Execution

f par fail

Force a failure of the procedure with the specified invocation number. The default is to
force failure of the current procedure.
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a abort

Abort the execution of the current query and return to the top-level. The command
prompts for confirmation.

14.6.4 Display Commands

This group of commands cause some useful information to be displayed.

d par delayed goals
Display the currently delayed goals. The optional argument allows to restrict the display
to goal of a certain priority only. The goals are displayed in a format similar to the trace
lines, except that there is no depth level and no port name. Instead, the goal priority is
displayed in angular brackets:

[eclipse 5]: [X, Y] :: 1..9, X #>=Y, Y #>= X.

(1
€D)
(2)
(3)
(2)
(4)
(5)

1

NP, P, NP -

CALL [X, Y] :: 1..9 %> creep
EXIT [X{[1..91}, Y{[1..91}] :: 1..9 %> creep
CALL X{[1..91} - Y{[1..91}#>=0 %> creep
DELAY X{[1..9]1} - Y{[1..91}#>=0 %> creep
EXIT X{[1..91} - Y{[1..91}#>=0 %> creep
CALL Y{[1..91} - X{[1..91}#>=0 %> creep
DELAY Y{[1..91} - X{[1..91}#>=0 %> delayed goals
with prio: [all]?
delayed goals -———---

<2> X{[1..91} - Y{[1..9]}#>=0
<2> Y{[1..91} - X{[1..9]1}#>=0
———————————— end ~——————————-

(6) 2 DELAY Y{[1..9]1} - X{[1..91}#>=0 %>

u par scheduled goals
Similar to the d command, but displays only those delayed goals that are already scheduled
for execution. The optional argument allows to restrict the display to goal of a certain
priority only. Example:

[eclipse 13]: [X,Y,Z]::1..9, X#>Z, Y#>Z, Z#>1.

(1)
(1
(2)
(3)
(2)
(4)
(8)
(4)
(6)
(3)

1

1
1
2
1
1
2
1
1
2

CALL [X, Y, Z] :: 1..9 %> creep

EXIT [X{[1..91}, vY{[1..91}, Z{[1..9]1}] :: 1..9 %> creep

CALL X{[1..91} - Z{[1..91}+-1#>=0 %> creep

DELAY X{[2..9]1} - Z{[1..8]1}#>=1 > creep

EXIT X{[2..91} - Z{[1..8]}+-1#>=0 %> creep

CALL Y{[1..9]1} - Z{[1..8]}+-1#>=0 > creep

DELAY Y{[2..9]} - Z{[1..8]}#>=1 %> creep

EXIT Y{[2..91} - Z{[1..8]1}+-1#>=0 %> creep

CALL 0 + Z{[1..8]}+-2#>=0 %> creep

RESUME X{[2..9]1} - Z{[2..8]}#>=1 > scheduled goals
with prio: [all]?

scheduled goals ---———-

<2> Y{[2..9]} - Z{[2..8]}#>=1
———————————— end ———————————-



(3) 2 RESUME X{[2..9]1} - Z{[2..8]}#>=1 >

G  all ancestors
Prints all the current goal’s ancestors from the oldest to the newest. The display format
is similar to trace lines, except that .... is displayed in the port field.

print definition

If given at a trace line, the command displays the source code of the current predicate. If
the predicate is not written in Prolog, or has not been compiled from a file, or the source
file is inaccessible, no information can be displayed.

h help
Print a summary of the debugger commands.

? help
Identical to the h command.

14.6.5 Navigating among Goals

While the debugger waits for commands, program execution is always stopped at some port of
some predicate invocation box, or goal. Apart from this current goal, two types of other goals
are also active. These are the ancestors of the current goal (the enclosing, not yet exited boxes
in the box model) and the delayed goals. The debugger allows to navigate among these goals
and inspect them.

g ancestor
Move to and display the ancestor goal (or parent) of the displayed goal. Repeated appli-
cation of this command allows to go up the call stack.

X par examine goal
Move to and display the goal with the specified invocation number. This must be one of
the active goals, i.e. either an ancestor of the current goal or one of the currently delayed
goals. The default is to return to the current goal, i.e. to the goal at whose port the
execution is currently stopped.

14.6.6 Inspecting Goals and Data

This family of commands allow the subterms in the goal displayed at the port to be inspecte(ﬂ.
The ability to inspect subterms is designed to help overcome two problems when examining a
large goal with the normal display of the goal at a debug port:

1. Some of the subterms may be omitted from the printed goal because of the print-depth;

2. If the user is interested in particular subterms, it may be difficult to precisely locate them
from the surrounding arguments, even if it is printed.

*In ECL'PS® 4.0, this was implemented as a submode (invoked with two key strokes - Hi). It is now fully
integrated into the debugger
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With inspect subterm commands, the user is able to issue commands to navigate through the
subterms of the current goal and examine them. A current subterm of the goal is maintained,
and this is printed after each inspect subterm command, instead of the entire goal. Initially, the
current subterm is set to the goal, but this can then be moved to the subterms of the goal with
navigation commands.

Once inspect subterm is initiated by an inspect subterm command, the debugger enters into the
inspect subterm mode. This is indicated in the trace line by 'INSPECT”’ instead of the name of
the port, and in addition, the goal is not shown on the trace line:

INSPECT (length/2) %>

Instead of showing the goal, a summary of the current subterm — generally its functor and arity
if the subterm is a structure — is shown in brackets.

# par move down to parth argument

The most basic command of inspect subterm is to move the current subterm to an argu-
ment of the existing current subterm. This is done by typing a number followed by carriage
return, or by typing #, which causes the debugger to prompt for a number. In both cases,
the number specifies the argument number to move down to. In the following example,
the # style of the command is used to move to the first argument, and the number style
of the command to move to the third argument:

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> inspect arg #: 1<NL>

INSPECT (atom) %>

(1) 1 CALL foo(a, g(b, [1, 21), X %> 3<NL>
X
INSPECT (var) %>

The new current subterm is printed, followed by the INSPECT trace line. Notice that
the summary shows the type of the current subterm, instead of Name/Arity, since in both
cases the subterms are not structures.

If the current subterm itself is a compound term, then it is possible to recursively navigate
into the subterm:

(1) 1 CALL foo(a, g(b, [1, 21), X) %> 2<NL>
g(b, [1, 21D
INSPECT (g/2) %> 2<NL>
[1, 2]
INSPECT (list 1-head 2-tail) %> 2<NL>
[2]
INSPECT (list 1-head 2-tail) %>

Notice that lists are treated as a structure with arity 2, although the functor (./2) is not
printed.

In addition to compound terms, it is also possible to navigate into the attributes of at-
tributed variables:
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[eclipse 21]: suspend(foo(X), 3, X->inst), foo(X).<NL>
(1) 1 DELAY foo(X) %> <NL>
creep
(2) 1 CALL foo(X) %> 1<NL>
X
INSPECT (attributes 1-suspend 2-fd )  %>1<NL>
suspend ([’SUSP-1-susp’|_218] - _218, [1, [1)
INSPECT (struct suspend/3) %>

The variable X is an attributed variable in this case, and when it is the current subterm,
this is indicated in the trace line. The debugger also shows the user the currently available
attributes, and the user can then select one to navigate into (fd is available in this case
because the finite domain library was loaded earlier in the session. Otherwise, it would
not be available as a choice here).

Note that the suspend/3 summary contains a struct before it. This is because the
suspend/3 is a predefined structure with field names (see section 5.1). It is possible to
view the field names of such structures using the . command in inspect mode.

If the number specified is larger than the number of the arguments of the current subterm,
then an error is reported and no movement is made:

foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %> 4<NL>

Out of range.....

foo(a, g(b, [1, 2]), 3)
INSPECT (foo/3) %>

nuparrow key Move current subterm up by N levels

nA Move current subterm up by N levels

In addition to moving the current subterm down, it can also be moved up from its current
position. This is done by typing the uparrow key. This key is mapped to A by the debugger,
so one can also type A. Typing A may be necessary for some configurations (combination
of keyboards and operating systems) because the uparrow key is not correctly mapped to
A.

An optional argument can preceded the uparrow keystroke, which indicates the number
of levels to move up. The default is 1:

(1) 1 CALL foo(a, g(b, [1, 21), 3) %> 2<NL>
g(b, [1, 21)
INSPECT (g/2) %> 1<NL>
b
INSPECT (atom) %> up subterm
g(b, [1, 2D
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INSPECT (g/2)
foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %>

%> lup subterm

The debugger prints up subterm when the uparrow key is typed. The current subterm

moves back up the structure to its parent for each level it moves up, and the above move
can be done directly by specifying 2 as the levels to move up:

b
INSPECT (atom)
foo(a, g(b, [1, 2]), 3)
INSPECT (foo/3) %>

%> 2up subterm

If the number of levels specified is more than the number of levels that can be traversed
up, the current subterm stops at the toplevel:

(1) 1 CALL foo(a, g(b, [1, 21), 3) %> 2<NL>
g(b, [1, 21)

INSPECT (g/2) %> 2<NL>
[1, 2]
INSPECT (list 1-head 2-tail)
foo(a, g, [1, 21), 3)
INSPECT (foo/3) %>

%> Sup subterm

0 Move current subterm to toplevel

It is possible to quickly move back to the top of a goal that is being inspected by specifying
0 (zero) as the command:

(1) 1 CALL foo(a, g(b, [1, 21), 3)

%> 2<NL>
g(b, [1, 2])

INSPECT (g/2) %> 2<NL>
(1, 2]

INSPECT (list 1-head 2-tail) %> 2<NL>
[2]

INSPECT (list 1-head 2-tail) %> 2<NL>
(]

INSPECT (atom) %> O<NL>
foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %>

Moving to the top can also be done by the # command, and not giving any argument (or
0) when prompted for the argument.

nleftarrow key Move current subterm left by N positions
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nD Move current subterm left by N positions

The leftarrow key (or the equivalent D) moves the current subterm to a sibling subterm (i.e.
fellow argument of the parent structure) that is to the left of it. Consider the structure
foo(a, g(b, [1, 2]1), 3), then for the second argument, g(b, [1, 2]1), a is its (only)
left sibling, and 3 its (only) right sibling. For the third argument, 3, both a (distance of 2)
and g(b, [1, 21) (distance of 1) are its left siblings. The optional numeric argument for
the command specifies the distance to the left that the current subterm should be moved.
It defaults to 1.

foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %> 3<NL>
3
INSPECT (integer) %> 2left subterm

INSPECT (atom) %>

If the leftward movement specified would move the argument position before the first
argument of the parent term, then the movement will stop at the first argument:

foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %> 3<NL>
3
INSPECT (integer) %> bleft subterm

INSPECT (atom) %>

In the above example, the current subterm was at the third argument, thus trying to move
left by 5 argument positions is not possible, and the current subterm stopped at leftmost
position — the first argument.

nrightarrow key Move current subterm right by NN positions

nC Move current subterm right by N positions

The rightarrow key (or the equivalent C) moves the current subterm to a sibling subterm
(i.e. fellow argument of the parent structure) that is to the right of it. Consider the
structure foo(a, g(b, [1, 2]1), 3), then for the first argument, a, g(b, [1, 2]) is a
right sibling with distance of 1, and 3 is a right sibling with distance of 2. The optional
numeric argument for the command specifies the distance to the left that the current
subterm should be moved. It defaults to 1.

foo(a, g(b, [1, 21), 3)
INSPECT (integer) %> 2left subterm

INSPECT (atom) %>
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If the rightward movement specified would move the argument position beyond the last
argument of the parent term, then the movement will stop at the last argument:

foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %> 3<NL>
3
INSPECT (integer) %> right subterm

INSPECT (integer) %>

In the above example, the current subterm was at the third (and last) argument, thus
trying to move to the right (by the default 1 position in this case) is not possible, and the
current subterm remains at the third argument.

ndownarrow key Move current subterm down by N levels

nB Move current subterm down by N levels

The down-arrow key moves the current subterm down from its current position. This
command is only valid if the current subterm is a compound term and so has subterms
itself. A structure has in general more than one argument, so there is a choice of which
argument position to move down to. This argument is not directly specified by the user
as part of the command, but is implicitly specified: the argument position selected is the
argument position of the current subterm within its parent:

foo(a, g(b, [1, 21), 3)

INSPECT (foo/3) %> 2<NL>
g(b, [1, 21)

INSPECT (list 1-head 2-tail) %> 3down subterm 2 for 3 levels
(]

INSPECT (atom) %>

In the above example, the user moves down into the second argument, and then use
the down-arrow key to move down into the second argument for 2 levels — the numeric
argument typed before the arrow key specified the number of levels that the current
subterm was moved down by. The command moves into the second argument because it
was at the second argument position when the command was issue.

However, there is not always an argument position for the current sub-term. For example,
when the current sub-term is at the toplevel of the goal or if it is at an attribute. In these
cases, the default for the argument position to move down into is the first argument:

INSPECT (atom) %> O<NL>

foo(a, g(b, [1, 21), 3)
INSPECT (foo/3) %> down subterm 1 for 1 levels
INSPECT (atom) %>
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In the above example, the down-arrow key is typed at the top-level, and thus the argument
position chosen for moving down is first argument, with the default numeric argument for
the

If the argument position to move into is beyond the range of the current subterm’s number
of arguments, then no move is performed:

(1) 1 CALL foo(a, b, c(d, e)) %> 3<NL>
c(d, e)
INSPECT (c/2) %> Out of range after traversing down arg...
c(d, e)
INSPECT (c/2) >

In this case, the down-arrow key was typed in the second trace line, which had the current
subterm at the third argument of its parent term, and thus the command tries to move
the new current subterm to the third argument of the current sub-term, but the structure
does not have a third argument and so no move was made. In the case of moving down
multiple levels, then the movement will stop as soon as the argument position to move
down to goes out of range.

Moving down is particularly useful for traversing lists. As discussed, lists are really struc-
tures with arity two, so the #N command would not move to the N** element of the
list. With the down-arrow command , it is possible to move into the N** position in one
command:

[eclipse 30]: foo([1,2,3,4,5,6,7,8,9]1).
(1) 1 CALL foo([1, 2, 3, ...1) %> 1<NL>
[1, 2, 3, 4, ...]
INSPECT (list 1-head 2-tail) %> 2<NL>
(2, 3, 4, 5, ...]
INSPECT (list 1-head 2-tail) %> 6down subterm 2 for 6 levels
[8, 9]
INSPECT (list 1-head 2-tail) %>

In order to move down a list, we repeatedly move into the tail of the list — the second
argument position. In order to do this with the down-arrow command, we need to be at
the second argument position first, and this is done in the second trace line. Once this is
done, then it is possible to move arbitrarily far down the list in one go, as is shown in the
example.

Print structure definition

In ECL'PS®, it is possible to define field names for structures (see section [5.1). If the
inspector encounters such structures, then the user can get the debugger to print out the
field names. Note that this functionality only applies within the inspect subterm mode,

as the debugger command ‘.’ normally prints the source for the predicate. The fact that
a structure has defined field names are indicated by a “struct” in the summary:

:= local struct(capital(city,country)).
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(1) 1 CALL f(capital(london, C)) %> 1<NL>
capital(london, C)
INSPECT (struct capital/2) %> structure definition:
1=city 2=country
%>

In this example, a structure definition was made for captial/2. When this structure is
the current subterm in the inspect mode, the struct in the summary for the structure
indicates that it has a structure definition. For such structures, the field names are printed
by the structure definition command.

If the command is issued for a term that does not have a structure definition, an error
would be reported:

INSPECT (f/1) %> structure definition:
No struct definition for term f/1@eclipse.
%>

Show subterm path

As the user navigates into a term, then at each level, a particular argument position (or
attribute, in the case of attributed variables) is selected at each level. The user can view
the position the current subterm is at by the p command. For example,

(1) 1 CALL foo(a, g(b, [1, 21), 3) %> 2<NL>
g(b, [1, 21D
INSPECT (g/2) %> 2<NL>
[1, 2]
INSPECT (list 1-head 2-tail) %> 1<NL>

INSPECT (integer) %> p
Subterm path: 2, 2, 1
%>

The subterm path shows the argument positions taken at each level of the toplevel term
to reach the current subterm, starting from the top.

Extra information (in addition to the numeric argument position) will be printed if the
subterm at a particular level is either a structure with field names or an attributed variable.
For example:

:— local struct(capital(city,country)).

[eclipse 8]: suspend(capital(london, C), 3, C -> inst), f(capital(london, C)).
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(2) 1 CALL f(capital(london, C)) %> 1<NL>

capital(london, C)

INSPECT (struct capital/2) %> 2<NL>
C

INSPECT (attributes 1-suspend ) %> 1<NL>
suspend ([’SUSP-1-susp’|_244] - _244, [1, [1)

INSPECT (struct suspend/3) %> 1<NL>
[’SUSP-1-susp’|_244] - _244

INSPECT (-/2) h>

Subterm path: 1, country of capital (2), attr: suspend, inst of suspend (1)

%>

In this example, except for the toplevel argument, all the other positions are either have
field names or are attributes. This is reflected in the path, for example, country of
capital (2) shows that the field name for the selected argument position (2, shown
in brackets) is country, and the structure name is capital. For the ‘position’ of the
selected attribute (suspend) of the attributed variable C, the path position is shown as
attr: suspend.

Interaction between inspect subterm and output modes

The debugger commands that affect the print formats in the debugger also affects the
printed current subterm. Thus, both the print depth and output mode of the printed
subterm can be changed.

The changing of the output modes can have a significant impact on the inspect mode.
This is because for terms which are transformed by write macros before they are printed
(see chapter [12), different terms can be printed depending on the settings of the output
modes. In particular, output transformation is used to hide many of the implementation
related extra fields and even term names of many ECL'PS¢ data structures (such as those
used in the finite domain library). For the purposes of inspect subterms, the term that is
inspected is always the printed form of the term, and thus changing the output mode can
change the term that is being inspected.

Consider the example of looking at the attribute of a finite domain variable:

A{[4..100000001}

INSPECT (attributes 1-suspend 2-fd ) %> 2<NL>
[4..10000000]

INSPECT (list 1-head 2-tail) %> 1<NL>
4..10000000

INSPECT (../2) %> 2up subterm
A{[4..10000000]%

INSPECT (attributes 1-suspend 2-fd ) %> <o>
current output mode is "QPm", toggle char: T
new output mode is "TQPm".
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A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2<NL>
fd(dom([4..10000000], 9999997), [1, (1, [

INSPECT (struct fd/4) %> 1<NL>
dom([4..10000000], 9999997)

INSPECT (dom/2) >

After selecting the output mode T, which turns off any output macros, the internal form of
the attribute is shown. This allows previously hidden fields of the attribute to be examined
by the subterm navigation. Note that if the current subterm is inside a structure which
will be changed by a changed output mode (such as inside the fd attribute), and the output
mode is changed, then until the current subterm is moved out of the structure, the existing

subterm path is still applicable.

Also, after a change in output modes, the current subterm will still be examining the
structure that it obtained from the parent subterm. Consider the finite domain variable

example again:

4..10000000
INSPECT (../2) %> up subterm
[4..10000000] ***x*xx printed structure 1

INSPECT (list 1-head 2-tail) %> <o>
current output mode is "QPm", toggle char: T
new output mode is "TQPm".
[4..10000000]
INSPECT (list 1-head 2-tail) %> up subterm
A{[4..10000000]%
INSPECT (attributes 1-suspend 2-fd ) %> 2
fd(dom([4..10000000], 9999997), [1, [1, [1)
INSPECT (struct fd/4) %> <o>
current output mode is "QPmT", toggle char: T
new output mode is "QPm".
fd(4..10000000, [1, [1, [1) x*k*xxx printed structure 2
INSPECT (struct f£d/4) %>

Printed structures 1 and 2 in the above example are at the same position (toplevel of the
finite domain structure), and printed with the same output mode (QPm), but are different
because the structure obtained from the parent subterm is different — in printed structure
2, the output mode was not changed until after the £d/4 structure was the current subterm.

14.6.7 Changing the Settings
The following commands allow to change the parameters which influence the way the tracing

information is displayed or processed.

< par set print depth
Allows to modify the print_depth, i.e. the depth up to which nested argument terms are

printed. Everything nested deeper than the specified depth is abbreviated as .... Note
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that the debugger has a private print_depth setting with default 5, which is different from
the global setting obtained from get_flag/2.

> par set indentation step width

Allows to specify the number of spaces used to indent trace lines according to their depth
level. The default is 0.

module
Toggles the module printing in the trace line. If enabled, the module from where the
procedure is called is printed in the trace line:

(1) 1 CALL true %> show module
(1) 1 CALL eclipse : true %>

output mode

This command allows to modify the options used when printing trace lines. It first
prints the current output_mode string, as obtained by get_flag/2, then it prompts for
a sequence of characters. If it contains valid output mode flags, the value of these flags
is then inverted. Typing an invalid character will display a list describing the different
options. Note that this command affects the global setting of output_mode.

(1) 1 CALL X is length([1, 2, ...]) %> current output mode
is "QPm", toggle char: V
new output mode is "VQPm".
(1) 1 CALL X_72 is length([1, 2, ...]) %> current output mode
is "QVPm", toggle char: O
new output mode is "OQVPm".
(1) 1 CALL is(X_72, length([1, 2, ...1)) %> current output mode
is "OQVPm", toggle char:
new output mode is ".0QVPm".
(1) 1 CALL is(X_72, length(.(1, .(2, .C..ON) %>

set a spy point

Set a spy point on the displayed procedure, the same as using the spy/1 predicate. It is
possible to set a spy point on any existing procedure, even on a built-in on external one.
If the procedure already has a spy point, an error message is printed and any counter is
ignored.

Note that the debugger does not check for spy points that occur inside skipped procedures
or during the execution of any other skip command than the leap command 1.

remove a spy point
Similarly to the previous command, this one removes a spy point from a procedure, if it
has one.

14.6.8 Environment Commands

break
This command is identical to the break/0 call. A new top-level loop is started with the
debugger switched off. The state of the database and the global settings is the same as
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in the previous top-level loop. After exiting the break level with “D, or end_of_file the
execution returns to the debugger and the last trace line is redisplayed.

N nodebug permanently
This command switches tracing off for the remainder of the execution as well as for
subsequent top-level queries. It affects the global flag debugging, setting it to nodebug.

14.7 Extending the Debugger

14.7.1 User-defined Ports

The standard set of ports in the debugger’s box model can be extended by the programmer.
This facility is not so much intended for applications, but rather for libraries that want to
allow debugging in terms of concepts of the library. Specific ports can be used to identify the
interesting events during execution of the library code (while the standard tracing of the library
internals can be suppressed by compiling the library in nodebug-mode).

The system provides 4 primitives that can generate 4 kinds of box model ports. When inserted
into the code, and when the debugger is on, they will cause execution to stop and enter the
debugger, displaying a trace line with the user-defined port and data:

e trace_call port(+Port, ?Invoc, ?Term) is used to create new ports similar to CALL
ports, but the port name can be chosen freely. Such a port creates a new box. There must
be a corresponding trace_exit_port/0 to exit the box on success.

e trace_exit_port is used in conjunction with trace_call port/3 to exit a box on success.

e trace_point_port(+Port, ?Invoc, ?Term) is used to create a standalone port, i.e. a
port that causes the tracer to create a trace line, but does not create, enter or leave any
box.

e trace_parent_port(+Port) is used to create an additional port for the parent box, but
does not enter or leave the box.

For example, trace_call_port/3 and trace_exit_port/0 can be used to create a more readable trace
in the presence of source transformations. Imagine that the goal Y is X*X-1 has been flattened
into the goal sequence *(X,X,T),-(T,1,Y). By inserting the trace primitives the debugger can
still show the original source before transformation:

pX,Y) :-
trace_call_port(call,_, Y is Xx*X-1),
*(X,X,T),
-(T,1,Y),
trace_exit_port.

The trace then looks like this:

[eclipse 8]: p(3,Y).

(1) 1 CALL p(3, Y) %> creep
(2) 2 CALL Y is 3 * 3 - 1 %> skip
(2) 2 EXIT 8 is 3 * 3 - 1 > creep
(1) 1 EXIT p(3, 8) %> creep

Y =28
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Another example is the insertion of additional ports for existing boxes, in particular the current
parent box:

p :-
trace_parent_port(clausel),
writeln(hello),
fail.

p -

trace_parent_port(clause2),
writeln(world) .

This gives rise to the following trace:

- p.
(1) 1 CALL p %> creep

(1) 1 CLAUSEL p %> creep
S (2) 2 CALL writeln(hello) %> creep
hello
S (2) 2 EXIT writeln(hello) %> creep
(3) 2 CALL fail %> creep
(3) 2 FAIL fail %> creep
(1) 1 NEXT p %> creep
(1) 1 CLAUSE2 p %> creep
S (4) 2 CALL writeln(world) %> creep
world

S (4) 2 EXIT writeln(world) %> creep
(1) 1 EXIT p %> creep
Yes (0.00s cpu)

Note that the additional ports share the parent’s invocation number, so the i command can be
used to skip from one to the other.

14.7.2 Attaching a Different User Interface

The tracer consists of a trace generation component (which is part of the ECL‘PS® runtime
kernel), and a user interface (which is part of the development system). The standard ECL'PS®
distribution contains two user interfaces, a console-based one, and a graphical one which is part
of tkeclipse. A programmable tracer interface (OPIUM/LSD) is under development in the
group of Mireille Ducasse at IRISA /Rennes. Connecting new interfaces is relatively easy, for
more detailed information contact the ECLPS® development team.

14.8 Switching To Creep Mode With CTRL-C

When the debugger is on and a program is running, typing CTRL-C prompts for input of
an option. The d-option switches the debugger to creep mode and continues executing the
interrupted program. The debugger will then stop at the next port of the running program.

[eclipse 1]: debug.
Debugger switched on - leap mode
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leclipse 2]: repeat,fail.
~C

interruption: type a, b, ¢, d, e, or h for help : 7 d
(1) 1 *EXIT repeat %>
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Chapter 15

Development Support Tools

This chapter describes some of the tools and libraries provided by ECL/PS€ that assist in program
development and the analysis of program runtime behaviour.

15.1 Available Tools and Libraries

ECL’PS® provides a number of different tools and libraries to assist the programmer with pro-
gram development:

Document Tools for generating documentation from ECLiPSe sources.

Lint Generates warning messages for dubious programming constructs and violation of naming
conventions for an ECLiPSe source module or file.

Pretty_printer Tools for pretty-printing a file in different formats.

Xref Enables the analysis of an ECLiPSe source module or file for the construction of a predicate
call graph.

In addition, ECL’PS® provides several tools that aid in the understanding of a programs runtime
behaviour:

Coverage Records the frequency at which various parts of the program are executed.

Debugger Provides a low level view of program activity. Chapter 14 presents a comprehensive
look at debugging of ECL/PS® programs.

Display matrix Shows the values of given terms in a graphical window. Chapter[4 discusses
the use of this tool.

Mode Analyser Collects statistics about the invocation modes of predicates within a running
program in order to assist in the generation of compiler invocation mode directives.

Port Profiler Collects statistics about the running program in terms of box model port coun-
ters.

Timing Profiler Samples the running program at regular intervals to give a statistical sum-
mary of where the execution time is spent.
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Visualisation framework A graphical environment for the visualisation of search and prop-
agation in constraint programs. The Visualisation Tools Manual discusses the use of this
environment.

This section focuses on the program development libraries and two complementary runtime
analysis tools, the profiler and the coverage library. Throughout this chapter, the use of each of
the tools is demonstrated on the following n-queens code:

:- module(queen) .
:— export queen/2.

queen(Data, Out) :-
gperm(Data, Out),
safe(Out) .

gperm([], [1).

gperm([X|Y], [UIV]) :-
qdelete(U, X, Y, Z),
gperm(Z, V).

qdelete(A, A, L, L).
qdelete(X, A, [HITI, [AIR]) :-
qdelete(X, H, T, R).

safe([1).
safe([N|L]) :-
nodiag(L, N, 1),

safe(L).
nodiag([l, _, _).
nodiag([N|L], B, D) :-

D =\= N - B,

D =\= B - N,

D1 is D + 1,

nodiag(L, B, D1).

15.2 Heuristic Program Checker

The Heuristic Program Checking tool generates warning messages for dubious programming
constructs and violation of naming conventions for an ECLiPSe source module or file. It is
loaded as follows:

:- 1ib(lint).

The heuristic rules currently enforced are based on the style guide of Appendix [El These
rules are somewhat limited in scope. The library is distributed as source and serves to provide
a framework for the addition of a more comprehensive set of rules that are tailored to each
individual developer.

Consider the following typographic mistakes in the n-queens example:
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queen(Data, Qut) :-
gperm(Datas, Out),
safe(Out).

nO0diag([], _, ).
The tool is invoked using the lint /1 predicate with the source file specified as an atom or string:
?- lint(queen).

--- File /tmp/queen.ecl, line 4:
Singleton variables: [Data, Datas]

--- File /tmp/queen.ecl, line 22:
Questionable predicate name: nOdiag

Yes (0.01s cpu)

The checker identifies Data and Datas as being singleton variables and is dubious of the n0diag
predicate name. Both are the result of programmer error, Datas should read Data and nOdiag
as nodiag. The lint/2 predicate allows a list of options to be specified that turn on and off the
heuristic rules.

15.3 Document Generation Tools

The document generation tools library provides a set of predicates for the generation of doc-
umentation from ECL?PS® program sources. The tools generate documentation by processing
the comment /2 directives in each source file. The following is an example comment for the
n-queens example:

% comment for queen/2
:— comment (queen/2, [

summary: "Program that solves the attacking Queens problem for
an arbitrary number of queens.',

index: ["NQueens Problem"],

args: ["Data": "List modelling initial state of queens on board.",
"Args": "Solution list of Y-coordinate of each queen on the
board."],

amode: queen(+,-),
amode: queen(-,+),
amode: queen(+,+),

resat: yes,
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fail_if: "A solution cannot be found where all queens are safe
from attack by every other.",

see_also:
[queens8/1, queensN/1],

desc: html("The problem is to arrange a specified number of queens
on a chessboard such that no queen attacks any other queen
The predicate takes a list representing the initial state
of the queens on the board, with each element representing
a queen and its current Y-coordinate. If a solution is
found, a list is returned specifying the safe Y-coordinate

for each queen.")

1). % end of comment directive for queen/2

There are two pertinent predicates for document generation. The first, icompile/2 gener-
ates an information file (.eci) by extracting information from a source file (.ecl). The second,
eci_to_html/3, processes this information file to produce readable HTML and plain text files.
By default, these files are placed in a subdirectory with the same name as the information file,
but without the extension. The generated files are index.html, containing a summary descrip-
tion of the library, plus one HTML and one plain text file for each predicate that was commented
using a comment /2 directive in the source.

The following produces the queen. eci file and a queen directory in the current directory. Within
the queen directory reside index.html, queen-2.html and queen-2.txt:

?7- lib(document) .
document.ecl compiled traceable 83620 bytes in 0.04 seconds
Yes (0.04s cpu)

?7- icompile(queen, ".").

queen.ecl compiled traceable 1432 bytes in 0.01 seconds
/examples/queen.eci generated in 0.00 seconds.

Yes (0.01s cpu)

?7- eci_to_html(queen, ".", "").
Yes (0.00s cpu)

15.4 Cross Referencing Tool

The cross referencing library xref analyses an ECLiPSe source module or file and builds its
predicate call graph. The graph can either be returned in the format of 1ib(graph_algorithms),
as text, or as a graphical display.

The xref/2 predicate generates a call graph for the file File according to the Options list. The
options specify the format of the graph to be generated, whether calls to built in predicates are
displayed and whether it is a caller or callee graph:

?7- xref:xref (queen, []).
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nodiag / 3 calls:
nodiag / 3

qdelete / 4 calls:
qdelete / 4

gperm / 2 calls:
qdelete / 4
gperm / 2

queen / 2 calls:
gperm / 2
safe / 1

safe / 1 calls:
nodiag / 3
safe / 1

Yes (0.01s cpuw)

?7- xref:xref (queen, [builtins:on,output:daVinci]).

WARNING: module ’daVinci’ does not exist, loading library...
daVinci.ecl compiled traceable 5644 bytes in 0.01 seconds

The first xref predicate call generates a textual call graph for the queen module, while the
second generates the daVinci graph illustrated in figure[15.11

15.5 Pretty Printer Tool

The pretty printer library provides a set of predicates for the printing of a file’s contents as
a file in a number of formats. In particular, an ECL/PS® source file can be converted into an
HTML document with proper indentation, syntax colouring, hyperlinks from predicate uses to
definition, and hyperlinks to documentation.

The pretty_print/2 predicate is used to print the file, or list of files. A list of options can be
given which modifies the format of the output file, its location, etc. The following creates a
pretty directory in the current directory. Within the pretty directory reside index.html and
queen.html, where queen.html is the queen module pretty printed in HTML:

?- pretty_printer:pretty_print(queen) .
Writing /examples/pretty/queen.html

15.6 Timing Profiler

The proﬁhng‘mxﬂﬂ helps to find hot spots in a program that are worth optimising. It can be
used any time with any compiled Prolog code, it is not necessary to use a special compilation

!The profiler requires a small amount of hardware/compiler dependent code and may therefore not be available
on all platforms.
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Figure 15.1: Call graph for queen example with built-in predicates

mode or set any flags. Note however that it is not available on Windows. When
?7- profile(Goal).

is called, the profiler executes the Goal in the profiling mode, which means that every 100th of
a second the execution is interrupted and the profiler records the currently executing procedure.
Issuing the following query will result in the profiler recording the currently executing goal 100
times a second.

?- profile(queen([1,2,3,4,5,6,7,8,9],0ut)).
goal succeeded

PROFILING STATISTICS

Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)
Total user time: 0.03s

Predicate Module %Time  Time  %Cum
qgdelete /4 eclipse 50.0% 0.01s 50.0%
nodiag /3 eclipse 50.0% 0.01s 100.0%

Out = [1, 3, 6, 8, 2, 4, 9, 7, 5]
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Yes (0.14s cpu)

From the above result we can see how the profiler output contains four important areas of
information:

1. The first line of output indicates whether the specified goal succeeded, failed or aborted.
The profile/1 predicate itself always succeeds.

2. The line beginning Goal: shows the goal which was profiled.
3. The next line shows the time spent executing the goal.

4. Finally the predicates which were being executed when the profiler sampled, ranked in
decreasing sample count order are shown.

Auxiliary system predicates are printed under a common name without arity, e.g. arithmetic or
all_solutions. Predicates which are local to locked modules are printed together on a single line
that contains only the module name. By default only predicates written in Prolog are profiled,
i.e. if a Prolog predicate calls an external or built-in predicate written in C, the time will be
assigned to the Prolog predicate.

The predicate profile(Goal, Flags) can be used to change the way profiling is made, Flags is a
list of flags. Currently only the flag simple is accepted and it causes separate profiling of simple
predicates, i.e. those written in C.

The problem with the results displayed above is that the sampling frequency is too low when
compared to the total user time spent executing the goal. In fact in the above example the
profiler was only able to take two samples before the goal terminated.

The frequency at which the profiler samples is fixed, so in order to obtain more representative
results one should have an auxiliary predicate which calls the goal a number of times, and
compile and profile a call to this auxiliary predicate. eg.

queen_100 :-
(for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9],_0Out)).

Note that, when compiled, the above do/2 loop would be efficiently implemented and not cause
overhead that would distort the measurement. Section [5.2] presents a detailed description of
logical loops.

?- profile(queen_100).
goal succeeded

PROFILING STATISTICS

Goal: queen_100
Total user time: 3.19s

Predicate Module %Time Time %Cum

nodiag /3 eclipse 52.2%, 1.67s 52.2}



gdelete /4 eclipse 27.4%, 0.87s 79.6%

gperm /2 eclipse 17.0% 0.54s 96.5%
safe /1 eclipse 2.8% 0.09s 99.4%
queen /2 eclipse 0.6% 0.02s 100.0%

Yes (3.33s cpu)

In the above example, the profiler takes over three hundred samples resulting in a more accurate
view of where the time is being spent in the program. In this instance we can see that more than
half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for optimisation.
This is left as an exercise for the reader.

15.7 Port Profiler

The port profiler is a performance analysis tool based on the idea of counting of events during
program execution. The events that are counted are defined in terms of the ’box model’ of exe-
cution (the same model that the debugger uses, see chapter(14.1)). In this box model, predicates
are entered though call, redo or resume ports, and exited through exit, *exit, fail or leave ports.
In addition, other interesting events are indicated by ports as well (nezt, else, delay).

The usage is as follows:

1. Compile your program in debug mode, as you would normally do during program devel-
opment.

2. Load the port_profiler library
3. Run the query which you want to examine, using port_profile/2:
?- port_profile(queen([1,2,3,4],0ut), [1).

This will print the results in a table like the following:

PREDICATE CALLER call exit fail *exit redo
- /3 nodiag /3 46 46 .

=\= /2 nodiag /3 46 45 1 . .
gperm /2 qgperm /2 30 28 . 16 14
qdelete /4 qgperm /2 20 18 . 12 10
nodiag /3 nodiag /3 17 14 3

nodiag /3 safe /1 17 7 10

+ /3 nodiag /3 17 17 . . .
gdelete /4 qdelete /4 10 9 . 3 2
gperm /2 queen /2 1 . . 11 10
safe /1 queen /2 11 1 10

safe /1 safe /1 7 4 3 .

queen /2 trace_body /2 1 . . 1

Each row of the table shows the information for a particular predicate (by default split according
to different caller predicates). The table is sorted according to entry port count (call + redo +
resume). The port counts give information about
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e what are the most frequently called predicates (call ports)
e whether predicates failed unexpectedly (fail ports)

e whether predicates exited nondeterministically (*exit ports), i.e. whether they left behind
any choice-points for backtracking.

e whether nondeterministically exited predicates were ever re-entered to find alternative
solutions (redo ports).

e whether predicates did internal backtracking (next ports) in order to find the right clause.
This may indicate suboptimal indexing.

e how often predicates were delayed and resumed.

For more details about different options and output formats, see the Reference Manual.

15.8 Line coverage

The line coverage library provides a means to ascertain exactly how many times individual
clauses are called during the evaluation of a query.

The library works by placing coverage counters at strategic points throughout the code being
analysed. These counters are incremented each time the evaluation of a query passes them.
There are three locations in which coverage counters can be inserted.

1. At the beginning of a code block.
2. Between predicate calls within a code block.
3. At the end of a code block.

A code block is defined to be a conjunction of predicate calls. ie. a sequence of goals separated
by commas.

The counter values do not only show whether all code points were reached but also whether
subgoals failed or aborted (in which case the counter before a subgoal will have a higher value
than the counter after it).

15.8.1 Compilation

In order to add the coverage counters to code, it must be compiled with the ccompile/1
predicate which can be found in the coverage library.

The ccompile/1 predicate (note the initial ‘c’ stands for coverage) can be used in place of the
normal compile/1 predicate to compile a file with coverage counters.

The following shows the results of compiling the n-queens example:

?- coverage:ccompile(queen).
queen.ecl compiled traceable 6016 bytes in 0.01 seconds
coverage: inserted 20 coverage counters into module queen

Yes (0.14s cpu)

151



Once compiled, predicates can be called as usual and will (by default) have no visible side effects.
Internally however, the counters will be incremented as the execution progresses. The following
demonstrates this for a single solution to the queen predicate:

?- queen:queen([1,2,3,4,5,6,7,8,9], Out).

The counter results are retrieved as demonstrated in the subsequent section. The two argument
predicate ccompile/2 can take a list of name:value pairs which can be used to control the
exact manner in which coverage counters are inserted. The documentation for the ccompile/2
predicate provides for a full list of the available flags.

15.8.2 Results

To generate an HTML file containing the coverage counter results, the result/1 predicate is
used:

?7- coverage:result(queen).
Writing /examples/coverage/queen.html
index.pl  compiled traceable 335304 bytes in 0.17 seconds

Yes (0.18s cpu)

This creates the result file coverage/queens.html which can be viewed using any browser. It
contains a pretty-printed form of the source, annotated with the values of the code coverage
counters as described above. As a side effect, the coverage counters will be reset.

15.9 Mode analysis

The mode_analyser library is a tool that assists in the generation of the mode/1 directive for
predicate definitions. This directive informs the compiler that the arguments of the specified
predicate will always have the corresponding form when the predicate is called. The compiler
utilises this information during compilation of the predicate in order to generate more compact
and/or faster code. Specifying the mode of a predicate that has already been compiled has
no effect, unless it is recompiled. If the specified procedure does not exist, a local undefined
procedure is created.

The mode analyser inserts instrumentation into the clause definitions of predicates during com-
pilation in order to record mode usage of each predicate argument. The code should then be
run (as many times as is necessary to capture the most common invocations of each predicate
undergoing analysis). Finally, the results of the analysis are requested and the suggested mode
annotations for each predicate are displayed.

The usage is as follows:

1. Load the mode_analyser library:
?7- lib(mode_analyser).
2. Compile your program with the mode analyser:

?7- analyse(queen).
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3. Run the query which most accurately exercises the invocation modes of the defined pred-
icates:

?- queen:queen([1,2,3,4],0ut).
4. Generate the results for the module into which the program was compiled:
?7- result([verbose:on])@queen.
This will print the results as follows:

Mode analysis for queen : qdelete / 4:

Results for argument 1:

-: 23 *: 0 +: 0 ++: 0
Results for argument 2:

-: 0 *: 0 +: 0 ++: 23
Results for argument 3:

-: 0 *: 0 +: 0 ++: 23
Results for argument 4:

-: 0 *: 0 +: 23 ++: 0

qdelete(-, ++, ++, +)

Mode analysis for queen : nodiag / 3:
Results for argument 1:
-: 0 *: 0 +: 0 ++: 62
Results for argument 2:
-: 0 *: 0 +: 0 ++: 62
Results for argument 3:
-: 0 *: 0 +: 0 ++: 62

nodiag(++, ++, ++)

Mode analysis for queen : gperm / 2:
Results for argument 1:
-: 0 *: 0 +: 0 ++: 41
Results for argument 2:
-: 0 *: 0 +: 41 ++: 0

gperm(++, +)
Mode analysis for queen : queen / 2:
Results for argument 1:
-: 0 *: 0 +: 0 ++: 1
Results for argument 2:

-: 1 *: 0 +: 0 ++: 0

queen(++, -)

153



Mode analysis for queen : safe / 1:
Results for argument 1:
-: 0 *: 0 +: 0 ++: 38

safe(++)

NOTE: It is imperative to understand that the results of mode analysis are merely suggestions
for the invocation modes of a predicate based on runtime information. If there are potential
predicate invocation modes that were not exercised during runtime, the tool is unable to account
for them in its analysis. For the mode specifier ’-” the mode analyser does not determine whether
the variable occurs in any other argument (i.e. is aliased), this must be manually verified. In
summary, the programmer must verify that the suggested modes are correct before using the
directive in the code. If the instantiation of the predicate call violates its mode declaration, no
exception is raised and its behaviour is undefined.

For more details about invocation mode analysis see the Reference Manual.
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Chapter 16

Attributed Variables

16.1 Introduction

The attributed variable is a special ECL‘PS°data type which represents a variable together
with attached attributes. In the literature, attributed variables are sometimes referred to as
“metaterms”. The name metaterm originates from its application in meta-programming: for an
object-level program, a metaterm looks like a variable, but for a meta-program the same variable
is just a piece of data which, possibly together with additional meta-level information, forms the
metaterm.

The attributed variable is a powerful means to implement various extensions of the plain Prolog
language. In particular, it allows the system’s behaviour on unification to be customised. In
most situations, an attributed variable behaves like a normal variable. E.g. it can be unified
with other terms and var/1 succeeds on it. The differences compared to a plain variable are:

e an attributed variable has a number of associated attributes
e the attributes are included in the module system

e when an attributed variable occurs in the unification and in some built-in predicates, each
attribute is processed by a user-defined handler

16.2 Declaration

An attributed variable can have any number of attributes. The attributes are accessed by their
name. Before an attribute can be created and used, it must be declared with the predicate
meta_attribute/2. The declaration has the format

meta_attribute(Name, HandlerList)

Name is an atom denoting the attribute name and usually it is the name of the module where
this attribute is being created and used. HandlerList is a (possibly empty) list of handler
specifications for this attribute (see Section [16.7).
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16.3 Syntax

The most general attributed variable syntax is
Var{Name_1: Attr_1, Name_2 : Attr_2,..., Name_n : Attr_n}

where the syntax of Var is like that of a variable, Name_i are attribute names and Attr_i
are the values of the corresponding attributes.  The expression Var{Attr} is a shorthand
for Var{Module:Attr} where Module is the current module name. The former is called
unqualified and the latter qualified attribute specification.  As the attribute name is usually
identical with the source module name, all occurrences of an attributed variable in the source
module may use the unqualified specification.

If there are several occurrences of the same attributed variable in a single term, only one occur-
rence is written with the attribute, the others just refer to the variable’s name, e.g.

p(X, X{attr:Attr})
or
p(X{attr:Attr}, X)

both describe the same term, which has two occurrences of a single attributed variable with
attribute attr:Attr. The following is a syntax error (even when the attributes are identical):

p(X{attr:Attr}, X{attr:Attr})

16.4 Creating Attributed Variables

A new attribute can be added to a variable using the tool predicate
add_attribute(Var, Attr).

An attribute whose name is not the current module name can be added using add_attribute/3
whi