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Chapter 1

Introduction

This manual contains documentation for libraries which are still part of the
ECLiPSe distribution, but whose use is deprecated. Typically, the libraries
have been replaced by newer implementation which provide similar or ex-
tended functionality. The old documentation is provided here mainly to ease
the task of porting existing code to the newer libraries. Documentation for
the new libraries can be found in the Constraint Library Manual and the
Reference Manual. Here is a short overview of the obsolete libraries and
where to find replacement functionality:

fd The numeric functionality of the finite-domain library is subsumed by
the ic interval solver library. The symbolic domain constraints are pro-
vided by the ic symbolic library. The branch-and-bound functional-
ity can now be found in more generic form in the branch and bound
library.

conjunto Most of this set solver’s functionality is available in the new
ic sets library.

ic eplex, range eplex These libraries have now been removed and replaced
by standalone eplex. Chapter@4 describes how to port your existing
code from ic/range eplex to standalone eplex.
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Chapter 2

The Finite Domains Library

The library fd.pl implements constraints over finite domains that can con-
tain integer as well as atomic (i.e. atoms, strings, floats, etc.) and ground
compound (e.g. f(a, b)) elements. Modules that use the library must start
with the directive

:- use module(library(fd)).

2.1 Terminology

Some of the terms frequently used in this chapter are explained below.

domain variable A domain variable is a variable which can be instanti-
ated only to a value from a given finite set. Unification with a term
outside of this domain fails. The domain can be associated with the
variable using the predicate ::/2. Built-in predicates that expect do-
main variables treat atomic and other ground terms as variables with
singleton domains.

integer domain variable An integer domain variable is a domain variable
whose domain contains only integer numbers. Only such variables are
accepted in inequality constraints and in rational terms. Note that a
non-integer domain variable can become an integer domain variable
when the non-integer values are removed from its domain.

integer interval An integer interval is written as

Min .. Max

with integer expressions Min ≤ Max and it represents the set

{Min, Min + 1, . . . , Max}.
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linear term A linear term is a linear integer combination of integer domain
variables. The constraint predicates accept linear terms even in a non-
canonical form, containing functors +, - and *, e.g.

5 ∗ (3 + (4 − 6) ∗ Y − X ∗ 3).

If the constraint predicates encounter a variable without a domain,
they give it a default domain -10000000..10000000. Note that arith-
metic operations on linear terms are performed with standard machine
word integers without any overflow checks. If the domain ranges or
coefficients are too large, the operation will not yield correct results.
Both the maximum and minimum value of a linear term must be repre-
sentable in a machine word, and so must the maximum and minimum
value of every cixi term.

rational term A rational term is a term constructed from integers and in-
teger domain variables using the arithmetic operations +,−, ∗, /. Be-
sides that, every subexpression of the form VarA/VarB must have an
integer value in the solution. The system replaces such a subexpression
by a new variable X and adds a new constraint VarA #= VarB * X.
Similarly, all subexpressions of the form VarA*VarB are replaced by
a new variable X and a new constraint X #= VarA * VarB is added,
so that in the internal representation, the term is converted to a linear
term.

constraint expression A constraint expression is either an arithmetic con-
straint or a combination of constraint expressions using the logical FD
connectives #/\/2, #\//2, #=>/2, #<=>/2, #\+/1.

2.2 Constraint Predicates

?Vars :: ?Domain
Vars is a variable or a list of variables with the associated domain

Domain. Domain can be a closed integer interval denoted as Min ..
Max, or a list of intervals and/or atomic or ground elements. Although
the domain can contain any compound terms that contain no variable,
the functor ../2 is reserved to denote integer intervals and thus 1..10
always means an interval and a..b is not accepted as a compound
domain element.

If Vars is already a domain variable, its domain will be updated ac-
cording to the new domain; if it is instantiated, the predicate checks
if the value lies in the domain. Otherwise, if Vars is a free variable,
it is converted to a domain variable. If Vars is a domain variable and
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Domain is free, it is bound to the list of elements and integer inter-
vals representing the domain of the variable (see also dvar domain/2
which returns the actual domain).

When a free variable obtains a finite domain or when the domain of
a domain variable is updated, the constrained list of its suspend
attribute is woken, if it has one.

integers(+Vars)
This constrains the list of variables Vars to have integer domains. Any
non-domain variables in Vars will be given the default integer domain.

::(?Var, ?Domain, ?B)
B is equal to 1 iff the domain of the finite domain variable Var is a

subset of Domain and 0 otherwise.

atmost(+Number, ?List, +Val)
At most Number elements of the list List of domain variables and

ground terms are equal to the ground value Val.

constraints number(+DVar, -Number)
Number is the number of constraints and suspended goals currently

attached to the variable DVar. Note that this number may not corre-
spond to the exact number of different constraints attached to DVar, as
goals in different suspending lists are counted separately. This pred-
icate is often used when looking for the most or least constrained
variable from a set of domain variables (see also deleteffc/3).

element(?Index, +List, ?Value)
The Index’th element of the ground list List is equal to Value. Index

and Value can be either plain variables, in which case a domain will
be associated to them, or domain variables. Whenever the domain of
Index or Value is updated, the predicate is woken and the domains are
updated accordingly.

fd eval(+E)
The constraint expression E is evaluated on runtime and no compile-
time processing is performed. This might be necessary in the situations
where the default compile-time transformation of the given expression
is not suitable, e.g. because it would require type or mode information.

indomain(+DVar)
This predicate instantiates the domain variable DVar to an element

of its domain; on backtracking the subsequent values are taken. It is
used, for example, to find a value of DVar which is consistent with all
currently imposed constraints. If DVar is a ground term, it succeeds.
Otherwise, if it is not a domain variable, an error is raised.
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is domain(?Term)
Succeeds if Term is a domain variable.

is integer domain(?Term)
Succeeds if Term is an integer domain variable.

min max(+Goal, ?C)
If C is a linear term, a solution of the goal Goal is found that minimises
the value of C. If C is a list of linear terms, the returned solution min-
imises the maximum value of terms in the list. The solution is found
using the branch and bound method; as soon as a partial solution is
found that is worse than a previously found solution, failure is forced
and a new solution is searched for. When a new better solution is
found, the bound is updated and the search restarts from the begin-
ning. Each time a new better solution is found, the event 280 is raised.
If a solution does not make C ground, an error is raised, unless exactly
one variable in the list C remains free, in which case the system tries
to instantiate it to its minimum.

minimize(+Goal, ?Term)
Similar to min max/2, but Term must be an integer domain vari-

able. When a new better solution is found, the search does not restart
from the beginning, but a failure is forced and the search continues.
Each time a new better solution is found, the event 280 is raised. Of-
ten minimize/2 is faster than min max/2, sometimes min max/2
might run faster, but it is difficult to predict which one is more appro-
priate for a given problem.

min max(+Goal, ?Template, ?Solution, ?C)

minimize(+Goal, ?Template, ?Solution, ?Term)
Similar to min max/2 and minimize/2, but the variables in Goal

do not get instantiated to their optimum solutions. Instead, Solutions
will be unified with a copy of Template where the variables are replaced
with their minimized values. Typically, the template will contain all
or a subset of Goal’s variables.

min max(+Goal, ?C, +Low, +High, +Percent)

minimize(+Goal, ?Term, +Low, +High, +Percent)
Similar to min max/2 and minimize/2, however the branch and

bound method starts with the assumption that the value to be min-
imised is less than or equal to High. Moreover, as soon as a solution is
found whose minimised value is less than Low, this solution is returned.
Solutions within the range of Percent % are considered equivalent and
so the search for next better solution starts with a minimised value
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Percent % less than the previously found one. Low, High and Percent
must be integers.

min max(+Goal, ?C, +Low, +High, +Percent, +Timeout)

minimize(+Goal, ?Term, +Low, +High, +Percent, +Timeout)
Similar to min max/5 and minimize/5, but after Timeout seconds
the search is aborted and the best solution found so far is returned.

min max(+Goal, ?Template, ?Solution, ?C, +Low, +High, +Per-
cent, +Timeout)

minimize(+Goal, ?Template, ?Solution, ?Term, +Low, +High,
+Percent, +Timeout)
The most general variants of the above, with all the optinal parame-

ters.

2.3 Arithmetic Constraint Predicates

?T1 #\= ?T2 The value of the rational term T1 is not equal to the value
of the rational term T2.

?T1 #< ?T2 The value of the rational term T1 is less than the value of
the rational term T2.

?T1 #<= ?T2 The value of the rational term T1 is less than or equal to
the value of the rational term T2.

?T1 #= ?T2 The value of the rational term T1 is equal to the value of
the rational term T2.

?T1 #> ?T2 The value of the rational term T1 is greater than the value
of the rational term T2.

?T1 #>= ?T2 The value of the rational term T1 is greater than or equal
to the value of the rational term T2.

2.4 Logical Constraint Predicates

The logical constraints can be used to combine simpler constraints and to
build complex logical constraint expressions. These constraints are prepro-
cessed by the system and transformed into a sequence of evaluation con-
straints and arithmetic constraints. The logical operators are declared with
the following precedences:
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:- op(750, fy, #\+).

:- op(760, yfx, #/\).

:- op(770, yfx, #\/).

:- op(780, yfx, #=>).

:- op(790, yfx, #<=>).

#\+ +E1 E1 is false, i.e. the logical negation of the constraint expression
E1 is imposed.

+E1 #/\+E2 Both constraint expressions E1 and E2 are true. This is
equivalent to normal conjunction (E1, E2).

+E1 #\/+E2 At least one of constraint expressions E1 and E2 is true. As
soon as one of E1 or E2 becomes false, the other constraint is imposed.

+E1 #=> +E2 The constraint expression E1 implies the constraint ex-
pression E2. If E1 becomes true, then E2 is imposed. If E2 becomes
false, then the negation of E1 will be imposed.

+E1 #<=> +E2 The constraint expression E1 is equivalent to the con-
straint expression E2. If one expression becomes true, the other one
will be imposed. If one expression becomes false, the negation of the
other one will be imposed.

2.5 Evaluation Constraint Predicates

These constraint predicates evaluate the given constraint expression and
associate its truth value with a boolean variable. They can be very useful for
defining more complex constraints. They can be used both to test entailment
of a constraint and to impose a constraint or its negation on the current
constraint store.

?B isd +Expr B is equal to 1 iff the constraint expression Expr is true,
0 otherwise. This predicate is the constraint counterpart of is/2 —
it takes a constraint expression, transforms all its subexpressions into
calls to predicates with arity one higher and combines the resulting
boolean values to yield B. For instance,

B isd X #= Y

is equivalent to

#=(X, Y, B)

#<(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is
less than the value of the rational term T2, 0 otherwise.
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#<=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1
is less than or equal to the value of the rational term T2, 0 otherwise.

#=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is
equal to the value of the rational term T2, 0 otherwise.

#\=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1
is different from the value of the rational term T2, 0 otherwise.

#>(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is
greater than the value of the rational term T2, 0 otherwise.

#>=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term
T1 is greater than or equal to the value of the rational term T2, 0
otherwise.

#/\(+E1, +E2, ?B) B is equal to 1 iff both constraint expressions E1
and E2 are true, 0 otherwise.

#\/(+E1, +E2, ?B) B is equal to 1 iff at least one of the constraint
expressions E1 and E2 is true, 0 otherwise.

#<=>(+E1, +E2, ?B) B is equal to 1 iff the constraint expression E1 is
equivalent to the constraint expression E2, 0 otherwise.

#=>(+E1, +E2, ?B) B is equal to 1 iff the constraint expression E1
implies the constraint expression E2, 0 otherwise.

#\+(+E1, ?B) B is equal to 1 iff E1 is false, 0 otherwise.

2.6 CHIP Compatibility Constraints Predicates

These constraints, defined in the module fd chip, are provided for CHIP
v.3 compatibility and they are defined using native ECLiPSe constraints.
Their source is available in the file fd chip.pl.

?T1 ## ?T2 The value of the rational term T1 is not equal to the value
of the rational term T2.

alldistinct(?List) All elements of List (domain variables and ground terms)
are pairwise different.

deleteff(?Var, +List, -Rest) This predicate is used to select a variable
from a list of domain variables which has the smallest domain. Var is
the selected variable from List, Rest is the rest of the list without Var.
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deleteffc(?Var, +List, -Rest) This predicate is used to select the most
constrained variable from a list of domain variables. Var is the selected
variable from List which has the least domain and which has the most
constraints attached to it. Rest is the rest of the list without Var.

deletemin(?Var, +List, -Rest) This predicate is used to select the do-
main variable with the smallest lower domain bound from a list of
domain variables. Var is the selected variable from List, Rest is the
rest of the list without Var.

List is a list of domain variables or integers. Integers are treated as if
they were variables with singleton domains.

dom(+DVar, -List) List is the list of elements in the domain of the do-
main variable DVar. The predicate ::/2 can also be used to query the
domain of a domain variable, however it yields a list of intervals.

NOTE: This predicate should not be used in ECLiPSe programs,
because all intervals in the domain will be expanded into element lists
which causes unnecessary space and time overhead. Unless an explicit
list representation is required, finite domains should be processed by
the family of the dom * predicates in sections 2.14.2 and 2.14.3.

maxdomain(+DVar, -Max) Max is the maximum value in the domain
of the integer domain variable DVar.

mindomain(+DVar, -Min) Min is the minimum value in the domain of
the integer domain variable DVar.

2.7 Utility Constraints Predicates

These constraints are defined in the module fd util and they consist of useful
predicates that are often needed in constraint programs. Their source code
is available in the file fd util.pl.

#(?Min, ?CstList, ?Max) The cardinality operator. CstList is a list of
constraint expressions and this operator states that at least Min and
at most Max out of them are valid.

dvar domain list(?Var, ?List) List is the list of elements in the domain
of the domain variable or ground term DVar. The predicate ::/2 can
also be used to query the domain of a domain variable, however it
yields a list of intervals.

outof(?Var, +List) The domain variable Var is different from all elements
of the list List.
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labeling(+List) The elements of the List are instantiated using the indo-
main/1 predicate.

2.8 Search Methods

A library of different search methods for finite domain problems is available
as library(fd search). See the Reference Manual for details.

2.9 Domain Output

The library fd domain.pl contains output macros which cause an fd at-
tribute as well as a domain to be printed as lists that represent the domain
values. A domain variable is an attributed variable whose fd attribute has
a print handler which prints it in the same format. For instance,

[eclipse 4]: X::1..10, dvar_attribute(X, A), A = fd{domain:D}.

X = X{[1..10]}

D = [1..10]

A = [1..10]

yes.

[eclipse 5]: A::1..10, printf("%mw", A).

A{[1..10]}

A = A{[1..10]}

yes.

2.10 Debugging Constraint Programs

The ECLiPSe debugger is a low-level debugger which is suitable only to
debug small constraint programs or to debug small parts of larger programs.
Typically, one would use this debugger to debug user-defined constraints
and Prolog data processing. When they are known to work properly, this
debugger may not be helpful enough to find bugs (correctness debugging)
or to speed up a working program (performance debugging). For this, the
display matrix tool from tkeclipse may be the appropriate tool.

2.11 Debugger Support

The ECLiPSe debugger supports debugging and tracing of finite domain
programs in various ways. First of all, the debugger commands that handle
suspended goals can be used to display suspended constraints (d, ^, u) or
to skip to a particular constraint (w, i). Note that most of the constraints
are displayed using a write macro, their internal form is different.
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Successive updates of a domain variable can be traced using the debug event
Hd. When used, the debugger prompts for a variable name and then it
skips to the port at which the domain of this variable was reduced. When
a newline is typed instead of a variable name, it skips to the update of the
previously entered variable.

A sequence of woken goals can be skipped using the debug event Hw.

2.12 Examples

A very simple example of using the finite domains is the send more money
puzzle:

:- use_module(library(fd)).

send(List) :-

List = [S, E, N, D, M, O, R, Y],

List :: 0..9,

alldifferent(List),

1000*S+100*E+10*N+D + 1000*M+100*O+10*R+E #=

10000*M+1000*O+100*N+10*E+Y,

M #\= 0,

S #\= 0,

labeling(List).

The problem is stated very simply, one just writes down the conditions
that must hold for the involved variables and then uses the default labeling
procedure, i.e. the order in which the variables will be instantiated. When
executing send/1, the variables S, M and O are instantiated even before
the labeling procedure starts. When a consistent value for the variable E is
found (5), and this value is propagated to the other variables, all variables
become instantiated and thus the rest of the labeling procedure only checks
groundness of the list.

A slightly more elaborate example is the eight queens puzzle. Let us show
a solution for this problem generalised to N queens and also enhanced by
a cost function that evaluates every solution. The cost can be for example
coli - rowi for the i-th queen. We are now looking for the solution with the
smallest cost, i.e. one for which the maximum of all coli - rowi is minimal:

:- use_module(library(fd)).

% Find the minimal solution for the N-queens problem

cqueens(N, List) :-

make_list(N, List),
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List :: 1..N,

constrain_queens(List),

make_cost(1, List, C),

min_max(labeling(List), C).

% Set up the constraints for the queens

constrain_queens([]).

constrain_queens([X|Y]) :-

safe(X, Y, 1),

constrain_queens(Y).

safe(_, [], _).

safe(X, [Y|T], K) :-

noattack(X, Y, K) ,

K1 is K + 1 ,

safe(X, T, K1).

% Queens in rows X and Y cannot attack each other

noattack(X, Y, K) :-

X #\= Y,

X + K #\= Y,

X - K #\= Y.

% Create a list with N variables

make_list(0, []) :- !.

make_list(N, [_|Rest]) :-

N1 is N - 1,

make_list(N1, Rest).

% Set up the cost expression

make_cost(_, [], []).

make_cost(N, [Var|L], [N-Var|Term]) :-

N1 is N + 1,

make_cost(N1, L, Term).

labeling([]) :- !.

labeling(L) :-

deleteff(Var, L, Rest),

indomain(Var),

labeling(Rest).

The approach is similar to the previous example: first we create the domain
variables, one for each column of the board, whose values will be the rows.
We state constraints which must hold between every pair of queens and
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finally we make the cost term in the format required for the min max/2
predicate. The labeling predicate selects the most constrained variable for
instantiation using the deleteff/3 predicate. When running the example,
we get the following result:

[eclipse 19]: cqueens(8, X).

Found a solution with cost 5

Found a solution with cost 4

X = [5, 3, 1, 7, 2, 8, 6, 4]

yes.

The time needed to find the minimal solution is about five times shorter than
the time to generate all solutions. This shows the advantage of the branch
and bound method. Note also that the board for this ‘minimal’ solution
looks very nice.

2.13 General Guidelines to the Use of Domains

The send more money example already shows the general principle of solving
problems using finite domain constraints:

• First the variables are defined and their domains are specified.

• Then the constraints are imposed on these variables. In the above
example the constraints are simply built-in predicates. For more com-
plicated problems it is often necessary to define Prolog predicates that
process the variables and impose constraints on them.

• If stating the constraints alone did not solve the problem, one tries to
assign values to the variables. Since every instantiation immediately
wakes all constraints associated with the variable, and changes are
propagated to the other variables, the search space is usually quickly
reduced and either an early failure occurs or the domains of other
variables are reduced or directly instantiated. This labeling procedure
is therefore incomparably more efficient than the simple generate and
test algorithm.

The complexity of the program and the efficiency of the solving depends
very much on the way these three points are performed. Quite frequently it
is possible to state the same problem using different sets of variables with
different domains. A guideline is that the search space should be as small
as possible, and thus e.g. five variables with domain 1..10 (i.e. search space
size is 105) are likely to be better than twenty variables with domain 0..1
(space size 220).
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The choice of constraints is also very important. Sometimes a redundant
constraint, i.e. one that follows from the other constraints, can speed up
the search considerably. This is because the system does not propagate all
information it has to all concerned variables, because most of the time this
would not bring anything, and thus it would slow down the search. Another
reason is that the library performs no meta-level reasoning on constraints
themselves (unlike the CHR library). For example, the constraints

X + Y #= 10, X + Y + Z #= 14

allow only the value 4 for Z, however the system is not able to deduce this
and thus it has to be provided as a redundant constraint.

The constraints should be stated in such a way that allows the system to
propagate all important domain updates to the appropriate variables.

Another rule of thumb is that creation of choice points should be delayed
as long as possible. Disjunctive constraints, if there are any, should be
postponed as much as possible. Labeling, i.e. value choosing, should be
done after all deterministic operations are carried out.

The choice of the labeling procedure is perhaps the most sensitive one. It
is quite common that only a very minor change in the order of instantiated
variables can speed up or slow down the search by several orders of mag-
nitude. There are very few common rules available. If the search space is
large, it usually pays off to spend more time in selecting the next variable
to instantiate. The provided predicates deleteff/3 and deleteffc/3 can be
used to select the most constrained variable, but in many problems it is pos-
sible to extract even more information about which variable to instantiate
next.

Often it is necessary to try out several approaches and see how they work, if
they do. The profiler and the statistics package can be of a great help here,
it can point to predicates which are executed too often, or choice points
unnecessarily backtracked over.

2.14 User-Defined Constraints

The fd.pl library defines a set of low-level predicates which allow the user
to process domain variables and their domains, modify them and write new
constraint predicates.

2.14.1 The fd Attribute

A domain variable is a metaterm. The fd.pl library defines a metaterm
attribute

fd{domain : D,min : Mi,max : Ma,any : A}
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which stores the domain information together with several suspension lists.
The attribute arguments have the following meaning:

• domain - the representation of the domain itself. Domains are treated
as abstract data types, the users should not access them directly, but
only using access and modification predicates listed below.

• min - a suspension list that should be woken when the minimum of
the domain is updated

• max - a suspension list that should be woken when the maximum of
the domain is updated

• any - a suspension list that should be woken when the domain is
reduced no matter how.

The suspension list names can be used in the predicate suspend/3 to denote
an appropriate waking condition.
The attribute of a domain variable can be accessed with the predicate
dvar attribute/2 or by unification in a matching clause:

get_attribute(_{fd:Attr}, A) :-

-?->

Attr = A.

Note however, that this matching clause succeeds even if the first argument
is a metaterm but its fd attribute is empty. To succeed only for domain
variables, the clause must be

get_attribute(_{fd:Attr}, A) :-

-?->

nonvar(Attr),

Attr = A.

or to access directly attribute arguments, e.g. the domain

get_domain(_{fd:fd{domain:D}}, Dom) :-

-?->

D = Dom.

The dvar attribute/2 has the advantage that it returns an attribute-like
structure even if its argument is already instantiated, which is quite useful
when coding fd constraints.
The attribute arguments can be accessed by macros from the structures.pl
library, if e.g. Attr is the attribute of a domain variable, the max list can
be obtained as

arg(max of fd, Attr, Max)

or, using a unification

Attr = fd{max:Max}
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2.14.2 Domain Access

The domains are represented as abstract data types, the users are not sup-
posed to access them directly, instead a number of predicates and macros
are available to allow operations on domains.

dom check in(+Element, +Dom) Succeed if the integer Element is in
the domain Dom.

dom compare(?Res, +Dom1, +Dom2) Works like compare/3 for terms.
Res is unified with

• = iff Dom1 is equal to Dom2,

• < iff Dom1 is a proper subset of Dom2,

• > iff Dom2 is a proper subset of Dom1.

Fails if neither domain is a subset of the other one.

dom member(?Element, +Dom) Successively instantiate Element to the
values in the domain Dom (similar to indomain/1).

dom range(+Dom, ?Min, ?Max) Return the minimum and maximum
value in the integer domain Dom. Fails if Dom is a domain containing
non-integer elements. This predicate can also be used to test if a given
domain is integer or not.

dom size(+Dom, ?Size) Size is the number of elements in the domain
Dom.

2.14.3 Domain Operations

The following predicates operate on domains alone, without modifying do-
main variables. Most of them return the size of the resulting domain which
can be used to test if any modification was done.

dom copy(+Dom1, -Dom2) Dom2 is a copy of the domain Dom1. Since
the updates are done in-place, two domain variables must not share
the same physical domain and so when defining a new variable with
an existing domain, the domain has to be copied first.

dom difference(+Dom1, +Dom2, -DomDiff, ?Size) The domain DomD-
ifference is Dom1 \ Dom2 and Size is the number of its elements. Fails
if Dom1 is a subset of Dom2.

dom intersection(+Dom1, +Dom2, -DomInt, ?Size) The domain DomInt
is the intersection of domains Dom1 and Dom2 and Size is the number
of its elements. Fails if the intersection is empty.
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dom union(+Dom1, +Dom2, -DomUnion, ?Size) The domain DomU-
nion is the union of domains Dom1 and Dom2 and Size is the number
of its elements. Note that the main use of the predicate is to yield
the most specific generalisation of two domains, in the usual cases the
domains become smaller, not bigger.

list to dom(+List, -Dom) Convert a list of ground terms and integer
intervals into a domain Dom. It does not have to be sorted and integers
and intervals may overlap.

integer list to dom(+List, -Dom) Similar to list to dom/2 , but the
input list should contain only integers and integer intervals and it
should be sorted. This predicate will merge adjacent integers and in-
tervals into larger intervals whenever possible. typically, this pred-
icate should be used to convert a sorted list of integers into a fi-
nite domain. If the list is known to already contain proper intervals,
sorted list to dom/2 could be used instead.

sorted list to dom(+List, -Dom) Similar to list to dom/2, but the in-
put list is assumed to be already in the correct format, i.e. sorted and
with correct integer and interval values. No checking on the list con-
tents is performed.

2.14.4 Accessing Domain Variables

The following predicates perform various operations:

dvar attribute(+DVar, -Attrib) Attrib is the attribute of the domain
variable DVar. If DVar is instantiated, Attrib is bound to an attribute
with a singleton domain and empty suspension lists.

dvar domain(+DVar, -Dom) Dom is the domain of the domain variable
DVar. If DVar is instantiated, Dom is bound to a singleton domain.

var fd(?Var, +Dom) If Var is a free variable, it becomes a domain vari-
able with the domain Dom and with empty suspension lists. The
domain Dom is copied to make in-place updates logically sound. If
Var is already a domain variable, its domain is intersected with the
domain Dom. Fails if Var is not a variable.

dvar msg(+DVar1, +DVar2, -MsgDVar) MsgVar is a domain variable
which is the most specific generalisation of domain variables or ground
values Var1 and Var2.
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2.14.5 Modifying Domain Variables

When the domain of a domain variable is reduced, some suspension lists
stored in the attribute have to be scheduled and woken.
NOTE: In the fd.pl library the suspension lists are woken precisely when
the event associated with the list occurs. Thus e.g. the min list is woken
if and only if the minimum value of the variable’s domain is changed, but
it is not woken when the variable is instantiated to this minimum or when
another element from the domain is removed. In this way, user-defined
constraints can rely on the fact that when they are executed, the domain was
updated in the expected way. On the other hand, user-defined constraints
should also comply with this rule and they should take care not to wake lists
when their waking condition did not occur. Most predicates in this section
actually do all the work themselves so that the user predicates may ignore
scheduling and waking completely.

dvar remove element(+DVar, +El) The element El is removed from
the domain of DVar and all concerned lists are woken. If the resulting
domain is empty, this predicate fails. If it is a singleton, DVar is
instantiated. If the domain does not contain the element, no updates
are made.

dvar remove smaller(+DVar, +El) Remove all elements in the domain
of DVar which are smaller than the integer El and wake all concerned
lists. If the resulting domain is empty, this predicate fails; if it is a
singleton, DVar is instantiated.

dvar remove greater(+DVar, +El) Remove all elements in the domain
of DVar which are greater than the integer El and wake all concerned
lists. If the resulting domain is empty, this predicate fails; if it is a
singleton, DVar is instantiated.

dvar update(+DVar, +NewDom) If the size of the domain NewDom is
0, the predicate fails. If it is 1, the domain variable DVar is instantiated
to the value in the domain. Otherwise, if the size of the new domain is
smaller than the size of the domain variable’s domain, the domain of
DVar is replaced by NewDom, the appropriate suspension lists in its
attribute are passed to the waking scheduler and so is the constrained
list in the suspend attribute of the domain variable. If the size of the
new domain is equal to the old one, no updates and no waking is done,
i.e. this predicate does not check an explicit equality of both domains.
If the size of the new domain is greater than the old one, an error is
raised.

dvar replace(+DVar, +NewDom) This predicate is similar to dvar update/2,
but it does not propagate the changes, i.e. no waking is done. If the
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size of the new domain is 1, DVar is not instantiated, but it is given
this singleton domain. This predicate is useful for local consistency
checks.

2.15 Extensions

The fd.pl library can be used as a basis for further extensions. There are
several hooks that make the interfacing easier:

• Each time a new domain variable is created, either in the ::/2 predicate
or by giving it a default domain in a rational arithmetic expression, the
predicate new domain var/1 is called with the variable as argument.
Its default definition does nothing. To use it, it is necessary to redefine
it, i.e. to recompile it in the fd module, e.g. using compile/2 or the
tool body of compile term/1.

• Default domains are created in the predicate default domain/1 in
the fd module, its default definition is

default domain(Var) :- Var :: -10000000..10000000.

It is possible to change default domains by redefining this predicate in
the fd module.

2.16 Example of Defining a New Constraint

We will demonstrate creation of new constraints on the following example.
To show that the constraints are not restricted to linear terms, we can take
the constraint

X2 + Y 2 ≤ C.

Assuming that X and Y are domain variables, we would like to define such
a predicate that will be woken as soon as one or both variables’ domains
are updated in such a way that would require updating the other variable’s
domain, i.e. updates that would propagate via this constraint. For simplicity
we assume that X and Y are nonnegative. We will define the predicate sq(X,
Y, C) which will implement this constraint:

:- use_module(library(fd)).

% A*A + B*B <= C

sq(A, B, C) :-

dvar_domain(A, DomA),

dvar_domain(B, DomB),
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dom_range(DomA, MinA, MaxA),

dom_range(DomB, MinB, MaxB),

MiA2 is MinA*MinA,

MaB2 is MaxB*MaxB,

(MiA2 + MaB2 > C ->

NewMaxB is fix(sqrt(C - MiA2)),

dvar_remove_greater(B, NewMaxB)

;

NewMaxB = MaxB

),

MaA2 is MaxA*MaxA,

MiB2 is MinB*MinB,

(MaA2 + MiB2 > C ->

NewMaxA is fix(sqrt(C - MiB2)),

dvar_remove_greater(A, NewMaxA)

;

NewMaxA = MaxA

),

(NewMaxA*NewMaxA + NewMaxB*NewMaxB =< C ->

true

;

suspend(sq(A, B, C), 3, (A, B)->min)

),

wake. % Trigger the propagation

The steps to be executed when this constraint becomes active, i.e. when the
predicate sq/3 is called or woken are the following:

1. We access the domains of the two variables using the predicate dvar domain/2
and and obtain their bounds using dom range/3. Note that it may
happen that one of the two variables is already instantiated, but these
predicates still work as if the variable had a singleton domain.

2. We check if the maximum of one or the other variable is still consis-
tent with this constraint, i.e. if there is a value in the other variable’s
domain that satisfies the constraint together with this maximum.

3. If the maximum value is no longer consistent, we compute the new
maximum of the domain, and then update the domain so that all values
greater than this value are removed using the predicate dvar remove greater/2.
This predicate also wakes all concerned suspension lists and instanti-
ates the variable if its new domain is a singleton.

4. After checking the updates for both variables we test if the constraint
is now satisfied for all values in the new domains. If this is not the

21



case, we have to suspend the predicate so that it is woken as soon
as the minimum of either domain is changed. This is done using the
predicate suspend/3.

5. The last action is to trigger the execution of all goals that are waiting
for the updates we have made. It is necessary to wake these goals
after inserting the new suspension, otherwise updates made in the
woken goals would not be propagated back to this constraint.

Here is what we get:

[eclipse 20]: [X,Y]::1..10, sq(X, Y, 50).

X = X{[1..7]}

Y = Y{[1..7]}

Delayed goals:

sq(X{[1..7]}, Y{[1..7]}, 50)

yes.

[eclipse 21]: [X,Y]::1..10, sq(X, Y, 50), X #> 5.

Y = Y{[1..3]}

X = X{[6, 7]}

Delayed goals:

sq(X{[6, 7]}, Y{[1..3]}, 50)

yes.

[eclipse 22]: [X,Y]::1..10, sq(X, Y, 50), X #> 5, Y #> 1.

X = 6

Y = Y{[2, 3]}

yes.

[eclipse 23]: [X,Y]::1..10, sq(X, Y, 50), X #> 5, Y #> 2.

X = 6

Y = 3

yes.

2.17 Program Examples

In this section we present some FD programs that show various aspects of
the library usage.
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2.17.1 Constraining Variable Pairs

The finite domain library gives the user the possibility to impose constraints
on the value of a variable. How, in general, is it possible to impose con-
straints on two or more variables? For example, let us assume that we have
a set of colours and we want to define that some colours fit with each other
and others do not. This should work in such a way as to propagate possible
changes in the domains as soon as this becomes possible.
Let us assume we have a symmetric relation that defines which colours fit
with each other:

% The basic relation

fit(yellow, blue).

fit(yellow, red).

fit(blue, yellow).

fit(red, yellow).

fit(green, orange).

fit(orange, green).

The predicate nice pair(X, Y) is a constraint and any change of the pos-
sible values of X or Y is propagated to the other variable. There are many
ways in which this pairing can be defined in ECLiPSe. They are different
solutions with different properties, but they yield the same results.

2.17.1.1 User-Defined Constraints

We use more or less directly the low-level primitives to handle finite domain
variables. We collect all consistent values for the two variables, remove all
other values from their domains and then suspend the predicate until one of
its arguments is updated:

nice_pair(A, B) :-

% get the domains of both variables

dvar_domain(A, DA),

dvar_domain(B, DB),

% make a list of respective matching colours

setof(Y, X^(dom_member(X, DA), fit(X, Y)), BL),

setof(X, Y^(dom_member(Y, DB), fit(X, Y)), AL),

% convert the lists to domains

sorted_list_to_dom(AL, DA1),

sorted_list_to_dom(BL, DB1),

% intersect the lists with the original domains

dom_intersection(DA, DA1, DA_New, _),

dom_intersection(DB, DB1, DB_New, _),

% and impose the result on the variables

dvar_update(A, DA_New),
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dvar_update(B, DB_New),

% unless one variable is already instantiated, suspend

% and wake as soon as any element of the domain is removed

(var(A), var(B) ->

suspend(nice_pair(A, B), 2, [A,B]->any)

;

true

).

% Declare the domains

colour(A) :-

findall(X, fit(X, _), L),

A :: L.

After defining the domains, we can state the constraints:

[eclipse 5]: colour([A,B,C]), nice_pair(A, B), nice_pair(B, C), A #\= green.

B = B{[blue, green, red, yellow]}

C = C{[blue, orange, red, yellow]}

A = A{[blue, orange, red, yellow]}

Delayed goals:

nice_pair(A{[blue, orange, red, yellow]}, B{[blue, green, red, yellow]})

nice_pair(B{[blue, green, red, yellow]}, C{[blue, orange, red, yellow]})

This way of defining new constraints is often the most efficient one, but
usually also the most tedious one.

2.17.1.2 Using the element Constraint

In this case we use the available primitive in the fd library. Whenever
it is necessary to associate a fd variable with some other fd variable, the
element/3 constraint is a likely candidate. Sometimes it is rather awkward
to use, because additional variables must be used, but it gives enough power:

nice_pair(A, B) :-

element(I, [yellow, yellow, blue, red, green, orange], A),

element(I, [blue, red, yellow, yellow, orange, green], B).

We define a new variable I which is a sort of index into the clauses of the
fit predicate. The first colour list contains colours in the first argument of
fit/2 and the second list contains colours from the second argument. The
propagation is similar to that of the previous one.
When element/3 can be used, it is usually faster than the previous ap-
proach, because element/3 is partly implemented in C.
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2.17.1.3 Using Evaluation Constraints

We can also encode directly the relations between elements in the domains
of the two variables:

nice_pair(A, B) :-

np(A, B),

np(B, A).

np(A, B) :-

[A,B] :: [yellow, blue, red, orange, green],

A #= yellow #=> B :: [blue, red],

A #= blue #=> B #= yellow,

A #= red #=> B #= yellow,

A #= green #=> B #= orange,

A #= orange #=> B #= green.

This method is quite simple and does not need any special analysis; on the
other hand it potentially creates a huge number of auxiliary constraints and
variables.

2.17.1.4 Using Generalised Propagation

Propia is the first candidate to convert an existing relation into a constraint.
One can simply use infers most to achieve the propagation:

nice_pair(A, B) :-

fit(A, B) infers most.

Using Propia is usually very easy and the programs are short and readable,
so that this style of constraints writing is quite useful e.g. for teaching. It
is not as efficient as with user-defined constraints, but if the amount of
propagation is more important that the efficiency of the constraint itself, it
can yield good results, too.

2.17.1.5 Using Constraint Handling Rules

The domain solver in CHR can be used directly with the element/3 con-
straint as well, however it is also possible to define directly domains consist-
ing of pairs:

:- lib(chr).

:- chr(lib(domain)).

nice_pair(A, B) :-

setof(X-Y, fit(X, Y), L),
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A-B :: L.

The pairs are then constrained accordingly:

[eclipse 2]: nice_pair(A, B), nice_pair(B, C), A ne orange.

B = B

C = C

A = A

Constraints:

(9) A_g1484 - B_g1516 :: [blue - yellow, green - orange, red - yellow,

yellow - blue, yellow - red]

(10) A_g1484 :: [blue, green, red, yellow]

(12) B_g1516 - C_g3730 :: [blue - yellow, orange - green, red - yellow,

yellow - blue, yellow - red]

(13) B_g1516 :: [blue, orange, red, yellow]

(14) C_g3730 :: [blue, green, red, yellow]

2.17.2 Puzzles

Various kinds of puzzles can be easily solved using finite domains. We show
here the classical Lewis Carrol’s puzzle with five houses and a zebra:

Five men with different nationalities live in the first five houses

of a street. They practise five distinct professions, and each of

them has a favourite animal and a favourite drink, all of them

different. The five houses are painted in different colours.

The Englishman lives in a red house.

The Spaniard owns a dog.

The Japanese is a painter.

The Italian drinks tea.

The Norwegian lives in the first house on the left.

The owner of the green house drinks coffee.

The green house is on the right of the white one.

The sculptor breeds snails.

The diplomat lives in the yellow house.

Milk is drunk in the middle house.

The Norwegian’s house is next to the blue one.

The violinist drinks fruit juice.

The fox is in a house next to that of the doctor.

The horse is in a house next to that of the diplomat.

Who owns a Zebra, and who drinks water?

26



One may be tempted to define five variables Nationality, Profession, Colour,
etc. with atomic domains to represent the problem. Then, however, it is
quite difficult to express equalities over these different domains. A much
simpler solution is to define 5x5 integer variables for each mentioned item,
to number the houses from one to five and to represent the fact that e.g.
Italian drinks tea by equating Italian = Tea. The value of both variables
represents then the number of their house. In this way, no special constraints
are needed and the problem is very easily described:

:- lib(fd).

zebra([zebra(Zebra), water(Water)]) :-

Sol = [Nat, Color, Profession, Pet, Drink],

Nat = [English, Spaniard, Japanese, Italian, Norwegian],

Color = [Red, Green, White, Yellow, Blue],

Profession = [Painter, Sculptor, Diplomat, Violinist, Doctor],

Pet = [Dog, Snails, Fox, Horse, Zebra],

Drink = [Tea, Coffee, Milk, Juice, Water],

% we specify the domains and the fact

% that the values are exclusive

Nat :: 1..5,

Color :: 1..5,

Profession :: 1..5,

Pet :: 1..5,

Drink :: 1..5,

alldifferent(Nat),

alldifferent(Color),

alldifferent(Profession),

alldifferent(Pet),

alldifferent(Drink),

% and here follow the actual constraints

English = Red,

Spaniard = Dog,

Japanese = Painter,

Italian = Tea,

Norwegian = 1,

Green = Coffee,

Green #= White + 1,

Sculptor = Snails,

Diplomat = Yellow,

Milk = 3,

Dist1 #= Norwegian - Blue, Dist1 :: [-1, 1],
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Violinist = Juice,

Dist2 #= Fox - Doctor, Dist2 :: [-1, 1],

Dist3 #= Horse - Diplomat, Dist3 :: [-1, 1],

flatten(Sol, List),

labeling(List).

2.17.3 Bin Packing

In this type of problems the goal is to pack a certain amount of different
things into the minimal number of bins under specific constraints. Let us
solve an example given by Andre Vellino in the Usenet group comp.lang.prolog,
June 93:

• There are 5 types of components:

glass, plastic, steel, wood, copper

• There are three types of bins:

red, blue, green

• whose capacity constraints are:

– red has capacity 3

– blue has capacity 1

– green has capacity 4

• containment constraints are:

– red can contain glass, wood, copper

– blue can contain glass, steel, copper

– green can contain plastic, wood, copper

• and requirement constraints are (for all bin types):

wood requires plastic

• Certain component types cannot coexist:

– glass exclusive copper

– copper exclusive plastic

• and certain bin types have capacity constraint for certain components

– red contains at most 1 of wood

– green contains at most 2 of wood
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• Given an initial supply of: 1 of glass, 2 of plastic, 1 of steel, 3 of wood,
2 of copper, what is the minimum total number of bins required to
contain the components?

To solve this problem, it is not enough to state constraints on some variables
and to start a labeling procedure on them. The variables are namely not
known, because we don’t know how many bins we should take. One possi-
bility would be to take a large enough number of bins and to try to find a
minimum number. However, usually it is better to generate constraints for
an increasing fixed number of bins until a solution is found.
The predicate solve/1 returns the solution for this particular problem,
solve bin/2 is the general predicate that takes an amount of components
packed into a cont/5 structure and it returns the solution.

solve(Bins) :-

solve_bin(cont(1, 2, 1, 3, 2), Bins).

solve bin/2 computes the sum of all components which is necessary as a
limit value for various domains, calls bins/4 to generate a list Bins with an
increasing number of elements and finally it labels all variables in the list:

solve_bin(Demand, Bins) :-

Demand = cont(G, P, S, W, C),

Sum is G + P + S + W + C,

bins(Demand, Sum, [Sum, Sum, Sum, Sum, Sum, Sum], Bins),

label(Bins).

The predicate to generate a list of bins with appropriate constraints works
as follows: first it tries to match the amount of remaining components with
zero and the list with nil. If this fails, a new bin represented by a list

[Colour,Glass,Plastic,Steel,Wood,Copper]

is added to the bin list, appropriate constraints are imposed on all the new
bin’s variables, its contents is subtracted from the remaining number of
components, and the predicate calls itself recursively:

bins(cont(0, 0, 0, 0, 0), 0, _, []).

bins(cont(G0, P0, S0, W0, C0), Sum0, LastBin, [Bin|Bins]) :-

Bin = [_Col, G, P, S, W, C],

bin(Bin, Sum),

G2 #= G0 - G,

P2 #= P0 - P,

S2 #= S0 - S,

W2 #= W0 - W,

C2 #= C0 - C,

Sum2 #= Sum0 - Sum,
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ordering(Bin, LastBin),

bins(cont(G2, P2, S2, W2, C2), Sum2, Bin, Bins).

The ordering/2 constraints are strictly necessary because this problem has
a huge number of symmetric solutions.
The constraints imposed on a single bin correspond exactly to the problem
statement:

bin([Col, G, P, S, W, C], Sum) :-

Col :: [red, blue, green],

[Capacity, G, P, S, W, C] :: 0..4,

G + P + S + W + C #= Sum,

Sum #> 0, % no empty bins

Sum #<= Capacity,

capacity(Col, Capacity),

contents(Col, G, P, S, W, C),

requires(W, P),

exclusive(G, C),

exclusive(C, P),

at_most(1, red, Col, W),

at_most(2, green, Col, W).

We will code all of the special constraints with the maximum amount of
propagation to show how this can be achieved. In most programs, however,
it is not necessary to propagate all values everywhere which simplifies the
code quite considerably. Often it is also possible to use some of the built-in
symbolic constraints of ECLiPSe, e.g. element/3 or atmost/3.

2.17.3.1 Capacity Constraints

capacity(Color, Capacity) should instantiate the capacity if the colour is
known, and reduce the colour values if the capacity is known to be greater
than some values. If we use evaluation constraints, we can code the con-
straint directly, using equivalences:

capacity(Color, Capacity) :-

Color #= blue #<=> Capacity #= 1,

Color #= green #<=> Capacity #= 4,

Color #= red #<=> Capacity #= 3.

A more efficient code would take into account the ordering on the capacities.
Concretely, if the capacity is greater than 1, the colour cannot be blue and
if it is greater than 3, it must be green:

capacity(Color, Capacity) :-

var(Color),
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!,

dvar_domain(Capacity, DC),

dom_range(DC, MinC, _),

(MinC > 1 ->

Color #\= blue,

(MinC > 3 ->

Color = green

;

suspend(capacity(Color, Capacity), 3, (Color, Capacity)->inst)

)

;

suspend(capacity(Color, Capacity), 3, [Color->inst, Capacity->min])

).

capacity(blue, 1).

capacity(green, 4).

capacity(red, 3).

Note that when suspended, the predicate waits for colour instantiation or
for minimum of the capacity to be updated (except that 3 is one less than
the maximum capacity and thus waiting for its instantiation is equivalent).

2.17.3.2 Containment Constraints

The containment constraints are stated as logical expressions and this is also
the easiest way to medel them. The important point to remember is that a
condition like red can contain glass, wood, copper actually means red cannot
contain plastic or steel which can be written as

contents(Col, G, P, S, W, _) :-

Col #= red #=> P #= 0 #/\ S #= 0,

Col #= blue #=> P #= 0 #/\ W #= 0,

Col #= green #=> G #= 0 #/\ S #= 0.

If we want to model the containment with low-level domain predicates, it is
easier to state them in the equivalent conjugate form:

• glass can be contained in red or blue

• plastic can be contained in green

• steel can be contained in blue

• wood can be contained in red, green

• copper can be contained in red, blue, green

or in a further equivalent form that uses at most one bin colour:
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• glass can not be contained in green

• plastic can be contained in green

• steel can be contained in blue

• wood can not be contained in blue

• copper can be contained in anything

contents(Col, G, P, S, W, _) :-

not_contained_in(Col, G, green),

contained_in(Col, P, green),

contained_in(Col, S, blue),

not_contained_in(Col, W, blue).

contained in(Color, Component, In) states that if Color is different
from In, there can be no such component in it, i.e. Component is zero:

contained_in(Col, Comp, In) :-

nonvar(Col),

!,

(Col \== In ->

Comp = 0

;

true

).

contained_in(Col, Comp, In) :-

dvar_domain(Comp, DM),

dom_range(DM, MinD, _),

(MinD > 0 ->

Col = In

;

suspend(contained_in(Col, Comp, In), 2, [Comp->min, Col->inst])

).

not contained in(Color, Component, In) states that if the bin is of the
given colour, the component cannot be contained in it:

not_contained_in(Col, Comp, In) :-

nonvar(Col),

!,

(Col == In ->

Comp = 0

;

true

).
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not_contained_in(Col, Comp, In) :-

dvar_domain(Comp, DM),

dom_range(DM, MinD, _),

(MinD > 0 ->

Col #\= In

;

suspend(not_contained_in(Col, Comp, In), 2, [Comp->min, Col->any])

).

As you can see again, modeling with the low-level domain predicates might
give a faster and more precise programs, but it is much more difficult than
using constraint expressions and evaluation constraints. A good approach
is thus to start with constraint expressions and only if they are not effi-
cient enough, to (stepwise) recode some or all constraints with the low-level
predicates.

2.17.3.3 Requirement Constraints

The constraint ‘A requires B’ is written as

requires(A, B) :-

A #> 0 #=> B #> 0.

With low-level predicates, the constraint ‘A requires B’ is woken as soon as
some A is present or B is known:

requires(A, B) :-

nonvar(B),

!,

( B = 0 ->

A = 0

;

true

).

requires(A, B) :-

dvar_domain(A, DA),

dom_range(DA, MinA, _),

( MinA > 0 ->

B #> 0

;

suspend(requires(A, B), 2, [A->min, B->inst])

).

2.17.3.4 Exclusive Constraints

The exclusive constraint can be written as

33



exclusive(A, B) :-

A #> 0 #=> B #= 0,

B #> 0 #=> A #= 0.

however a simple form with one disjunction is enough:

exclusive(A, B) :-

A #= 0 #\/ B #= 0.

With low-level domain predicates, the exclusive constraint defines a suspen-
sion which is woken as soon as one of the two components is present:

exclusive(A, B) :-

dvar_domain(A, DA),

dom_range(DA, MinA, MaxA),

( MinA > 0 ->

B = 0

; MaxA = 0 ->

% A == 0

true

;

dvar_domain(B, DB),

dom_range(DB, MinB, MaxB),

( MinB > 0 ->

A = 0

; MaxB = 0 ->

% B == 0

true

;

suspend(exclusive(A, B), 3, (A,B)->min)

)

).

2.17.3.5 Atmost Constraints

at most(N, In, Colour, Components) states that if Colour is equal to
In, then there can be at most N Components and vice versa, if there are more
than N Components, the colour cannot be In. With constraint expressions,
this can be simply coded as

at_most(N, In, Col, Comp) :-

Col #= In #=> Comp #<= N.

A low-level solution looks as follows:

at_most(N, In, Col, Comp) :-

nonvar(Col),
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!,

(In = Col ->

Comp #<= N

;

true

).

at_most(N, In, Col, Comp) :-

dvar_domain(Comp, DM),

dom_range(DM, MinM, _),

(MinM > N ->

Col #\= In

;

suspend(at_most(N, In, Col, Comp), 2, [In->inst, Comp->min])

).

2.17.3.6 Ordering Constraints

To filter out symmetric solutions we can e.g. impose a lexicographic ordering
on the bins in the list, i.e. the second bin must be lexicographically greater
or equal than the first one etc. As long as the corresponding most significant
variables in two consecutive bins are not instantiated, we cannot constrain
the following ones and thus we suspend the ordering on the inst lists:

ordering([], []).

ordering([Val1|Bin1], [Val2|Bin2]) :-

Val1 #<= Val2,

(integer(Val1) ->

(integer(Val2) ->

(Val1 = Val2 ->

ordering(Bin1, Bin2)

;

true

)

;

suspend(ordering([Val1|Bin1], [Val2|Bin2]), 2, Val2->inst)

)

;

suspend(ordering([Val1|Bin1], [Val2|Bin2]), 2, Val1->inst)

).

There is a problem with the representation of the colour: If the colour is
represented by an atom, we cannot apply the #<=/2 predicate on it. To
keep the ordering predicate simple and still have a symbolic representation
of the colour in the program, we can define input macros that transform the
colour atoms into integers:
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:- define_macro(no_macro_expansion(blue)/0, tr_col/2, []).

:- define_macro(no_macro_expansion(green)/0, tr_col/2, []).

:- define_macro(no_macro_expansion(red)/0, tr_col/2, []).

tr_col(no_macro_expansion(red), 1).

tr_col(no_macro_expansion(green), 2).

tr_col(no_macro_expansion(blue), 3).

2.17.3.7 Labeling

A straightforward labeling would be to flatten the list with the bins and use
e.g. deleteff/3 to label a variable out of it. However, for this example not
all variables have the same importance — the colour variables propagate
much more data when instantiated. Therefore, we first filter out the colours
and label them before all the component variables:

label(Bins) :-

colours(Bins, Colors, Things),

flatten(Things, List),

labeleff(Colors),

labeleff(List).

colours([], [], []).

colours([[Col|Rest]|Bins], [Col|Cols], [Rest|Things]) :-

colours(Bins, Cols, Things).

labeleff([]).

labeleff(L) :-

deleteff(V, L, Rest),

indomain(V),

labeleff(Rest).

Note also that we need a special version of flatten/3 that works with non-
ground lists.

2.18 Current Known Restrictions and Bugs

1. The default domain for integer finite domain variables is -10000000..10000000.
Larger domains must be stated explicitly using the ::/2 predicate, how-
ever neither bound can be outside the standard integer range for the
machine (usually 32 bits).

2. Linear integer terms are processed using machine integers and thus if
the maximum or minimum value of a linear term overflows this range
(usually 32 bits), incorrect results are reported. This may occur if
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large coefficients are used, if domains are too large or a combination
of the two.
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Chapter 3

The Set Domain Library

Note: As of ECLiPSe release 5.1, the library described in this
chapter is being phased out and replaced by the new set solver
library lib(ic sets). See the corresponding chapters in the Library

Manual and the Reference Manual for details.

Conjunto is a system to solve set constraints over finite set domain terms.
It has been developed using the kernel of ECLiPSe based on metaterms. It
contains the finite domain library of ECLiPSe. The library conjunto.pl
implements constraints over set domain terms that contain herbrand terms
as well as ground sets. Modules that use the library must start with the
directive

:- use_module(library(conjunto))

For those who are already familiar with the ECLiPSe constraint library
manual this manual follows the finite domain library structure.
For further information about this library, please email to c.gervet@icparc.ic.ac.uk.

3.1 Terminology

The computation domain of Conjunto is finite so set domain and set term
will stand respectively for finite set domain and finite set term in the fol-
lowing. Here are defined some of the terms mainly used in the predicate
description.
Ground set

A known finite set containing only atoms from the Herbrand
Universe or its powerset but without any variable.

Set domain

A discrete lattice or powerset D attached to a set variable S. D
is defined by {S ∈ 2lub s | glb s ⊆ S} under inclusion specified
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by the notation Glb s..Lub s. Glb s and Lub s represent respec-
tively the intersection and union of elements of D. Thus they are
both ground sets. S is then called a set domain variable.

Weighted set domain

A specific set domain WD attached to a set variable S where
each element of WD is of the form e(s,w). s is a ground set
representing a possible value of the set variable and w is the
weight or cost associated to this value. e.g.

WD = {e(1,50),e({1,3},20)}..{e(1,50),e({1,3},20),e(f(a),100)}.

D would have been:

{1,{1,3}}..{1,{1,3},f(a)}.

Set expression

A composition of set domain variables or ground sets together
with set operator symbols which are the standard ones coming
from set theory.

S ::= S 1 ∩ S 2 | S 1 ∪ S 2 | S 1 \ S 2

Set term

Any term of the followings: (1) a ground set, (2) a set domain
variable or (3) a set expression. All set built-in predicates deal
with set terms thus with any of the three cases.

3.2 Syntax

• A ground set is written using the characters { and }, e.g. S = {1,3,{a,g}, f(2)}

• A domain D attached to a set variable is specified by two ground sets
: Glb s..Lub s

• Set expressions: Unfortunately the characters representing the usual
set operators are not available on our monitors so we use a specific
syntax making the connection with arithmetic operators:

– ∪ is represented by \/

– ∩ is represented by /\

– \ is represented by \
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3.3 The solver

The Conjunto solver acts in a data driven way using a relation between
states. The transformation performs interval reduction over the set domain
bounds. The set expression domains are approximated in terms of the do-
mains of the set variables involved. From a constraint propagation view-
point this means that constraints over set expressions can be approximated
in terms of constraints over set variables. A failure is detected in the con-
straint propagation phase as soon as one domain lower bound glb s is not
included in its associated upper bound lub s. Once a solved form has been
reached all the constraints which are not definitely solved are delayed and
attached to the concerned set variables.

3.4 Constraint predicates

?Svar ‘:: ++Glb..++Lub

attaches a domain to the set variable or to a list of set variables
Svar. If Glb 6⊆ Lub it fails. If Svar is already a domain variable
its domain will be updated according to the new domain; if Svar
is instantiated it fails. Otherwise if Svar is free it becomes a set
variable.

set(?Term)

succeeds if Term is a ground set.

?S ‘= ?S1

The value of the set term S is equal to the value of the set term
S1.

?E in ?S

The element E is an element of S. If E is ground it is added to
the lower bound of the domain of S, otherwise the constraint is
delayed. If E is ground and does not belong to the upper bound
of S domain, it fails.

?E notin ?S

The element E does not belong to S. If E is ground it is removed
from the upper bound of S, otherwise the constraint is delayed. If
E is ground and belongs to the upper bound of the domain of S,
it is removed from the upper bound and the constraint is solved.
If E is ground and belongs to the lower bound of S domain, it
fails.
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?S ‘< ?S1

The value of the set term S is a subset of the value of the set term
S1. If the two terms are ground sets it just checks the inclusion
and succeeds or fails. If the lower bound of the domain of S is not
included in the upper bound of S1 domain, it fails. Otherwise
it checks the inclusion over the bounds. The constraint is then
delayed.

?S ‘<> ?S1

The domains of S and S1 are disjoint (intersection empty).

all_union(?Lsets, ?S)

Lsets is a list of set variables or ground sets. S is a set term
which is the union of all these sets. If S is a free variable, it
becomes a set variable and its attached domain is defined from
the union of the domains or ground sets in Lsets.

all_disjoint(?Lsets)

Lsets is a list of set variables of ground sets. All the sets are
pairwise disjoint.

#(?S,?C)

S is a set term and C its cardinality. C can be a free variable, a
finite domain variable or an integer. If C is free, this predicate
is a mean to access the set cardinality and attach it to C. If not,
the cardinality of S is constrained to be C.

sum_weight(?S,?W)

S is a set variable whose domain is a weighted domain. W is the
weight of S. If W is a free variable, this predicate is a mean to
access the set weight and attach it to W. If not, the weight of S
is constrained to be W. e.g.

S ‘:: {e(2,3)}..{e(2,3), e(1,4)}, sum_weight(S, W)

returns W :: 3..7.

refine(?Svar)

If Svar is a set variable, it labels Svar to its first possible domain
value. If there are several instances of Svar, it creates choice
points. If Svar is a ground set, nothing happens. Otherwise it
fails.
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3.5 Examples

3.5.1 Set domains and interval reasoning

First we give a very simple example to demonstrate the expressiveness of set
constraints and the propagation mechanism.

:- use_module(library(conjunto)).

[eclipse 2]: Car ‘:: {renault} .. {renault, bmw, mercedes, peugeot},

Type_french = {renault, peugeot} , Choice ‘= Car /\ Type_french.

Choice = Choice{{renault} .. {peugeot, renault}}

Car = Car{{renault} .. {bmw, mercedes, peugeot, renault}}

Type_french = {peugeot, renault}

Delayed goals:

inter_s({peugeot, renault}, Car{{renault}..{bmw, mercedes,

peugeot, renault}}, Choice{{renault} .. {peugeot, renault}})

yes.

If now we add one cardinality constraint:

[eclipse 3]: Car ‘:: {renault} .. {renault, bmw, mercedes, peugeot},

Type_french = {renault, peugeot} , Choice ‘= Car /\ Type_french,

#(Choice, 2).

Car = Car{{peugeot, renault} .. {bmw, mercedes, peugeot, renault}}

Type_french = {peugeot, renault}

Choice = {peugeot, renault}

yes.

The first example gives a set of cars from which we know renault belongs
to. The other labels {renault, bmw, mercedes, peugeot} are possible
elements of this set. The Type_french set is ground and Choice is the set
term resulting from the intersection of the first two sets. The first execution
tells us that renault is element of Choice and peugeot might be one. The
intersection constraint is partially satisfied and might be reconsidered if one
of the domain of the set terms involved changes. The cosntraint is delayed.

In the second example an additional constraint restricts the cardinality of
Choice to 2. Satisfying this constraint implies setting the Choice set to
{peugeot, renault}. The domain of this set has been modified so is the
intersection constraint activated and solved again. The final result adds
peugeot to the Car set variable. The intersection constraint is now satisfied
and removed from the constraint store.
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3.5.2 Subset-sum computation with convergent weight

A more elaborate example is a small decision problem. We are given a finite
weighted set and a target t ∈ N . We ask whether there is a subset s′ of
S whose weight is t. This also corresponds to having a single weighted set
domain and to look for its value such that its weight is t.

This problem is NP-complete. It is approximated in Integer Programming
using a procedure which ”trims” a list according to a given parameter. For
example, the set variable

S ‘:: {}..{e(a,104), e(b,102), e(c,201) ,e(d,101)}

is approximated by the set variable

S’ ‘:: {}..{e(c,201) ,e(d, 101)}

if the parameter delta is 0.04 (0.04 = 0.2 ÷ n where n = #S).

:- use_module(library(conjunto)).

% Find the optimal solution to the subset-sum problem

solve(S1, Sum) :-

getset(S),

S1 ‘:: {}.. S,

trim(S, S1),

constrain_weight(S1, Sum),

sum_weight(S1, W),

Cost = Sum - W,

min_max(labeling(S1), Cost).

% The set weight has to be less than Sum

constrain_weight(S1, Sum) :-

sum_weight(S1, W),

W #<= Sum.

% Get rid of a set of elements of the set according to a given delta

trim(S, S1) :-

set2list(S, LS),

trim1(LS, S1).

trim1(LS, S1) :-

sort(2, =<, LS, [E | LSorted]),

getdelta(D),

testsubsumed(D, E, LSorted, S1).

testsubsumed(_, _, [], _).
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testsubsumed(D, E, [F | LS], S1) :-

el_weight(E, We),

el_weight(F, Wf),

( We =< (1 - D) * Wf ->

testsubsumed(D, F, LS, S1)

;

F notin S1,

testsubsumed(D, E, LS, S1)

).

% Instantiation procedure

labeling(Sub) :-

set(Sub),!.

labeling(Sub) :-

max_weight(Sub, X),

( X in Sub ; X notin Sub ),

labeling(Sub).

% Some sample data

getset(S) :- S = {e(a,104), e(b,102), e(c,201), e(d,101), e(e,305),

e(f,50), e(g,70),e(h,102)}.

getdelta(0.05).

The approach is is the following: first create the set domain variable(s), here
there is only one which is the set we want to find. We state constraints which
limit the weight of the set. We apply the “trim” heuristics which removes
possible elements of the set domain. And finally we define the cost term
as a finite domain used in the min_max/2 predicate. The cost term is an
integer. The conjunto.pl library makes sure that any modification of an fd
term involved with a set term is propagated on the set domain. The labeling
procedure refines a set domain by selecting the element of the set domain
which has the biggest weight using max_weight(Sub, X), and by adding it
to the lower bound of the set domain. When running the example, we get
the following result:

[eclipse 3]: solve(S, 550).

Found a solution with cost 44

Found a solution with cost 24

S = {e(d, 101), e(e, 305), e(f, 50), e(g, 70)}

yes.

An interesting point is that in set based problems, the optimization criteria
mainly concern the cardinality or the weight of a set term. So in practice
we just need to label the set term while applying the fd optimization pred-
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icates upon the set cardinality or the set weight. There is no need to define
additional optimization predicates.

3.5.3 The ternary Steiner system of order n

A ternary Steiner system of order n is a set of n∗(n−1)\6 triplets of distinct
elements taking their values between 1 and n, such that all the pairs included
in two different triplets are different.

This problem is very well dedicated to be solved using set constraints: (i) no
order is required in the triplet elements and (ii) the constraint of the problem
can be easily written with set constraints saying that any intersection of two
set terms contains at most one element. With a finite domain approach,
the list of domain variables which should be distinct requires to be given
explicitely, thus the problem modelling is would be bit ad-hoc and not valid
for any n.

:- use_module(library(conjunto)).

% Gives one solution to the ternary steiner problem.

% n has to be congruent to 1 or 3 modulo 6.

steiner(N, LS) :-

make_nbsets(N,NB),

make_domain(N, Domain),

init_sets(NB, Domain, LS),

card_all(LS, 3),

labeling(LS, []).

labeling([], _).

labeling([S | LS], L) :-

refine(S),

(LS = [] ; LS = [L2 | _Rest],

all_distincts([S | L], L2),

labeling(LS, [S | L])).

% the labeled sets are distinct from the set to be labeled

% this constraint is a disjonction so it is useless to put it

% before the labeling as no information would be deduced anyway

all_distincts([], _).

all_distincts([S1 |L], L2) :-

distinctsfrom(S1, L2),

all_distincts(L, L2).

distinctsfrom(S, S1) :-
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#(S /\ S1,C),

fd:(C #<= 1).

% creates the required number of set variables according to n

make_nbsets(N,NB) :-

NB is N * (N-1) // 6.

% initializes the domain of the variables according to n

make_domain(N, Domain) :-

D :: 1.. N,

dom(D, L),

list2set(L, Domain).

init_sets(0, _Domain, []) :- !.

init_sets(NB, Domain, Sol) :-

NB1 is NB-1,

init_sets(NB1, Domain, Sol1),

S ‘:: {} .. Domain,

Sol = [S | Sol1].

% constrains the cardinality of each set variable to be equal to V (=3)

card_all([], _V).

card_all([Set1|LSets], V) :-

#(Set1, V),

card_all(LSets, V).

The approach with sets is the following: first we create the number of set
variables required according to the initial problem definition such that each
set variable is a triplet. Then to initialize the domain of these set variables
we use the fd predicates which allow to define a domain by an implicit enu-
meration approach 1..n. This process is cleaner than enumerating a list of
integer between 1 and n. Once all the domain variables are created, we
constrain their cardinality to be equal to three. Then starts the labeling
procedure where all the sets are labeled one after the other. Each time one
set is labeled, constraints are stated between the labeled set and the next
one to be labeled. This constraint states that two sets have at most one
element in common. The semantics of #(S ∩S 1, C), C ≤ 1 is equivalent to
a disjunction between set values. This implies that in the contraint propaga-
tion phase, no information can be deduced until one of the set is ground and
some element has been added to the second one. No additional heuristics
or tricks have been added to this simple example so it works well for n = 7,
9 but with the value 13 it becomes quite long. When running the example,
we get the following result:

[eclipse 4]: steiner(7, S).
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6 backtracks

0.75

S = [{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}]

yes.

3.6 When to use Set Variables and Constraints...

The subset-sum example shows that the general principle of solving problems
using set domain constraints works just like finite domains:

• Stating the variables and assigning an initial set domain to them.

• Constraining the variables. In the above example the constraint is
just a built-in constraint but usually one needs to define additional
constraints.

• Labeling the variables, i.e., assigning values to them. In the set case
it would not be very efficient to select one value for a set variable for
the size of a set domain is exponential in the upper bound cardinality
and thus the number of backtracks could be exponential too. A second
reason is that no specific information can be deduced from a failure
(backtrack) whereas if (like in the refine predicate) we add one by one
elements to the set till it becomes ground or some failure is detected,
we benefit much more from the constraint propagation mechanism.
Every domain modification activates some constraints associated to
the variable (depending on the modified bound) and modifications are
propagated to the other variables involved in the constraints. The
search space is then reduced and either the goal succeeds or it fails. In
case of failure the labeling procedure backtracks and removes the last
element added to the set variable and tries to instanciate the variable
by adding another element to its lower bound. In the subset-sum

example the labeling only concerns a single set, but it can deal with a
list of set terms like in the steiner example. Although the choice for
the element to be added can be done without specific criterion like in
the steiner example, some user defined heuristics can be embedded
in the labeling procedure like in the subset-sum example. Then the
user needs to define his own refine procedure.

Set constraints propose a new modelling of already solved problems or al-
lows (like for the subset-sum example) to solve new problems using CLP.
Therefore, one should take into account the problem semantics in order to
define the initial search space as small as possible and to make a powerful
use of set constraints. The objective of this library is to bring CLP to bear
on graph-theorical problems like the steiner problem which is a hypergraph
computation problem, thus leading to a better specification and solving of
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problems as, packing and partitioning which find their application in many
real life problems. A partial list includes: railroad crew scheduling, truck
deliveries, airline crew scheduling, tanker-routing, information retrieval,time
tabling problems, location problems, assembly line balancing, political dis-
tricting,etc.
Sets seem adequate for problems where one is not interested in each element
as a specific individual but in a collection of elements where no specific
distinction is made and thus where symmetries among the element values
need to be avoided (eg. steiner problem). They are also useful when het-
erogeneous constraints are involved in the problem like weight constraints
combined with some disjointness constraints.

3.7 User-defined constraints

To define constraints based on set domains one needs to access the properties
of a set term like its domain, its cardinality, its possible weight. As the
set variable is a metaterm i.e. an abstract data structure, some built-in
predicates allow the user to process the set variables and their domains,
modify them and write new constraint predicates.

3.7.1 The abstract set data structure

A set domain variable is a metaterm. The conjunto.pl library defines a
metaterm attribute
set{setdom:[Glb,Lub], card:C, weight:W, del_inst:Dinst, del_glb:Dglb,
del_lub:Dlub, del_any:Dany}
This attribute stores information regarding the set domain, its cardinality,
and weight (null if undefined) and together with four suspension lists. The
attribute arguments have the following meaning:

• setdom The representation of the domain itself. As set domains are
treated as abstract data types, the users should not access them di-
rectly, but only using built-in access and modification predicates pre-
sented hereafter.

• card The representation of the set cardinality. The cardinality is ini-
tialized as soon as a set domain is attached to a set variable. It is
either a finite domain or an integer. It can be accessed and modified
in the same way as set domains (using specific built-in predicates).

• weight The representation of the set weight. The weight is intialized
to zero if the domain is not a weighted set domain, otherwise it is com-
puted as soon as a weighted set domain is attached to a set variable.
it can be accessed and modified in the same way as set domains (using
specific built-in predicates).
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• del_inst A suspension list that should be woken when the domain is
reduced to a single set value.

• del_glb A suspension list that should be woken when the lower bound
of the set domain is updated.

• del_lub a suspension list that should be woken when the upper bound
of the set domain is updated.

• del_any a suspension list that should be woken when any reduction
of the domain is inferred.

The attribute of a set domain variable can be accessed with the predicate
svar_attribute/2 or by unification in a matching clause:

get_attribute(_{set: Attr}, A) :- -?-> nonvar(Attr), Attr = A.

The attribute arguments can be accessed by macros from the ECLiPSestructures.pl
library, if e.g. Attr is the attribute of a set domain variable, the del_inst
list can be obtained by:

arg(del_inst of set, Attr, Dinst)

or by using a unification:

Attr = set{del_inst: Dinst}

3.7.2 Set Domain access

The domains are represented as abstract data types, and the users are not
supposed to access them directly. So we provide a number of predicates to
allow operations on set domains.

set_range(?Svar,?Glb,?Lub)

If Svar is a set domain variable, it returns the lower and upper
bounds of its domain. Otherwise it fails.

glb(?Svar,?Glb)

If Svar is a set domain variable, it returns the lower bound of its
domain. Otherwise it fails.

lub(?Svar, ?Lub)

If Svar is a set domain variable, it returns the upper bound of
its domain. Otherwise it fails.

el_weight(++E, ?We)
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If E is element of a weighted domain, it returns the weight asso-
ciated to E. Otherwise it fails.

max_weight(?Svar,?E)

If Svar is a set variable, it returns the element of its domain
which belongs to the set resulting from the difference of the upper
bound and the lower bound and which has the greatest weight.
If Svar is a ground set, it returns the element with the biggest
weight. Otherwise it fails.

Two specific predicates make a link between a ground set and a list.

set2list(++S, ?L)

If S is a ground set, it returns the corresponding list. If L is also
ground it checks if it is the corresponding list. If not, or if S is
not ground, it fails.

list2set(++L, ?S)

If L is a ground list, it returns the corresponding set. If S is also
ground it checks if it is the corresponding set. If not, or if L is
not ground, it fails.

3.7.3 Set variable modification

A specific predicate operate on the set domain variables. When a set domain
is reduced, some suspension lists have to be scheduled and woken depending
on the bound modified.

NOTE: Their are 4 suspension lists in the conjunto.pl library, which are
woken precisely when the event associated with each list occurs. For exam-
ple, if the lower bound of a set variable is modified, two suspension lists will
be woken: the one associated to a glb modification and the one associated
to any modification. This allows user-defined constraints to be handled
efficiently.

modify_bound(Ind, ?S, ++Newbound)

Ind is a flag which should take the value lub or glb, otherwise
it fails ! If S is a ground set, it succeeds if we have Newbound
equal to S. If S is a set variable, its new lower or upper bound
will be updated. For monotonicity reasons, domains can only get
reduced. So a new upper bound has to be contained in the old
one and a new lower bound has to contain the old one. Otherwise
it fails.
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3.8 Example of defining a new constraint

The following example demonstrates how to create a new set constraint.
To show that set inclusion is not restricted to ground herbrand terms we
can take the following constraint which defines lattice inclusion over lattice
domains:

S_1 incl S

Assuming that S and S 1 are specific set variables of the form

S ‘:: {} ..{{a,b,c},{d,e,f}}, ..., S_1 ‘:: {} ..{{c},{d,f},{g,f}}

we would like to define such a predicate that will be woken as soon as one
or both set variables’ domains are updated in such a way that would require
updating the other variable’s domain by propagating the constraint. This
constraint definition also shows that if one wants to iterate over a ground
set (set of known elements) the transformation to a list is convenient. In
fact iterations do not suit sets and benefit much more from a list structure.
We define the predicate incl(S,S1) which corresponds to this constraint:

:- use_module(library(conjunto)).

incl(S,S1) :-

set(S),set(S1),

!,

check_incl(S, S1).

incl(S, S1) :-

set(S),

set_range(S1, Glb1, Lub1),

!,

check_incl(S, Lub1),

S + Glb1 ‘= S1NewGlb,

modify_bound(glb, S1, S1NewGlb).

incl(S, S1) :-

set(S1),

set_range(S, Glb, Lub),

!,

check_incl(Glb, S1),

large_inter(S1, Lub, SNewLub),

modify_bound(lub, S, SNewLub).

incl(S,S1) :-

set_range(S, Glb, Lub),

set_range(S1, Glb1, Lub1),

check_incl(Glb, Lub1),

Glb \/ Glb1 ‘= S1NewGlb,

large_inter(Lub, Lub1, SNewLub),
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modify_bound(glb, S1, S1NewGlb),

modify_bound(lub, S, SNewLub),

( (set(S) ; set(S1)) ->

true

;

make_suspension(incl(S, S1),2, Susp),

insert_suspension([S,S1], Susp, del_any of set, set)

),

wake.

large_inter(Lub, Lub1, NewLub) :-

set2list(Lub, Llub),

set2list(Lub1, Llub1),

largeinter(Llub, Llub1, LNewLub),

list2set(LNewLub, NewLub).

largeinter([], _, []).

largeinter([S | List_set], Lub1, Snew) :-

largeinter(List_set, Lub1, Snew1),

( contained(S, Lub1) ->

Snew = [S | Snew1]

;

Snew = Snew1

).

check_incl({}, _S) :-!.

check_incl(Glb, Lub1) :-

set2list(Glb, Lsets),

set2list(Lub1, Lsets1),

all_union(Lsets, Union),

all_union(Lsets1, Union1),

Union ‘< Union1,!,

checkincl(Lsets,Lsets1).

checkincl([], _Lsets1).

checkincl([S | Lsets],Lsets1):-

contained(S, Lsets1),

checkincl(Lsets,Lsets1).

contained(_S, []) :- fail,!.

contained(S, [Ss | Lsets1]) :-

(S ‘< Ss ->

true

;

contained(S, Lsets1)
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).

The execution of this constraint is dynamic, i.e., the predicate incl/2 is
called and woken following the following steps:

• We check if the two set variables are ground set. If so we just check
deterministically if the first one is included (lattice inclusion) in the
second one check_incl. This predicate checks that any element of a
ground set (which is a set itself in this case) is a subset of at least one
element of the second set. If not it fails.

• We check if the first set is ground and the second is a set domain
variable. If so, check_incl is called over the first ground set and the
upper bound of the second set. If it succeeds then the lower bound of
the set variable might not be consistent any more, we compute the new
lower bound (i.e., adding elements from the ground set in it (by using
the union predicate) and we modify the bound modify_bound. This
predicate also wakes all concerned suspension lists and instantiates the
set variable if its domain is reduced to a single set (upper bound =
lower bound).

• We check if the second set is ground and the first one is a set variable.
If so, check_incl is called over the lower bound of the first set and
the second ground set. If it succeeds then the upper bound of the set
variable might not be consistent any more. The new upper bound is
computed by intersecting the first set with the upper bound of the
set variable in the lattice acceptation large_inter and is updated
modify_bound.

• we check if both set variables are domain variables. If so the lower
bound of the first set should be included in the lattice sense in the
upper bound of the second one check/incl. If it succeeds, then if the
lower bound the second set is no more consistent we compute the new
one by making the union with first sec lower bound. In the same way,
the upper bound of the first set might not be consistent any more. If
so, we compute the new one by intersecting (in the lattice acceptation)
the both upper bounds to compute the new upper bound of the first
set large_inter. The upper bound of the first set variable is updated
as well as the lower bound of the second set modify_bound.

• After checking all these updates, we test if the constraint implies an
instanciation of one of the two sets. If this is not the case, we have
to suspend the predicate so that it is woken as soon as any bound of
either set domain is changed. The predicate make_suspension/3 can
be used for any ECLiPSe module based on a meta-term structure. It
creates a suspension, and then the predicate insert_suspension/4,
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puts this suspension into the appropriate lists (woken when any bound
is updated) of both set variables.

• the last action wake triggers the execution of all goals that are waiting
for the updates we have made. These goals should be woken after
inserting the new suspension, otherwise the new updates coming from
these woken goals won’t be propagated on this constraint !

3.9 Set Domain output

The library conjunto.pl contains output macros which print a set variable
as well as a ground set respectively as an interval of sets or a set. The
setdom attribute of a set domain variable (metaterm) is printed in the
simplified form of just the glb..lub interval, e.g.

[eclipse 2]: S ‘:: {}..{a,v,c}, svar_attribute(S,A), A = set{setdom : D}.

S = S{{} .. {a, c, v}}

A = {} .. {a, c, v}

D = [{}, {a, c, v}]

yes.

3.10 Debugger

The ECLiPSe debugger which supports debugging and tracing of finite do-
main programs in various ways, can just be used the same way for set domain
programs. No specific set domain debugger has been implemented for this
release.
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Chapter 4

Porting to Standalone Eplex

Since ECLiPSe version 5.7, standalone eplex have become the standard
eplex, loaded with lib(eplex). The previous lib(eplex), which loads
eplex with the range bounds keeper and the IC variant have now been phased
out, so users of these old variants must now move to using standalone eplex.

There are some differences at the source level between standalone and the
older non-standalone eplex. This chapter outlines these differences to help
users to port their existing code to standalone eplex.

4.1 Differences between Standalone Eplex and Older

Non-Standalone Eplex

The main difference between the standalone eplex and the non-standalone
eplex is that the standalone version does not use an ECLiPSe ‘bounds keeper’
like lib(ic) or lib(range) to provide the ranges for the problem variables.
Instead, ranges for variables are treated like another type of eplex constraint,
i.e., they are posted to an eplex instance, and are stored with the external
solver state.

In the non-standalone eplex, the bounds of all problem variables are trans-
ferred from the bounds keeper to the external solver each time the solver is
invoked, regardless of if the bounds for the variables have changed or not
since the last invocation. This can become very expensive if a problem has
many variables. With the standalone eplex, this overhead is avoided as the
external solver bounds for variables are only updated if they are explicitly
changed. A possible inconvenience is that for hybrid programming, where
eplex is being used with another ECLiPSe solver, any bound updates due to
inferences made by the ECLiPSe solver are not automatically transferred to
the external solver. This can be an advantage in that it leaves the program-
mer the freedom of when and how these bound changes should be transferred
to the external solver.

The main user visible differences with the non-standalone eplex are:
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• Bounds constraints intended for an eplex instance should be posted to
that instance, e.g.

[eclipse 3]: eplex_instance(instance).

...

[eclipse 4]: instance: eplex_solver_setup(min(X)),

instance: (X:: 0.0..10.0), instance: eplex_solve(C).

X = X{0.0 .. 10.0 @ 0.0}

C = 0.0

Yes (0.00s cpu)

The ::/2 ($::/2) constraints are treated like other eplex constraints,
that is, the bounds for the variables are specific to their eplex instance.
Other eplex instances (and indeed any other bounds-keeping solver)
can have different and even incompatible bounds set for the same vari-
able. Also, if the variable(s) do not already occur in the eplex instance,
they will be added. Both of these are different from the non-standalone
eplex, where bound constraints were treated separately from the eplex
constraints.

Like other eplex constraints, inconsistency within the same eplex in-
stance will lead to failure, i.e. if the upper bound of a variable becomes
smaller than its lower bound, this will result in failure, either immedi-
ately or when the solver is invoked.

One potential problem is that with the non-standalone eplex, the
bound keeper’s ::/2 was re-exported through the eplex module
(but not through the eplex instances). One was able to write
eplex: (X :: 1.0..2.0) and affect the bounds of the variable for
all instances, even though this was not posting a constraint to
any eplex instance. With the standalone eplex, the same code,
eplex: (X :: 1.0..2.0) has different semantics and is a constraint
for the eplex instance eplex only.

A variable never becomes ground as a result of an eplex instance bound
constraint, even when the upper and lower bounds are identical.

Posting eplex arithmetic constraints involving one variable is the same
as posting a bounds constraint. Unlike the non-standalone eplex, the
variable will be added to the eplex instance even if it does not occur
in any other constraints.

No propagation of the bounds is performed at the ECLiPSe level: the
bounds are simply passed on to the external solver. In general, the
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external solver also does not do any bounds propagation that may be
implied by the other constraints in the eplex instance.

Note that the generic get var bounds/3 and set var bounds/3 ap-
plies to all the eplex instances/solver states. If set var bounds/3 is
called, then failure will occur if the bounds are inconsistent between
the eplex instances.

• integers/1 only indicates that a variable should be treated as an
integer by the external solver in the eplex instance, but does not impose
the integer type on the variable. In addition, the type of the solution
returned for a variable is determined only by if it was in an integers/1

declaration for the eplex instance. (In non-standalone eplex, the type
is determined by the type given the variable by the bounds keeper)

• If a bounds keeper like lib(ic) is loaded, then any bounds constraints
posted to this solver are not automatically visible to the eplex in-
stances. Instead, the bounds can be transferred explicitly by the user
(e.g. by calling the eplex instance bounds constraints when the bounds
in the solver changes). To allow for more compatibility with the other
versions of eplex, the sync_bounds(yes) option can be specified dur-
ing solver setup (using eplex solver setup/4). This will ‘synchro-
nise’ the bounds of all problem variables when the external solver is
invoked, by calling get_var_bounds/3 for all problem variables. Note
that it is the generic get bounds handler that is called.

• When a demon solver is invoked, the update to the objective variable
is via an update to its bounds. In the standalone eplex, this is done
by calling the generic set_var_bounds/3. However, if there are no
bounds on this variable, the update will be lost. A warning is given
during the setup of the demon if the objective variable has no bounds.

One possible solution is to add the objective variable to the problem
(e.g. by giving it bounds for the eplex instance). However, this can
induce extra ‘self-waking’ that needlessly invokes the solver (e.g. if the
bounds trigger option is used). Another solution is to add bounds to
the variable via some other bounds keeper, e.g. lib(ic). Note that
it is always possible to retrieve the objective value via the objective

option of eplex get/2.

• When a constraint is posted to an eplex instance after solver setup,
that constraint is immediately added to the external solver, rather
than only ‘collected’ by the external solver when it is invoked.

• The solver setup predicates have been simplified in that the suspen-
sion priority is no longer specified via an argument, so these predicates
have one less argument: eplex solver setup/4, lp demon setup/5
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Instead, the priority can be specified as an option, if required. The
older predicates with the priority argument are still available for com-
patibility purposes.

• eplex get/2 and lp get/3 now has an extra option: standalone

which returns the value yes for standalone eplex and no otherwise.

• The order in which variables are passed to the external solver has
changed. Also, with standalone eplex there may be more variables in
the problem. This should not be visible to the user, except when exam-
ining a problem written out by the external solver. This makes it dif-
ficult to compare problems generated using standalone eplex and non-
standalone eplex. Using the use_var_names(yes) options in setup
should make this somewhat easier as the variables would have the
same names.
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